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Abstract
We study whether taxi companies can simultaneously
save petroleum and money by transitioning to electric ve-
hicles. We propose a process to compute the return on in-
vestment (ROI) of transitioning a taxi corporation’s fleet
to electric vehicles. We use Bayesian data analysis to
infer the revenue changes associated with the transition.
We do not make any assumptions about the vehicles’ mo-
bility patterns; instead, we use a time-series of GPS co-
ordinates of the company’s existing petroleum-based ve-
hicles to derive our conclusions.

As a case study, we apply our process to a major taxi
corporation, Yellow Cab San Francisco (YCSF). Using
current prices, we find that transitioning their fleet to
battery electric vehicles (BEVs) and plug-in hybrid elec-
tric vehicles (PHEVs) is profitable for the company. Fur-
thermore, given that gasoline prices in San Francisco are
only 5.4% higher than the rest of the United States, but
electricity prices are 75% higher; taxi companies with
similar practices and mobility patterns in other cities are
likely to profit more than YCSF by transitioning to EVs.

Keywords: Electric Vehicles, Bayesian Networks, Public
Transportation

1 Introduction
Replacing standard petroleum taxis with EVs can save

significant amounts of petroleum. For triple-shift taxis
(those that are driven 24 hours a day) we estimate sav-
ings of approximately 15,000 liters each year per taxi,
and 10,000 liters for double-shift (16 hours a day) taxis.
However, taxi operators will only invest in EVs if it is
economically viable. Therefore, we design a process to
determine a taxi company’s ROI in transitioning to elec-
tric vehicles. We first build a Bayesian model of taxi fleet
mobility. We then show how to use the model to deter-
mine the ROI.

Existing research on transitioning petroleum vehicles
to EVs has focused on bus transit and personally owned

vehicles. Taxis do not travel on fixed routes like tran-
sit buses and are not parked a majority of the time like
personally owned vehicles. As a consequence of these dif-
ferent mobility patterns, we were not able to apply any
existing model to study the cost of transitioning a taxi
fleet to EVs.
Our main contributions are:

1. We propose a data-oriented process to compute a given
taxi company’s ROI in transitioning to electric vehi-
cles. The process uses time-series of GPS and passen-
ger data collected from instrumented petroleum taxis.
We use Bayesian data analysis to compute the costs of
operating a taxi fleet consisting of petroleum vehicles,
plug-in hybrid vehicles (PHEVs) or battery electric
vehicles (BEVs).

2. As a case study, we analyze adoption of PHEVs or
BEVs by a taxi company with over 530 vehicles, Yel-
low Cab San Francisco. We study different infrastruc-
ture scenarios, including battery switching and road-
side charging. For each scenario, we quantify the rev-
enue losses or gains, quantify the investment payback
period, and extrapolate the analysis to a wide array
of electricity and petroleum prices.

3. We formulate the problem of locating battery switch-
ing stations that serve the taxi fleet as an optimiza-
tion problem, and present a framework to compute this
placement for a given city. Using our algorithm, we
find only three battery switching stations are needed
for Yellow Cab San Francisco for BEVs to be prof-
itable.

Our case study shows that both PHEVs and BEVs
have a positive ROI given current vehicle and fuel prices
in San Francisco.
The rest of this paper is organized as follows. Back-

ground and related work is given in Section 2. We present
our process in Section 3. The results from our case study
can be found in Section 4. Future work and limitations
are discussed in Section 5, and finally we present our con-
clusions in Section 6. A brief background on Bayesian
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networks is given in Appendix A and the details of our
optimization algorithm are presented in Appendix B.

2 Background and Related Work
This section presents an overview of electric vehicles,

existing taxi corporation practices, and related work.

2.1 Electric Vehicle Types
We study two types of electric vehicles:

1. Plug-in Hybrid Electric Vehicles (PHEVs). PHEVs
have a grid-chargeable battery and an internal com-
bustion engine (ICE). PHEVs are powered completely
from the battery for first portion of a trip, without
using the ICE. The standard notation to describe a
PHEV is “PHEVxxm”, where xx refers to the distance
in kilometers (km) the PHEV is expected to drive us-
ing only the battery. Once the battery has been nearly
depleted, the ICE is used to propel the vehicle for the
remainder of the trip and the battery may continue to
power electronics onboard the vehicle.

2. Battery Electric Vehicles (BEV). BEVs are fully pow-
ered by batteries and do not have an ICE; these vehi-
cles are not reliant on petroleum for transportation.

2.2 Terminology
We now define a few terms used throughout the paper.

• SV. SV is an abbreviation for fully ICE-powered
petroleum vehicles.

• Kilowatt-hour. A kilowatt-hour (kWh) is a unit of en-
ergy. One kWh is the amount of energy used by a
device consuming power at a rate of 1 kilowatt for 1
hour, equal to 3.6x106 joules of energy.

• Capacity. The capacity of an EV is the amount of
energy (usually stated in kWh) that can be stored in
its battery.

• Discharge Rate. The discharge rate of an EV is the
rate at which the EV consumes energy. It is analogous
to the km per liter of an SV.

• Battery Charging and Battery Switching. There are
two ways to refuel an EV. Battery charging is when
the car is plugged into a charging unit with a connec-
tion to the electrical grid. These units transfer power
from the grid into the battery at a rate depending on
the type of charging unit and the availability of power
in that location. This process takes several hours de-
pending on the type of charging unit. The other option
is battery switching, where a battery switching station
physically changes the batteries in an EV. Here, a user
comes to the station with a nearly-depleted battery
and the battery is replaced with a fully charged bat-
tery. The depleted batteries are then charged at the
switching station. This type of refueling is similar to
petroleum vehicles, where the vehicle is refueled in
minutes instead of hours. The first major manufac-
turer of switching station infrastructure states that
the entire switching process takes 80 seconds [22]. We

note that currently, battery switching is only available
for BEVs.

• Charge Rate. The charge rate of an EV is the rate at
which the vehicle draws power from the grid into the
battery at a charging station. This rate is not limited
by the battery, but by the amount of power that can be
supplied by a charging unit [31] (which depends on the
type of unit and the electrical connection the charger
has to the grid). There are three STANDARD levels
of charging. Level 1 charging is the slowest form and
uses a 110V connection found in any standard elec-
trical outlet in North America. Level 2 charging uses
a 220V connection, which most homes and businesses
also have for large appliances. Level 3 is known as
“quick charging,” and uses a 480V connection [11,12].
However, quick charging has not yet been widely de-
ployed.

• Range. The range of a vehicle is the expected distance
it can travel given normal driving conditions when
fully fueled (using petroleum for SVs, electricity for
BEVs, and both for PHEVs). PHEV manufacturers
additionally state the range that can be driven using
electric power before the ICE is used.

2.3 Taxi Operation Overview
We briefly describe the operation of a taxi company as

it relates to our work and how its operating practices may
change if it transitions its fleet to EVs. We model a spe-
cific type of taxi company: one where employee-drivers
operate company-owned vehicles in shifts that typically
last eight hours. At the end of the shift, drivers return the
vehicle to the company premises where the vehicles are
re-fueled and handed over to another driver for another
shift. Drivers may only refuel the vehicles while they are
not carrying passengers.

Fares may be pre-arranged by calling the company to
schedule a pickup, or they can be arranged on-the-fly by
signaling taxis as they drive past. We use the term fare
to refer to a contract between a driver and a passenger to
transport the passenger to a desired destination for some
price. Each taxi company has its own pricing model, that
is, how it charges for fares. It is usually a function of time,
distance, and other incidental charges. A driver’s goal is
to complete as many fares as possible during their shift,
as this is the sole source of revenue for the company. We
assume if the vehicle does not have sufficient fuel to carry
a potential customer to their destination, the customer
is refused, leading to a loss in revenue.

To maximize the likelihood of fares, taxi drivers may
continuously drive around looking for passengers or may
wait at busy locations such as airports and city centers.
This behavior is not fuel efficient, but the revenue from
additional fares currently compensates for the cost of
wasted fuel.

We now note how this existing operation may change
if the taxi company were to convert their fleet to BEVs
or PHEVs. Such a change can impact the frequency of
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refueling, the potential introduction of refueling delays
between shifts, and driver behavior between fares.

• BEVs The range of a BEV is about a third of an SV.
Thus, BEVs must be refueled about three times more
often than SVs. Consequently, either drivers must re-
fuel more often between fares or turn down more fares.
Note that installing battery switching stations allows
BEVs to be refueled as quickly as SVs. Therefore,
there is no additional delay at the company premises
between shifts.

Many equations in the following sections are depen-
dent on a variable τ , which represents the battery
charge threshold below which taxi drivers switch their
battery if they are at a location with a switching sta-
tion. We use the notation ·(τ) to represent a variables
value assuming the switching threshold is τ . We as-
sume in our analysis that a BEV driver switches their
battery whenever:

1. Their battery’s charge level is less than τ ,
2. The driver is at a location with a switching

station—we assume drivers never modify their tra-
jectories to switch their batteries.

We discuss computing the optimal value of τ in Sec-
tion 3.4.8.

• PHEVs PHEVs do not have to be refueled more often
than SVs. However, the primary gain from switching
to PHEVs is to reduce fuel costs by driving the taxis
primarily using the battery. This reduction is possible
only if taxis rarely switch to their ICE mode, which
requires their batteries to be fully charged after the
end of a shift. PHEV batteries cannot be switched
in today’s models. This introduces a large delay be-
tween shifts while the vehicles are charged. To avoid
this delay, the taxi company could purchase additional
PHEVs to ensure vehicle availability for the next shift.
This issue is discussed in detail in Section 3.4.7.

• In both cases, a driver’s practice of opportunistically
attracting fares by driving around would be affected.
Drivers need to trade off the benefit from additional
fares for the cost of battery depletion.

2.4 Related Literature
Prior work on EVs can be divided into four main cat-

egories.

• Public Transit. Several papers have addressed the fea-
sibility of hybrid and electric bus transit [1, 17, 55].
Gao and Kitirattragarn study the likely hybrid EV
(HEV) penetration level in New York City and the po-
tential environmental benefits of transitioning [2]. We
are unaware of any economic study of a taxi company
transitioning to EVs. We note that Better Place, a
manufacturer of EV infrastructure, has recently com-
pleted a feasibility study of EVs in Tokyo, Japan, but
the results from this study have yet to be published.

They have also stated they will be conducting exper-
iments in San Francisco [10], the location of our case
study.

• Optimal charging strategies. Several papers address
the issue of optimal EV charging times [9,12,14,21,24,
29]. Many of these studies conclude off-peak overnight
charging of EVs is the best charging strategy for per-
sonally owned vehicles, because nearly all such vehi-
cles are parked at this time and overnight charging
puts the least burden on the electricity grid. However,
we find taxi companies can only transition to EVs if
the company can charge their fleet at any time.

• Vehicle-to-grid services. Several authors have consid-
ered scenarios where EVs can provide power to the
grid during times of peak demand [29–31, 40]. Their
work is not applicable here because public transit ve-
hicles are not parked long enough to serve as vehicle
to grid stores. Specifically, the authors of [21] show
at any given point in a day, even during rush hour,
more than 90% of all residential vehicles are parked.
In comparison, however, the typical taxi in our study
parked on average only 12% of each day.

• Effect on electrical grid. Electrifying transportation
that is currently petroleum based adds a large load
to the existing electrical grid. Many locations may
not be able to accommodate this new load with cur-
rent infrastructure. Studies considering the impact of
EV penetration on the grid include [4, 14, 24, 25, 49].
Transitioning taxi fleets to EVs would affect the grid;
however, studying these impacts are beyond the scope
of their work. Similarly, the effect on electricity prices
due to large scale adoption of EVs is beyond the scope
of this work.

3 Data Oriented Process to Esti-
mating ROI

Our goal is to calculate the company’s ROI in transi-
tioning their taxi fleet to EVs. To do this, we first build
a model that allows us to study the company’s existing
SVs as if they have the constraints and specifications of
EVs described in Section 2.2; this is explained in detail
in Section 3.3.1. Then we use this model to compute the
costs associated with operating a taxi fleet of BEVs or
PHEVs as opposed to SVs. This process is described in
Section 3.4

3.1 Inputs
Our process for determining the changes in revenue for

the company as a result of switching to EVs requires the
following inputs:

1. Mobility Data. A critical input to our taxi model is
mobility data from the existing SV fleet. We require
the periodic collection, from each taxi, of its geograph-
ical location and fare status, for a period of several
weeks. This could be obtained by collecting a log file
for each SV, where each record of the log file has a
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time stamp, the GPS location of the SV, and whether
there is a paying passenger currently in the vehicle.

The input dataset must be a set of shift files, where a
shift file represents data for one drivers working shift
as defined in Section 2.3. We require a set of shift files
for each driver and each taxi.

2. Reduced Coordinate Space. A second input to our
model is a reduced coordinate space that minimizes
model dimensionality without overly affecting its cor-
rectness. We overlay the taxi company’s geographical
operating region with the set of points specified in the
reduced space and we map GPS data to its closest grid
coordinate using Euclidean distances.

3. Fare Pricing Model. Every taxi company has their own
pricing function they use to charge for fares, and this
needs to be given as input. Let rfare be the cost of
one fare. Most taxi companies use a function of the
following form:

rFARE(CI, d, CD, p, CT,M) = CI+dCD+pCT+M (1)

where CI is an initial cost, d is the distance traveled
during the fare, CD is a cost per kilometer, p is the
time parked at traffic lights, CT is the cost per minute
of waiting at lights, and M is miscellaneous fees.

4. Operating Costs. Gasoline, electricity, and vehicle
prices vary between different cities around the world.

5. Vehicle Specifications We require specification of EV
parameters such as battery size, range, and charging
rates.

3.2 Outputs
The process produces the following outputs:

1. The company’s ROI based on the fraction of the fleet
transitioned BEVs or PHEVs.

2. Assuming a PHEV transition, the number of addi-
tional vehicles that must be purchased so that each
driver can begin their shift with a fully-charged vehi-
cle.

3. Assuming a BEV transition, the total number of extra
batteries the company must purchase. The number
and location of battery switching stations needed is
also determined.

3.3 Estimating Charge Levels
A necessary intermediate step in executing our process

is to estimate the charge level of an EV battery based on
its mobility pattern and initial state of charge. We first
describe how we obtain this estimate in Section 3.3.1,
then use this model to determine the ROI in Section 3.4.

3.3.1 Estimating EV Battery Charge Level

We develop a Bayesian model to infer an EV’s charge
level at any time t given the time-series of GPS coor-
dinates from the cooresponding SV. We found Bayesian
networks are a natural fit for inferring the hidden charge-
level variable. The problem of estimating battery charge

levels can be modeled as a causal graphical model, as ex-
plained in the following sections, and Bayesian networks
are designed to infer variables’ values in casual models.
We refer the reader to Appendix A for further informa-
tion on the type of Bayesian network we are using, and
to Koller et al. [34] for detailed background information.
Here, we present our specific model.

A dynamic Bayesian network tracks variables that
change over time by observing them at discrete times-
lices. A timeslice is an instantaneous point in time that
we observe the network, and the kth timeslice is de-
noted tk. These timeslices are spaced by a timestep, a
period of time between two timeslices, which can be con-
stant or variable. The choice of the timestep duration
is difficult in many applications. In our case however,
we have a natural solution to this problem—we asso-
ciate one timestep for every GPS measurement. This can
be thought of as observing constantly changing variables
at “random” points in time; random because two GPS
measurements can have an arbitrary length of time be-
tween them, so any two timeslices can have an arbitrary
timestep between them.

It is important not to confuse the relationship between
continuous variables and discrete timeslices. Continuous
variables in dynamic networks are real-valued but are ob-
served at discrete timeslices. For example time is a con-
tinuous variable in our network even though we observe
this variable at discrete timeslices.

We define P (X(tk)|Pa(X(t0, ..., tk−1, tk))) as the con-
ditional distribution of X at time tk, given the val-
ues of its parents at times t0, ..., tk−1, tk. For some
models, computing this distribution may be extremely
complex, as the set Pa(X(t0, ..., tk−1, tk)) may be
large. We assume that our model follows the Markov
assumption, i.e., P (X(tk)|Pa(X(t0, ..., tk−1, tk))) =
P (X(tk)|Pa(X(tk, tk−1)) for discrete timestep Bayesian
networks. This assumption greatly reduces the compu-
tational cost of querying the network. Charge level is
the variable we ultimately estimate from the network,
and the charge level at timestep tk+1 is independent of
t0, ..., tk−1; it is only dependent upon its state at tk and
the energy used or gained between tk and tk+1. Further-
more, because fares may be requested by random pas-
sengers to and from anywhere, it not unreasonable to
assume the location of a taxi is independent of its prior
locations. (In reality, the location is actually dependent;
for example taxis that travel from the downtown portion
of a city out to the airport may be more likely to return
downtown than to serve fares near the airport. )

There are many varieties of Bayesian networks. We
use a dynamic conditional linear Gaussian network
(DCLGN). DCLGNs allow inference (querying) of both
continuous and discrete variables, and are designed for
querying expectations of variables instead of probabili-
ties. We are interested in the query “what is the expected
current charge level of the taxi”. Standard Bayesian net-
works can only answer probability queries, e.g., “what is

4



Variables
Name Symbol Meaning Type

in Eq.
Location L(tk) Taxi’s Current location O, D
Fare F (tk) (0/1) Whether a passenger O, D

is in the vehicle at tk
Time Value of time O, C
Distance d(tk−1, tk) Km traveled between H, C
Traveled last two timesteps
Time Time elapsed between H, C
Difference last two timesteps
Time Parked p(tk−1, t) Seconds parked between H, C

last two timesteps
Energy u(tk−1, tk) kWh used between H, C
Used last two timesteps
Energy gx(tk−1, k) Energy gained between H, C
Gained last two timesteps
Charge Level CL(tk) Current charge level Hd, C

Table 1: Table of variables in the Bayesian network. O =
Observeable, H = Helper, Hd = Hidden, D = Discrete, C =
Continuous

the probability the charge level is currently X?”. In the
latter case, our only option is to compute P (X|Pa(X))
for all values of Pa(X) and then find E(X). With
DCLGNs, we already have E(X) and can easily query
its value. Therefore, even though DCLGNs are more the-
oretically complex, they are far more efficient for query-
ing means as opposed to probabilities; further details are
presented in Appendix A.

3.3.2 Inferring Charge Level

We now discuss querying the network for the battery
charge level. We first note two simplifying assumptions:

1. For all formulas and calculations, we assume batteries
charge at a constant rate. This is not true in reality,
as batteries charge faster when they have a lower state
of charge and slower otherwise [38]. This assumption
is further discussed in Section 5.

2. Charge level is a hidden variable and is never observed.
We maintain the mean µ of charge level which is as-
sumed to be a Gaussian distribution. We do not main-
tain the variance in our model, but we explain this
limitation in Appendix A.

Our goal is to find the mean of the charge level Gaus-
sian at every timestep (every GPS data point). Figure ??
shows the graphical model that is used to estimate the
battery charge levels over time. The dotted arrows rep-
resent variables that have an effect on the next timeslice
called persistence edges. The solid lines represent inter-
time edges that do not affect variables at the next times-
lice.

In Bayesian networks, the complexity of querying a
variable X grows exponentially with |Pa(X)|. Therefore
we introduce helper variables that reduce the number of
parents of variables we are interested in querying. Ta-
ble 1 shows the variables in our network, and whether
they are observed, helper variables, hidden, discrete or
continuous.

We now explain the three most important variables in
the network.

• Energy Used. This variable represents the energy the
taxi consumes between two timesteps. Let D be the
discharge rate of the EV (kWh/km), and e represent
the most significant energy usage of an EV other than
propelling the vehicle: air conditioning (AC). Then

u(tk−1, tk) = d(tk−1, tk)D + e (2)

The US National Renewable Energy Laboratory states
“Air conditioning loads can reduce EV range and HEV
fuel economy by nearly 40% depending on the size of
air conditioner and driving cycle”. We discuss our AC
assumptions in Section 4, and note that AC usage by
taxi companies is different depending on climate in
their regions.

• Energy Gained. This variable is only used when study-
ing the effect of roadside charging on battery charge
level. If a taxi is parked between two timesteps,
we assume the taxi could have been charged during
this time. Let gx(tk−1, tk) be the energy gained be-
tween two timesteps assuming level x charging (kWh),
and Bgx is the amount of energy gained per sec-
ond (kWh/second) assuming level x charging (this
depends on the BEV or PHEV model). Because we
assume drivers never charge with passengers in the
vehicle, we model Level 1 and charging and use the
formulas:

g1(tk−1, tk) = F (tk)p(tk−1, tk)Bg1 (3)

g2(tk−1, tk) = F (tk)p(tk−1, tk)Bg2 (4)

• Charge Level. Charge level is the variable our network
is designed to query. This variable has 4 parents: the
charge level from the previous state, the current lo-
cation, the energy used, and the energy gained. The
edge between the two variables charge level and lo-
cation is because the charge level is dependent upon
location because of battery switching. Let CL(tk) be
the charge level at timestep tk, then

CL(tk) =







































full∗

if L(tk) has a switching station

and CL(tk) < τ

and F (tk) = 0

CL(tk−1) + u(tk−1, tk) + gx(tk−1, k)

otherwise

(5)

Note that one of u(tk−1, tk), gx(tk−1, tk) will always
be zero—either the taxi parked and acquired energy
or the taxi traveled and used energy (we assume the
taxi does not charge with the AC on).

3.4 Using The Model To Infer Costs
We now describe the process to use this Bayesian

model to determine company’s ROI in transitioning their
fleet to EVs.

∗This equation only applies when studying BEVs with switching
stations. The different scenarios we study are given in Section 4.4
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Figure 1: Our Bayesian network

3.4.1 Notation

In the following equations, we use i to index a specific
taxi, k to index a specific shift, and j to index a specific
battery switching station.

3.4.2 Methodology

For BEVs and PHEVs respectively, our process is to
compute

rV−BEV(τ) = rE − rL(τ) + sBEV(τ)− CBEV − cEB(τ)
(6)

rV−PHEV = rE + sPHEV − CPHEV − cEP (7)

∆BEV(τ) = rV−BEV(τ)x− cBSS(τ) (8)

∆PHEV = rV−PHEVx (9)

where the terms in this equation are defined in Table 2.
Our model ignores overheads that remain fixed

whether the company uses EVs or SVs, such as driver
salaries and dispatch expenses. We now explain how we
compute each of these costs.

3.4.3 Determining Existing Taxi Revenue

We compute the company’s existing revenue rE using
the fare data and the companies pricing model. Let Fi

be the set of all fares completed by taxi i. Using the
input rFARE from Section 3.1, the pricing function the
company uses for a fare,

rEi
=
∑

k∈Fi

rFARE(CI, dk, CD, pk, CT,M) (10)

rE =

∑

i rEi

i
(11)

where dk, pk come from fare k and CI, CD, CT,M come
from the input pricing function for a fare.

3.4.4 Revenue Loss from Lost Fares

We now show how to compute the revenue loss due to
transitioning to BEVs, rL(τ) (PHEVs do not have rev-
enue losses as they use the ICE after battery depletion).
We assume that if a taxi depletes its battery during a
shift, all revenue the taxi would have generated during
the remainder of that shift is lost. This upper bounds

Name Description

∆BEV(τ) total ROI in transitioning x SVs to BEVs
∆PHEV total ROI in transitioning x SVs to PHEVs
rV−BEV(τ) average ROI per BEV over its lifetime
rV−PHEV average ROI per PHEV over its lifetime
x no. of vehicles the company transitions to EVs
rE total revenue generated by the

company’s existing SV taxis
rEi

revenue of the company’s SV taxi i
rL(τ) average revenue lost per taxi from missed fares
rLi

(τ) revenue lost by taxi i from missed fares
rTi

(k, τ) revenue generated during shift k of SV taxi i
rBi

(k, τ) revenue generated during shift k of taxi i
before battery depletion assuming it was a BEV

sBEV(τ) average fuel savings per taxi from using
BEVs instead of SVs

sBEVi
(τ) fuel savings from taxi i generated by

using a BEV instead of an SV
sPHEV average fuel savings per taxi from using

PHEVs instead of SVs
sPHEVi

fuel savings from taxi i generated by
using a PHEV instead of an SV

cEB(τ) average cost of BEV batteries needed per taxi
cEP average cost of extra PHEVs,per taxi, needed

so drivers start their shift with full batteries
cBSS(τ) cost of all battery switching stations needed
CBEV cost(BEV -SV); incremental BEV cost
CPHEV cost(PHEV - SV); incremental PHEV cost

Table 2: Variables used in determining ROI

revenue losses because we assume drivers can only switch
batteries if they are in a location with a switching station
and they do not modify their paths to drive to a switch-
ing station. As a result of this worst-case restriction, the
drivers may deplete their battery on their shift under our
model. Let δi be the set of all shifts completed by taxi i.
We determine the revenue loss by:

rLi
(τ) =

∑

k∈δi

rTi
(k, τ)− rBi

(k, τ) (12)

rL(τ) =

∑

i rLi
(τ)

i
(13)

3.4.5 Fuel Cost Reduction

Transitioning to EVs has the one primary finan-
cial benefit: electricity is a cheaper form of fuel than
petroleum so it costs less to fuel EVs than SVs. Note
that PHEVs usually have a higher gasoline efficiency af-
ter battery depletion compared to SVs due to regenera-
tive breaking. Thich is taken into account in our model.
The fuel savings are computed as follows,

sBEVi
(τ) = G

(

dSi

VE

)

− E

(

dBi

BE

)

(14)

sPHEVi
= G

(

SD

VE

)

−

(

E

(

dEi

PE

)

+G

(

dGi

PG

))

(15)

sBEV(τ) =

∑

i sBEVi
(τ)

i
(16)

sPHEV =

∑

i sPHEVi

i
(17)

where the variables are defined in Table 3. Variables
dBi

(τ), dEi
, and dGi

come from the Bayesian network.
We start the analysis with the first datapoint of the first
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Name Description

G price of gas per liter
E price of electricity per kWh
VE efficiency of an SV (mpg)
BE efficiency of the BEV (mpkWh)
PE efficiency of the PHEV (mpkWh)
PG efficiency of the PHEV after battery depletion (mpg)
dSi

the total distance driven by the company’s SV taxi i
dBi

(τ) total distance driven by taxi i assuming it is a BEV:
sum of distance driven before depletion over all shifts

dEi
total distance driven by taxi i
assuming it is a PHEV on electricity

dGi
total distance driven by taxi i
assuming it is a PHEV on petroleum

Table 3: Variables used in computing fuel savings

shift for each taxi and assume the charge level of the ve-
hicle is full. At each datapoint (GPS reading), we update
the total distance driven by the taxi so far, and query the
Bayesian network for the charge level of the vehicle. As-
suming we are analyzing PHEVs, if the charge level ever
reaches zero, then dEi

is the distance driven to that point
and dGi

is the distance driven throughout the remainder
of the shift. If we are analyzing BEVs, if the charge level
reaches zero, dBi

(τ) is the distance driven to that point
(then Equations (12) and (13) must be used to compute
the revenue losses).

3.4.6 Switching Station Infrastructure

Due to BEV range limitations, battery switching is
necessary for BEVs to be feasible for use by taxi com-
panies. Battery switching allows drivers to have a fully
charged battery within minutes. This mitigates the range
limitations of BEVs, assuming there are enough switch-
ing stations to service the taxi fleet. Switching stations
have a large upfront cost—the infrastructure cost is esti-
mated to be $500,000 by Better Place, a manufacturer of
EV switching infrastructure [22, 56]. This does not take
into account the cost of real estate in a given area.

To provide an adequate coverage area, the fleet may
need to be served by several switching stations spread
across a city. Given the expense of switching stations, we
want to find the minimal number and optimal location
of stations to supply the fleet without wasting money on
buying unnecessary stations. This problem can be stated
as an optimization problem: given a set of taxis and the
mobility data, find the optimal location(s) for switching
stations such that the taxi company’s profits are maxi-
mized. We formally define this problem and present an
algorithm to find cBSS(τ) in Appendix B.

The switching station location problem is a general-
ization of the well-studied facility location problem (see,
e.g., [18,35]). The facility location problem is NP-hard, so
theoreticians believe it to be a computationally difficult
problem, and by extension, the switching station loca-
tion problem is also computationally difficult. Details of
the NP-hardness reduction are given in Appendix B.

3.4.7 Battery and Extra Vehicle Costs

This section presents the computation of the cost of
batteries (cEB(τ)) and additional PHEVs (cEP). Taxis

Name Description

n the number of switching stations needed
qj(τ) average no. of batteries needed at i per taxi
λj(τ) average no. of battery switches at k per taxi per day
rj(τ) rate (batteries per day) at which batteries become

charged at k
µj(τ) average remaining charge level (kWh)

of batteries switched at k
λH rate at which PHEVs return to headquarters

(PHEVs/day)
BFx time it takes to charge a fully depleted battery

(days/battery) assuming level x charging
CB the capacity of each battery (kWh)
RP PHEV charging rate (days/PHEV)

assuming level x charging
BC the cost of one battery (dollars)
PC full cost of a PHEV (dollars)

Table 4: Variables used in calculating battery and additional
vehicle costs

should start each shift with a fully charged battery. This
requires purchasing extra batteries to be kept at each
switching station (BEVs) or storing extra PHEVs at the
headquarters (PHEVs).

Using Little’s law [33], cEB(τ) and cEP can be com-
puted on a per taxi basis as follows:

cEB(τ) =
n
∑

i=1

qj(τ) ∗BC (18)

qk(τ) = λj(τ)rj(τ) = λj(τ)BFx

(

CB − µj(τ)

CB

)

(19)

cEP = λHRpx ∗ PC (20)

where the terms are defined in Table 4. Equation (18)
multiplies the number of batteries needed at switching
station i (per taxi) by the cost of each battery, and sums
over all needed switching stations.

Note that µj(τ) and rj(τ) are proportional to τ . If τ
increases, batteries are switched with higher remaining
capacity and take less time to charge. As τ decreases,
batteries are switched with lower remaining capacity and
take more time to charge.

We assume additional PHEVs are kept only at the
headquarters and drivers only switch PHEVs at the end
of their shifts. We are not considering storing and charg-
ing PHEVs at the BEV battery switching stations. This
is because it is less expensive to store batteries than
vehicles—batteries can be stacked and stored in the same
building but vehicles require expensive real estate for
parking.

3.4.8 Optimal Switching Threshold

The optimal value of τ is unknown. We cannot find
the optimal value of τ by optimizing cEB(τ), sBEV(τ),
or rL(τ) alone because this will not globally maximize
∆BEV . Therefore we numerically evaluate ∆BEV(τ) for
each value of τ in the set {10%, 20%, ... ,100%} and
choose the value of τ that maximizes ∆BEV(τ).
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4 San Francisco Case Study
We applied our process to a data set collected by

Yellow Cab San Francisco (YCSF) as part of the Cab-
spotting project [16, 50]. In this section, we describe the
dataset and perform the revenue analysis outlined in Sec-
tion 3.4.2.

4.1 Dataset and Preprocessing
The dataset includes the following information for 536

YCSF taxis during May 17, 2008 – June 10, 2008. Each
measurement includes:

• Latitude and longitude to 5 decimal places

• Whether a paying passenger is inside the vehicle

• The current time of the data point

The average timestep between each data point is 60-
90 seconds. As discussed in Section 3.1, we split the data
from each taxi into shifts.
GPS devices sometimes report erroneous data, so we

preprocessed the dataset to remove inconsistencies For
example, in some cases a taxi’s position would be incor-
rectly reported between two correct readings. We noticed
data from a taxi was either >99.5% correct or very er-
roneous due to a faulty GPS device in that taxi. For
the taxis that only had few erroneous points we simply
removed those points, whereas the taxis with many prob-
lems were simply discarded and excluded from all results.
We discarded all data from seven out of 536 taxis.

4.2 Clustering Locations
We clustered the GPS coordinates in our data using

the reduced coordinate space displayed in Figure 2. The
clustering locations are spaced 4km apart with the ex-
ception of downtown San Francisco. For the downtown
area, we used a denser grid (1km x 1km) because of the
higher density of data within this region. After collapsing
each GPS datapoint into its closest grid point, the GPS
data was discarded.

4.3 Assumptions For BEV/PHEV Rev-
enue Analysis

Here we state the assumptions we made while perform-
ing the revenue analysis.

• EVs may use up to 40% of their battery for AC as-
suming the AC was always on [20]. We assume that
ACs doubled in efficiency since 2000 and taxi drivers
in San Francisco use AC 50% of the time—hence we
assume 10% of the battery is used for AC.

• We earlier quoted the price of a Better Place battery
switching station to be $500,000 [56]. We also use their
current estimates for battery prices. The company ex-
ecutives state “EV batteries are approaching $500 a
kilowatt hour” and “[Better Place] is now purchasing
batteries for cars at $400 per kilowatt hour for delivery
in early 2012” [27]. We assume Nissan Leaf batteries
(to be kept at switching stations) cost $450/kWh for
a total of $11,000 based on these estimates. We also

Figure 2: Points represent taxi mobility data. The grid shows
the reduced coordinate space. We used a denser grid in down-
town San Francisco due to the large number of data points in
this region.

note several sources indicate battery prices are likely
to continue decreasing [11,26,28].

• We assume the companies existing taxis have an effi-
ciency of 25mpg [45].

• Our data set indicates that each taxi is driven
112,000–177,000 mms per year. Based on this fig-
ure, we assume the company replaces each SV, BEV,
PHEV, and battery after four years of use. (This does
not include replacing parts over the four years). Com-
panies do not disclose their vehicle replacement rates,
which makes estimating this figure difficult. However,
the The Taxi and Limousine Commission of New York
City states “Cars brought into service as taxicabs
must be brand new vehicles and generally must be
replaced five years after being placed into service. [44].

• We assume the company currently spends $15,000 for
a new SV when replacing an old SV. We use this figure
to compute the incremental cost to purchase an EV
instead of an SV. YCSF does not provide this figure
thus we estimate it based off the vehicles listed on
their website. We do not know how much the company
actually pays for their vehicles due to bulk discounts.

• On May 12th 2011, the average gas price in San Fran-
cisco was $1.08/liter, and electricity was $.22/kWh
[5, 6]. Although we extend our revenue analysis to a
wide array of fuel prices, our discussion is based on
these prices.

• We assume maintenance costs for a fleet of EVs is the
same as a fleet of SVs. This limitation of our study is
discussed in Section 5.

4.4 Case Study EV Scenarios
We studied ten different scenarios which are as follows:

• (1-2) BEVs with Level 1 and 2 roadside charging only
• (3-4) BEVs with Llevel 1 and 2 roadside charging and

battery switching
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• (5) BEVs with only battery switching

• (6-7) PHEVs with Level 1 and 2 roadside charging
only

• (8-9) PHEVs with Level 1 and 2 roadside charging and
PHEV switching at YCSF headquarters

• (10) PHEVs with PHEV switching at YCSF head-
quarters only

However, we found that only scenarios five and ten
were interesting. Taxis in our case study were parked
only 12% of the time (constantly driving the other 88%).
Even when we assume level 2 roadside charging is avail-
able everywhere in San Francisco (an extremely unrealis-
tic assumption), the results changed by less than 15% for
both PHEVs and BEVs. Thus, for BEVs we only show
results for scenario 5, and for PHEVs we show results for
only scenario 10.

4.5 Existing Taxi Revenue
As discussed in Section 3.1, each company has their

own fare pricing model. For YCSF, rFARE(f) is given on
their website [57]:

rFARE(f) = 3.10 + .45(p+ (d− .2)) + 2δ (21)

where d is the distance of the trip in miles, p is the time
the taxi was parked (at traffic lights) during the fare,
and δ is one if the passengers’ destination was the air-
port and zero otherwise (the company charges an airport
surcharge fee).

4.6 Revenue Analysis for BEVs
We now compute ∆BEV(τ) given current prices and

vehicle specifications using Equations 8 and 9. First, we
show how we compute the revenue losses, rE, in Section
4.5. The cost of the BEV we study, CBEV , is derived
in Section 4.6.1. In Section 4.6.2 we derive the cost of
the battery switching stations, cBSS(τ), and show its re-
lationship to rL(τ). In section 4.6.3 we measure the re-
lationship between the threshold τ , rL(τ) and the cost
of extra batteries needed, cEB(τ). Roadside charging is
briefly discussed in Section 4.4. We incorporate rL(τ),
the fuel savings sBEV(τ), and cEB(τ) into Section 4.6.4
which shows the overall return on investment we are af-
ter, ∆BEV(τ).

4.6.1 Nissan Leaf Specifications

For our BEV experiments, we study the Nissan Leaf,
a consumer available BEV. The price of the Nissan Leaf
in California is $33,720 [37]. However, current federal tax
rebates for the purchase of electric vehicles provide a tax
credit of $7,500 for the Leaf in California [15]. Therefore,
each Leaf can be purchased for $26,220, which is consis-
tent with the post-tax credit price listed at [37]. Using
our assumption that the company replaces their SVs for
$15,000, CBEV = $11,220.

Even though manufactures list the full capacity of a
battery, the full capacity is not actually used—the bat-
tery is not fully charged or discharged to preserve the

Constant Value for Nissan Leaf

Dr in Eq. 2 (kWh/km) 0.384
Bg1 in Equation 3 (kWh/s) .00033
Bg2 in Equation 3 (kWh/s) .001
Bf1 in Eq. 19 (days/battery) .83
Bf2 in Eq. 19 (days/battery) .29
CB in Eq. 19 (kWh) 24
CBEV in Table 2 $11,220

Table 5: Nissan Leaf Specifications [38]

life of the battery [11]. However, manufactures list the ex-
pected range based on the usable portion of the battery—
the figure we are interested in. Table 5 gives the values
of the constants needed for our revenue analysis for the
Nissan Leaf. These figures were derived from the specifi-
cations given on their website [38].

4.6.2 Switching Station Location and Distribu-

tion Over Locations

We now calculate the cost of battery switching sta-
tions, cBSS(τ), and show its relationship to the revenue
losses incurred, rL(τ). We find the locations of switch-
ing stations by applying the algorithm presented in Ap-
pendix B. We were able to find a global optimal solution
using brute force because there are fewer than 500 loca-
tions in our data set.
With the optimal value of τ (discussed in the next sec-

tion), we find that three switching stations are optimal,
so cBSS = $1, 500, 000.
The relationship between rL(τ) and cBSS(τ) is shown

in Table 6. Without battery switching, even if we as-
sume charging infrastructure is available everywhere (i.e.,
whenever a taxi is stopped, its battery charges while it
is parked), a third of all fares are lost. However, with ad-
ditional switching stations at the San Francisco airport
and Yellow Cab headquarters, only 3% of fares are lost.
Adding additional stations to these three has negligible
impact on rL(τ) but greatly drives up cBSS(τ); three sta-
tions represents the optimal value for YCSF.
We find the distribution over all locations where fares

began and ended to gain intuition as to why three sta-
tions are adequate. Figure 3 shows this distribution and
the corresponding heat map superimposed over a map of
San Francisco. We find approximately 90% of all pick-
ups and drop-offs occur in only 20% of the locations.
This explains why a small number of switching station
locations suffice; switching stations near these locations
will be heavily used.

4.6.3 Switching Threshold Analysis

We find the ROI ∆BEV(τ)as a function of τ as dis-
cussed in Section 3.4.8. This threshold is an optimization
between rL(τ), sBEV(τ), and cEB(τ) as follows. Consider

No Charging or Switching 41.5%
L2 Roadside charging only 37 %
Union Square BSS (no charging) 15%
YC, Union Square, Airport BSS 3%

Table 6: Percentage of fares lost in different BEV scenarios.
BSS denotes battery switching station(s).

9



Figure 3: Distribution over pick-up and drop-off locations as
distribution and corresponding heat map (“whiter” areas rep-
resent more activity).

Figures 4 and 5 which show rV−BEV(τ) vs. τ . Note the
single peaked distribution. Increasing the threshold in-
creases the taxis’ average charge levels, which increases
sBEV(τ) and decreases rL(τ), but at some point the
threshold is too high and cEB is large enough to offset
these benefits. Therefore an optimal value of τ exists and
we find its value by computing the ROI for all values of
τ .
We emphasize that we do not allow taxis to deviate

from the routes in the data set. They only switch batter-
ies if they are at a location with a switching station and
their threshold is less than τ . In practice, taxi drivers
would be likely to actively monitor their battery charge
level and travel to switching stations when needed to
avoid depletion. Thus, our analysis is conservative.

4.6.4 Overall BEV Transition Cost

Figure 6 shows the cost to transition each SV to a BEV
(rV−BEV) for a wide array of gas and electricity prices.
We see that at current prices, BEVs are more profitable
than SVs in San Francisco. We find rV−BEV ≈ $4100,
which is ≈ 0.68% of the company’s existing revenue rE.
Because current prices of gasoline and electricity may
vary, we determine the gasoline price for which they be-
come profitable. For a fixed electricity price of $.22kWh,
the price point where BEVs are exactly at parity with
petroleum vehicles, without considering the cost of the
switching stations (cBSS(τ)) is $1.02/liter. With gaso-
line prices above this point, the company can pay back
cBSS(τ).
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Figure 4: Switching threshold τ vs. rV−BEV(τ) as a percentage
of rE, rV−BEV(τ) for varying gasoline prices, fixed electricity
price of $.22/kWh.
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Figure 5: Switching threshold τ vs. rV−BEV as a percentage
of rE, rV−BEV for varying electricity prices, fixed gas price of
$1.08/liter.

We now compute ∆BEV(τ) = rV−BEVx− cBSS(τ). We
are specifically interested in the point where ∆BEV(τ) =
0; this represents the “break even” point where x BEVs
can be operated for the exact cost that x SVs can. We
assume that switching infrastructure lasts 15 years and
amortize the $1.5M cost of three switching stations ac-
cordingly, yielding a cost of $100k/year. Figure 7 shows
the when ∆BEV(τ) = 0 for a fixed electricity price of
$.22/kWh. For a given point on the line, if gas prices rise,
the company accrues profits. We note that gas prices in
San Francisco are currently above all points on this line
($1.08/liter).
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Figure 6: Gas and electricity prices vs.rV−BEV as a function
of rE, rV−BEV. Three switching stations.

Profitable region

Figure 7: Profitable region for a given BEV penetration, gas
price. Electricity fixed at $.22/kWh.

4.7 Revenue Analysis for PHEVs
We now compute the costs of switching to PHEVs in-

stead of BEVs and compare the two scenarios. We there-
fore derive CPHEV and charging rates next, and we find
∆PHEV in the following section.

4.7.1 Vehicle Cost and Specifications

For our PHEV analysis, we study the 4 cylinder
Chevrolet Volt. The Chevrolet Volt has a retail cost
of $41,000 [41]. After the $7,500 tax credit, the price
is $33,500. Using the $15,000 taxi replacement figure,
CPHEV = $18, 500. Table 7 gives the values of the con-
stants needed for our revenue analysis for the Chevrolet
Volt. These figures were derived from the specifications
given on their website [13].

4.7.2 Overall PHEV Transition Cost

Figure 8 shows the ROI in PHEVs, rV−PHEV, without
any roadside charging. As with BEVs, at current prices
PHEVs are less expensive to operate than SVs. We find
rV−PHEV corresponding to current prices of $1.08/liter
and $.22kWh is ≈ $3400, which is ≈ 0.57% of rE.

For PHEVs there is no fixed cost investment, so

Figure 8: Gas and electricity prices vs.rV−PHEV as a function
of rE, rV−PHEV. No roadside charging.

Constant Value for Chevrolet Volt

D in Eq. 2 (kWh/km) 0.4
Bg1 in Equation 3 (kWh/s) .0004
Bg2 in Equation 3 (kWh/s) .0011
Rp1 in Eq. 19 (days/PHEV) .45
Rp2 in Eq. 19 (days/PHEV) .16
CB in Eq. 19 (kWh) 16
CPHEV in Table 2 $18,500

Table 7: Chevrolet Volt Specifications [13]

∆PHEV can be derived by multiplying rV−PHEV by any
given x to get the cost of transitioning x SVs to PHEVs.
Therefore, the company can switch to PHEVs on a per
vehicle basis. However, in the next section, we discuss
why BEVs have more advantages than PHEVs.

4.8 PHEV vs. BEV Comparison
Even though PHEVs and BEVs are both currently

profitable, BEVs are a likely better investment. Gas
prices are volatile, and in the past three years we have
seen the two highest prices ever for a liter of gas in the
United States. Figure 9 shows gasoline prices per gal-
lon (one gallon = 3.78 liters) since 1971 adjusted for in-
flation [3]. In contrast, electricity prices have not been
volatile; Figure 10 shows the average electricity price in
California (adjusted for inflation) since 1980 [51]. Note
that Figure 10 does not show a price of $.22/kWh elec-
tricity (the figure used throughout this paper) because
electricity prices in San Francisco are nearly double than
in the rest of California and the U.S. average, as shown in
Table 8 [54]. We could not find a long history of electricity
prices in San Francisco alone. Because most PHEVs are
still about 60% petroleum based (for example, the Volt
uses electricity for 40% of its useable range [13]), if both
of these trends continue as they have for the past 30+
years, BEVs are a better investment. Furthermore, bat-
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May 2011: San Francisco Electricity Prices vs. U.S. Average

Item U.S. San Percent
Average Francisco Difference

Electricity ($ per kWh) 0.129 0.226 75.2

Gasoline ($ per liter) 1.06 1.12 5.4

Table 8: San Francisco vs. U.S. fuel prices [54]

tery prices are decreasing and are expected to continue
decreasing [11, 26–28, 36]. Because PHEVs are more ex-
pensive due to their ICEs, and the majority of the price
of a BEV is its battery, BEVs are expected to decrease
in price faster than PHEVs. Finally, if our ultimate goal
is complete petroleum independence, PHEVs can only be
used as an interim solution and would need to be re-
placed.

Figure 9: Average U.S. price per gallon of gas since 1971 [3]

4.9 Sensitivity Analysis
We now analyze whether our case study results would

generalize to taxi companies in different cities. Although
we cannot draw definite conclusions without re-running
our study for a taxi company in a different city, we at-
tempt to answer this question here.
The following factors are important to determine the

ROI of EVs in a region.

1. Average Trip Length and City Density. Switching in-
frastructure is expensive, so it will initially be sparsely
deployed, in contrast with current petroleum infras-
tructure. Consequently, the geography of a city affects
the feasibility of BEVs. Large cities with widespread
points of interest are less suitable than dense cities
with concentrated points of interest. One way we can
measure this for a given city is to determine the dis-
tribution over fare trip lengths. We can use the dis-
tribution of how far people commonly travel as a
heuristic to estimate how many switching stations will
be needed. Figure 11 shows the distribution of trip
lengths for all fares the YCSF taxis completed during
the study period. From the cumulative density func-
tion of this distribution, we find 85% of all fares are
less than 10 km, which is why few stations are needed
in San Francisco. This figure shows a two-peaked dis-
tribution. From the probability mass function, we find

8% of the fares are between 20 and 30 km (roughly 7%
of all trips are to the San Francisco International Air-
port, which is 24 km by highway from Union Square
in downtown San Francisco).

The average trip length can also help us determine
whether PHEVs or BEVs are better suited for a re-
gion. For a PHEVxxm, it does not matter how many
trips are completed before battery depletion, because
the financial benefit comes from the transportation
savings on the first xx km. BEVs are range limited,
however, and completing a large number of short trips
(before battery depletion) is more profitable than a
short number of long trips, due to the initial charge to
each passenger that requests a fare. Therefore, PHEVs
are likely better suited for cities with many long trips,
whereas BEVs will be more profitable in cities with a
large number of short trips, like San Francisco.

2. Distribution over locations. Closely related to the dis-
tribution over trip lengths is the distribution over lo-
cations discussed in Section 4.6.2. We found roughly
90% of YCSF fares start or end in fewer than 20% of
the grid locations. If this distribution was less concen-
trated, the average trip length shown in Figure 11 may
have increased. In our case study, trips in the down-
town area within 3 km of Union Square accounted for
more than half of all trips. This is highly conducive
to centralized switching station placement. Taxis in
larger cities may find they have to travel a greater
distance out of their way to refuel.

3. Gas and electricity prices. Although current gas prices
in San Francisco ($1.08/liter) are higher than the rest
of the United States, they are lower compared to the
rest of the world. For example, the average price in
London, England is $1.39/liter [8], and the average
price in Toronto, Canada is $1.29/liter [7]. If the mo-
bility patterns of taxis in these regions are similar to
those in San Francisco, transitioning to EVs would
be even more profitable. We also note that electricity
prices in San Francisco are twice the United States
national average, while gas prices are not [52].

4. Temperature and weather. Reference [46] shows that at
cold temperatures (< 32◦F ), over 10% of the energy in
a battery is lost compared to at 68◦F . It rarely snows
or drops below freezing in San Francisco, even during
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Figure 11: Distribution of fare trip lengths (the bar for 50
represents all trips over 50km)
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Figure 10: Average electricity price given by three major utilities in California since 1980 [51]

the winter months, but taxi companies in cities with
colder climates should expect worse performance. Fur-
thermore, passengers in cities with extreme weather
temperatures require more heating and cooling, which
further drains the battery.

5 Limitations and Future Work
To obtain realistic results for our case study, we used

only commercially available vehicles and their manufac-
turer specifications. However, predicting the outcome of
a major transition prior to it occurring is an error-prone
process. We now discuss some avenues for future work.

1. Our process can only be used with taxi companies
whose vehicles are brought back to a common location
after each driver’s shift. Future work could generalize
the process to different types of taxi companies.

2. We have not included any analysis of vehicle main-
tenance costs. Maintenance costs for a fleet of EVs
is thought to be lower than SVs [11], but we are
not aware of any quantitative analysis comparing the
two. A maintenance cost analysis for a large fleet of
PHEVs/BEVs would greatly improve our cost model.

3. Our switching station optimization assumes that the
locations can charge any number of batteries and can
be placed anywhere in the city. In reality, distribu-
tion network limitations may place some restrictions
on switching station placement and battery charging;
areas with a fully utilized distribution network may
not be able to accommodate the new load.

4. We have not considered real estate prices for switch-
ing stations, other than the cost of the stations them-
selves. We should account for the cost of acquiring
space to build the switching station.

5. Obtaining a second data set from a different city would
provide a better foundation for the sensitivity analysis
section.

6. Batteries do not charge at a constant rate as we have
assumed. A better assumption would be to use a two

phase linear approximation; have a higher charge rate
while the state of charge (SOC) is less than 80%, and
a lower rate when the SOC is above 80% [38].

7. If battery switching for PHEVs is implemented in
the future, this would drastically change the PHEV
revenue analysis. Currently, PHEVs are not manufac-
tured in this fashion.

We note that EVs are still manufactured using
petroleum; the study of the overall petroleum use of a
vehicle, including manufacturing is known as life cycle
analysis [19, 43].

6 Conclusions
In this paper, we proposed a process to determine the

ROI for a taxi corporation transitioning to electric ve-
hicles. We first built a model of taxi fleet transporta-
tion, and then used the model to compute the economic
costs of the transition. The model can be configured with
a wide array of input parameters, including the type
of vehicle to be tested, electricity and gasoline prices,
and roadside charging/battery switching infrastructure
assumptions. We then used our process to analyze a fleet
of over 500 taxis in San Francisco. We found that PHEVs
and BEVs are both currently profitable.
Electric vehicles are expected to play a large role in re-

ducing petroleum consumption and global carbon emis-
sions. The transition to EVs is a necessary but will likely
be a difficult transition, but we can mitigate the nega-
tive effects of major transitions, such as a complete over-
haul of the transportation industry, with careful plan-
ning. Careful planning requires analysis of several aspects
of the transition, including financial feasibility and so-
cial factors. Our work presents a step towards providing
information to taxi companies as to the extent, either
positively or negatively, to which they might be affected.
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Appendix A: Brief CLGN Back-
ground
In this appendix we provide a brief background on

CLGNs. We assume knowledge of standard Bayesian net-
works; an excellent reference text is Koller et. al [34].

We first present some necessary definitions.

• The graphical model of a problem is a directed acyclic
graph G(V,E), where each vertex is a variable and
each edge represents a causal effect. The variables may
be known (we can directly observe or compute their
values) or hidden (we estimate their value because we
cannot observe their values directly).

• The set of parents Pa(X) of a node X in a graphical
model is defined as all nodes Y such that (Y,X) ∈ E

and Y 6= X.

• Variables can be either discrete or continuous; discrete
variables can only take values from a countable set of
values, such as the integers, whereas continuous vari-
ables can be any real number.

• A Bayesian network is a directed acyclic graph that
defines the relationship P (X|Pa(X)) between every
variable and its parents. The probability of any vari-
able X is independent of all other variables in the
network given its parents.

Hybrid Models

Standard Bayesian networks contain only discrete vari-
ables. A hybrid model contains a mix of both continuous
and discrete variables. Several different hybrid models ex-
ist; we chose to use conditional linear Gaussian networks
(CLGNs). In linear Gaussian models, each variable X is
modeled as a linear combination of its parents. CLGNs
are extensions of linear Gaussian models that allow for
both discrete and continuous variables.
In CLGNs, three types of relationships are defined:

• A discrete child with only discrete parents

• A continuous child with only continuous parents

• A continuous child with a mixture of continuous and
discrete parents.

Note that CLGNs do not allow for discrete variables
with continuous parents. Other models address this issue,
but we do not need these extensions for our application.

Querying Conditional Linear Gaussian Networks

To query a variable is to return its Gaussian distribution.
To query each of the three types of variables, we use the
following formulas based [34].
We consider the simplest case first; a discrete variable

with only discrete parents. To express this conditional re-
lationship, we use a discrete conditional probability table
(CPT) as in standard Bayesian networks.

Next we consider a continuous variable with only con-
tinuous parents. A continuous variableX can take on any
real number in the domain of X. Therefore, we cannot
have a finite CPT because it would be infinitely large.
Instead, we maintain a function of its parents’ values
that is used to generate a Gaussian over X. Let X have
k parents with means pa1, pa2, ...pak. Under the CLGN
model, we specify k + 2 parameters α0, α1, ..., αk, and a
variance σ2 and compute P (X|pa1, pa2, ...pak) as

P (X|pa1, pa2, ...pak) = N

(

α0 +

k
∑

i=1

αi(t)pai(t), σ
2

)

(22)
That is, the set of αs are linear combination constants;
we are calculating a new Gaussian that is a linear com-
bination of other Gaussians (its parents).
Before we examine the third case, we note how σ2 is

obtained. There are two widely used versions of CLGN’s:
those where the variance of each variable depends on the
variances of its parents, and those where the variance is
assumed to not depend on its parents [34]. We are using
the latter simpler model because we do not have data for
the variables in Table 1. This model is not as accurate
because it ignores covariance between variables and their
parents, but is commonly used when the variances of
variables in the network are not known, and still captures
most of the meaningful relationships [34]. Because we use
this model, we do not present background on CLGNs
where the variance of each variableX depends on Pa(X);
but note these models rely on the theory of multivariate
Gaussian distributions.
Finally, we consider the most complex case, a continu-

ous variable with both continuous and discrete parents.
Let X be a continuous random variable with j discrete
parents and k continuous parents. Let D = {D1, ..., Dj}
represent the discrete parents of X. Let C = {C1, ..., Ck}
represent the continuous parents of X; we denote the
mean of the ith continuous parent ci. Together, D

⋃

C =
Pa(X). For every combination d chosen from D, we
have a (possibly different) vector of k + 2 constants
αd0

, αd1
, ..., αdk

, σ2
d, and a variance σ2

d such that

P (X|D = d,C = c) = N

(

αd0
+

k
∑

i=1

αdi
ci ;σ

2
d

)

(23)

Again, the set of αs are the linear combination constants.
The problem with this approach is that the set of all

combinations of d may be massive; even if each discrete
parent was binary, we would still have 2d combinations
and would need to store (k + 2)2d constants for every
variable. A better idea is to store a function for each
variable that calculates these k + 2 constants based on
its parents at any time. This also allows us to set the
α values based on X ′s discrete and continuous parents,
if needed. Therefore, we introduce a function φX(d, c) :
R

j+k → R
k+1. This function φX takes in all of Pa(X)

and generates the α values used in the linear combina-
tion. Creating the φ functions requires knowledge of the
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problem; we need encode our knowledge of how variables
are dependent upon each other into the network via the φ
functions. If we were instead storing the constants, then
we would need to derive the constants for each variable
based on our knowledge of the problem.
Having introduced the φX function, we rewrite Equa-

tion(23) as:

P (X|D = d,C = c) = N

(

αd0
+

k
∑

i=i

αi ∗ ci ;σ
2
d

)

(24)

{α0, ..., αk} = φX(d, c) (25)

Whenever we query a variable, we use Equations 24 and
25 to calculate the distribution.

Appendix B: General Switching

Station Optimization Algorithm
Shukla et. al. [47] provide an optimization framework

for EV infrastructure placement based on flow intercep-
tion facility location. A more complex flow based model
is given by [53]. These models are designed to reduce
the total amount of fuel used while placing restrictions
on the number of vehicles that can be serviced by each
refueling station. We assume the taxi company’s objec-
tive is to maximize their overall revenue, but maximizing
miles traveled does not necessarily maximize revenue. We
therefore introduce a new optimization framework based
on the discretized locations of the taxis and their charge
levels. It is also a variation of the flow based facility lo-
cation model.
We now provide the details of our approach to com-

puting locations for switching stations. First, we show
that the problem is NP-hard, which implies that it is un-
likely to be able to be solved by an algorithm that runs
in polynomial-time. Then, we formulate it as an integer
program, and propose an algorithm for the problem that
works on small instances.
We outline a proof that the switching station location

problem is NP-hard by a reduction to the facility location
problem. The facility location problem is stated as: given
a set of clients has some demand from a facility and a
cost to build each facility, find the optimal placement
of facilities to minimize the cost of the facilities and the
cost of serving the clients. The switching station location
problem can be reduced to the facility location problem
by treating the taxis as clients whose demand varies over
time and the switching stations as the facilities that can
meet that demand. Therefore, finding the set of optimal
switching station locations is also NP-hard.
We now formally describe the switching station loca-

tion problem. First, we introduce the necessary notation.
Let L be the set of locations where a switching station
can be placed. We denote a taxi by x and the set of
all taxis by X. We assume knowledge of a cost function
cost(l) for each location l ∈ L that is the price of placing
a station at l. We use Loct(x) to be the location of x at
time t and faret(x) is True when x has a passenger and

False when it does not. We use a binary variable y(l)
to indicate if a location has been selected for a switch-
ing station. The charge level of x ∈ X at timestep tk
is denoted by CL(x, tk). Let ot(x, r) be the opportunity
cost of an EV with charge level r at time t. For a taxi
x, ot(x, r) should be zero when x’s battery is sufficiently
charged; however, as its charge level drops, there is some
opportunity cost because the driver will not be able to
complete trips over some length, and thus may lose rev-
enue because some passengers cannot be transported to
their destination. In our analysis, we define ot(x, r) to be
the sum of taxi x’s fares for the remainder of its shift,
once it cannot complete a trip because its charge level r
is too low. That is, if x cannot complete a trip at time t,
then its opportunity cost is the fares for the trips it would
have completed from time t until the end of its shift. Fi-
nally, we use tau to be the battery level at which a taxi
will always swap its battery if is at the same location as
a switching station.
The objective of our optimization problem is stated

as given the set of taxis and their temporal mobility pat-
terns, find the optimal location(s) for switching stations
such that the taxi company’s profits are maximized. Our
mathematical formulation of the switching station loca-
tion problem is as follows:

min
∑

l∈L

cost(l)y(l) +
∑

x∈T

∑

t

ot(x, ct(x)) (26)

subject to:

• y(l) = {0, 1} for all l ∈ L

• CL(x, tk) =


















Full if y(Loct(x)) = 1

and CL(x, tk−1) < thresh

and faret(x) = False

CL(x, tk−1)− u(tk−1, tk), otherwise

where u(tk−1, tk) = the energy used from tk−1, tk.

When L does not contain too many locations (for ex-
ample, as in our case study below), we can solve the
switching station location problem optimally using brute
force. That is, we find the value of Equation 26 for all pos-
sible locations of 1, 2, . . . , k switching stations. The value
of k is found by determining the number of switching sta-
tions sufficient so that no revenue is lost due to opportu-
nity costs (i.e., we have

∑

x∈T

∑

t ot(x, charget(x)) = 0).
At this point, Equation 26 is monotonically increasing
when more switching stations are added, so we can safely
conclude that Equation 26 is minimized with k or fewer
switching stations.
This brute force approach may not be feasible over

larger areas with more locations. In this case, it is possi-
ble to use heuristic algorithms to find a solution, though
these heuristics cannot guarantee the optimality of their
solution. Algorithms such as simulated annealing, tabu
search, and hill climbing are general optimization meth-
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ods, and could be used to find approximate solutions to
the switching station location problem [23,32,42].

Our formulation of the switching station location prob-
lem relies on time series locations of the vehicles that
will use the switching stations. Ideally, this location data
is collected from multiple vehicles over multiple weeks;
however, this data may not be obtainable in some sit-
uations. In this case, it is still possible to optimize the
placement of switching stations using stochastic facility
location algorithms (e.g.,. [39, 48]). Such algorithms are
designed to optimize facility locations when there is a
high amount of uncertainty in the input. These algo-
rithms take a probability distribution of the amount of
time vehicles spend at given locations as input. This dis-
tribution could be estimated from, e.g., road congestion
statistics or logs of passenger pickups and drop-offs.
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