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Abstract� The equation for the response to selection is a
powerful analysis and modeling tool for genetic algorithms�
In this paper we extend the classical analysis which is re�
stricted to a normal distribution to skew �tness distribu�
tions� We show that for a small number of variables the
Gamma distribution �ts the distribution of the �tness val�
ues better than a normal distribution� We compute the se�
lection intensities for the Gamma distribution� It is shown
that with these values the prediction for the mean �tness
of the population is very accurate� Finally we show that
multi�modal functions may lead to �tness distributions hav�
ing several modal values�

I� Introduction

Let an optimization problem be given on a domain G �
Rn

f� � f�x�� � min
x�G

f�x�� G � Rn� ���

We make no assumptions concerning the convexity and dif

ferentiability of the function f�x�	 For the minimization a
number of algorithms have been proposed	 In this paper
we apply the Breeder Genetic Algorithm BGA ��� to obtain
approximations	 The BGA uses a continuous representa

tion and a uniform fuzzy gene pool recombination ����	 We
will investigate the behavior of the optimization process by
the equation for the response to selection� both empirically
and theoretically 	 The equation states that the progress of
the average �tness of the population is proportional to the
selection intensity� the heritability and the standard devia�

tion of the �tness	 In ���� we have shown that this equation
leads to a design principle for operators	 An e�cient re

combination operator should maximize the progress of the
average �tness for a number of generations	 This means
that it should maximize the product of the heritability and

the standard deviation� In this paper we will investigate
the selection intensity	 Previously the selection intensity
was computed under the assumption of a normal distribu

tion of the �tness values of a population	 We will show
that this assumption need not be valid even for very sim

ple �tness functions	 If the �tness distribution is skew then
this has a signi�cant in�uence on the modeling of the con

vergence behavior of the BGA given the same heritability
and phenotypic variance	
Skew �tness distributions have already been investigated

by Karl Pearson as early as ����	 There are three memoirs
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devoted to skew distributions ���� ���� ����	 Based on a
large amount of data like measurements of Naples crabs he
stated�
In a series of memoirs to the Royal Society I have en�

deavored to show that the Gaussian�Laplace normal dis�

tribution is very far from being a general law of frequency

distribution either for errors of observation or for the dis�

tribution of deviations from type such occur in organic pop�

ulations�

The outline of the paper is as follows	 First we recall
the response to selection equation and some of its features	
Then we show the evidence of skew �tness distributions
based on simulation experiments	 In the following section
we give a general outline for the determination of selec

tion intensities for large and small population sizes even
for skew �tness distributions	 Then comparison of a quan

titative prediction model with simulation results is made	
Finally we show that multi
modal �tness functions may
lead to �tness distributions having itself several modes	

II� Response to selection

In this section we summarize our previous theory ��� 
�
in more detail	 Let f�t� be the average �tness of the pop

ulation at generation t	 Then the response to selection is
is de�ned as

R�t� � f�t � �� � f�t�� ���

The amount of selection is measured by the selection dif

ferential

S�t� � fs�t�� f�t�� ���

where fs�t� is the average �tness of the selected parents	
The equation for the response to selection relates R and S
by

R�t� � b�t� � S�t�� ���

b�t� is called the realized heritability	 For many �tness func

tions and selection schemes the selection di�erential can be
expressed as a function of the phenotypic standard devia

tion �	 For truncation selection �selecting the T � N best
individuals from a population of size N � one obtains

S�t����t� � I� ���

I is called the selection intensity	 Finally� the famous equa

tion for the response to selection is obtained ����



R�t� � I � b�t� � ��t�� ���

These equations have been considered for normally dis

tributed �tness values ���	 But they are valid for a large
range of distributions� not just for a normal distribution	
The response depends on the selection intensity� the real

ized heritability� and the standard deviation of the �tness
distribution	 In order to use the above equation for pre

diction� one has to estimate b�t� and � and the selection
intensity I induced by the �tness distribution	 The equa

tion also gives a design criterion for genetic operators � to
maximize the product of heritability and standard deviation

����	 In this paper we will analyze the in�uence of the type
of the �tness distribution on the selection intensity I	

III� Empirical Fitness Distributions

Throughout this section� the analysis on skew �tness dis

tributions will be done for the sphere and declining plane
model

fsphere�x� �
nX
i��

x�i and fplane�x� �
nX
i��

xi� �
�
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They are interesting model functions because the sphere
has a unique �xed point as the optimal value whereas the
declining plane� assuming a �nite approximation� has a
manifold of optimal solutions	 Thus� for the sphere the
phenotypic variance has to decrease in approaching the op

timum	 For the declining plane the phenotypic variance has
to increase to gain su�cient convergence velocity	 These
model functions were extensively used in developing adap

tation rules for normally distributed mutations in Evolu

tion Strategies	 For recent publications see ���� ����	
In ���� we distinguished between di�erent phases of the

optimization process for the sphere model	 In the begin

ning we observed an adaptation of the phenotypic standard
deviation �P followed by a phase with a constant coe�cient
of variation �P � �f 	
Figures � through � refer to the phase of already adapted

standard deviations	
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From the histogram plots it can be seen at once that
the �tness distributions are by no way symmetric but are
more or less skewed	 For the sphere model the skewness
depends on the number of variables n	 The smaller n the
more skewed is the distribution	 For very high n the distri

bution can be approximated by a normal distribution	 The
distribution is skewed to the right such that for a minimiza
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tion problem as considered here the selection intensity will
be below the selection intensity for a normal distribution	
For the plane model the skewness does not seem to depend
on n	 But the distribution is skewed to the left which leads
to a higher selection intensity than that for a normal dis

tribution	 For the plane model the skewness is only very
slight compared to that for the sphere model with small n	
For all distributions a normal distribution approximation
is shown	
In ���� we proposed to use a Gammadistribution to have

a closer resemblance of the actual distribution	
We consider the shifted Gamma distribution with p � ��

f � fu� and � � � having the probability density function

p�f� �
�p�f � fu�

p��

��p�
� e���f � fu� ���

with the expectation �f and variance ��P

�f �
�

�
� p� fu and ��P �

�

��
� p� ���

Given the expectation and variance we have

fu � �f � �P � pp and � �
p
p � �

�P
� ����

Having the expectation and variance computed from the
actual data this relation was used to �t the parameter p
to the actual data	 For the sphere model we got in every
case the best �t for p � n��	 This is shown in Figures �
and �	 It is striking that the Gamma distribution �ts the
distribution of the actual data so well	

IV� Truncation selection

Truncation selection is a very common technique in
breeding ���	 Therefore� in quantitative genetics this se

lection type has been extensively analyzed for large and
small populations �e	g	 ��� ���� having normally distributed
metric characters to be selected	 Hence� the selection in

tensities for a normal distribution are tabulated ����� large
populations Table A� small populations Table B� detailed
tables for both cases can be found in ����	 The method
for computing I is e	g	 given in ����	 Recently� these re

sults have been used to characterize convergence models
for tournament
 and ��� 	�
selection for normal distribu

tions ���	 In general� it cannot be assumed that �tness
distributions are normal	 In the next two subsections we
present methods for computing the selection intensities for
general unimodal �tness distributions and apply them to
the Gamma distribution encountered in the empirical ob

servations	
Let us be given a unimodal �tness distribution with the

probability density function �p	d	f	� p�f� having the expec

tation �f and the variance ��P 	 Then the standardized and
normalized p	d	f	 is given by p�z� with

z �
f � �f

�P
����

with �z � � and �z � �	 This p	d	f	 will be used subse

quently	

A� Truncation selection in large populations

Let us assume a very large populationN ��	 The pro

portion of selected parents T for a minimization problem
is given by

T �

zTZ
��

p�z�dz ����

zT is called the truncation threshold	 Then� the expectation
of the selected parents �zs is given by

�zs �
�

T
�

zTZ
��

z � p�z�dz ����

As the selection intensity we use I � jzsj	 Using the nor

malized and standardized Gamma distribution from Equa

tion ��� with fu � �pp and � �

p
p one gets for the sphere

model with p � n�� the selection intensities shown in Fig

ure �	 It is remarkable that I depends on the problem size
n	 The smaller the problem size n the larger is the devi

ation of the selection intensity compared to the selection
intensity for a normal distribution	
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B� Truncation selection in small populations

For small populations we have to use order statistics ����
��� to compute the selection intensities	 This is well known
in quantitative genetics and has been recently introduced
for the study of evolutionary algorithms ��� for normal dis

tributions	
Let us assume a population size N 	 The standardized

and normalized �tness values of the population should have
a p	d	f	 p�z� and should be arranged in ascending order

z� � z� � ��� � zN�� � zN � ����

P �z� should denote the cumulative density function �c	d	f	�
of p�z�	 Then the p	d	f	 of the rth order statistic� r �
�� �� ����N � is given by ���

pr�z� �
P �z�r�� � ��� P �z��N�r

B�r�N � r � ��
� p�z�� ����



B�a� b� is Euler�s Beta function	 The expectation is given
by

�zr �

�Z
��

z � pr�z�dz ����

Let us assume that Ns parents having for a minimization
problem the smallest �tness values are selected we get the
average �tness of the selected parents by

�zs �
�

Ns

NsX
r��

�zr ��
�

and �nally I � j�zsj	 Obviously� the proportion of selected
parents is given by T � NS�N 	
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For the sphere function we computed the selection in

tensities using a Gamma distribution with p � n�� as for
the case of a large population	 This is shown in Figure �
for a population size of N � ��	 The selection intensities
depend just like for a large population size on the problem
size n	 The selection intensities are slightly smaller then
those for a large population and especially for small n far
from the selection intensity for a large population with a
normal �tness distribution function	

V� Quantitative prediction models

In ���� we approximated the response to selection equa

tion by a di�erential equation introducing a coe�cient cf
dependent on the function to be optimized	 Better results
can be obtained by using the original recurrence relation
if it is possible to solve it	 No additional coe�cient has to
be introduced	 For a minimization problem the response
to selection equation then reads

f�t � ��� f�t� � �bn � I �CVn � �f�t� � f�� ����

where CVn is the coe�cient of variation of the �tness dis

tribution	 In ���� we observed for the sphere model for the
phase of adapted standard deviation �P a constant coef

�cient of variation CVn and an average constant realized

heritability bn	 In this case the recurrence relation can be
solved

f�t� � �f��� � f�� � ��� bn � I �CVn�t � f� ����

For the Gamma distribution with p � n�� we have a coef

�cient of variation CV �

p
��n	 f��� is the average �tness

at generation t � �	
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We are now able to give an estimate for the number of
generations until convergence gen�	 Let us assume that
the average initial �tness f��� is given and that the stan

dard deviation �P is adapted such that we have a constant
coe�cient of variation CVn	 The population size N is as

sumed to be su�ciently high	 Solving Equation �� the
number of generations to reach a desired approximation of
f�gen�� � f� � 
 is given by


 � �f��� � f�� � ��� bn � I �CVn�gen
�

����

with � � �� � bn � I � CVn� � � assumed	 Taking the
logarithm �nally yields

gen��I� n� 
� f���� bn� � ����

� ln

�
jf� � f���j




��
ln

�
�� bn � I �

r
�

n

�

where the equality holds if there is no adaptation phase
necessary	 Otherwise the inequality holds	 In Figure 

there are depicted four di�erent graphs	 The dotted graph
represents the average �tness from simulation	 The graph
labeled Rec�Gamma which approximates the observed data
best was obtained from Equation �� by using the selection
intensity from the Gamma distribution	 For the graph la

beled Rec�Normal the selection intensity from a normal dis

tribution was used	 It displays a much to high convergence
speed and is not in accordance with the data	 The graph



labeled Di��Gamma shows an approximation using the so

lution of the di�erential equation and a selection intensity
from the Gamma distribution	 The convergence speed is
estimated to low	

VI� Multi�modal fitness functions
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It should be noted that the prediction may be more com

plicated because of the �tness distribution may change	 An
example is the highly multi
modal Griewangk function ���
�
�	 Figure � shows that the convergence speed at the
beginning and at the end of the search is exactly like the
convergence speed for the sphere	 There is a plateau where
the speed of convergence is reduced	 Between generation
�� and �� the average �tness of the population remains
constant	 The realized heritability gets very small	 After
generation �� the heritability returns to a value of almost
�	 The reason for this behavior lies in the structure of
this function	 On a broad scale it looks like a sphere	 If
the attractor region of the in�mum is found� the function
again looks like a sphere	 In
between these two regions it
oscillates like a sine function� and the convergence slows
down because the heritability gets very small	 The plateau
region is very small for strong selection T � ���	

The �tness distribution at generation �
 is shown in Fig

ure � because at this time the standard deviation has al

ready increased to the highest level after a low at gener

ation ��	 The distribution is bimodal characterizing the
transition from the second best optimum to the global op

timum	 Therefore we don�t have a homogeneous statistical
model but the overlay of two distributions	 The analysis of
the implication of statistical mixtures on selection has to
be postponed	

VII� Conclusions

The equation for the response to selection has been
shown to be a powerful method for designing� analyzing
and predicting genetic algorithms	 In a �rst approxima

tion one may assume normal distributed �tness values	 In
this paper we have shown that the prediction gets more ac

curate if a skewed distribution like the Gamma distribution
is used	 Highly multi
modal functions may lead to totally
di�erent �tness distributions	 It remains to be investigated
if the concept of selection intensity can be extended to deal
also with some of these cases	
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