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SUMMARY 
Exact analytical solutions to problems of SH line force and line dislocation operating at the 
interface between two quarter spaces are derived and discussed. It is shown that the resulting 
fields differ from that of a homogeneous half space in the distribution of travel times, wave 
amplitudes and polarity of first motions. These effects are documented in the literature. It is, 
therefore, suggested that when constructing theoretical seismic displacement fields from 
source, path and site effects, it is important to use response functions that account for 
material heterogeneity in the source region. An extension of the formulation used in the case 
of SH line dislocation leads to a 3-D representation theorem which gives the displacement 
field in terms of the displacement discontinuities along the rupture area. The resulting overall 
sue scaling parameter is the ‘potency’, which does not suffer from an ambiguity associated 
with seismic moment in the case of heterogeneous source region. 
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1 INTRODUCTION 

Although most earthquakes originate along faults that 
separate different rock bodies, theoretical models of seismic 
rupture usually simplify the source region by assuming that 
slip takes place along a surface that is situated in a 
homogeneous region. The purpose of this paper is to study 
some consequences of allowing material discontinuity to 
exist in the source region. In Sections 2 and 3 we derive 
analytical expressions for SH-waves excited by line sources 
operating at the interface between two quarter spaces of 
different elastic moduli. We find that the resulting SH 
displacement fields differ in travel times, wave amplitudes 
and polarity of first motions from the fields in a 
homogeneous half space. We suggest that when interpreting 
observed seismic waves it is important to consider effects 
arising from material heterogeneity in the source region. 
Similar recommendations regarding the analysis of static 
deformation fields are given by Rybicki & Kasahara (1977), 
Mahrer & Nur (1979), Mahrer (1981) and others. 

The paper is also concerned with formulation and 
conceptual problems that arise when the source region 
contains material discontinuity. Woodhouse (1981) indicated 
that the seismic moment tensor is indeterminant in such 
cases, as significantly different moment tensors can be 
obtained depending upon which side of the material 
discontinuity the source is assumed to lie. Heaton & Heaton 
(1989) recently demonstrated the same ambiguity in the 
moment of static dislocation occurring between different 
elastic materials. They concluded that seismic moment is not 

a satisfactory measure of the size of an earthquake. Instead, 
they suggested the use of the unambiguous parameter 
potency, defined by Ben-Menahem & Singh (1981, equation 
4.94) as the integral of the slip over the rupture surface. 

The ambiguity of the source location (on which side of the 
material discontinuity does it lie?) naturally suggests a study 
in which sources are located at the interface itself. In 
Section 2 of this paper the source is an impuke SH line force 
operating at the interface between two different quarter 
spaces. The medium response to the line force is used in 
Section 3 where a seismic source is modelled as a line SH 
dislocation at the material discontinuity. The resulting 
displacement field is scaled by the slip function alone. 
In Section 4 the formulation of the third section is 
abstracted to a form of a 3-D representation theorem in 
which the size scaling parameter is the potency. We suggest 
that such representation is a clear and simple vehicle for 
synthesizing the seismic fields that are radiated from realistic 
heterogeneous source regions. 

2 SH LINE FORCE OPERATING AT THE 
INTERFACE BETWEEN TWO WELDED 
QUARTER SPACES 

Consider the infinite strike slip fault model (shown in Fig. 1) 
consisting of two welded elastic quarter spaces. The left 
quarter space is called medium 1 and the right one medium 
2. The rigidity and shear wave velocity of medium i, i = 1, 
2, are denoted, respectively, by pi and Oi. A line impulse 
force operating on medium 2 at an infinitesimal distance, 
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Figure 1. Two quarter spaces with SH line force operating on the 
quarter space x > 0 at horizontal source coordinate E+ 0. 

E, from the interface is given by 

F2 = [O ,  p z W ) 8 ( x  - E ) ~ ( z  - zo),O],  (1.1) 
with 6( ) denoting the Dirac delta function. This source 
is purely SH or antiplane and the displacement field 
everywhere is completely specified by u(x, t) = 

In this and the following section we obtain exact analytical 
solutions in time and space using the Cagniard-de Hoop 
method (Cagniard 1939, 1962; de Hoop 1960). An excellent 
explanation of the method can be found in chapter 6 of Aki 
& Richards (1980). In this method we first transform and 
solve wave equations in Laplace-Fourier domain. Second, 
we apply inverse Fourier transforms and find Laplace-space 
solutions in integral form. Finally we invert to the 
time-space domain by manipulating the Laplace-space 
integrals to look like forward Laplace transforms, from 
which the time-space solutions are immediately available as 
the expression in the integrands that multiply the Laplace 
operator e+. 

The response of medium 2 to the source ( l . l ) ,  denoted by 
V2s, is governed by the inhomogeneous wave equation 

[O,  V(x9 2, 0 9 0 1 .  

1 d2V,s ez ez - + 7 v, = 6( t )  6 ( x  - E )  6(z  - zo). (1.2) E 7 - L  dz 1 
We transform (1.2) to Laplace-Fourier domain by operating 
on it with 

m m 

lme-srdt I-, e-ikxx & I-, e-ikzz dz ,  

we then get for the source wave 

Applying one inverse Fourier transform to (1.3) we find 

and solving (1.4), using the Residue theorem, we obtain 

Operating the second inverse Fourier transform (and 
changing the dummy variable k, to k )  we find for the source 

wave 
rm -iky, 

J-- ( s 2 / i z  + k2)’I2 
Vzs(x, z ,  s) = 1/4n 

(1.6) 

V2&, z ,  s )  = 1/4n B e-S(Pzt-‘721X-EI) d P (1.7) 

e-(s2/~:+k2)’/21~-~I e ikz dk. 

We now change variables by setting k = isp and get 
i- I-i, zs 

with B,s = - i / q2  espy, and q2 = (81, -p2)lR, Re(q,) 3 0. 
The interaction of the source wave (1.7) with the welded 

vertical interface at x = 0 results in a reflected wave in 
medium 2, v2R,  and a transmitted wave in medium 1, VIT, 
given by 

i- 

V,, = 1/4n BZR e-S(PZ+’72X) dF 

(1.8) 
i- 

V,, = 1 / 4 ~  \-i, BIT e-S(pz--olx) dP, 

where the coefficient functions BZR and B,,, found by 
imposing the continuity of stress and displacement across 
the interface x = 0, are 

12 - 11 B,, = - 
1, + I, B2s 

and 

with Ii = piqi, i = 1, 2 and qi = (&T2 -p2)”’, Re(qi) 3 0. 
So far the existence of a free surface in the medium was 

not considered. Thus the set (1.7), (1.8) corresponds to the 
case of two welded half spaces. We now specify the plane 
z = 0 to be a free surface. This implies that the stress must 
vanish on the surface z = 0, resulting in reflected waves back 
to the medium z > 0. We obtain the solution to this problem 
of two welded quarter spaces by simply adding to the field 
(1.7), (1.8) the response, denoted by Y’, of two welded half 
spaces to an image source located at ( E ,  -zo). Doing so and 
letting E+O, the response of the two welded quarter spaces 
to the source (1.1) (in Laplace-space domain) is 

Medium 1 
i m  

dP V, = V,, + V &  = 1/43d B e-s(pr--rllx) L, lT 

I-im i- 

dP (1.9) + 1 1 4 ~  B e-s(-~z--tl~x) 

Medium 2 

vz  = v2s + v2R + v& + ViR 
im 

dP =1/4n B e-s(Pz+-t12x) f i  2s 

with Bzs, BIT,  B,, and qi given in (1.7) and (1.8). 
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We are now ready to perform the Cagniard-de Hoop 
inversion by transforming the terms in the set (1.9) to look 
like forward Laplace transforms. We demonstrate this 
process on the term VzR. The remaining five terms are 
evaluated in similar fashion. 

We begin the inversion of V,, by noticing that the 
integrand in V,, can be written as E ( p )  + iO(p) ,  where 
E ( p ) ,  O(p)  are even, odd functions of p ,  respectively. Since 
the range of integration in V,, is symmetric in p we have 
im 

( ) dp = 2 f m  E ( p )  dp  = 2 [=Re( ) dp fPi, 0 

i- 

= 2 i I m b  ( ) d p  

or explicitly 

V&, 2, s) = 1/2n 

Since q,, q2 are multivalued functions, four Riemann sheets 
are needed in order for the integrand in (1.10) to be an 
analytic function. The physical sheet is the one on which 
Re(ql) a 0, Re(q,) 3 0 so that the radiation condition is 
satisfied. The sheets are connected along the four branch 
cuts given by Re( q,) = 0, Re( q2) = 0. 
We next set 

p ( z  - 20) + 71,x = t (1.11) 

and inverting (1.11) we obtain a parameterization of the 
variable p as 

t<r lB2  1. ~ ( c o s  O/r)t  * (sin 8 / r ) ( r Z / @ :  - t2)’” 
= ( ~ ( c o s  O/r)t  + i(sin e / r ) ( t ’ -  r’/Bf)”’ t>  r / B 2  

where 8 = tan-’[x/lz - zol] (measured positive in the 
clockwise direction) and r = [x” + (z - 20)2]1/2 are the angle 
and distance, respectively, between the source and the 
observation point as shown in Fig. 1. In (1.12) we takep:(t) 
depending on whether z 5 z,,. This choice of signs insures 
that the points p:( t )  = 0 correspond to non-negative values 
of the time parameter t. 

We now construct the Cagniard path in the complex p 
domain by letting t in (1.12) vary from x /B2  to a. Fig. 2 
shows the Riemann sheet Re(q,) 2 0, Re(q2) 2 0 for the 
case B1 >p2 and zo>z. Indicated in Fig. 2 are the 
integration range in (1. lo), Cagniard paths, upper 
connecting arc with radius R and the branch cuts. Two 
possible Cagniard paths, C ,  and C, are shown. C1 
corresponds to the case 8 <  8czI=cos-1 (B,/B,) and C2 to 
8 > 8c21. Since the integrand in (1.10) is analytic in the 
regions between the positive imaginary axis and Cagniard 
paths, and as by Jordan’s lemma it goes to zero on the upper 
connecting path when R tends to m, (1.10) can be 
substituted by 

(1.12) 

Figure 2. Schematic diagram of the Riemann sheet Re (q , )  3 0, 
Re (q,) 2 0, for the case Dl > fiz and z, > z .  Heavy lines indicate the 
integration path of ( l . l O ) ,  two possible Cagniard paths (C, for 
8 < O,,, and C, for 8 > e,,,) and upper connecting path. Wiggly 
lines indicate the branch cuts IRe ( p ) l >  I/&, IRe (p)l> I/&. 

from which the time-space response can now be identified 

(1.14) 
where h( ) is the Heaviside unit step function and d p z l d t  
(with f corresponding to z 5 zO) from (1.11) and (1.12) is 
given by 

(1.15) 

Now from (1.14), (1.12) and (1.15) it is clear that if 
/3,>B1 then p:, d p z l d t  and the reflection coefficient 
B , ( p z )  = (1, - Z l ) / ( Z z  + Z l )  are all real for t <r ip2  and 
complex only for t > r/&,  when the Cagniard path leaves 
the Re(p:) axis. Thus for B2>B1 the first motion 
corresponds to the arrival time of the regular geometrically 
reflected wave, traveling along the direct ray path from the 
source at the interface to the observation point with Bz 
velocity. On the other hand, if B1 > 8, (see Fig. 2) then the 
above situation holds only for 8 > OC2, where p: ,  d p z l d t  
and B2(p:) are still real for t < r/&. For 8 < 8,,, however, 
B,(p:) becomes complex for lp:I > 11//311 since then q is 

/3;’)’/’. Here the time of the first arrival, th2, is found by 
setting p T =  T l/pl in (1.11). This corresponds to the 
arrival of a head wave that travels from the source along the 
vertical interface with the faster B1 velocity and then along a 
ray path with the critical angle to the observation point with 
8, velocity. 

From the above considerations we now rewrite (1.14) in 
the more explicit form 

pure imaginary and given by ql=- i f j l ,  f j l = ( p 2  Tt - 

VZR(x, z ,  t )  = 1/2n Re (” - - ”> W, h(t - r//3,)  
1 2 + 4  p :  

(1.13) 
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with W2 = (t2 - r2/B2)-112, W2 = (r2/B2 - t2)-l12, th2 = 
l /Bl  lz, - zI + (&’ - /3;2)1/2x and f being determined by 

The remaining five waves (VlT, VfT, VZs, V i ,  and V;,) 
are evaluated in similar ways. The final result for the 
time-space response of the two welded quarter spaces to the 
impulse SH line source is 

Medium 1 (x  < 0)  

2 5 % .  

V I T ( x ,  z ,  t )  = p 2 / n  Re (A) Wf h(t - r i /B1)  
12 + 4 pi 

x Wl [h(t - t i , )  - h(t - ri /B1)]  

and 

Medium 2 (x > 0) 

VZs(x, z ,  t )  = 1/2n W2 h(t - r / B 2 )  

v’,,(x, Z, t )  = 1/2n W :  h(t - ri /B2) 

V2&, z ,  t) = 1 1 2 ~  Re (-) W2 h(t - r/jQ 
1 2 + 4  p: 

x Wi [h(t  - ti,) - h(t - ri/B2)] 

and 

v, = v2, + V i S  + v2, + VZ, 

+ 1/2n[ 1 + R e  (-)pi]Wi h(t - ri/Bz) 

x W ;  [h(t - th,) - h(t - ri/B2)] 

where 

ei, ri, thl and tL2 are given from 8, r, thl and, thz? 
respectively, by the substitution z + - z ,  and p i  and p i ,  W; 
and Wj are given, respectively, from p ; ,  p ; ,  y. and by 
the substitutions 8 + Oi and r +. ri. 

From the set (1.17) it is seen that all the waves become 
infinite in amplitude immediately after the geometrical 
arrivals (direct for the source wave and regular 
reflections/transmissions for the rest). In addition, the terms 
that contain head wave contribution also become infinite in 
amplitude immediately before the geometrical arrivals, thus 
containing two singularities. These singularities are, 
however, integrable. They result from the discontinuous 
action of our idealized source and disappear when we 
synthesize the response due to a more realistic source by 
convolving the realistic source time function with the set 
(1.17). 

Figure 3 shows schematically various ray paths of the 
different first arrivals in the set (1.17) for the case p1 > p2, 
z, > z. In the faster medium 1 there are two such arrivals at 
each observation point. The first corresponds to the wave 
transmitted through the vertical interface and the second to 
the transmitted wave that is also reflected by the free 
surface. The slower medium 2 on the other hand is divided 
into three distinct zones. In the first zone 0 < 8 < OC2, there 
are four different arrivals. The first corresponds to the head 
wave, the second to the simultaneous arrival of the source 

Figure 3. Various ray paths in the two quarter spaces for the case 
B*>B*? 20’2. 
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[a) V, of (1.17) for zn = 1 km, z = 0, 8 = 0, 1, 2, 3, 4 and 
\ ,  \ I 

5'': p,  = 3.213 km s-', p ,  = 0.2?6 x 10" dyne cm-', p, = 3.0 km s-l 
and pz = 0.225 X 10" dyne cm-'. (b) V, of (1.17) for 8 = 18, 19, 20, 
21, 22 and 23". The other parameters are the same as in (a). 

wave and the wave reflected from the vertical interface, the 
third to the head wave that is reflected by the free surface 
and the fourth to the source wave and the reflected wave 
from the vertical interface that are also reflected by the free 
surface. The second zone OCz1 < 8 < 8' = tan-'[(z, + z)/ 
(2, - t) tan 8czi] is characterized by 8 > 8 , ,  Oj < eC2,. 
Here there are three different amvals of the second, third 
and fourth types of the zone 8 <  OCz1. In the third zone 
8 > 8' both 8 and Oi > 8,, and the situation is similar to the 
one of medium 1 in that there are only two different arrivals 
being the second and fourth types of the zone 8 < 8c2i. 

Figure 4(a) shows the displacement field V, of (1.17) for 
source and observation parameters zo = 1 km, z = 0 and 
8=0, 1, 2, 3, 4 and 5". The medium parameters are 
PI = 3.213 km s - l ,  Bz = 
3.0 km s-l and p, = 0.225 X 10" dyne cm-'. The moderate 
contrast between the parameters of the different quarter 
spaces is well within the range of values found by laboratory 
measurements (Carmichael 1982) and field velocity studies 
of the San Andreas fault in central California (McEvilly 
1966; Stewart 1968; Boore & Hill 1973; Walter & Mooney 
1982). Fig. 4(b) shows the same as Fig. 4(a) for 8 = 18, 19, 
20, 21, 22 and 23". The solutions were calculated for time 
points separated by low4 s and linear interpolation was used 
in plotting the results. The critical angle is 8,, = 20.9". For 
8 < OCz1 the first motion is due to a head wave arriving at 
t= th2 .  Gradual buildup of the head wave amplitude 
produces an emergent pulse which precedes the sharp 

p1 = 0.276 X 10l'dyne cm-', 

I 10. 
cm/dyne 

Displacement 

t 

1.0.10-'0 
cm /dyne 

F i r e  5. (a) V, of (1.17) for same parameters as in Fig. 4(a). (b) 
V, of (1.17) for same parameters as in Fig. 4(b). 

singularity that arrives at t = r / P 2 .  The time range r / P Z  - t,, 
is decreasing to zero as 8 approaches the critical angle and 
no head wave exists for 8 > Figs. 5(a) and (b) show 
the displacement field V, for the same parameters as in Fig. 
4(a) and (b), respectively. Close to the interface x = 0 the 
continuity boundary conditions distort the shape of the llv 
decay curve that follows the singularity at t = r/&. This 
effect is rapidly diminishing as the angle 8 increases. For the 
sake of comparison, Fig. 6 shows corresponding displace- 
ment fields in a homogeneous half space characterized by 

Displacement 

t 
I 

I0 .10-10 
cmldyne 

Figwe 6. V, and V, in homogeneous half space characterized by 
p = ( p ,  + p2)/2 = 0.2505 X 10" dyne cm-' and /3 = (PI + p2)/2 = 
3.1065kms-' for 8=0, f l ,  f 2 ,  f 3 ,  f 4  and f5". The other 
parameters are the same as in Fig. 4(a) 
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Displacement 

t 

Figure 7. (a) V, of (1.17) for z = 200 m. The other parameters are 
the same as in Fig. 4(a). (b) V, of (1.17) for z = 200 m. The other 
parameters are the same as in Fig. 4(b). 

the average values p = (pl + p,)/2 = 0.2505 x 
10" dyne cm-' and B = (PI + &)/2 = 3.1065 km s-l, for 
8 = 0 ,  f 1, f 2 ,  f3, f 4  and f5". A glance across Figs 
4(a), 5(a) and 6 immediately shows that the material 
discontinuity results in prominent features which cannot be 
accounted for in the framework of a homogeneous half 
space model. A more detailed discussion on the differences 
between the displacement fields in our model of 
heterogeneous source region and the corresponding ones in 
a model of homogeneous half space are given in the next 
section and in the discussion part of the paper. Figs 7(a) and 
(b) show V, for an observation depth z = 200 m and the 
other parameters the same as in 4(a) and (b), respectively. 
Here 8' = 29.9". For 8 < 8,, < 8' the four different amvals 
of Fig. 3 are clearly shown. For OCz, < 8 < 8' it is seen that 
the reflected waves from the free surface still contain head 
wave contributions. Finally, Figs. 8(a) and (b) show Vl for 
the same parameters as in 7(a) and (b), respectively. Figs 
4-8 clearly show that the displacement fields in media 1 and 
2 are significantly different from each other and from the 
corresponding fields of a homogeneous half space. 

The problem we considered in this section may 
correspond to man made experiments where unbalanced 
(external) force systems are operating on the medium and 
the resulted displacement fields are continuous everywhere. 
In the next section we model the displacement field due to 
the internal phenomenon of spontaneous rupture. 

I 0.5. 
cm/dyne 

DI! :emen1 

Time 
0 2  0'5 (sec) 

9*-23* 

Figure 8. (a) V, of (1.17) for same parameters as in Fig. 7(a). (b) 
V, of (1.17) for same parameters as in Fig. 7(b). 

Z 
Figure 9. Two quarter spaces with SH line dislocation operating at 
the interface between the different media. The heavy line represents 
a fault surface S across which displacement discontinuities may 
occur. n is the normal to S pointing from S- to S+. 

3. SH LINE DISLOCATION AT THE 
INTERFACE BETWEEN TWO QUARTER 
SPACES 

In this section we calculate the response of two quarter 
spaces to spontaneous introduction at the interface x = 0 of 
SH dislocation (Fig. 9) specified by 

AV(0, Z, t )  = IAVJ a(z - z,)h(t). 

Here the system is self balanced since the total force and 
(2.1) 
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torque due to a dislocation source are zero (Aki & Richards 
1980, chapter 3). 

In the case of two half spaces, the radiated wave field in 
Laplace-space domains (see 1.8) is 

dp x < O  

(2.2) 
im 

V, = 1 1 4 ~  B~ e--S(Pz+~zX) dp x > O .  

Transforming (2.1) to Laplace-space domain, and putting it 
in a form that is compatible with Vl and V, of (2.2), we get 

lpim 

AV(0, z, s) = 1/4n - 2i IAVI e-sp(z--ro) dP 

im 

where here 

B, = - 2i IAVI eSpq. 

Now the displacement boundary condition at the interface 
x = 0 is given by 

(V2 - Vi),=o = A V  (2.4a) 

and the stress boundary condition at x = 0 by 

p 1 ( av, / ax), =o = p,(av,/ ex), =o' 
Solving (2.4a) and (2.4b) using (2.2) and (2.3) we find 

(2.4b) 

Bl = [ - 12/(11 + I,)]& and B2 = [IJ(Il + 12)]Bs. 

From here the time-space solutions for V, and V2 are 
immediately available by simple substitutions from V,, and 
V,, of (1.17). Adding, as before, the response of two half 
spaces to an image source, the response of two quarter 
spaces to the slip (2.1) is found to be 

Medium 1 (x (0)  

x wf [h(t - t i , )  - h(t - ri/B1)] (2.5) 
Medium 2 (x > 0) 

Oispl ement 

... .................................................... 

t ,Time A (sec) 

Oisplacement 

e=+19* 

8.-19' 
.................................. 

5.0.  lo-' 
, .................................... 

1 I ...................................... .................. 
I 1, 

I .Time 
4 (sec) 

Figure 10. (a) V, (solid line) and V, (dashed line) of (2.5) for 
z,,= 10 km, AV = 1 cm, I = O  and 8 =0, f l ,  f 2  and f3". The 
media velocities and rigidities are the same as in Fig. 4(a). (b) Same 
as (a) for 8 = f19, f20, f 2 1  and f22". 

3 

x W!- [h(t - ti,) - h(t - r i /Bz ) ] ,  

where all the definitions of (1.17) hold. 
Figure lO(a) shows Vl (solid line) and V, (dashed line) of 

the field (2.5) for zo = 10 km, AV = 1 cm, z = 0 and 8 = 0, 
f 1, f 2 and f 3". Fig. 10(b) shows the same for 8 = f19 ,  
f20,  f 2 1  and f22". The media velocities and rigidities are 
the same as in Fig. 4(a). The solutions were calculated for 
time points separated by s and linear interpolation was 
used in plotting the results. In the faster medium 1 all the 
displacement is in the negative y direction. The first motion 
at all angles occurs at t = r / B 1  with the arrival of the 
singularity Vl+ --oo that is associated with the geometrical 
rays. Following that the displacement field decays along l/d 
curve, with some distortion close to the interface x = 0. In 
the slower medium 2, for 8 < OCz, the first motion is in the 
negative y direction when the head wave arrives at t = th2. 
The amplitude of the wave increases gradually (with some 
distortion near the interface x = 0) over the time range 
r / B 2 - t h 2  and V, approaches --oo just before the arrival of 
the geometrical rays at t = r /B2.  Immediately after t = r / &  
V, comes back from +m, decaying from there along 
the l/d curve. For 8 > OC2, all the displacement V, is in the 
positive y direction, beginning with the arrival of the 



220 Y. Ben-Zion 

x=-100crn  
1 

Displacement 
(1O"crn) 

' x .25cm 
152 

T ime -I 52 

8.00 

4 0 = + t *  
-' .................................................................................... 
e.-I*' 

f e = + 2 4  

Fire 11. Same as Fig. 10(a) for z = z, = 10 km and x = f25, f50 
and f 100 cm. 

geometrical rays singularity V2+ + m  at t = r / p 2  and 
decaying from there along the l/d curve. 

An overall view of the wavefield brings out two places 
where the waveform undergoes radical changes. One is 
across the interface x = 0 separating the two different elastic 
materials and the other is across the critical angle. For 
observation depths below the free surface a third such 
location exists across the angle 8'. 

Figure 11 demonstrates the field close to the dislocation 
by showing the early parts of V, and V, of (2.5) for 
z = z , = l O k m a n d x =  f 2 5 ,  f 5 0 a n d  f100cm. Theother 
parameters are the same as in Fig. lO(a). Here the solutions 
were calculated for time points separated by 10-5s and 
linear interpolation was used in plotting the results. The 
existence of the displacement discontinuity in (xo,  zo) = 
(0,lO km) is evident from the permanent components of 
displacements, with reversed polarity and increased 
magnitude toward the interface, in the fields V, 
and V,. 

Figure 12 shows the corresponding displacement field in 
the homogeneous half space model of Fig. 6, at 8 = 0, f l ,  
f 2  and f3".  The other parameters are the same as in Fig. 
lO(a). A comparison between Figs lO(a) and 12 shows that 
when the two media on the opposite sides of the fault are 
taken to be dissimilar the three most commonly measured 

Displacement 

t 

l.O.Io-'L 

cm I 
3.2 c u _ i - . i . .  

Figure 12. Same as Fig. lO(a) for the homogeneous half space 
model of Fig. 6. 

features of seismograms, the distribution of travel times, 
wave amplitudes and polarity of first motions, are all 
different from what is expected in the framework of a 
homogeneous half space. For slip in a homogeneous 
medium the amplitudes and arrival times of first motion are 
symmetric through the epicentre. For a slip surface between 
dissimilar media, the amplitudes in the more compliant 
medium 2 are larger than in the stiffer medium 1 and the 
first amvals in the slower medium are delayed with respect 
to the faster medium. Perhaps more important still, the 
polarity of first motion in the region 8 < OC2, in the more 
compliant medium 2 is reversed from the polarity expected 
in a homogeneous medium. In the discussion part of the 
paper we bring references documenting these possible 
effects of material discontinuities across faults. 

4. A 3-D REPRESENTATION THEOREM 

In this part we generalize the formulation of the previous 
section to a 3-D representation theorem by which seismic 
waves are synthesized from the displacement discontinuities 
across the rupture surface. 

Let Bij(x, t ;  5, t, n) denote the ith component of dis- 
placement at observation coordinates and time (x, t )  due 
to a unit point dislocation in the jth direction at source 
coordinates and time (5, z), occurring across a surface S 
characterized at 5 by its unit normal vector n(5). (The letter 
B is used to prevent confusion between the response here to 
a unit dislocation and the usual Green tensor response to a 
unit force, for which the letter G is traditionally used.) The 
situation ej * n = 0 ,  ej being the unit vector in the jth 
direction, corresponds to a shear crack, while eiXn=O, 
represents a tension crack. Let Auj(5,z) be the jth 
component of the displacement discontinuity across S at 
(5, z), i.e. Auj(g, t) = uj(& t)l,+ - u,(5, z)l,- where s+ and 
s- denote the positive and negative sides of the rupture 
surface, respectively, as shown in Fig. 9. The ui component 
of displacement at observation coordinates and time is then 
simply obtained by summing AujBij over the source 
coordinates and time, giving 

~ i ( x ,  t )  = /:- dz  /I Auj(R t)Bij(x, t ;  5; z, n) h, (3.1) 
S 

where the convention of summing repeated indexes applies. 
It is interesting to compare (3.1) with the elastodynamic 

representation theorem given by de Hoop (1958). When the 
only sources are displacement discontinuities de Hoop's 
theorem (Aki & Richards 1980, equation 3.2) gives 

Ui(X,  t )  = I:, dt 11 mjkacij(x, t ;  6, t ) / a&  h, (3.2) 
S 

where mjk = Aupn,CPqjk is the seismic moment density 
tensor, Cpqjk is the tensor of elastic constants and Ci, 
denotes a Green tensor which satisfies displacement and 
stress continuity across the fault surface S. For shear faulting 
in an isotropic medium equation (3.2) can be written (Paul 
Richards, personal communication) as 
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materials along the opposite sides of the fault are 
significantly different in their seismic properties. As 
summarized in Mooney & Ginzberg (1986), numerous other 
seismic studies (Healy & Peake 1975; Feng & McEvilly 
1983; Cormier & Spudich 1984), gravity surveys (Pavoni 
1973; Wang et al. 1978; Stierman 1984) and geological and 
physical considerations (Sibson 1977) suggest that in some 
cases heterogeneous fault zone structures extend throughout 
the entire crust. 

Motivated by the above studies and the theoretical works 
of Woodhouse (1981) and Heaton & Heaton (1989) we 
studied simple 2-D SH cases in which sources are located at 
an interface separating two different elastic quarter spaces. 
We found that the resulting displacement fields differ from 
the corresponding fields of a homogeneous half space in the 
distribution of the three most commonly measured features 
of seismograms, travel times, wave amplitudes and polarity 
of first motions. 

The possible effects of dissimilar media across a fault zone 
have been documented. Boore & Hill (1973) and Engdahl & 
Lee (1976) showed that when material heterogeneity across 
the San Andreas fault in central California is incorporated 
into hypocentre inversion, earthquakes which in a 
homogeneous model fall 2-3km west of the fault, are 
relocated on the fault. Wallace, Helmberger & Ebel (1981) 
studying the Santa Barbara earthquake of August 13, 1978 
pointed out an apparent asymmetry in the intensity of 
shaking, with regions northwest of the epicentre subject to 
more intense shaking. The magnitude of the earthquake 
determined by Caltech instruments located to the southeast 
was found to be ML = 5.1 (Whitcomb & Hutton 1978) while 
the magnitude determined by northern California data was 
significantly larger, ML = 5.7. These asymmetries may be the 
consequence of the material heterogeneity across the fault. 

In a homogeneous medium the polarity of first motion is 
antisymmetric with respect to the fault. From Fig. lO(a) it is 
seen that when the medium is assumed heterogeneous, the 
polarity of the first motion for the region 6 <  efzl= 
arccos (&/&) - 21" in the slower medium 2, is reversed 
from what is anticipated in the homogeneous case. This is 
due to the fact that in this region the first motion is due to a 
head wave with polarity of first motion as the one of the 
faster medium on the opposite side of the fault. Wallace et 
al. (1981), using a homogeneous fault zone model, found 
that the fault plane solution inferred from the near field 
displacements is significantly different from that determined 
from the teleseismic data. They indicated that vertical 
structure similar to that of Fig. 1 can reconcile the near- and 
far-field inferred fault plane solutions. 

There are several controversial large high frequency 
accelerations recorded in the near field of the 1979 Imperial 
Valley earthquake (Archuleta 1982; Spudich & Cranswick 
1982; Hartzell & Heaton 1983) and the 1966 Parkfield 
earthquake (Aki 1968; Anderson 1974; Trifunac & Udwadia 
1974; Lindh & Boore 1981). The 1966 Parkfield earthquake 
accelerogram of a near field station located 80m from the 
fault also contains high frequency vibrations that precede 
the main pulse (Aki 1968). These phases may be interface 
waves (similar to the head wave of Fig. lOa) resulting from 
material discontinuity interfaces in the fault zone. Such 
phases can contribute significant amplitudes to the near-field 
waves. 

and comparing (3.1) with (3.3) we see that for shear faulting 
in an isotropic medium 

Bij(x, t ;  5, r, n) =nk~[aGij(xl t ;  g y  r ) /Sgk 

+ aGik(x, t ;  6, r)/aEj]. (3.4) 
In (3.2) and (3.3) the displacement field is generated by 

couples and force dipoles, operating along the fault surface 
with strength at each point on the fault proportional to the 
seismic moment density tensor at that point. When the 
seismic source is moved an infinitesimal distance across a 
material discontinuity interface the rigidity and the seismic 
moment jump in magnitude, however, the { } bracket of 
(3.3), being traction, is continuous across the material 
discontinuity interface and this tells us that these different 
seismic moments produce the same displacement field. This 
is, essentially, the argument of Woodhouse (1981) and 
Heaton & Heaton (1989), indicating the ambiguity of the 
seismic moment in cases of heterogeneous source region. 
The above argument shows that in such cases the seismic 
moment is not a good scaling parameter for the size of 
earthquakes (Heaton & Heaton 1989). In fact, p can be 
cancelled internally in { } of (3.3) and in the right hand side 
of (3.4). This is easily understood when we remember that 
Gij is the solution of an inhomogeneous wave equation. In 
the case of a shear wave, the multiplication of the source 
term by p just cancels the division of the inhomogeneous 
term of the wave equation by the same factor (see 1.1 and 
1.2). In the case of a compressional wave these two 
operations produce the dimensionless material constant 
(1 - 2v)/(2 - 2v), Y being Poisson's ratio (Heaton & 
Heaton 1989). This cancelling appearance of material 
constants is not present in (3.1) and in the left hand side of 
(3.4) since the response function B, is constructed from a 
solution of a homogeneous wave equation. There, the 
material constants enter the solution only through the 
boundary conditions and not through a source term. Thus, 
for shear faulting, the displacement field in the repre- 
sentation (3.1) is synthesized directly from the unam- 
biguously defined slip function and the resulting overall size 
scaling parameter is the potency, in accord with 
Ben-Menahem & Singh (1981) and Heaton & Heaton 
(1989). 

We also note that the use of (3.1) requires Bij to be 
known along the rupture surface only while Gij of (3.2) is 
needed in a whole region containing the rupture area. 
Alternatively, aGij/a& can be solved for directly along the 
rupture area. We bring up this point because when the 
medium is heterogeneous the Cagniard-de Hoop inversion 
for the full wave field can be performed only when the 
sources are located directly at the material discontinuity 
surface. 

In light of the above considerations we suggest that, at 
least in the case of heterogeneous source region, (3.1) is 
easier to use and more natural to interpret than (3.2). 

5. DISCUSSION 

The sites of many earthquakes are on high offset geological 
faults which are surfaces of material discontinuity in the 
earth. Seismic field studies near the San Andreas fault in 
central California (McEvilly 1966; Stewart 1968; Boore & 
Hill 1973; Walter & Mooney 1982) indicate that the 
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In view of the effects that a typical material discontinuity 
has on the resulting displacement fields, illustrated in the 
present work for the SH 2-D case, existing theoretical 
solutions for homogeneous fault zone models may fail to 
account for important features of the waves radiated by 
earthquakes. This is especially important for near field or 
strong ground motion studies. 

A representation theorem, equation (3.1), provides for a 
general 3-D displacement field in terms of the medium 
response to point dislocations and the displacement 
discontinuity function along the rupture area. The resulting 
overall size scaling parameter is the potency which does not 
suffer from the ambiguity associated, in the case of 
heterogeneous source region, with seismic moment. 

A practical use of the representation (3.1) in modelling 
realistic sources requires the entire B,  tensor, corresponding 
to point dislocations occurring, in general, in material 
discontinuity interface. The derivation of such a tensor will 
be taken up in a following work. 
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