The Reverse Isoperimetric Problem for Gaussian Measure*

Keith Ball

Department of Mathematics, University College London, Gower Street, London, England, and
Department of Mathematics, Texas A\&M University,
College Station, TX 77843, USA

Abstract

It is shown that if g is the standard Gaussian density on \mathbb{R}^{n} and C is a convex body in \mathbb{R}^{n},

$$
\int_{O C} g \leq 4 n^{1 / 4}
$$

The arguments presented raise several questions in integral geometry.

1. Introduction

Borell [B] and Sudakov and Tsirel'son [ST] proved that if γ is the standard Gaussian measure on $\mathbb{P}^{n}, t \in(0,1)$ and $\varepsilon>0$, then among all measurable $A \subset \mathbb{R}^{n}$ with $\gamma(A)=t$, the sets for which A^{ε} (the ε-neighborhood of A) has smallest Gaussian measure, are half-spaces. Thus, half-spaces solve the isoperimetric problem for Gaussian measure on \mathbb{P}^{n}.

Motivated by several probabilistic problems, Mushtari and Kwapien asked about reverse inequalities: in particular, if g is the density of γ, how large can the integral

$$
\begin{equation*}
\int_{\partial c} g \tag{1}
\end{equation*}
$$

be if C is a convex body in \mathbb{R}^{n} ? The integral is taken with respect to the

[^0]($n-1$)-dimensional Hausdorff measure on ∂C. Let
$$
v_{n}=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)}
$$
be the volume of the Euclidean unit ball in \mathbb{R}^{n}. Then, if C is a ball of radius r, centered at 0 , expression (1) is
$$
n v_{n} r^{n-1} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-r^{2} / 2}
$$
whose maximum value (attained when $r=\sqrt{n-1}$) is
$$
\frac{n}{2^{n / 2} \Gamma(n / 2+1)}(n-1)^{(n-1) / 2} e^{-(n-1) / 2} \sim \frac{1}{\sqrt{\pi}} .
$$

If C is a convex body which is very flat, and so approximately a "two-sided" one-codimensional subspace, then

$$
\begin{aligned}
\int_{\partial C} g & \approx 2 \int_{\mathbb{R}^{n-1}} \frac{1}{(\sqrt{2 \pi})^{n}} e^{-|x|^{2} / 2} d x \\
& =\sqrt{\frac{2}{\pi}}
\end{aligned}
$$

However, neither of these examples can be extremal for the problem, since if Q is a centrally symmetric cube of appropriate size, in \mathbb{P}^{n},

$$
\int_{\partial Q} g \geq \frac{\sqrt{\log n}}{e}
$$

This observation is proved in Proposition 2 below.
It is very easy to obtain an upper estimate of \sqrt{n} for expression (1) for general bodies. The purpose of this paper is to improve this trivial estimate. The argument used is a rather natural approach to the problem, suggested by Cauchy's formula for the surface area of convex bodies. (See p. 89 of [E] for a statement and proof of Cauchy's formula.) Unfortunately, this approach cannot give an estimate better than $K n^{1 / 4}$ for some constant K, whereas vague analogies between this problem and others suggest that the correct estimate should be a multiple of $\log n$. It was noticed by Milman that, as a consequence of Pisier's estimate for the K-convexity constant of a finite-dimensional normed space [P], every n-dimensional normed space has a representation $\left(\mathbb{R}^{n},\|\cdot\|\right)$ with unit ball C of volume 1 and

$$
\int_{\mathbb{R}^{n}}\|x\| g(x) d x \leq \text { (constant) } \log n
$$

On the other hand, the measure constructed in Theorem 4 answers a question which is itself quite natural, and it is the appearance of the "unusual" growth rate, $n^{1 / 4}$, in this context, which is perhaps the most interesting feature of this argument. The method used here raises several further geometric questions which are described in Section 4. Section 2 contains the simple upper and lower estimates mentioned above and Section 3 gives the main result.

2. Simple Bounds

Proposition 1. If g is the standard Gaussian density on \mathbb{R}^{n} and C is a convex body in \mathbb{R}^{n},

$$
\int_{\partial C} g<\sqrt{n}
$$

Proof. For $x \in \mathbb{R}^{n}$,

$$
e^{-|x|^{2} / 2}=\int_{0}^{\infty} t e^{-t^{2} / 2} \chi_{B(t)}(x) d t
$$

where $\chi_{B(t)}$ is the characteristic function of the n-dimensional Euclidean ball of radius t, centered at 0 . Hence

$$
\begin{aligned}
\frac{1}{(\sqrt{2 \pi})^{n}} \int_{\partial C} e^{-|x|^{2} / 2} & =\frac{1}{(\sqrt{2 \pi})^{n}} \int_{0}^{\infty} t e^{-t^{2} / 2}|\partial C \cap B(t)| d t \\
& \leq \frac{1}{(\sqrt{2 \pi})^{n}} \int_{0}^{\infty} t e^{-t^{2} / 2}|\partial(C \cap B(t))| d t \\
& <\frac{1}{(\sqrt{2 \pi})^{n}} \int_{0}^{\infty} t e^{-t^{2} / 2}|\partial B(t)| d t \\
& =\frac{n v_{n}}{(\sqrt{2 \pi})^{n}} \int_{0}^{\infty} t^{n} e^{-t^{2} / 2} d t<\sqrt{n}
\end{aligned}
$$

Proposition 2. If $Q \subset \mathbb{R}^{n}$ is a centrally symmetric cube of appropriate size, then

$$
\int_{\partial Q} g \geq \frac{\sqrt{\log n}}{e}
$$

Proof. Let Q be a symmetric cube of side $2 r$. Then

$$
\int_{\partial \mathbf{Q}} g=\frac{2 n}{(\sqrt{2 \pi})^{n}} e^{-r^{2} / 2}\left(\int_{-r}^{r} e^{-t^{2} / 2} d t\right)^{n-1}
$$

Since

$$
\begin{aligned}
\frac{2}{\sqrt{2 \pi}} \int_{r}^{\infty} e^{-t^{2} / 2} d t & \leq \frac{2}{\sqrt{2 \pi}} \frac{1}{r} \int_{r}^{\infty} t e^{-t^{2} / 2} d t \\
& =\sqrt{\frac{2}{\pi}} \frac{e^{-r^{2} / 2}}{r} \\
\frac{1}{\sqrt{2 \pi}} \int_{-r}^{r} e^{-t^{2} / 2} d t & \geq 1-\sqrt{\frac{2}{\pi}} \frac{e^{-r^{2} / 2}}{r}
\end{aligned}
$$

Hence

$$
\int_{\partial Q} g \geq \frac{2 n}{\sqrt{2 \pi}} e^{-r^{2} / 2}\left(1-\sqrt{\frac{2}{\pi}} \frac{e^{-r^{2} / 2}}{r}\right)^{n-1}
$$

Choose r so that

$$
\sqrt{\frac{2}{\pi}} \frac{e^{-r^{2} / 2}}{r}=\frac{1}{n} .
$$

Then $r \geq \sqrt{\log n}$ and so

$$
e^{-r^{2} / 2} \geq \sqrt{\frac{\pi}{2}} \frac{\sqrt{\log n}}{n}
$$

So, for this r,

$$
\int_{\partial Q} g \geq \sqrt{\log n}\left(1-\frac{1}{n}\right)^{n-1}>\frac{\sqrt{\log n}}{e}
$$

3. The Main Result

The proof of Theorem 4, below, makes use of the following simple rearrangement inequality. Henceforth, S^{n-1} denotes the unit sphere in \mathbb{R}^{n} and σ_{n-1} denotes the rotation invariant probability on S^{n-1}

Lemma 3. Let f and g be nondecreasing, real-valued functions on $[0,1]$. Then the integral

$$
\int_{S^{n-1}} f(|\langle\theta, \varphi\rangle|) g(|\langle\theta, \psi\rangle|) d \sigma_{n-1}(\theta)
$$

is minimized over $\varphi, \psi \in S^{n-1}$ when $\langle\varphi, \psi\rangle=0$.

Remark. The integral is obviously maximized when $\varphi= \pm \psi$ since in this case the functions $f(|\langle\cdot, \varphi\rangle|)$ and $g(|\langle\cdot, \psi\rangle|)$ are similarly arranged on S^{n-1} : i.e.,

$$
f\left(\left|\left\langle\theta_{1}, \varphi\right\rangle\right|\right)>f\left(\left|\left\langle\theta_{2}, \varphi\right\rangle\right|\right)
$$

if and only if

$$
g\left(\left|\left\langle\theta_{1}, \psi\right\rangle\right|\right)>g\left(\left|\left\langle\theta_{2}, \psi\right\rangle\right|\right) .
$$

Proof of Lemma 3. Assume $\varphi \neq \pm \psi$ and let H be the two-dimensional subspace of \mathbb{R}^{n} spanned by $\{\varphi, \psi\}$. For $u \in H^{\perp},|u|<1$, consider the circle

$$
C_{u}=S^{n-1} \cap(H+u) .
$$

The restrictions of $f(|\langle\cdot, \varphi\rangle|)$ and $g(|\langle\cdot, \psi\rangle|)$ to C_{u}, are oppositely arranged if $\langle\varphi, \psi\rangle=0$, and the distribution of each of these functions on C_{u} depends only upon $|u|$. So, if λ is the obvious measure on C_{u},

$$
\int_{C_{u}} f(|\langle\theta, \varphi\rangle|) g(|\langle\theta, \psi\rangle|) d \lambda(\theta)
$$

is minimized when $\langle\varphi, \psi\rangle=0$. Integration over all $u \in H^{\perp}$ of norm at most 1 , with respect to an appropriate measure, gives the desired inequality.

Remark. Presumably, analogous inequalities hold for n functions "on" S^{n-1}. For $n \geq 2$, the trivial argument used above does not seem to be of much use.

Theorem 4. Let g be the standard Gaussian density on $\mathbb{R}^{n}, n \geq 2$, and let C be a convex body in \mathbb{R}^{n}. Then

$$
\int_{O C} g \leq 4 n^{1 / 4} .
$$

Proof. For a unit vector θ in \mathbb{R}^{n}, let P_{θ} be the orthogonal projection onto the one-codimensional subspace of $\mathbb{R}^{n},\langle\theta\rangle^{\perp}$. The aim is to construct a measure μ on \mathbb{R}^{n-1} which is rotation invariant, absolutely continuous with respect to Lebesgue measure and which satisfies

$$
\begin{equation*}
\int_{S} g \leq \int_{s^{n-1}} \mu\left(P_{\theta} S\right) d \sigma_{n-1}(\theta) \tag{2}
\end{equation*}
$$

whenever S is a Borel subset of a hyperplane in \mathbb{R}^{n}. (The quantity $\mu\left(P_{\theta} S\right)$ is interpreted via some isometry between $P_{\theta}\left(\mathbb{R}^{n}\right)$ and \mathbb{R}^{n-1}.)

Now, if C is a convex body, then " μ almost every" line in a given direction hits ∂C at most twice: i.e., almost all of $P_{\theta}\left(\mathbb{R}^{n}\right)$ is covered at most twice by $P_{\theta}(\partial C)$. Hence

$$
\int_{\partial C} g \leq 2 \mu\left(\mathbb{R}^{n-1}\right)
$$

If μ is a measure on \mathbb{R}^{n} with density F where $F(x)=f(|x|)$ for some

$$
f:[0, \infty) \rightarrow[0, \infty)
$$

then, in the limit for small pieces of hyperplane centered at $r \varphi\left(r \geq 0, \varphi \in S^{n-1}\right)$ with unit normal ψ, inequality (2) becomes

$$
\begin{equation*}
\tilde{g}(r) \leq \int_{s^{n-1}} f\left(r\left(1-\langle\theta, \varphi\rangle^{2}\right)^{1 / 2}\right) \cdot|\langle\theta, \psi\rangle| d \sigma_{n-1}(\theta) \tag{3}
\end{equation*}
$$

where $\tilde{g}(r)=\left(1 /(\sqrt{2 \pi})^{n}\right) e^{-r^{2} / 2}$.
A function f will be constructed that is (nonnegative and) nonincreasing on $[0, \infty)$ and that satisfies (3) whenever φ and ψ are perpendicular. Since the function $t \mapsto f\left(r\left(1-t^{2}\right)^{1 / 2}\right)$ will then be increasing on [0,1], Lemma 3 will imply that the right-hand side of (3) is minimized when φ and ψ are perpendicular, and hence that (3) holds for all φ and ψ.

Fix $\varphi \in S^{n-1}$: the right-hand side of (3) is the same for all ψ perpendicular to φ. The average of $|\langle\theta, \psi\rangle|$ over all such ψ, as a function of θ, is proportional to the length of the projection $P_{\varphi}(\theta)$; i.e., to $\left(1-\langle\theta, \varphi\rangle^{2}\right)^{1 / 2}$. The constant of proportionality is

$$
\int_{S^{n-2}}\left|\psi_{1}\right| d \sigma_{n-2}(\psi)
$$

where ψ_{1} is the first coordinate of ψ. Hence if $\psi \perp \varphi$, the right-hand side of (3) is

$$
\begin{aligned}
& \int_{S^{n-2}}\left|\psi_{1}\right| d \sigma_{n-2}(\psi) \int_{S^{n-2}} f\left(r\left(1-\langle\theta, \varphi\rangle^{2}\right)^{1 / 2}\right)\left(1-\langle\theta, \varphi\rangle^{2}\right)^{1 / 2} d \sigma_{n-1}(\theta) \\
& \quad=\frac{\int_{0}^{\pi / 2} \cos \theta \sin ^{n-3} \theta d \theta}{\int_{0}^{\pi / 2} \sin ^{n-3} \theta d \theta} \frac{\int_{0}^{\pi / 2} f(r \sin \theta) \sin ^{n-1} \theta d \theta}{\int_{0}^{\pi / 2} \sin ^{n-2} \theta d \theta} \\
& \quad=\frac{2}{\pi} \int_{0}^{\pi / 2} f(r \sin \theta) \sin ^{n-1} \theta d \theta
\end{aligned}
$$

So the aim is to find a nonincreasing $f:[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\begin{equation*}
\tilde{g}(r) \leq \frac{2}{\pi} \int_{0}^{\pi / 2} f(r \sin \theta) \sin ^{n-1} \theta d \theta \quad \text { for all } \quad r \geq 0 \tag{4}
\end{equation*}
$$

for which $\mu\left(\mathbb{R}^{n-1}\right)$ is as small as possible.
It is easy to check (for example by considering monomial functions) that if $h:[0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
\int_{0}^{t} h(r) r^{n-2} d r=t^{n-1} \int_{0}^{\pi / 2} \tilde{g}(t \sin \theta) \sin ^{n-2} \theta d \theta \tag{5}
\end{equation*}
$$

then

$$
\frac{2}{\pi} \int_{0}^{\pi / 2} h(r \sin \theta) \sin ^{n-1} \theta d \theta=\tilde{g}(r), \quad 0 \leq r<\infty
$$

So the function $f=h^{+}$, the positive part of h, satisfies (4) for all r. It remains to show that this f is nonincreasing and that the corresponding measure μ satisfies $\mu\left(\mathbb{R}^{n-1}\right) \leq 2 n^{1 / 4}$. Now, from (4)

$$
\begin{align*}
h(t) & =\frac{1}{t^{n-2}} \frac{d}{d t}\left(t^{n-1} \int_{0}^{\pi / 2} \tilde{g}(t \sin \theta) \sin ^{n-2} \theta d \theta\right) \\
& =\frac{1}{(\sqrt{2 \pi})^{n}} \int_{0}^{\pi / 2}\left(n-1-t^{2} \sin ^{2} \theta\right) \sin ^{n-2} \theta \cdot e^{-\left(t^{2} / 2\right) \sin ^{2} \theta} d \theta \\
& =\frac{e^{-t^{2} / 2}}{(\sqrt{2 \pi})^{n}} \int_{0}^{\pi / 2}\left(n-1-t^{2} \sin ^{2} \theta\right) \sin ^{n-2} \theta \cdot e^{\left(t^{2} / 2\right) \cos ^{2} \theta} d \theta \tag{6}
\end{align*}
$$

This expression is obviously positive if

$$
\begin{equation*}
0 \leq t \leq \sqrt{n-1} \tag{7}
\end{equation*}
$$

Also, it is evident that the integral has a power series expansion in t^{2}, valid for all t; for $k \geq 1$, the coefficient of $t^{2 k}$ is

$$
\begin{aligned}
\frac{n-1}{2^{k} k!} \int_{0}^{\pi / 2} \cos ^{2 k} \theta \sin ^{n-2} \theta d \theta & -\frac{1}{2^{k-1}(k-1)!} \int_{0}^{\pi / 2} \cos ^{2 k-2} \theta \sin ^{n} \theta d \theta \\
& =-\frac{1}{2^{k} k!} \int_{0}^{\pi / 2} \cos ^{2 k-2} \theta \sin ^{n} \theta d \theta<0
\end{aligned}
$$

This shows that the function $t \mapsto e^{t^{2} / 2} h(t)$ is decreasing on $[0, \infty)$ so that h is decreasing where it is nonnegative and $f=h^{+}$is nonincreasing.

Now, the coefficient of t^{0} in the integral in (6) is

$$
(n-1) \int_{0}^{\pi / 2} \sin ^{n-2} \theta d \theta=n \int_{0}^{\pi / 2} \sin ^{n} \theta d \theta
$$

and that of t^{2} is $-\frac{1}{2} \int_{0}^{\pi / 2} \sin ^{n} \theta d \theta$. So

$$
h(t)=\frac{e^{-t^{2} / 2}}{(\sqrt{2 \pi})^{n}} n \int_{0}^{\pi / 2} \sin ^{n} \theta d \theta\left(1-\frac{t^{2}}{2 n}-\cdots\right)
$$

so the unique zero of h in $[0, \infty$) occurs at some number $s<\sqrt{2 n}$. Remark (7) shows that $s>\sqrt{n-1} \geq 1$. Observe that

$$
\begin{aligned}
\mu\left(\mathbb{R}^{n-1}\right) & =\int_{\mathbb{R}^{n-1}} f(|x|) d x \\
& =(n-1) v_{n-1} \int_{0}^{\infty} f(r) r^{n-2} d r \\
& =\frac{(n-1) \pi^{(n-1) / 2}}{\Gamma((n+1) / 2)} \int_{0}^{s} h(r) r^{n-2} d r \\
& =\frac{(n-1)}{2^{n / 2} \Gamma((n+1) / 2) \sqrt{\pi}} s^{n-1} \int_{0}^{\pi / 2} e^{-\left(s^{2} / 2\right) \sin ^{2} \theta} \sin ^{n-2} \theta d \theta \\
& =\frac{1}{2^{n / 2-1} \Gamma((n-1) / 2) \sqrt{\pi}} \int_{0}^{s} e^{-t^{2} / 2} \frac{t^{n-2}}{\sqrt{1-(t / s)^{2}}} d t .
\end{aligned}
$$

It is simplest to estimate this integral in two parts. For $0 \leq t \leq s-1$,

$$
\frac{1}{\sqrt{1-(t / s)^{2}}} \leq \frac{1}{\sqrt{2 / s-1 / s^{2}}} \leq \sqrt{s} \quad \text { since } \quad s \geq 1
$$

Hence

$$
\begin{aligned}
& \frac{1}{2^{n / 2-1}} \Gamma \Gamma((n-1) / 2) \sqrt{\pi} \\
& \int_{0}^{s-1} e^{-t^{2} / 2} \frac{t^{n-2}}{\sqrt{1-(t / s)^{2}}} d t \\
&=\sqrt{s} \frac{1}{2^{n / 2-1} \Gamma((n-1) / 2) \sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2} / 2} t^{n-2} d t \\
&=\sqrt{\frac{s}{2 \pi}}<n^{1 / 4} \quad \text { since } \quad s<\sqrt{2 n} .
\end{aligned}
$$

On the other hand,

$$
\max _{t} e^{-t^{2} / 2} t^{n-2}=e^{-(n-2) / 2}(n-2)^{(n-2) / 2}
$$

and Stirling's formula shows that

$$
\frac{1}{2^{n / 2-1} \Gamma((n-1) / 2) \sqrt{\pi}} e^{-(n-2) / 2(n-2)^{(n-2) / 2}}<\frac{1}{\pi}
$$

Hence

$$
\begin{aligned}
\frac{1}{2^{n / 2-1} \Gamma((n-1) / 2) \sqrt{\pi}} \int_{s-1}^{s} e^{-t^{2} / 2} \frac{t^{n-2}}{\sqrt{1-(t / s)^{2}}} d t & \leq \frac{1}{\pi} \int_{s-1}^{s} \frac{d t}{\sqrt{1-(t / s)^{2}}} \\
& =\frac{s}{\pi}\left(\frac{\pi}{2}-\sin ^{-1}\left(1-\frac{1}{s}\right)\right) \\
& <\sqrt{\frac{s}{\pi}}<n^{1 / 4} .
\end{aligned}
$$

4. Some Further Remarks

The proof of Theorem 4 shows something more general. Let $f:[0, \infty) \rightarrow[0, \infty)$ be nondecreasing and set

$$
R=(n-1) v_{n-1} \int_{0}^{\infty} f(r) r^{n-2} d r
$$

Define $g: \mathbb{R}^{n} \rightarrow[0, \infty)$ by $g(x)=\tilde{g}(|x|)$ where

$$
\begin{equation*}
\tilde{g}(r)=\frac{2}{\pi} \int_{0}^{\pi / 2} f(r \sin \theta) \sin ^{n-1} \theta d \theta \tag{8}
\end{equation*}
$$

Then, for any rectifiable hypersurface $S \subset \mathbb{R}^{n}$, there is a line which meets S at least

$$
\begin{equation*}
\frac{1}{R} \int_{S} g \text { times. } \tag{9}
\end{equation*}
$$

The fact that $g(x)=e^{-|x|^{2} / 2}$ cannot arise from a suitable f via (8), suggests that it is the wrong function to consider. It makes sense to ask whether there is a function
g satisfying (9) with $R=1$ (say), and such that any rectifiable surface S, with small curvature, is hit at most about

$$
\sup _{s} \int_{S} g
$$

times, by any line (the sup being taken over translates \tilde{S} of S).

References

[B] C. Borell, The Brunn-Minkowski inequality in Gauss spaces, Invent. Math. $\mathbf{3 0}$ (1975), 207-216.
[E] H. G. Eggleston, Convexity, Cambridge University Press, Cambridge (1958).
[P] G. Pisier, Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert, Ann. Sci. École Norm. Sup. 13 (1980), 23-43.
[ST] V. N. Sudakov and B. S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures. Problems in the theory of probability distributions, II. Zap. Nauč. Leningrad Otdel. Mat. Inst. Steklov 41 (1974) 14-24 (in Russian).

Received February 10, 1992, and in revised form July 24, 1992.

[^0]: * This research was supported in part by NSF Grant DMS-8807243.

