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The Return of the Cryptographic Boomerang
S. Murphy

Abstract—The boomerang analysis, together with its offspring
the amplified boomerang analysis and the rectangle analysis,
are techniques that are widely used in the analysis of block
ciphers. We give realistic examples which demonstrate that the
boomerang analysis can commonly give probability values that
are highly inaccurate. Thus any complexity estimates for the
security of a block cipher based on the boomerang or rectangle
analysis must be viewed extremely sceptically.

Index Terms—Block Ciphers, Boomerang Analysis, Rectangle
Analysis.

I. I NTRODUCTION

The boomeranganalysis of [1] is an adaptation of differ-
ential cryptanalysis [2], [3] in which quartets of encryptions
and decryptions are used. Two related plaintexts are encrypted,
and the resulting pair of ciphertexts is then used to generate
two new related ciphertexts. These two new ciphertexts are
then decrypted to give two new plaintexts. The aim of the
boomerang analysis is to use such quartets of plaintexts and
of ciphertexts to find key information. Furthermore, enhanced
versions of the boomerang analysis based on this idea have
also been developed, such as theamplified boomeranganaly-
sis [4] and therectangleanalysis [5].

There is however noa priori reason for the probabilistic
argument of [1] concerning the boomerang analysis, and there-
fore for the related analyses, to be correct. We demonstrate this
by giving simple examples using the Data Encryption Standard
(DES) [6] and the Advanced Encryption Standard (AES) [7].

The motivation for the use of the wordboomerangto
describe such an analysis of quartets is given in [1].

This is why we call it the boomerang attack: when
you send it properly, it always comes back to you.

We send aDES or an AES boomerang, but our boomerang
won’t come back.

II. T HE BOOMERANG ANALYSIS

We describe the basic boomerang analysis in the manner
of [1], and a schematic diagram of the boomerang analysis,
based on Figure 1 of [1], is given in Figure 1. We base
our notation on that of [1], so we suppose thatE represents
the block cipher encryption under a fixed key. The basic
boomerang analysis is based on a quartet of encryptions and
decryptions, and the process for generating such a quartet is
described below.
• Choose values4 and∇.
• Choose a pair of plaintextsP andP ′ such thatP +P ′ =
4.
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Fig. 1. Schematic Diagram of the Basic Boomerang Analysis.

• Encrypt P and P ′ to obtain ciphertextsC = E(P ) and
C ′ = E(P ′).

• Obtain two further ciphertextsD = C + ∇ and D′ =
C ′ +∇.

• DecryptD andD′ to obtain plaintextsQ = E−1(D) and
Q′ = E−1(D′).

The boomerang analysis is an attempt to use the ideas
of differential cryptanalysis [2], [3] to analyse the plaintext
quartet (P, P ′, Q,Q′) and ciphertext quartet(C,C ′, D, D′).
To this end, we consider the encryption operation in two parts,
so we may writeE = E1 ◦E0. ThusE0 represents the initial
part of the encryption operation, andE1 represents the final
part. We let(X, X ′, Y, Y ′) denote the intermediate result of
the encryption and decryption operations, so we have:

X = E0(P ) = E−1
1 (C), X ′ = E0(P ′) = E−1

1 (C ′),
Y = E0(Q) = E−1

1 (D), Y ′ = E0(Q′) = E−1
1 (D′).

The basic boomerang analysis uses two differential charac-
teristics [2], [3]. The differential characteristic4 → 4∗ is
used for the initial partE0 of the overall encryptionE and
the differential characteristic∇∗ → ∇ is used for the final



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXX 20XX 3

part E1 of the overall encryptionE, for some values4∗ and
∇∗. A quartet of encryptions and decryptions, or equivalently
the corresponding plaintext and ciphertext quartets, is called a
right quartet if the following conditions hold:

P + P ′ = Q + Q′ = 4, X + X ′ = Y + Y ′ = 4∗,
X + Y = X ′ + Y ′ = ∇∗, C + D = C ′ + D′ = ∇.

A motivation for using this quartet of encryptions and
decryptions, and for the definition of a right quartet is given
in [1].

We want to cover the pairP, P ′ with the char-
acteristic for E0, and to cover the pairsP,Q and
P ′, Q′ with the characteristic forE−1

1 . Then (we
claim) the pairQ,Q′ is perfectly set up to use the
characteristic4∗ →4 for E−1

0 .

It is the case that

E0(Q) + E0(Q′) = Y + Y ′

= (Y + X) + (X + X ′) + (X ′ + Y ′)
= ∇∗ +4∗ +∇∗ = 4∗

is indeed a condition required to start the characteristic
4∗ → 4 for E−1

0 , the inverse of the initial part of the
encryption operation. However, whilst this condition is a
necessary condition, it is not a sufficient condition, as the
examples of Section III and VI demonstrate.

The statistical reasoning of the boomerang analysis given in
Section 4 of [1] states that the probabilityp of a right quartet
satisfies

p ≥ p2
0p

2
1,

where p0 is the probability of the differential characteristic
4→ 4∗ underE0 andp1 is the probability of the differential
characteristic∇ → ∇∗ underE1. The complexity estimates
for the boomerang analysis given in [1] are based on this
estimate ofp. However, in both Sections III and VI we give
examples of a boomerang analysis withp0, p1 > 0, but for
which a right quartet can never occur, that isp = 0.

III. A DESBOOMERANG

We consider a boomerang analysis on a block cipher that
consists of four rounds of the Data Encryption Standard
(DES) [6]. Thus E is the encryption under some fixed key
of four rounds of theDES (without IP and IP−1), and we
suppose thatE0 is the initial two rounds of this encryption and
that E1 the final two rounds of this encryption. We use the
two differential characteristics used in the iterated differential
cryptanalysis of theDES [2], [3]. Thus we define

4 = 4∗ = 19600000 00000000 = (γ9, 0) = δ9

and ∇ = ∇∗ = 1B600000 00000000 = (γB, 0) = δB,

so in particular we have:

E0(Z) + E0(Z +4) = 4∗ with probability p0 ≈ 1
234 ,

E1(Z) + E1(Z +∇∗) = ∇ with probability p1 ≈ 1
234 .

The reasoning of Section 4 of [1] would now assert that the
probability of a right quartet is at leastp2

0p
2
1 ≈

(
1

234

)4
.

We now consider the conditions required for a right quartet
to occur. Accordingly, we letc, c′, d, d′ denote the four 6-bit

inputs toDESS-Box 2 in the fourth round of this cipher. Thus
c, c′, d, d′ are a selection of six bits ofC, C ′, D,D′. For a right
quartet, we require thatX + X ′ = Y + Y ′ = 4∗ = δ9 and
X + Y = X ′ + Y ′ = ∇∗ = δB. Allowing for the expansion
phase of theDESround function [6], a right quartet therefore
satisfies

c + c′ = d + d′ = 110010 andc + d = c′ + d′ = 110110,

which gives the following relationship between the four 6-bit
S-Box inputs:

c′ = c + 110010,
d = c + 110110,

and d′ = d + 110010 = c + 000100.

In the classical differential cryptanalysis of theDES, we
require that the outputs of the respective pairs of S-Boxes are
identical. Thus we have

S2(c) = S2(d) andS2(c′) = S2(d′),

whereS2 : Z6
2 → Z4

2 is the 6-bit to 4-bit function given by
DESS-Box 2. For a right quartet to exist, we therefore require
that there exists a 6-bit valuec such that

S2(c) = S2(c + 110110)
andS2(c + 110010) = S2(c + 000100).

It is easy to verify by a direct search of all26 = 64 possibilities
for c that no such value forc exists.

It is is not therefore possible for a right quartet to exist in
this boomerang analysis. In other words, a right quartet exists
in this boomerang analysis with probability zero, rather than
than the probability of at leastp2

0p
2
1 ≈

(
1

234

)4
> 0 asserted

by [1]. This DESboomerangnevercomes back.

IV. T HE AMPLIFIED BOOMERANG ANALYSIS

The amplified boomeranganalysis of [4] is an adaptation
of the basic boomerang analysis that only uses encryptions
and no decryptions in a chosen plaintext analysis. The idea
is to encrypt pairs(P, P ′) or (Q,Q′) of plaintexts satisfying
P + P ′ = Q + Q′ = 4. As before, we let(X, X ′) =
(E0(P ), E0(P ′)) and (Y, Y ′) = (E0(Q), E0(Q′)) denote the
intermediate values of encryptions underE. Such intermediate
values (X, X ′) or (Y, Y ′) then satisfyX + X ′ = 4∗ or
Y + Y ′ = 4∗ with probability p0. Thus if we start with
N such plaintext pairs, we expect to obtainNp intermedi-
ate pairs with difference4∗, and so we expect to obtain
about 1

2 (Np)2 intermediate quartets(X,X ′, Y, Y ′) satisfying
X+X ′ = Y +Y ′ = 4∗. It is then asserted by [4] that such an
intermediate quartet also satisfiesX+Y = X ′+Y ′ = ∇∗, the
other part of the boomerang condition, uniformly at random.
The example of Section III shows this is not the case. There
is no a priori reason to assume that amplified boomerang
analysis works in the manner described by [4].
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V. THE RECTANGLE ANALYSIS

The basic idea of therectangle analysis is mentioned
in [1], but was developed by [5] as an adaptation of the
amplified boomerang analysis that considers all values for
the appropriate intermediate values. We suppose that we are
considering ann-bit block cipher and we let

P = (P, P ′, Q,Q′)T ,
X = (X, X ′, Y, Y ′)T

and C = (C, C ′, D, D′)T

denote the quartet vectors at the plaintext, intermediate and
ciphertext stages respectively, soP, X andC are vectors over
GF(2) of length4n. We now let

S =
(

I I 0 0
0 0 I I

)
, T =




I I 0 0
0 0 I I
I 0 I 0
0 I 0 I




and U =
(

I 0 I 0
0 I 0 I

)

denote the matrices over GF(2) giving the required differences
at these stages, where the defining sub-blocks aren × n
matrices. ThusS and U are matrices of rank2n and T is
a matrix of rank3n. We let

4̃ =
( 4
4

)
, z =




z
z
z′

z′


 and ∇̃ =

( ∇
∇

)

denote the required differences at these stages, so the prob-
ability of interest for the analysis of plaintext and ciphertext
quartets is then given by

P
(
UC = ∇̃

∣∣∣SP = 4̃
)

.

Under the assumption that the sequence of difference values
(SP, TX, UC) forms a Markov process [8], this probability

P
(
UC = ∇̃

∣∣∣SP = 4̃
)

is given by

∑
z

P
(

UC = ∇̃
∣∣∣ TX = z

)
P

(
TX = z

∣∣∣SP = 4̃
)

.

The first termP
(

UC = ∇̃
∣∣∣ TX = z

)
of the above sum-

mand would be evaluated by the method of the analysis of [5]
as P

(
UC = ∇̃

∣∣∣ SX = (z, z)T
)

. We now consider theDES

example of Section III and takez = δ9 andz′ = δB. We show
in Section III that

P
(

UC = ∇̃
∣∣∣ TX = z

)
= 0,

whereas P
(

UC = ∇̃
∣∣∣ SX = (z, z)T

)
= p2

1 > 0.

The analysis of [5] would therefore givez = (δ9, δ9, δB, δB)T

as the dominant term when evaluating the above summation
for P

(
UC = ∇̃

∣∣∣ TX = z
)

, whereas in fact this term is zero
in this summation. As with other analyses based on the
boomerang idea, there is noa priori reason to assume the
rectangle analysis works in the manner described by [5].

VI. A N AESBOOMERANG

We now give another similar cautionary example about the
boomerang analysis, basing this example on the Advanced
Encryption Standard (AES) [7], [9]. We consider a block
cipher based on two (complete) rounds of theAES. ThusE is
the encryption under some fixed key of two rounds of theAES,
and we suppose thatE0 is the initial round of this encryption
and thatE1 the final round of this encryption.

The only nonlinear part of anAESround is theSubBytes
phase, which consists of the application of an S-Box to each
byte of the 16-byte state, where an S-Box is formally a
function S : Z8

2 → Z8
2. The nonlinear part of an S-Box is an

“inversion” operation on bytes, given byz 7→ z28−2 in GF(28),
and there exist many nonzero input byte differencesα and
output byte differencesβ such that the differential probability
for the AES S-Box is 2−7 [9], [10]. One such pair of input
and output differences forSubBytes is given byα = 02 and
β = EE, so we have

P (S(z + 02) + S(z) = EE) = 2−7.

Allowing for the effect of theShiftRows andMixColumns
operations, we can base a boomerang analysis on the differ-
ences:

4 = ∇∗ = 02000000 00000000 00000000 00000000,
4∗ = ∇ = C7EEEE29 00000000 00000000 00000000.

This gives the following differential probabilities for the two
parts of the block cipher:

E0(Z) + E0(Z +4) = 4∗ with probability p0 = 2−7,
E1(Z) + E1(Z +∇∗) = ∇ with probability p1 = 2−7.

We now consider the effect of the right quartet restrictions
on the possibilities for the intermediate values. A similar
analysis to Section III shows that:

X ′ = X+ 4∗ = X + C7EEEE29 00 . . . 00,
Y = X+ ∇∗ = X + 02000000 00 . . . 00,
Y ′ = X+ 4∗ +∇∗ = X + C5EEEE29 00 . . . 00.

If we let x denote the first byte ofX, then for a right quartet
we require that

S(x) + S(x + 02) = EE andS(x + C7) + S(x + C5) = EE.

A search through all28 possible byte values forx quickly
shows that there is no byte valuex which satisfies the two
above equations.

We have therefore shown that it is not possible for a right
quartet to exist in this boomerang analysis, even though the
reasoning of Section 4 of [1] would give a lower bound for
the probability of a right quartet of at leastp2

0p
2
1 = 2−28. Just

like the DESboomerang of Section III, thisAES boomerang
nevercomes back.

VII. A H IGH PROBABILITY DESBOOMERANG

We have given aDESboomerang and anAES boomerang
(Sections III and VI) which cannot occur, that is they happen
with probability zero. In both cases, this was demonstrated by
giving a pair of S-Box equations which had no solution. Of
course, if we had set up a different potential boomerang, that
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is other difference values, we would have obtained other pairs
of S-Box equations, which may well have had many solutions.
In such a case, it is entirely possible that the boomerang
probability may greatly exceed that given by [1].

We illustrate this point about boomerang probabilities with
a striking contrast to the zero-probability non-returningDES
boomerang of Section III. We simply make a minor modifi-
cation of the boomerang differences for Section III. Thus we
take∇ = ∇∗ = 4∗ = 4 = δ9 rather than∇ = ∇∗ = δB and
4∗ = 4 = δ9 as for Section III. As for this Section III
example, the statistical reasoning of Section 4 of [1] now
asserts that the probability of a right quartet is

(
1

234

)4
. The

condition for a right quartet in this case is simply then given
by

P ′ = Q = Q′ + δ9 = P + δ9,
X ′ = Y = Y ′ + δ9 = X + δ9

and C ′ = D = D′ + δ9 = C + δ9.

This right quartet is therefore simply the repeated use of a
right pair [2], [3] in differential cryptanalysis. Thus in this
case a right quartet occurs with the same probability as a
right pair based on this characteristic, namely

(
1

234

)2
. The true

probability of this boomerang occurring is very much greater
than the probability value for this boomerang occurring given
by the statistical reasoning of [1].

VIII. C ONDITIONAL PROBABILITY AND THE BOOMERANG

ANALYSIS

A boomerang analysis requires the use of conditional proba-
bility. The condition for a right quartet is aRank-3n condition,
as is illustrated by the matrixT (Section V) of rank3n,
and we denote this event byR3. However, the boomerang-
type analysis of [1], [4], [5] instead uses an algebraically less
onerousRank-2n condition, as illustrated by the matrixU
(Section V) of rank2n, and we denote this event byR2.
The justification for the application of a boomerang or a
related analysis in the manner of [1] essentially asserts for
any cryptographic eventA under consideration that

P(A|R3) = P(A|R2).

There is simply no probabilistic justification for this assertion.

Rank-3n

Rank-2n Condition

EventA

-�

Fig. 2. Rank-2n and Rank-3n Conditions in the Boomerang Analysis.

The application of conditional probability to a boomerang-
type analysis is illustrated by the Venn diagram of Figure 2.
The boomerang-type analysis of [1], [4], [5] uses

P(A|R2) =
# (A

⋂
R2)

#R2
,

whereas the correct condition for a boomerang-type analysis
is

P(A|R3) =
# (A

⋂
R3)

#R3
.

There is noprobabilistic reason why these two quantities are
related in any way. We can illustrate this by using a fair dice
roll with six outcomes{1, 2, 3, 4, 5, 6} as an example. If the
dice throw is at most2, then the conditional probabilities that
the dice roll is odd and that the dice roll is even are given by

P( Dice is Odd| Dice≤ 2 ) = 1
2

and P( Dice is Even| Dice≤ 2 ) = 1
2 .

If we replace the condition that the dice throw is at most2
with the less onerous condition that the dice throw is at most
3, we obtain the following different conditional probabilities
that the dice roll is odd and the dice roll is even:

P( Dice is Odd| Dice≤ 3 ) = 2
3

and P( Dice is Even| Dice≤ 3 ) = 1
3 .

This simple example shows the central importance of the con-
ditioning event. Arbitrarily replacing one conditioning event
by another conditioning event is a fundamental error in the
application of conditional probability.

In theDESandAESboomerang examples which occur with
zero probability (Sections III and VI), we haveA

⋂
R3 = ∅

even thoughA
⋂

R2 6= ∅, so

#(A
⋂

R2)
#R2

>
#(A

⋂
R3)

#R3
= 0,

that isP(A|R2) > P(A|R3) = 0.

By contrast, in theDESboomerang example of Section VII,
the cryptographic eventA is actually a subset ofR3, so we
have

#(A
⋂

R2)
#R2

=
# (A

⋂
R3)

#R2
<

#(A
⋂

R3)
#R3

,

that isP(A|R2) < P(A|R3).

For a boomerang-type analysis to be correct, we require that

P(A|R2) = P(A|R3) =
# (A

⋂
R2)

#R2
=

#(A
⋂

R3)
#R3

.

Loosely speaking, we require that the eventA occurs with
the same frequency in the Rank-3n subset as it does in the
Rank-2n subset. As stated above, there is no probabilistic
reason for this to be the case, and as the examples of this
paper demonstrate, there is no general cryptographic reason for
this to be the case. A cryptographic boomerang-type analysis
that merely swaps the Rank-2n condition for the Rank-3n
condition cannot be regarded as having been substantiated.

IX. COMMENTS ON A RECTANGLE ANALYSIS OF THE AES

An analysis of theAES [7] in a specific related key model
is given in [11], and this analysis makes use of a number of
different techniques based on the cryptographic boomerang.
The correctness of the boomerang probabilities given by [1] is
asserted by [11], and such values for boomerang probabilities
are the foundations of the analysis of theAES given by [11].
As we have shown, such foundations are not necessarily sound.
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We discuss the dubious nature of theAES analysis given
by [11] by considering a critical technique used in this analysis
termed theFeistel switch. A value for the probability that
a Feistel switch occurs is given in [11] based on the usual
boomerang reasoning of [1], that is based on a Rank-2n
condition rather than the correct Rank-3n condition. Thus the
value given by [11] for the probability that a Feistel switch
occurs is not generally correct. This is illustrated by theDES
boomerang example of Section III, which is actually a Feistel
switch, with∆X = γ9, ∆Y = 0 and∆Z = γB in the notation
of [11]. Thus it would be asserted by [11] that this DES
example of a Feistel switch, which can never happen, occurs
with nonzero probability.

Another technique used by [11] is termed theS-box switch,
which essentially considers the cryptographic boomerang
when∇∗ = 4∗. However, whilst the Rank-2n condition is
used by [11] to give a probability value for the Feistel switch,
the Rank-3n condition is used by [11] to give a probability
value for the S-box switch. This is problematic as theDES
boomerang example of Section VII is essentially both an S-
box switch and a Feistel switch, with∆X = ∆Z = γ9 and
∆Y = 0 in the notation of [11].

These examples show that the justifications for the proba-
bility values for various cryptographic boomerang-type events
given by [11] are not really convincing. The data requirements
for the related key analysis of theAES given by [11] cannot
therefore be regarded as having been soundly demonstrated.

X. CONCLUSIONS

We have given counterexamples that clearly demonstrate
that the justification for the boomerang analysis given by [1] is
highly questionable. These counterexamples are based on the
two most important block ciphers, theDESand theAES, so
they are not just artificially contrived. Such counterexamples
can also be adapted to show that the justifications for derived
analyses, such as the amplified boomerang analysis [4] and the
rectangle analysis [5], are also highly questionable. Further-
more, the claims given made by [11] for a related key analysis
of the AES must be regarded as unsubstantiated.

The correct condition for a right quartet in a boomerang-
type analysis is a Rank-3n condition. The boomerang-type
analysis replaces the correct right quartet Rank-3n condition
with an algebraically less onerous Rank-2n condition. Whilst
it is possible that, for a particular block cipher and a particular
collection of differences, a probability conditional on the
Rank-3n event and a probability conditional on the Rank-
2n event are equal, there is noa priori probabilistic or
cryptographic reason for these two conditional probabilities to
be equal. The justification for the application of a boomerang
or a related analysis in the manner of [1] to a particular
block cipher and a particular collection of differences does
clearly require the demonstration that the Rank-3n and Rank-
2n conditions give the same probability.

We have shown that the usual probabilistic argument used to
justify the so-called boomerang effect is unsound. A probabil-
ity value for a boomerang-type analysis derived in the manner
of [1], [4], [5] can be highly inaccurate and is at best an

arbitrary guess for the true probability. In terms of the original
motivation for the use of the wordboomerangto describe this
style of cryptographic analysis, the contribution of this paper
can best be summarised as follows:

A cryptographic boomerang need not return from
whence it came.
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