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Abstract. It is shown that if g is the standard Gaussian density on R" and C is a
convex body in R”,

f g< 4nl/t,
48

The arguments presented raise several questions in integral geometry.

1. Introduction

Borell [B] and Sudakov and Tsirel’'son [ST] proved that if y is the standard
Gaussian measure on R", t€(0, 1) and ¢ > 0, then among all measurable 4 < R"
with y(4) = ¢, the sets for which A° (the ¢-neighborhood of 4) has smallest Gaussian
measure, are half-spaces. Thus, half-spaces solve the isoperimetric problem for
Gaussian measure on R".

Motivated by several probabilistic problems, Mushtari and Kwapien asked
about reverse inequalities: in particular, if g is the density of y, how large can the

integral
J g (1
oc

be if C is a convex body in R"? The integral is taken with respect to the
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(n — 1)-dimensional Hausdorff measure on JdC. Let
n,n/2

v, =————
(/2 + 1)

be the volume of the Euclidean unit ball in R”, Then, if C is a ball of radius r,
centered at 0, expression (1) is

1

n-1 — e r2
(/2

whose maximum value (attained when r = /n — 1) is

no,r

h (n _ 1)(n—1)/2e—(n— /2 1

22T (n/2 + 1) Jr

If C is a convex body which is very flat, and so approximately a “two-sided”
one-codimensional subspace, then

1
g=2 J e X2 gy
Lc Re-t (/27)"

However, neither of these examples can be extremal for the problem, since if Q is
a centrally symmetric cube of appropriate size, in R”,

—
J‘ > ogn
20 €

This observation is proved in Proposition 2 below.

It is very easy to obtain an upper estimate of ﬁ for expression (1) for general
bodies. The purpose of this paper is to improve this trivial estimate. The argument
used is a rather natural approach to the problem, suggested by Cauchy’s formula
for the surface area of convex bodies. (See p. 89 of [E] for a statement and proof
of Cauchy’s formula.) Unfortunately, this approach cannot give an estimate better
than Kn'/* for some constant K, whereas vague analogies between this problem
and others suggest that the correct estimate should be a multiple of log n. It was
noticed by Milman that, as a consequence of Pisier’s estimate for the K-convexity
constant of a finite-dimensional normed space [P], every n-dimensional normed
space has a representation (R", ||-||) with unit ball C of volume 1 and

J lIxllg(x) dx < (constant) log n.
Rn
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On the other hand, the measure constructed in Theorem 4 answers a question
which is itself quite natural, and it is the appearance of the “unusual” growth rate,
n!/% in this context, which is perhaps the most interesting feature of this argument.
The method used here raises several further geometric questions which are
described in Section 4. Section 2 contains the simple upper and lower estimates
mentioned above and Section 3 gives the main result.

2. Simple Bounds

Propesition 1. If g is the standard Gaussian density on R" and C is a convex body
in R,

[

Proof. For xeR",

a0
e~ 1x12 =J te 2y pe(x) dt,
0

where yp, is the characteristic function of the n-dimensional Euclidean ball of
radius ¢, centered at 0. Hence

1 =1x)2 _ 1 [~ -2
e ¥ te [0C n B(t)| dt
ac

(/27 (/27 Jo
<——— | te7"20(C n B(t))| dt

1 [

te”"12|0B(t)| dt

no f* o
- " e P2 dr < ﬁ ]

(\/2_7t)" Jo

Proposition 2. If Q = R”" is a centrally symmetric cube of appropriate size, then

Jlogn

g= .
2Q €

Proof. Let Q be a symmetric cube of side 2r. Then

2n R r s n—1
g= e"’”(f e 2 dt) .
-LQ («/ 2my' -r
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Since
,/2 J“’" e "2 dr <
2n r
Hence

Choose r so that

Then r > \/logn and so

So, for this r,

3. The Main Result

2e—r2;’2 n—1
n r> ’
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The proof of Theorem 4, below, makes use of the following simple rearrangement
inequality. Henceforth, S"~! denotes the unit sphere in R" and 0, denotes the

rotation invariant probability on $"~!

Lemma 3. Let f and g be nondecreasing, real-valued functions on [0, 1]. Then the

integral

J S8, ¢>1g(1<8, Y1) da,_,(6)
st

is minimized over @, Y € 8"~ ! when {¢@, ) = 0.
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Remark. The integral is obviously maximized when ¢ = =+ since in this case
the functions (<, ¢>|) and ¢(|<-, ¥>|) are similarly arranged on §" !: ie.,

U0, @31 > f(1€0;. 0>1)

if and only if

g(1<0,, ¥>1) > g(1<b2, Y 1).

Proof of Lemma 3. Assume ¢ # +1 and let H be the two-dimensional subspace
of R" spanned by {¢, ¥}. For ue H*, |u| < 1, consider the circle

C,=S"1'n(H+u.
The restrictions of f(|{-, ¢>|) and g(|{-, ¥)]) to C,, are oppositely arranged if

{p,Y¥> =0, and the distribution of each of these functions on C, depends only
upon |u|. So, if 4 is the obvious measure on C,,

f J(1<0, 5Dg(1<0, ¥r>1) dAB)
Cu

is minimized when (¢, > = 0. Integration over all u e H* of norm at most 1, with
respect to an appropriate measure, gives the desired inequality. ]

Remark. Presumably, analogous inequalities hold for n functions “on” §"*. For
n > 2, the trivial argument used above does not seem to be of much use.

Theorem 4. Let g be the standard Gaussian density on R", n > 2, and let C be a
convex body in R*. Then

J g < 4n'/4,
ac

Proof. For a unit vector 6 in R", let P, be the orthogonal projection onto the
one-codimensional subspace of R", (§)*. The aim is to construct a measure y on
R"~! which is rotation invariant, absolutely continuous with respect to Lebesgue
measure and which satisfies

J g=< J u(PyS) do,_ (6) (2
s s

whenever S is a Borel subset of a hyperplane in R". (The quantity u(P,S) is
interpreted via some isometry between P,(R") and R" ')
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Now, if C is a convex body, then “u almost every” line in a given direction
hits dC at most twice: i.e., almost all of P,(R") is covered at most twice by Pg(0C).
Hence

f g < 2uR"7Y).
aC

If 4 is a measure on R" with density F where F(x) = f(}x|) for some
S:10, 00) = [0, o0)

then, in the limit for small pieces of hyperplane centered at r¢ (r 20, 0 S" 1)
with unit normal ¥, inequality (2) becomes

g < f fr(1 =<0, 9>)'%)- <0, 4> do,_,(0), G)
sn—1

where §(r) = (1/(\/2r))e "2,

A function f will be constructed that is (nonnegative and) nonincreasing on
[0, o0) and that satisfies (3) whenever ¢ and y are perpendicular. Since the function
t f(r(1 — t*)*/2) will then be increasing on [0, 1], Lemma 3 will imply that the
right-hand side of (3) is minimized when ¢ and ¥ are perpendicular, and hence
that (3) holds for all ¢ and .

Fix ¢ € S"!: the right-hand side of (3) is the same for all  perpendicular to
o. The average of |<0, )| over all such y, as a function of 8, is proportional to
the length of the projection P(6); ie., to (1 — <6, ¢>*)"2% The constant of
proportionality is

J‘ [Vl da,_ (),
sn—z

where y, is the first coordinate of . Hence if y 1 ¢, the right-hand side of (3) is

f ¥4 do, - (%) J flr(1 =<6, 9>3)'7)1 — <0, 9> do,_,(6)
sn-2 s§n—-2

§&* cos @sin” "2 0d6 [* f(rsin 6)sin""' 6 d
f&?sin" > 6do {512 sin"~2 6 d6

2 n/2
=—f f(rsin 6) sin"" ! @ d6.
T Je
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So the aim is to find a nonincreasing f: [0, 00) — [0, co) satisfying

2 w2
gir) < - J f(rsin f) sin"" ! 9 d8 forall r>0 4)
n

0

for which p(R""?) is as small as possible.
It is easy to check (for example by considering monomial functions) that if
h: [0, o) — R is defined by

t /2
j W)= dr = "1 J §(t sin 6) sin""2 0 d6, ()
0 o]

then

2 n/2
J h(r sin @) sin" "' 0dO =g(r), O0<r< oo.

T Jo

So the function f = k™, the positive part of h, satisfies (4) for all r. It remains to
show that this f is nonincreasing and that the corresponding measure u satisfies
(R 1) < 2nt/4 Now, from (4)

L df (™. . -
h(t) —ml g(t sin 0) sin"~2 0 do

T2 dt 0

1 /2 . . .
= j (n— 1 —t? sin? §) sin""2 §- ¢~ @/Dsin*6 gg

(/2n) Jo

e—12/2 n/2
J (n— 1 —t? sin? @) sin" "2 §- @050 g (6)

N D
This expression is obviously positive if

O<t<Jn—1, (7

Also, it is evident that the integral has a power series expansion in t?, valid for
all ¢; for k > 1, the coefficient of t?* is

n—1 n/2 1 n/2 )
W_[ cosZ*@sin"~20d0 — m j cos**~2 0 sin™ 0 d6
. 0 - . 4]

1 n/2
= ——ﬁf cos?*72 9 sin" 6 df < 0.
. 0

This shows that the function ¢+ e/2h(t) is decreasing on [0, co0) so that h is
decreasing where it is nonnegative and f = h* is nonincreasing.
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Now, the coefficient of t° in the integral in (6) is

/2 n/2
(n—l)f sin"_20d0=nf sin” 0 do
(4]

0

and that of t? is —4 [§/* sin” 8 4. So

e P2 n/2 2
h(t) = nf sin"ede(l —__...>
(\/2_75)" 0 2n
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so the unique zero of k in [0, c0) occurs at some number s < ,/2n. Remark (7)

shows that s > ./n — 1 > 1. Observe that
R = j Sf(x]) dx
Rn—1

=(n—-1v,_, jw fryr—2 dr
0

(—n~__ l)n(n— 1)/2 j’s
I'((n + 1)/2)

h(ryr"=2 dr
0

n/2
- (n—1) st 1 J‘ e~ /2sin?8 n=2 g g
220 ((n + 1)/2/= 0

e
0

1 s ["_2
— -2 - d
227100 — 1)/2)y /= j J1 = (t/s)? '

It is simplest to estimate this integral in two parts. For 0 <t <s—1,

1 1 s |
Jior Js—ys VT e =
Hence
1 s—1 e_tzlz L it
2"271T((n — 1)/2)\/= Jo iy

- t2/2tn -2 dt

1 s
= S e
Vs 2710 ((n — 1)/2)/n j 0
= ;— < nl/* since s < ./2n.
\ 2n
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On the other hand,

max e-rz/Ztn—Z — e—(u—Z)/Z(n _ 2)("—2)/2
t

and Stirling’s formula shows that

1 1
e*(n—Z)/Z(n . 2)(n—2)/2 < —,

2271 ((n — 1)/2)\/n m

Hence

e tn—2
———me——dt <

1 s
iz lr((n — 1)/2)ﬁ j‘r 1 ¢ m

4. Some Further Remarks

The proof of Theorem 4 shows something more general. Let f: [0, oc0) — [0, o0)
be nondecreasing and set

R=(@n-1p,_, Jw fr =2 dr.
0
Define g: R" — [0, o0) by g(x) = g(|x|) where

2 n/2
gr) =~ f S(r sin 6) sin"~ ! 6 d6. ®
TJo

Then, for any rectifiable hypersurface § — R", there is a line which meets S at
least

1
R f g times. 9
b

The fact that g(x) = e */¥2 cannot arise from a suitable f via (8), suggests that it
is the wrong function to consider. It makes sense to ask whether there is a function
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g satisfying (9) with R = 1 (say), and such that any rectifiable surface S, with small
curvature, is hit at most about
w [
5 Js

times, by any line (the sup being taken over translates § of §).
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