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I. Introduction

It seems undeniable that the increase in the skill premium in the

advanced world is primarily the result of skill–biased technological

change.

Paul Krugman, a Stanford University economist (1994)

I don’t think a guy will be able to go into his country club if he

doesn’t have a CAD/CAM [computer aided manufacturing and

design system] system in his factory. He’s got to be able to talk

about his CAD/CAM system as he tees off on the third tee – or

he will be embarrassed.

Joseph Engelberger, founder of Unimation, the first major U.S.

robot manufacturer (Schlesinger 1983)

There has been a large widening of wage differentials in the U.S. and

other industrialized countries during the past 15 years. Many researchers

have attributed this change to skill-biased technological change (see Bound

and Johnson (1992)). The evidence supporting a major role for skill–biased

technical change, however, is primarily inferential, Wages for highly skilled

workers in the U.S. have risen while the number of skilled workers has risen

as well. In the view of many, therefore, this requires an explanation based on

an increased demand for more skilled labor. Since the 1980’s witnessed great

technological advances, including cheaper and more powerful computing tech-

nology, technical change has been considered a plausible explanation. 1 Sup-

port for a major role for skill–biased technological change, moreover, has

been strengthened by the perceived inability of other candidate explanations

to explain the dramatic changes in the observed pattern of wages over time

in the U. S..

Until recently, changes in the wage structure have rarely been directly

linked to observable technical developments that are presumably transform-

ing workplaces and the distribution of wages, A notable exception is Alan

lIndeed in 1983, Time Magazine, a weekly U.S. news publication, gave its much

vaunted “Man of the Year” award to the Computer.
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Krueger’s (1993) careful and influential study that finds that the use of a

computer at work is associated with a 10-15 percent wage differential. In

this paper, we attempt to shed some new light on the question of whether

the measured returns to computer use reflect productivity differences due

to the introduction of computers in the workplace – and hence provide

a potential explanation for wage structure changes – or whether these re-

turns merely reflect unobserved heterogeneityy. If this latter view is correct,

the direct evidence for skill–biased technical change in explaining changes is

severely undermined.

In this paper, we first present evidence from German data that shows that

the basic pattern of computer use and the wage premium for computer users

is very similar to the findings for the U. S., which suggests that an analysis

of the German data is informative. Second, since the German data contains

detailed information on the tools used by workers and the knowledge they

have about these tools, we can apply conventional techniques to evaluate

the returns to these other tools, as well as computers. When we do so, we

find for example, that the measured return to the use of pencils at work is

almost as large and robust as the measured return for computer use. Since we

do not believe that pencils changed the wage structure, this would appear to

undermine the view that the coefficient on computers provides direct evidence

on the role of skill–biased technological change. Instead, the results seem to

suggest that computer users possess unobserved skills that are rewarded in

the labor market, or that computers were first introduced in higher paying

occupations or jobs. We argue that all the results in Krueger (1993) can

be interpreted in this light. We review some related literature on this issue

and present additional evidence of our own. The remainder of the paper is

organized as follows, The next section describes the German data sets we

use. Section 3 discuses the measured returns to the use of tools in the U.S.

and Germany. Section 4 discusses various interpretations of the empirical

evidence and the final sect ion concludes.

II. The Data

Our German data come from three cross-sections of the West German “ Qual-

ification and Career Survey,” conducted in 1979, in 1985/86, and in 1991/92

by the Federal Institute for Vocational Training (BIBB) and the Institute for
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Labor Market Research (IAB). The surveys contain standard demographic

and labor market variables but are also particularly rich in details about

workers’ jobs, job attributes, the tools used in these jobs, the skills necessary

to perform a job, and how these skills were obtained. The sampling frame

for the survey is the German employed population age 16 to 65. Each survey

has slightly less than 30,000 respondents. We use the largest sample possibly,

only deleting a observations which do not have information on the variables

we analyze. The questions in the three surveys are similar but not exactly

comparable. We report details on the variables we use below.

The questions on computer use differ slightly between the 1979 survey and

the later waves. For the 1979 survey we combine affirmative answers to two

questions as computer users. The first asked about the use of “computers,

terminals, or monitors,” the second inquired about word processors. In the

later surveys there are six categories which we combine: computers on shop

floors, office computers, PCs, terminals, word processors, and CAD systems.

Other questions inquired about the use of computer controlled machinery,

but this seems to be different from the concept captured in the questions in

the U.S. Current Population Survey used by Krueger (1993).

Table 1 summarizes the probability of using a computer at work for differ-

ent categories of workers and reproduces a similar tabulation from Krueger

(1993). Computer use in the mid 1980s is lower in Germany than in the U.S.

but by 1991 the fraction of workers using computers on the job in Germany

approaches the U.S. utilization rate. In addition the patterns of use among

various labor market groups are very similar. In both countries computers

are used predominantly by the more highly educated, by the age group 25-39,

by white collar workers, and by full time employees.

III. The Returns to Computer Use in the

U.S. and Germany

To assess the wage differential associated with using computers we run a

number of standard wage regressions. Our dependent variable is the log of

gross average hourly earnings. This variable is constructed from monthly



earnings and usual weekly hours. 2

The raw log wage differential for computer use in Germany is 0.139 in

1979, 0.240 in 1985/86, and 0.288 in 1991/92. This is somewhat lower than

the 0.276 differential for the U.S. in 1984 and 0.325 in 1989. Results from

the wage regressions including a computer dummy and other covariates are

reported in Table 2. The wage differential for computer use in Germany falls

to 0.112 in 1979, 0.157 in 1985/86, and 0.171 in 1991/92 when controls such

as education, experience, gender, and others are added to the regression.

These differentials resemble relatively closely those found by Krueger which

are displayed in the first two columns. As in the U. S., the wage differential

associated with computer use in Germany has increased over time.

The basic patterns of computer use in the U.S. and in Germany and

the wage differentials associated with computers are very similar. This is

true despite the fact that the German labor market is more regulated, pay

setting more centralized, and the wage structure more compressed than in

the U.S. (see e.g. Krueger and Pischke (1995)). The narrower wage structure

in Germany is reflected in the fact that most coefficients in Table 2 tend to

be somewhat smaller in Germany than they are for U.S. data, Overall, we

thus conclude that the wage differential for computer use is very similar in

the two countries, which suggests that the interpretation of the results is also

likely to be the same.

A The Returns to Pencils, Telephones and Sitting on

the Job in Germany

In this subsection we compare the patterns of use and the wage differentials

associated with computers to those for a set of more commonly–found tools

and job attributes which are likely to invite a very different interpretation.

‘The earnings variable in the survey is obtained not as a continuous number but in

bracketed form. There are 13 brackets for the 1979 survey, 21 in 1985/86, and 15 in

199 1/92, We assigned bracket midpoints to each group, The resulting approximation

should be rather good because of the large number of brackets. Adopting a similar speci-

fication we find that this earnings variable yields the same return to schooling in 1985/86

as reported by Krueger and Pischke (1995) with a continuous earnings variable for 1988.

Years of education are imputed from information on schools attended and degrees obtained

following Krueger and Pischke (1995).
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Table 3 tabulates the fraction of users which mention that they utilize

various tools on their job in the three German data sets. Computer usage has

increased markedly from 1979 to 1991. Desk or hand calculators (the 1979

data also include cash registers in this category) are used more heavily and

their usage has also increased substantially during this period. Telephones

are used by about half the work force; with little change during this period.

Approximately 60% of workers use a pen, pencil or other writing material on

their job. Furthermore, we use a variable whether employees predominantly

work while sitting. The 1985/86 survey had a direct question on how often

respondents sit at their job, allowing five possible answers: basically never,

rarely, occasionally, often, almost always. We classified those responding

“often” or “almost always” as sitting. In 1979 the only similar question

asked how often respondents stand, allowing the same five responses. We

classified those standing “never” or “rarely” as sitting. There is no such

variable in the 1991/92 survey. The fractions sitting differ between the two

years; this is likely to be due to the differences in our variable definitions,

To compare persons associated with office work or more supervisory roles

to blue collar workers, we also consider the usage of manual hand tools, like

hammers, screw drivers, paint brushes, hand operated drills, etc. About 30%

of workers use such tools,

Table 4 investigates the wage differentials associated with these various

tools. In first panel of the table we report results from regressions similar

to those reported in Table 2 except that we separately include each of our

tools used on the job, Workers who use a calculator on their job earn 9 to

13 percent more than those who did not. Telephones are associated with a

12 to 14 percent differential, the use of writing materials is associated with

an 11 to 13 percent differential, while sitting yields 10 percent higher wages.

While it is plausible that the use of calculators or telephones raises pro-

ductivity, it is unlikely that the productivity differential of using a computer,

a telephone, a pencil or a chair are all basically the same. Instead, what

we are obviously capturing is the fact that all these variables are associated

wit h “office” jobs, which are typically higher paying than jobs not involving

desk work. Any of these variables, therefore, might indicate that the users

of office equipment are more skilled than the non-users, or perform different

tasks, or that such workers are more likely to have access to office tools.

This interpretation is corroborated by the wage differential observed for us-

ing tools associated with relatively unskilled blue collar work: the users of
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simple hand tools earn about 10 percent less than nonusers.

To control for the part of the wage differential attributable simply to oc-

cupational wage differentials, the last three columns of table 4 present results

from the same regressions but which include a very detailed set of occupa-

tion dummies. The wage differential associated with computer use, as well

as those for the other tools, drop to about 30 to 50 percent of their original

value. Thus, a large fraction of the original differentials are indeed associated

with occupations. Nevertheless, differences in wages in the order of 4 to 7

percent remain for the users of the various office tools even within narrowly

defined occupations. This again mirrors the within occupation estimates

reported by Krueger (1993) for the U.S.

Finally, to control for the possibility that the use of pencils, calculators,

etc. might simply be proxying for the use of a computer we include all five

office tool dummy variables together and report the results in the bottom

panel of Table 4 (the 1991/92 results do not include sitting). While the

differential associated with each falls, they all stay individually significant.

The computer differential with 7 to 13 percent is among the largest, but the

differentials for telephones and jobs which involve sitting also remain in the

order of 5 to 7 percent. This result is less surprising if each of these variables

proxies for worker ability or a particular type of job; none of the proxies are

perfect and some are more important than others. Clearly, however, the use

of telephones or pens did not purely proxy for computer use! The results are

again qualitatively similar when we include occupations.

In addition, we also reanalyzed the High School and Beyond data for

Sophomores and Seniors in 1980 (HSB) used by Krueger (1993). Briefly, HSB

is a longitudinal data set that contains inter alia information on computer

use, acheivement test scores and school performance for individuals who were

sophomores or seniors in 1980. As Kruger notes, information on computer

use was collected only in the 1984 wave of the survey and students were only

asked whether they had ever used a computer on a job. We follow Krueger

and use the information as if it referred to the current job, although this may

not be the case for some proportion of the individuals.

In table 5 we exactly replicate the results in Krueger’s table VI, columns

(2), (3), and (4)3. The various regressions include a different set of covariates,

3We are grateful to Alan Krueger for providing his programs and to Mike Boozer for

help above and beyond the call of duty.

6



however, we only display the coefficient on the computer variable. Krueger’s

results are shown in the first line. Eliminating missing values on the calcula-

tor and VCR variables yields a slightly smaller sample. The coefficients on

the computer dummy in this sample are shown in Panel A. The deletions

do not make any difference to the estimated coefficients. Panel B shows

the returns to using a calculator on the job. The coefficients are positive,

marginally significant, but are only one fifth the size of the computer coef-

ficient and only one fourth to one sixth the size of the calculator coefficient

for Germany. Part of the differences may reflect real differences between

Germany and the U.S. Part of the difference may be the consequence of the

fact that our German sample, being representative of the adult population, is

much older than the HSB sample which contains only high school graduates

two to four years out of school,

Thus, the patterns of returns are somewhat different in the U.S. from our

findings for Germany where we found a positive wage differential associated

with the calculators on the job.

B Computer Use Versus Computer Knowledge

What gets rewarded in a competitive labor market are only skills that are

scarce. In competitive labor markets, individuals will not be able to capture

returns arising from a new technology, say the assembly line, if everybody

else can also use the new technology. Private returns only accrue to those

workers who possess a skill like the ability to program a computer or work

with business software. If these workers are scarce, their wages should be

bid up in the market. In addition, the return should accrue to everybody

possessing the skill regardless of whether the worker actually uses a computer

on the job or not. This effect results from the labor supply side: worker

mobility should result in a uniform differential for all workers with computer

skills. This suggests that the correct variable to use in these regressions is

computer knowledge rather than computer use. In addition, once computer

knowledge is controlled for computer use should not matter independently

anymore.

The German 1979 survey allows us to further examine this hypothesis.

The key feature of the 1979 data that we use is from a series of questions

on job skills possessed by respondents. One of the skills inquired about

was computer skills. Table 6 presents a cross tabulation of survey responses
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concerning computer skills and computer use. A key fact from this table

is that about two thirds of those who possess computer skills do not use a

computer on their job. Curiously, a small fraction of workers actually use

computers without any qualification.

In the upper panel of Table 7, we include the computer knowledge dummy

in a wage regression. Column 1 and column 5 include the measure of com-

puter knowledge in lieu of a measure of computer use, Indeed, it is apparent

that the estimated “returns” are similar for either knowledge or use. When

we include dummies for both computer knowledge and computer use, we find

that most of the wage differential accrues to the knowledge dummy and not

to the use variable, just as the compensating differentials argument outlined

above suggests.

There is also the labor demand side to be considered, however. It only

makes sense to employ a worker with computer knowledge in a non-computer

job if this worker is at least as productive in the alternative job. This argu-

ment suggests that the wage differential associated with computer knowledge

could equally well be a return to some other skill or worker attribute that is

often found in the same workers who possess computer skills. Workers who

knew how to use computers in the late 1970s, for example, might have been

more enterprising during their education to actually acquire this skill. It

could be this entrepreneurial talent and motivation that is rewarded. If one

wishes to maintain the argument of skill–biased technical change, it is clear

however, that some such unobserved talent has to be present among workers

with computer knowledge: this is because 9.8 percent of the employed work

force earn a 14 percent wage differential without using computers. Thus,

even under the skill–biased technological change explanation unobserved het-

erogeneity is important. Once this is recognized, it is now a small step to

conclude that it might be this unobserved talent, for example entrepreneurial

mot ivation, that is also rewarded among computer users.

The pattern of coefficients in Table 7 is again robust to controlling for the

same set of occupations as above. When both the computer use and knowl-

edge variables are entered together with occupation controls (column 7), only

the computer knowledge variable remains positive while the coefficient on the

computer use dummy falls to zero.

More importantly, while computer knowledge rather than computer use

seems to explain the wage differential we found for Germany this still does

not explain our findings regarding the other tools used on the job. When
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we replace computer use with one of the other tools, such as pens or pen-

cils (lower panel in Table 7), we find positive wage differentials associated

with pencils even after controlling for computer knowledge and detailed oc-

cupations. It seems to us that these results are equally consistent with an

explanation based on differences in pay across workers who have advanced

skills and use white collar tools rather than the productivity effects associated

with computer knowledge.

The High School and Beyond Survey contains a variety of variables in-

dicating whether the individual has ever used various software packages or

has written programs in a computer language. This could have occurred in

school or at work, Using these as indicators for computer knowledge, we run

similar regressions as in Table 7 with a subset of the Krueger sample from

the HSB4 The results are presented in Table 8. Unlike in the German data

we find no evidence that it is computer knowledge rather than computer use

which is rewarded in the labor market. However we should stress that the

HSB sample is rather peculiar since it only consists of high school graduates

two to four year out of school. These workers may not have had time yet to

find the kind of jobs that reward their skills most adequately. Hamilton and

Yuen (1995) use the same computer knowledge variables from the HSB and

find wage differentials in the order of 8 percent using the 1986 rather than

the 1984 wage and including respondents who attended college.

C Are Other Ability Controls Adequate?

One way to address the possibility of unobserved heterogeneity in these re-

gressions is to include other controls for ability. Krueger used data from the

High School and Beyond Survey which allowed him to include both a com-

puter dummy and controls for parental background, achievement scores, and

school grades. We have measures of secondary school grades in math and

German in the 1979 survey as well as information on the father’s occupation.

Table 7 presents results with these additional regressors (columns 4 and 8).

Including grades and parental background does little to change the returns

to computer knowledge and the use of computers or pencils. This indicates

40ur samplehasonly 4,579 observations since we deleted missing values in the variables

indicating software or computer language proficiency. This sample differs slightly from the

one we use in Table 5.
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that ability controls, such as grades, may only be poor proxies for the types

of skills that are ultimately relevant in the workplace. Indeed, even a crude

variable, such as the use of pens or pencils, is still able to account for some

other worker attribute with a quite substantial reward.

Similarly, Krueger finds no change in the computer coefficient control-

ling for parental background, test scores, and grades in the HSB data. The

problem with these results is that the partial correlation of test scores with

wages in the Krueger sample is negative and grades are uncorrelated with

wages. This may be due to the fact that the sample is selected to exclude

individuals who went on to a college education. Furthermore, the workers

in the sample are very young, test results may not be revealed to employers

and there might have been insufficient time for the labor market to learn

about the skills of these workers (see Gibbons and Farber (1994)). Thus,

these ability controls in the HSB may not be reliable controls to assess the

possibility that unobserved heterogeneity explains the returns to computer

use.

IV. Reconsidering the Evidence

The preceding analysis sheds some doubts on the interpretation that the

computer wage differential arises from the possibility that the introduction

of computers into the workplace has changed the productivity and wages

of workers who use computers. Instead, the wage differential for the use

of a variety of tools at work seems to pick up unobserved heterogeneity

among workers. Especially during the diffusion of personal computers at

the workplace in the 1980s it is likely that more highly paid workers were

the ones who started to use these first on their jobs. In this section we

argue that the results in Krueger (1993) as well as the results found in more

recent research are also consistent with this interpretation. In particular we

re-examine the following evidence:

1. The computer wage differential is three times as high in the nonunion

sector than in the union sector.

2. The computer differential has increased over time in the U, S.

3. The pattern of returns to specific computer tasks is consistent with

skill–biased technical change.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4. Computer use at home is not rewarded as highly as computer use at

work.

5. Grouped data ``fixed effect'' models of thereturns tocomputer use find

large wage effects of computers.

6. The returns to use of a computer are higher for those with higher levels

of schooling.

1. The computer wage differential is three times as high in the nonunion

sector than in the union sector.

This is unsurprising since unions are known to compress the wage struc-

ture. Thus, all wage differentials tend to be lower within the union

sector. Of course, this ought to be true regardless of whether comput-

ers truly capture computer skills or are instead simply measuring the

impact of any other work related skills and abilities,

2. The computer differential has increased over time in the U.S.

The simplest model for the introduction of computers in the workplace

would suggest that the productivity of the marginal computer worker

declines as more computers are introduced in the workplace. However,

the observed pattern of increasing wage differentials can easily be rec-

onciled with the skill biased technical change story if the quality and

therefore the associated productivity effects of computers increased fast

enough. There is little doubt that the quality of computers changed

tremendously over the 1980s. On the other hand, the observed pattern

is also easy to reconcile with a pure heterogeneity explanation. Returns

to skill have increased during the 1980s. Thus, if computer use proxies

for work related skills, then the return to computer use should increase

alongside with other ability related wage differentials such as the return

to schooling.

Krueger argues against this view because of the fast expansion of com-

puter use. If computers are used by the most able workers first or the

otherwise most highly paid workers first and then slowly spread to less

productive, lower wage groups we should see the computer wage differ-

ential fall. However, it is unlikely that the proliferation of computers
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followed such a monotonic pattern. Mainframe computers were typi-

cally used directly only by a few specialists or staff positions but not by

line managers. These positions are on average better paid, therefore we

find a significant computer differential already in 1979. When personal

computers became available, computer use became more decentralized.

If PCs slowly spread to more highly paid positions, then the computer

differential may well have risen during the 1980s. According to Table

1, computer use in Germany grew much faster among the more highly

educated than among the less educated. This may explain a rising com-

puter wage differential in Germany between 1979 and 1991/92 despite

the fact that the returns to skill did not change during this period,

3. The pattern of returns to specific computer tasks is consistent with skill-

biased technical change.

The results, however, are also easy to reconcile with unobserved hetero-

geneity. Krueger finds that the highest wages are paid to those using

computers for electronic mail, followed by spreadsheets and then pro-

gramming. Both electronic mail and spreadsheet use seems to indicate

that the user probably occupies a managerial position. Other tasks

are associated with lower wages, such as inventory cent rol or computer

aided design, although these uses are likely to enhance productivity as

much as or more than the more highly rewarded tasks.

4. Computer use at home is not rewarded as highly as computer use at

work.

To probe the unobserved heterogeneity explanation, Krueger includes a

separate dummy variable for computer use at home and an interaction

with computer use at work. The wage differential for using computers

at home is about one third of the wage effect of using computers at

work. This seems to suggest that the computer dummies reflect more

than just productivity y effects. In fact, unobserved heterogeneity y can

explain this pattern if computers proxy for ability and using computers

at work is a better proxy than using computers at home.

In addition, using a computer at home may simply proxy for higher

earnings and therefore the ability to afford a home computer. In or-

der to probe this idea, we ran regressions in the HSB data including a
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variable for the use of a VCR at home and at work. VCRs are much

less likely to be a technology that requires major skills and raises pro-

ductivity substantially. On the other hand, in the mid 1980s VCRs

were relatively expensive, so that earnings are likely to be positively

correlated with ownership of a VCR.

Panel C of Table 5 presents our estimates of the returns to using a

VCR at home. The wage differential associated with this is 4 percent.

Panel D of Table 5 displays results from a regression for both using a

VCR at home and using a VCR at work (only few workers use VCRs on

their jobs). The returns are very similar but the coefficients on VCRs

at work is not very well determined because of the small sample size,

The coefficient on an interaction term between VCR use at home and

at work was small and insignificantly different from zero and had no

effect on these results. We think the results on VCRs are most easily

explained by the fact that the income elasticity for VCRs is positive,

while ownership of a consumer durable may not be a good control for

ability.

5. Grouped data ‘~xed eflect” models of the return to computer use find

large wage efiecis of computers.

In section III C, we noted that computer use or knowledge may be a

better proxy for work related skills than grades, test scores, or family

background variables. Therefore, we do not view the result that the

computer differential remains after controlling for such ability measures

as evidence against the unobserved heterogeneity explanation.

An alternative to controlling directly for ability is to difference out the

ability component in a panel regression. There are three studies that

we are aware of that have attempted to do this. Entorf, Gollac and

Kramarz (1995) analyze French panel data and find that workers who

start using computers on their jobs do not get wage increases. Bell

(1996) uses the British National Child Development Study and finds

that the coefficient on computer use remains at about two thirds of the

cross sectional level after differencing, Both these studies use micro

data on workers.

One weakness of both studies is that that they lack a first period vari-

able on computer use and have to infer this value. Bell, for example,
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assumes that none of the workers in his sample use computers in 1981,

the date of his first wave. An additional problem with the Bell study

is that all individuals in the sample are born in the same week, so

that it is impossible to control for labor market experience. Since more

skilled workers tend to have steeper wage profiles, computer usage may

simply be picking up the effects of differences in experience profiles so

that his first difference results are still consistent with an unobserved

heterogeneity y explanation for the computer effect.

Entorf et al. (1995) on the other hand, have information on when indi-

viduals began using computers. They use this information to construct

measures of computer use in earlier years. The cross–sect ional results

with the French data are roughly consistent with U.S. and German data

using similar human capital covariates, Their estimate of the coefficient

on computer use is 7% in the cross-section. On the other hand, when

they re–estimate these models with fixed effects they find an estimate

of less than one percent.5

Another study that presents first difference results for the effect of

advanced technologies on wages is Chennells and Van Reenen (1995).

This study also uses U.K. data, but their data are average wages at the

firm level. The data come from the Work Place Industrial Relations

Survey. They find that the effect of the firm using advanced technolo-

gies on the average wages of skilled workers increases from 0.053 in

the cross section to 0.135 in first differences. However, it is unclear

whether this is compelling evidence either. Investment of firms tends

to be correlated with cash flow and profitability (Fazzari, Hubbard and

Petersen 1988) and more profitable firms tend to pay higher wages

(Blanchflower, Oswald and Sanfey (1992), Estevao and Tevlin (1995)),

Krueger tries to address this issue by running wage regressions using

“first-differences” of dat a grouped by three digit occupations. As long

as the composition of occupation groups does not change over time,

this procedure effectively eliminates any bias in the estimates due to

unobserved heterogeneity, While we agree that it is plausible that the

composition of occupations changes rather slowly, interpreting fixed

5These finding are consistent with results found in Card, Kramarz and Lemieux (1995)

for France using cell means for various demographic groups.
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effects coefficients for a period when returns are changing is more diffi-

cult. We know that wages increased the fastest in more highly skilled

occupations during the 1980s, A positive coefficient in the grouped

regression is consistent with the unobserved heterogeneity explanation,

if these are also the occupations in which computer use grew the most

in the 1980s. If this latter explanation is correct, then the effect of

the change in computer usage should disappear once we control for a

variable which captures the initial skill level in the occupation.

In order to investigate this, we replicated Krueger’s occupation level

regressions from the CPS. These are displayed in Table 9, Our results

differ slightly from those reported in Krueger (1993 ).6 Column (1)

displays the results from Krueger’s paper and column (2) shows our

results when only the change in the fraction of workers using computers

is included in the regression. In column (3) we include the level of

1984 wage. Since wage growth was higher for workers earning higher

wages initially (Card and Lemieux 1996) this might control better for

unobserved heterogeneity than the change in computer use. However,

we find that this is not the case; the computer variable actually becomes

even more important while the base wage is insignificant, The base

wage is problematic because temporary components in the wage and

sampling error will lead to a spurious negative correlation between the

change and the lagged level of the variable. Aut or, Katz and Krueger

(1995), who are exploring these issues concurrently with our paper,

suggest using the average education level in the occupation in the base

period. This is a powerful predictor of wage growth in the occupation

(note well the increase in the R2). Computer use becomes negative

and insignificant once schooling is controlled for, This indicates that

these regressions are not very robust to changes in specification. Wage

growth in an occupation in the 1980s seems more closely related to the

skill level in the occupation than to the growth in computer utilization.

6. The returns to use of a computer are higher for those with higher levels

of schooling

6See Appendix for details on our sample. We are grateful to David Autor, who has

also attempted to replicate Krueger’s results, for many useful discussions,
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The interaction between computer use and education in the U.S. is

positive, significant, and increasing over time. This is consistent with

the skill–biased technical change explanation. Computers make work-

ers more productive. The productivity effect is larger for more skilled

workers, for example for those with higher education. Since the more

educated workers are the ones using more computers in the 1980s, part

of the returns to computer use are being captured by education if com-

puter use is not controlled for. Krueger calculates that 40 percent of

the increase in returns to education between 1984 and 1989 can be

explained by computer use.

The observed pattern for the U.S. is also consistent with unobserved

heterogeneity. According to this explanation, computer use proxies for

productivity which is rewarded in the labor market. Since the distri-

bution of log wages is skewed to the right, the returns to unobserved

skills might easily be higher for more highly educated workers, 7 Alter-

natively, computer use may proxy for more valuable skills among the

more highly educated. Furthermore, the spreading of the wage distribu-

tion in the 1980s will exacerbate this effect. Therefore, the interaction

term between computer use and education might increase over time.

Autor (1994) finds that the interaction between computer use and

schooling is not very robust. The returns to school tend to be slightly

lower at very low education levels, Workers who haven’t completed

elementary school very rarely use computers and it may be this non-

linearity that the computer/schooling interaction picks up.

When we interact computer use and education in our German data

sets we find the opposite results from those found for the U.S. These

results are reported in Table 10. The interaction terms are negative

and significant. We find the divergence in results hard to reconcile

with a skill biased technical change explanation. Both skills taught in

school and technology are not fundamentally different in the U, S, and

in Germany. Thus, if computers raised the productivity of the more

highly educated to a greater extent than other workers we should see

similar interaction terms in both countries. One potential explanation

could be that returns for Germany do not reflect marginal products

71ndeed, this is exactly the argument made in Juhn, Murphy and Pierce (1993),
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very well because the German wage structure is too highly regulated,

However, if this is the case then we should also find a much lower

effect for computer use in Germany but that is not the case. Overall,

the empirical evidence for a complementary between computer use and

schooling, which is at the core of the skill–biased technological change

story, seems rather weak to US.

V. Conclusion

Suppose a researcher sets out on a research project to determine the wage

differential associated with the use of computers on-the-job. Unfortunately,

his research assistant mistakenly pulled a variable “using pen or pencil” in-

stead of the desired variable on computer use. Could the analyst have told

the difference merely from the results of wage regressions?g According to

our results in this paper we believe that this is unlikely since the wage dif-

ferentials associated with the use of writing materials and computers look

extremely similar. In addition, the wage differentials of tools like pencils re-

main significant even after controlling for grades, parent al background, and

a detailed set of occupations. We are reasonably convinced that the use

of pens or pencils on the job most likely reflects unobserved heterogeneity

among workers and jobs not captured by these alternative controls. This ar-

gument is not evidence that the wage differential associated with computer

use may not represents returns for some workers generated by the computer

revolution. However, there are good reasons to be skeptical about this ex-

planation and instead to entertain the possibility that this coefficient mostly

reflects unobserved heterogeneity.

While a number of studies have appeared that have tried to address the

unobserved heterogeneity explanation by including fixed effects in panel re-

gressions, these results so far show little regularity. Also, panel data of-

ten lack sufficient detail on the introduction of computers at the workplace

to make these studies fully convincing. Chennells and Van Reenen (1995)

present instrumental variables results using R&D expenditures and patents

at the firm level as an instrument for advanced technologies. While these

80 bvious]Y, the raw fraction of pencil users is higher than the fraction of comPuter

users, which would have indicated the mistake.
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results show little role for a causality running from technology to wages we

do not find the exclusion restrictions in these regressions very compelling

either.

Our skepticism about the effects of computers on wages is mirrored by the

recent literature that has tried to assess the effects of increased computer use

on productivity. If the returns to computer use reflect entirely productivity

effects, then the estimates in Krueger (1993) suggest that output in the U.S.

should have risen by 0.38 percent each year in the mid–1980s according to

Sichel and Oliner (1994). They find that computers only raised growth by

about 0.16 percent age points using standard growth accounting techniques.

Brynjolfsson and Hitt (1993), on the other hand, find much higher implied

productivity effects based on production function estimates using firm level

data. According to their estimates, output due to computers should have

risen by about 1 additional percentage point per year. As they acknowledge

themselves, their estimates are subject to the same problem as Krueger’s:

firms with computers may be more productive but this may simply be a

reflection of unobserved heterogeneityy among firms. In addition, their esti-

mates are for the late 1980s and early 1990s. The productivity effects, in

particular of PCs, may well have been much larger during this period than

during the earlier years when the new technology was first introduced. The

introduction of PCs was probably associated with a substantial period of

learning about its most productive uses.

If it is true that it took until the late 1980s for large productivity effects of

computers to emerge, labor economists are again in a dilemma, In this case

computers are unlikely to be the technology which led to skill–biased techno-

logical change. The returns to higher skill have changed relatively rapidly in

the earlier part of the 1980s but the spreading of the wage distribution has

slowed somewhat since the late 1980s (Bound and Johnson 1995). Thus, the

timing of the productivity effects of the personal computer revolution would

be entirely wrong to explain the empirical findings about wages,
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Appendix: Construction of the CPS Sample

The sample we use for for the regressions reported in Table 9 differs slightly

from the one used by Krueger (1993); to maintain comparability with his

results, however, we followed his procedures rather closely. The computer

variable is from all rotation groups of the 1984 and 1989 October CPS sup-

plements. The sample includes all observations with employment status re-

code 1 or 2, ages 18-64 (this is the age range we believe Krueger (1993) uses

although his paper states that the range is 15-65), for which the answer to

the computer question is not missing.

The wage and education variables are from the outgoing rotation groups

for all twleve months of 1984 and 1989. The samples include individuals

with employment status recode 1 or 2, ages 18-64. The wage variable is

constructed as edited or computed earnings per week (the variable earnwke on

the National Bureau of Economic Research (NBER) Annual Earnings Files

(AEF)) divided by edited usual hours per week (uhourse in the NBER AEF).

For hourly workers this corresponds to their answer to the CPS question 25c,

For salaried workers this corresponds to usual earnings per week (item 25d)

divided by usual hours. 1989 wages are deflated to 1984 values by the GDP

deflator for consumer expenditures. Observations with hourly wages below

$1.50 or above $250 are deleted. The log wage for observations which are

topcoded in 1984 ( earnwke equal to 999) is set to 3.1 (the mean log wage for

all observations with earnwke >999 in 1989; this value differs slightly from

Krueger’s).

Education is years of schooling completed. Observations with missing

values for wages or education were deleted before forming cell means by oc-

cupation. There are 480 occupations with at least one observation from the

wage and the computer sample. The square root of the number of observa-

tions in the 1989 wage sample for each occupation is used as weight in the

regressions.
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Table 1:

Percent of Workers in Various Categories

Who Use Computers at Work

Group us us Germany Germany Germany

1984 1989 1979 1985/86 1991/92

All workers
-- . -. m-- --

Men

Women

Less than high school

High school

Some college

College

Postcollege

Age 18-24

Age 25-39

Age 40-54

Age 55-65

Blue collar

White Collar

Part time

Full time

Number of Ohs.

24.6

21.2

29.0

5,0

19.3

30.6

41.6

42.8

19.7

29.2

23.6

16,9

7.1

33,0

23.7

28,9

13335

3(.4 8.3

32.3 7.9

43.4 9.7

7.8 3.2

29.3 8.5

45,3 8.5

58.2 17.1

59.7 11.6

29.4 10.1

41.5 9.6

39.1 6.6

26.3 5.8

11.6 1.2

48.4 12.8

36.3 6.4

41.1 8.7

13379 19482

15. b

18.5

18.5

4.3

18.3

24.8

40.3

26.5

13.8

21.6

17.2

13.5

3.5

28.8

14.7

19.0

22414

33.3

36.4

33.5

9.9

32.7

48.4

67.8

58.5

27.8

39.9

35.9

23.6

10.6

50.1

26.5

37.0

20090

Columns 1 and 2 are from Krueger (1993) and come from the October Current Population

Survey, German data are from the Qualification and Caree~ Su~vey.
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Table 2:

OLS Regressions for the Effect of Computer Use on Pay

Dependent Variable: Log Hourly Wage

(Standard Errors in Parentheses)

Independent us us Germany Germany Germany

variable 1984 1989 1979 1985/86 1991/92

Computer 0.170 0.188 0.112

(0.008) (0.008) (0.010)

Years of schooling 0.069 0.075 0.073

(0.001) (0.002) (0.001)

Experience 0.027 0.027 0.030

(0.001) (0.001) (0.001)

Experience2/100 -0.041 -0.041 -0.052

(0.002) (0.002) (0.002)

Part time -0.256 -0.221 -0.122

(0.010) (0.010) (0.012)

In SMSA/City 0.111 0.138 0.051

(0.007) (0.007) (0.006)

Female -0.162 -0.172 -0.099

(0.012) (0.012) (0.010)

Married 0.156 0.159 0.119

(0.011) (0.011) (0.009)

Female* Married -0.168 0.182 -0.169

(0.015) (0.010) (0.013)

R2 0.446 0.451 0.266

Number of Ohs. 13335 13379 19482

0.157

(0.007)

0.064

(0.001)

0.035

(0.001)

-0.057

(0.002)

-0.034

(0.009)

0.059

(0.006)

-0.114

(0.010)

0.117

(0.008)

-0.152

(0.013)

0.280

22414

0.171

(0.006)

0.072

(0.001)

0.030

(0.001)

-0.046

(0.002)

0.015

(0.009)

-0.007

(0.006)

-0.150

(0.010)

0.083

(0.009)

-0.104

(0.012)

0.335

20090

Columns 1 and 2 are from table II in Krueger (1993). Columns 3–5 also include a dummy

variable for civil servant (Beadier. ) All models also include an intercept. Data the same as

in Table 1.
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Table 3:
Fraction of Workers Using Different Tools on Their Job

Germany Germany Germany

1979 1985/86 1991/92

Computer 0.085 0.185 0.353

Calculator 0.195 0.357 0.441

Telephone 0.418 0.438 0.584

Pen/Pencil 0.549 0.534 0.656

Work }vhile sitting” 0.308 0.194 —

Hand tool (e.g. hammer) 0.294 0.329 0.306

“ Variable definition differs in 1979 and 1985/86, In 1979 it refers to ‘iNever or rarely

standing, ” and in 1986/6 it refers to “Often or almost always sitting.”

Data is the same as in Table 1.
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Table 4:

OLS Regressions for the Effect of Different Tools on Pay

Dependent Variable: Log Hourly Wage

(Standard Errors in Parentheses)

Independent Germany Germany Germany Germany Germany Germany

variable 1979 1985/86 1991/92 1979 1985/86 1991/92

Occupation Indicators

No No No 501 745 1073

Tools entered separately

Computer 0.112 0.157 0.171 0.025 0.076 0.083

(0.010) (0.007) (0.006) (0.011) (0.008) (0.007)

Calculator 0.088 0.128 0.129 0.027 0.062 0.054

(0.007) (0.006) (0.006) (0.008) (0,007) (0.006)

Telephone 0.131 0.115 0.136 0.060 0.059 0.072

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Pen/Pencil 0.122 0.112 0.127 0.054 0.055 0.050

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Work while sitting 0.105 0.102 0.042 0.036 —

(0.006) (0.007) (0.008) (0.008)

Hand tool -0.117 -0.087 -0.092

(e.g. hammer) (0.006) (0.006) (0.006)

Tools entered together

Computer 0.067 0.105 0.126 0.027 0.067 0.069

(0.010) (0.008) (0.007) (0.011) (0.008) (0.007)

Calculator 0.017 0.054 0.044 0.016 0.033 0.022

(0.008) (0.007) (0.007) (0.008) (0.007) (0.007)

Telephone 0.072 0.044 0.045 0.044 0.035 0.048

(0.007) (0.008) (0.008) (0.008) (0.008) (0.008)

Pen/Pencil 0.061 0.030 0.036 0.039 0.024 0.007

(0.007) (0.008) (0.008) (0.008) (0.008) (0.008)

Work while sitting 0.058 0.051 0.036 0.033 —

(0.007) (0.007) (0.008) (0,008)

Data is same as in Table 1. All regressions also include an intercept, years of school-

ing, experience and experience squared, dummies for part-time, city, female, married, mar-

ried*female, and for civil servants,
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Table 5:

OLS Wage Regressions with High School and Beyond Data (US)

Dependent Variable Log Hourly Wages

(Standard Errors in Parentheses)

Specification As Krueger As Krueger As Krueger

Col. 2 Col. 3 Col. 4

Krueger Sample

Computer 0.114 0.110 0.111

(0.015) (0.015) (0.015)

Our Sample

A

Computer 0.115 0.111 0.111

(0.015) (0.015) (0.015)

B

Calculator 0.021 0.023 0.024

(0.012) (0.012) (0.012)
.

VCR 0.048 0.;41 0.042

At home (0.012) (0.012) (0.012)

D

VCR 0.048 0.041 0.042

At home (0.012) (0.012) (0.012)

VCR 0.042 0.040 0.041

At work (0.023) (0.023) (0.023)

Our sample refers to the subset of Krueger’s sample that deletes observations with missing

values for VCR and calculator use. For details on Krueger’s sample see Krueger (1993).

Krueger CO1. 2 also includes an intercept, dummies for female, black, other race, married,

married* female, union member, senior in 1980, and native born. Krueger CO1. 3 includes in

addition two dummies for high school type, a dummy for urban high school, and 9 region

dummies. Krueger CO1, 4 includes in addition 10 dummies for parents’ education, 1980 test

scores, GPA, and dummies for disciplinary problems and disabilities.
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Table 6:

Cross Tabulation of Computer Use and Computer Knowledge

1979 German Data

Percent of Total Sample

No Computer Computer Marginal

Knowlege Knowledge

Don’t use computer 81.7 9.8 91.5

Use computer 2.6 5.9 8.5

Marginal 84.3 15.8 100.0

Data are the same as in table 1.
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Table 7:

OLS Regressions for the Effect of Computers Use and Knowledge on Pay

1979 German Data

Dependent Variable: Log Hourly Wage

(Standard Errors in Parentheses)

Computer Use

Independent variable (1) (2) (3) (4) (5) (6) (7) (8)

Computer use 0.112 — 0.041 0.034 .025 0.002 -0.000

(0.010) (0.011) (0.011) (0.011) (0.011) (0,011)

Computer — 0.138 0.124 0.0109 0,057 0.056 0.053

Knowledge (0.009) (0.008) (0.009) (0.008) (0,009) (0.009)

Grades and no no no yes no no no yes

Father’s occupation

Occupation Dummies no no no no yes yes yes yes

Pencil Use

Pencil use 0.122 — 0.106 0.096 0.054 — 0.053 0.051

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Computer 0.138 0.056 0.052 — 0.057 0.056 0.052

Knowledge (0.009) (0.008) (0.008) (0.008) (0.008) (0.008)

Grades and no no no yes no no no yes

Father’s occupation

Occupation Dummies no no no no yes yes yes yes

Data are the same as in table 1. Regressions also include an intercept, years of school-

ing, experience and experience squared, durnm ies for part-time, city, female, married, mar-

ried*female, and for civil servants. Grades are self-reported grades in math and German. 10

dummies for fathers’ occupation are included where indicated.
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Table 8:

OLS Regressions for the Effect of Computers Use and Knowledge on Pay

High SchOol and Beyond Data (US)

Dependent Variable: Log Hourly Wage

(Standard Errors in Parentheses)

Independent variable (1) (2) (3) (4) (5) (6)

Computer use 0.115 — 0.128 0.111 — 0.121

(0.015) (0.016) (0.015) (0.016)

Computer -0.006 -0.036 — -0.002 -0.030

Knowledge (0.012) (0.013) (0.013) (0.013)

Grades, no no no yes yes yes

Parents’ education

and other controls

All specifications include an intercept, dummies for female, black, other race, married,

union member, senior in 1980, age and age squared, and native born. Columns 4-6 also include

two dummies for high school type, a dummy for urban high school, and 9 region dummies, 10

dummies for parents’ education, 1980 test scores, GPA, and dummies for disciplinary problems

and disabilities.

Table 9:

Weighted Least Squares Regressions with Current ~opulation Suruey (US)

Dependent Variable: Change in Mean Log Hourly Wages

(Standard Errors in Parentheses)

Specification As’ Krueger Our Sample Our Sample Our Sample

A Computer 0.105 0.095 0.113 -0.048

(0.029) (0.035) (0.034) (0.038)

1984 Log Wage — — -0.016

(0.011)

1984 Eduation — — 0.016

(0.002)

R2 0.03 0.02 0.02 0.11

Sample consists of means for 485 occupations (Kmeger) and 460 occupations (our sample),

Computer use is calcdated from the Octorber CPS while wages and education are calculated

from the outgoing rotation group files for the entire year. 19.S9 cell sizes are used as weights.

See the Appendix for details.

29



Table 10:

OLS Regressions: Computer Use Interacted With Years of Schooling

Dependent Variable: Log Hourly Wages

(Standard Errors in Parentheses)

Independent us. us. Germany Germany Germany

variable 1984 1989 1979 1985/86 1991/92

Use Computer 0.073 0.005 0.403 0.446 0.514

(0.048) (0.043) (0.056) (0.036) (0.029)

Use Computer x Yrs. School 0.007 0.013 -0.023 -0.022 -0.027

(0.003) (0.003) (0.004) (0.003) (0.002)

Yrs. School 0.067 0.071 0.076 0.068 0.084

(0.002) (0.002) (0.002) (0.001) (0.002)

Data is the same as in Table 1. Regressions also include an intercept, experience, experi-

ence squared, dummies for part-time, city, female, married, and married* female, Models for

Germany also include a dumy for civil servants.
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