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Abstract— The equation for the response to selection is a
powerful analysis and modeling tool for genetic algorithms.
In this paper we extend the classical analysis which is re-
stricted to a normal distribution to skew fitness distribu-
tions. We show that for a small number of variables the
Gamma distribution fits the distribution of the fitness val-
ues better than a normal distribution. We compute the se-
lection intensities for the Gamma distribution. It is shown
that with these values the prediction for the mean fitness
of the population is very accurate. Finally we show that
multi-modal functions may lead to fitness distributions hav-
ing several modal values.

I. INTRODUCTION

Let an optimization problem be given on a domain G C

Rn
=) =minf@), GCR. (1)

We make no assumptions concerning the convexity and dif-
ferentiability of the function f(x). For the minimization a
number of algorithms have been proposed. In this paper
we apply the Breeder Genetic Algorithm BGA [6] to obtain
approximations. The BGA uses a continuous representa-
tion and a uniform fuzzy gene pool recombination [19]. We
will investigate the behavior of the optimization process by
the equation for the response to selection, both empirically
and theoretically . The equation states that the progress of
the average fitness of the population is proportional to the
selection intensity, the heritability and the standard devia-
tion of the fitness. In [18] we have shown that this equation
leads to a design principle for operators. An efficient re-
combination operator should maximize the progress of the
average fitness for a number of generations. This means
that it should mazimeze the product of the heritability and
the standard deviation. In this paper we will investigate
the selection intensity. Previously the selection intensity
was computed under the assumption of a normal distribu-
tion of the fitness values of a population. We will show
that this assumption need not be valid even for very sim-
ple fitness functions. If the fitness distribution is skew then
this has a significant influence on the modeling of the con-
vergence behavior of the BGA given the same heritability
and phenotypic variance.

Skew fitness distributions have already been investigated
by Karl Pearson as early as 1894. There are three memoirs
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devoted to skew distributions [10] [11] [12]. Based on a
large amount of data like measurements of Naples crabs he
stated:

In a series of memoirs to the Royal Society I have en-
deavored to show that the Gaussian—Laplace normal dis-
tribution is very far from being a general law of frequency
distribution either for errors of observation or for the dis-
tribution of deviations from type such occur in organic pop-
ulations.

The outline of the paper is as follows. First we recall
the response to selection equation and some of its features.
Then we show the evidence of skew fitness distributions
based on simulation experiments. In the following section
we give a general outline for the determination of selec-
tion intensities for large and small population sizes even
for skew fitness distributions. Then comparison of a quan-
titative prediction model with simulation results is made.
Finally we show that multi-modal fitness functions may
lead to fitness distributions having itself several modes.

II. RESPONSE TO SELECTION

In this section we summarize our previous theory [6; 7]
in more detail. Let f(¢) be the average fitness of the pop-
ulation at generation . Then the response to selection is

1s defined as

R(t) = f(t+1) = f(2). (2)
The amount of selection is measured by the selection dif-
ferential

S(t):fs(t)_f(t)a (3)
where f,(¢) is the average fitness of the selected parents.
The equation for the response to selection relates R and S

by

R(t) = b(t) - S(1). (4)

b(t) is called the realized heritability. For many fitness func-
tions and selection schemes the selection differential can be
expressed as a function of the phenotypic standard devia-
tion o. For truncation selection (selecting the 7' - N best
individuals from a population of size N) one obtains

S(ty/o(t) = 1. (5)

1 is called the selection intensity. Finally, the famous equa-
tion for the response to selection is obtained [4]:



R(t) =1 -b(t) - o(t). (6)

These equations have been considered for normally dis-
tributed fitness values [4]. But they are valid for a large
range of distributions, not just for a normal distribution.
The response depends on the selection intensity, the real-
ized heritability, and the standard deviation of the fitness
distribution. In order to use the above equation for pre-
diction, one has to estimate b(¢) and o and the selection
intensity I induced by the fitness distribution. The equa-
tion also gives a design criterion for genetic operators — to
mazimize the product of heritability and standard deviation
[18]. In this paper we will analyze the influence of the type
of the fitness distribution on the selection intensity 1.

I11. EMPIRICAL FITNESS DISTRIBUTIONS

Throughout this section, the analysis on skew fitness dis-
tributions will be done for the sphere and declining plane
model

n

fsphere(x) = Z xZZ

i=1

and  fprane(r) = Z . (7)
i=1
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Fig. 1. Fitness distribution of the sphere model, n = 10, Generation 10

They are interesting model functions because the sphere
has a unique fixed point as the optimal value whereas the
declining plane, assuming a finite approximation, has a
manifold of optimal solutions. Thus, for the sphere the
phenotypic variance has to decrease in approaching the op-
timum. For the declining plane the phenotypic variance has
to increase to gain sufficient convergence velocity. These
model functions were extensively used in developing adap-
tation rules for normally distributed mutations in Evolu-
tion Strategies. For recent publications see [14] [15].

In [19] we distinguished between different phases of the
optimization process for the sphere model. In the begin-
ning we observed an adaptation of the phenotypic standard
deviation op followed by a phase with a constant coefficient
of variation op/f.

Figures 1 through 4 refer to the phase of already adapted
standard deviations.
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Fig. 2. Fitness distribution of the sphere model, n = 80, Generation 20
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Fig. 3. Fitness distribution of the plane model, n = 10, Generation 65

From the histogram plots it can be seen at once that
the fitness distributions are by no way symmetric but are
more or less skewed. For the sphere model the skewness
depends on the number of variables n. The smaller n the
more skewed is the distribution. For very high n the distri-
bution can be approximated by a normal distribution. The
distribution is skewed to the right such that for a minimiza-
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Fig. 4. Fitness distribution of the plane model, n = 80, Generation 50



tion problem as considered here the selection intensity will
be below the selection intensity for a normal distribution.
For the plane model the skewness does not seem to depend
on n. But the distribution is skewed to the left which leads
to a higher selection intensity than that for a normal dis-
tribution. For the plane model the skewness is only very
slight compared to that for the sphere model with small n.
For all distributions a normal distribution approximation
is shown.

In [19] we proposed to use a Gamma distribution to have
a closer resemblance of the actual distribution.

We consider the shifted Gamma distribution with p > 0,
f > fu, and 6 > 0 having the probability density function

= UTRE= 0

with the expectation f and variance 0%

-1 1
fIg'])-l-fu and 0'123:6—2~p. (9)

Given the expectation and variance we have

1
and 0=/p- —.

fu:f_UP'\/]_J (10)

ap
Having the expectation and variance computed from the
actual data this relation was used to fit the parameter p
to the actual data. For the sphere model we got in every
case the best fit for p = n/2. This is shown in Figures 1
and 2. It is striking that the Gamma distribution fits the

distribution of the actual data so well.

IV. TRUNCATION SELECTION

Truncation selection i1s a very common technique in
breeding [5]. Therefore, in quantitative genetics this se-
lection type has been extensively analyzed for large and
small populations (e.g. [4; 13]) having normally distributed
metric characters to be selected. Hence, the selection in-
tensities for a normal distribution are tabulated ([4]: large
populations Table A, small populations Table B, detailed
tables for both cases can be found in [2]). The method
for computing I is e.g. given in [13]. Recently, these re-
sults have been used to characterize convergence models
for tournament- and (p, A)-selection for normal distribu-
tions [1]. In general, it cannot be assumed that fitness
distributions are normal. In the next two subsections we
present methods for computing the selection intensities for
general unimodal fitness distributions and apply them to
the Gamma distribution encountered in the empirical ob-
servations.

Let us be given a unimodal fitness distribution with the
probability density function (p.d.f.) p(f) having the expec-
tation f and the variance 0%. Then the standardized and
normalized p.d.f. is given by p(z) with

= f=f (11)
op

with z = 0 and o, = 1. This p.d.f. will be used subse-
quently.

z

A. Truncation selection in large populations

Let us assume a very large population N — co. The pro-
portion of selected parents 7' for a minimization problem
is given by

T= /p(z)dz (12)

— 00

27 1s called the truncation threshold. Then, the expectation
of the selected parents z; is given by

(13)
— 00

As the selection intensity we use I = |z;]. Using the nor-
malized and standardized Gamma distribution from Equa-
tion (8) with f, = —/p and 6 = /p one gets for the sphere
model with p = n/2 the selection intensities shown in Fig-
ure b. It is remarkable that I depends on the problem size
n. The smaller the problem size n the larger is the devi-
ation of the selection intensity compared to the selection
intensity for a normal distribution.

Gamma-Distribution

18
1.6 N
1‘21 A Large 1c?rma| -

1
0.8
0.6 ™
0.4 ™

0.2

n=5 ——
n=10
n=10

=

=
<
[9]

«Q
a

Selection Intensity |

0
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
Percentage Selected Parents T%

Fig. 5. Selection intensity for the Gamma distribution for different values
of n for a large population size N — oo

B. Truncation selection in small populations

For small populations we have to use order statistics [13]
[3] to compute the selection intensities. This is well known
in quantitative genetics and has been recently introduced
for the study of evolutionary algorithms [1] for normal dis-
tributions.

Let us assume a population size N. The standardized
and normalized fitness values of the population should have
a p.d.f. p(z) and should be arranged in ascending order

21 <29 << zy1 < zn. (14)

P(z) should denote the cumulative density function (c.d.f.)
of p(z). Then the p.d.f. of the r'* order statistic, r =
1,2,..., N, is given by [3]

P(z) =t (1= P())¥"
B(r,N—-r+1)

p(2). (15)

pr(z) =



B(a,b) is Euler’s Beta function. The expectation is given

by

Z = / 2 op(2)dz

— 00

(16)

Let us assume that N, parents having for a minimization
problem the smallest fitness values are selected we get the
average fitness of the selected parents by

1 ZNS
ESIN—S 157‘
r=

and finally I = |z,]. Obviously, the proportion of selected
parents is given by T'= Ng/N.

(17)
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Fig. 6. Selection intensity for the Gamma distribution for different values
of n for a small population size N = 10

For the sphere function we computed the selection in-
tensities using a Gamma distribution with p = n/2 as for
the case of a large population. This is shown in Figure 6
for a population size of N = 10. The selection intensities
depend just like for a large population size on the problem
size n. The selection intensities are slightly smaller then
those for a large population and especially for small n far
from the selection intensity for a large population with a
normal fitness distribution function.

V. QUANTITATIVE PREDICTION MODELS

In [19] we approximated the response to selection equa-
tion by a differential equation introducing a coefficient c;
dependent on the function to be optimized. Better results
can be obtained by using the original recurrence relation
if it 1s possible to solve it. No additional coefficient has to
be introduced. For a minimization problem the response
to selection equation then reads

FE+ D) —f)=—bn - I-CV, - (F(O— f*)  (18)

where C'V,, is the coefficient of variation of the fitness dis-
tribution. In [19] we observed for the sphere model for the
phase of adapted standard deviation op a constant coef-
ficient of variation C'V,, and an average constant realized

heritability b,,. In this case the recurrence relation can be
solved

JO=FO) =) -(L=by-I-CVY 4+ (19)

For the Gamma distribution with p = n/2 we have a coef-
ficient of variation CV = y/2/n. f(0) is the average fitness

at generation ¢ = 0.
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Fig. 7. Prediction models for the sphere function with n = 20 and a mea-
sured average realized heritability & = 0.93;Rec-Gamma: recurrence
equation and selection intensity computed from the Gamma distribution,
Rec-Normal: recurrence equation and selection intensity computed from
the normal distribution, Diff-Gamma: differential equation [19] and
selection intensity computed from the Gamma distribution; the dotted
graph shows the average fitness values from simulation

We are now able to give an estimate for the number of
generations until convergence gen®. Let us assume that
the average initial fitness f(0) is given and that the stan-
dard deviation op is adapted such that we have a constant
coefficient of variation C'V,,. The population size N is as-
sumed to be sufficiently high. Solving Equation 19 the
number of generations to reach a desired approximation of

flgen*) — f* = e is given by

e=(F0) = f*) - (1 — by - I - CV)9e™ (20)

with 0 < (1 — b, - T-CV,) < 1 assumed. Taking the
logarithm finally yields

gen®(I,n, ¢, F(0),by) >

_m(Ui;;@l)//m(1_@,1. %)

where the equality holds if there is no adaptation phase
necessary. Otherwise the inequality holds. In Figure 7
there are depicted four different graphs. The dotted graph
represents the average fitness from simulation. The graph
labeled Rec-Gamma which approximates the observed data
best was obtained from Equation 19 by using the selection
intensity from the Gamma distribution. For the graph la-
beled Rec-Normalthe selection intensity from a normal dis-
tribution was used. It displays a much to high convergence
speed and is not in accordance with the data. The graph

(21)



labeled Diff-Gamma shows an approximation using the so-
lution of the differential equation and a selection intensity
from the Gamma distribution. The convergence speed is
estimated to low.

VI. MULTI-MODAL FITNESS FUNCTIONS
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Fig. 8. Average fitness f(t), phenotypic standard deviation op(t), and
realized heritability b(t) for Griewangk’s function with n = 10 and T =
0.1
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It should be noted that the prediction may be more com-
plicated because of the fitness distribution may change. An
example is the highly multi-modal Griewangk function [6;
17]. Figure 8 shows that the convergence speed at the
beginning and at the end of the search is exactly like the
convergence speed for the sphere. There 1s a plateau where
the speed of convergence is reduced. Between generation
10 and 18 the average fitness of the population remains
constant. The realized heritability gets very small. After
generation 20 the heritability returns to a value of almost
1. The reason for this behavior lies in the structure of
this function. On a broad scale it looks like a sphere. If
the attractor region of the infimum is found, the function
again looks like a sphere. In-between these two regions it
oscillates like a sine function, and the convergence slows
down because the heritability gets very small. The plateau
region 1s very small for strong selection 7" = 0.1.

The fitness distribution at generation 17 is shown in Fig-
ure 9 because at this time the standard deviation has al-
ready increased to the highest level after a low at gener-
ation 10. The distribution is bimodal characterizing the
transition from the second best optimum to the global op-
timum. Therefore we don’t have a homogeneous statistical
model but the overlay of two distributions. The analysis of
the implication of statistical mixtures on selection has to
be postponed.

VII. CONCLUSIONS

The equation for the response to selection has been
shown to be a powerful method for designing, analyzing
and predicting genetic algorithms. In a first approxima-
tion one may assume normal distributed fitness values. In
this paper we have shown that the prediction gets more ac-
curate if a skewed distribution like the Gamma distribution
is used. Highly multi-modal functions may lead to totally
different fitness distributions. It remains to be investigated
if the concept of selection intensity can be extended to deal
also with some of these cases.
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