
Discrete Comput Geom 10:411~120 (1993) 
Discrete & Computltlona] Geometry 

~) 1993 Springer-Verlag New York Inc. 

The Reverse Isoperimetrie Problem for Gaussian Measure* 

Keith Ball 

Department of Mathematics, University College London, 
Gower Street, London, England, and 
Department of Mathematics, Texas A&M University, 
College Station, TX 77843, USA 

Abstract. It is shown that if g is the standard Gaussian density on ~" and C is a 
convex body in ~", 

fo g <- 4n:/'~. 
C 

The arguments presented raise several questions in integral geometry. 

1. Introduction 

Borell [B] and Sudakov and Tsirel'son [ST] proved that if 7 is the standard 
Gaussian measure on ~", t e (0, 1) and e > 0, then among all measurable A c R" 
with 7(A) = t, the sets for which A ' (the e-neighborhood of A) has smallest Gaussian 
measure, are half-spaces. Thus, half-spaces solve the isoperimetric problem for 
Gaussian measure on ~". 

Motivated by several probabilistic problems, Mushtari and Kwapien asked 
about reverse inequalities: in particular, if g is the density of y, how large can the 
integral 

foc g (1) 

be if C is a convex body in ~"? The integral is taken with respect to the 
----..._.._..__ 
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(n - 1)-dimensional Hausdor f f  measure  on OC. Let 

~n/  2 

Un - -  
F(n/2 + 1) 

be the volume of the Euclidean unit ball in ~". Then, if C is a ball of radius r, 
centered at O, expression (I) is 

1 
r l l )nFn-  1 _ _  e - r 2 / 2 ,  

(x/~)" 

whose m a x i m u m  value (attained when r = x/n  - 1) is 

n 1 
(n - 1) t"- ll/2e-t"- 1)/2 

2"/2F(n/2 + 1) x//n" 

If  C is a convex body which is very flat, and so approximate ly  a " two-sided" 
one-codimensional  subspace, then 

g ~ 2 _ _,_ _. 
(x/2rc) C n--I 

- -  e-lx12/2 dx 

However ,  neither of these examples  can be extremal  for the problem, since if Q is 
a centrally symmetr ic  cube of appropr ia te  size, in 0~", 

,fiog  
g > _ _ - -  

Q e 

This observat ion is proved in Proposi t ion  2 below. 

It is very easy to obtain  an upper  est imate of w/~ for expression (1) for general 
bodies. The purpose  of this paper  is to improve  this trivial estimate. The argument  
used is a rather  natural  approach  to the problem,  suggested by Cauchy 's  formula 
for the surface area  of convex bodies. (See p. 89 of [E] for a s tatement  and proof 
of  Cauchy 's  formula.) Unfortunately,  this approach  cannot  give an est imate better 
than Kn 1/'* for some constant  K, whereas vague analogies between this problem 
and others suggest that  the correct est imate should be a multiple of log n. It  was 
noticed by Mi lman  that, as a consequence of  Pisier's est imate for the K-convexity 
constant  of a finite-dimensional normed  space I-P], every n-dimensional normed 
space has a representat ion (R", I1"11) with unit ball C of volume 1 and 

fRIIxtlg(x) ~ (constant) log n. dx 
n 



The Reverse Isoperimetric Problem for Gaussian Measure 413 

On the other hand, the measure constructed in Theorem 4 answers a question 
which is itself quite natural, and it is the appearance of the "unusual" growth rate, 
n 1/4, in this context, which is perhaps the most interesting feature of this argument. 
The method used here raises several further geometric questions which are 
described in Section 4. Section 2 contains the simple upper and lower estimates 
mentioned above and Section 3 gives the main result. 

o 

Proposition 1. 
in ~n, 

Simple Bounds 

If  g is the standard Gaussian density on ~" and C is a convex body 

Proof. For x E ~", 

fe g < x ~ "  C 

e-lx12/2 : S o  te-t:/2Zntt)(x) dt, 

where Zn~t~ is the characteristic function of the n-dimensional Euclidean ball of 
radius t, centered at O. Hence 

1 E (x/~)" ce-lXl2/z ( x ~ ) "  te-'~/210C n B(t)l dt 

1So < ( ~  te-'~/ZlO(C n B(t))l dt 

1;o < (x/~)~ " te-'~/218B(t)l dt 

-- nV" f o  ,/.. (x//~)" t"e-'2/2 dt< [] 

Proposition 2. If  Q c ~" is a centrally symmetric cube of appropriate size, then 

fo g > l x / ~ n  
Q e 

Proof Let Q be a symmetric cube of side 2r. Then 

fo 2n ( f "  ) . - i .  0 g - (x/~) .  e -'~/2 -. e -':/z dt 
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Since 

Hence 

Choose r so that 

Then r > ~ n and so 

So, for this r, 

2 oo 2 1 te -t2/2 dt e -:/2 dt <_ 
r 

/ !  e -r2/2 

r 

x ~ n f "  ~ e-'2/z e -:/2 dt >__ 1 
- - r  r " 

foe#_~> 2n e _ : / 2 ( l _  /~e-i2:2) ~-~ 

•/• e -r2/2 l 
- -  . 

r n 

:,2:2 >_ l /log.. 

r  1 -- > - -  
Q e 
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[] 

3. The Main Result 

The proof of Theorem 4, below, makes use of the following simple rearrangement 
inequality. Henceforth, S"-x denotes the unit sphere in ~" and or,_ 1 denotes the 
rotation invariant probability on S ~- 

Lemma 3. 
inteoral 

Let f and 0 be nondecreasino, real-valued functions on [0, 1]. Then the 

fs--, f(]<O, ~o>1)o(I <0, 0)1) d~n_l(O) 

is minimized over q~, 0 e S"- 1 when ( q~, ~b ) = O. 
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Remark. The integral is obviously maximized when tp = + ~ since in this case 
the functions f ( l ( ' ,  ~o)l) and g(](' ,  ~) l )  are similarly arranged on S"-1: i.e., 

f ( [ (0 , ,  ~o)1) > f([(02,  cp)[) 

if and only if 

g(q (01, ~)1) > g{I (02, ~)l) .  

Proof of  Lemma 3. Assume (p ~ +__~ and let H be the two-dimensional subspace 
of ~" spanned by {cp, ~}. For u e H  l, ]u] < 1, consider the circle 

C u = S " - I ~ ( H + u ) .  

The restrictions of f ( l ( ' ,  tP}l) and g(l( ' ,  ~}l) to C,, are oppositely arranged if 
(~0, ~b} = 0, and the distribution of each of these functions on Cu depends only 
upon [ul. So, if 2 is the obvious measure on Cu, 

fc f(l(O, (p}l)g([(0, if)l) d2(0) 
u 

is minimized when (~o, ~ )  = 0. Integration over all u ~ H • of norm at most 1, with 
respect to an appropriate measure, gives the desired inequality. [] 

Remark. Presumably, analogous inequalities hold for n functions "on"  S"- 1. For 
n > 2, the trivial argument used above does not seem to be of much use. 

Theorem 4. Let g be the standard Gaussian density on R", n >_ 2, and let C be a 
convex body in ~". Then 

fo g < 

4nl/4. 
C 

Proof For a unit vector 0 in R", let Po be the orthogonal projection onto the 
one-codimensional subspace of lt~", (0 )  • The aim is to construct a measure # on 
R"-1 which is rotation invariant, absolutely continuous with respect to Lebesgue 
measure and which satisfies 

fsg<_f~_i,(PoS)do._dO) (2) 

whenever S is a Borel subset of a hyperplane in R". (The quantity #(Po S) is 
interpreted via some isometry between Pc(R") and R"-1.) 
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Now, if C is a convex body, then "/z almost every" line in a given direction 
hits OC at most twice: i.e., almost all of Po(Rn) is covered at most twice by Po(OC). 
Hence 

fo g <- 2/~(R"-*). C 

If # is a measure on R" with density F where F(x) = f ( [x l )  for some 

f :  [0, ~ )  --* [0, c~) 

then, in the limit for small pieces of hyperplane centered at rq~ (r > 0, q~ e S"- 1) 
with unit normal ~O, inequality (2) becomes 

~(r) ~ fs.-, f(r(1 -- <0, ~o>2)~/~) - I<0, q~>l d~._~(O), (3) 

where 0(r) = (1/(x/~)")e-':/2. 
A function f will be constructed that is (nonnegative and) nonincreasing on 

[0, ~ )  and that  satisfies (3) whenever q~ and ~ are perpendicular. Since the function 
tw-,f(r(1 - t2) 1/2) will then be increasing on [0, 1], Lemma 3 will imply that  the 
right-hand side of (3) is minimized when tp and ~O are perpendicular, and hence 
that (3) holds for all ~0 and ~k. 

Fix q~ e S"-~: the right-hand side of (3) is the same for all ~ perpendicular to 
~o. The average of I(0, ff)l  over all such ~b, as a function of 0, is proportional to 
the length of the projection P~,(0); i.e., to ( 1 -  (0, q~)2)1/2. The constant of 
proportionality is 

fs.-2 [0~t &r.-2(0), 

where ~ 1 is the first coordinate of ~O. Hence if ~ • q~, the right-hand side of (3) is 

fs.-~ I~bxl da,-2(~) Js.-2 f(r(1 - ( 0 , -  
r 

tp)2)l/2X1 (o, ~0)2) 1/2 dtrn- x(O) 

___ ~/2 cos 0 sin"- 3 0 dO S~/2 f(r  sin 0) sin"- 1 0 dO 
S,/2 sin,-  3 0 dO ~t/2 o - jo sin"- 2 0 dO 

2 f]/2 
= - f (r  sin 0) sin"- x 0 dO. 
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So the aim is to find a nonincreasing f :  [0, ~ )  --* [0, or) satisfying 

2 fj/2 #(r) < - f ( r  sin 0) sin"-1 0 dO for all r _> 0 (4) 
7~ 

for which/~(R"-a) is as small as possible. 
It is easy to check (for example by considering monomial  functions) that if 

h: [0, ~ )  ~ B is defined by 

fl f? h(r)r"-2 dr = t"-1  #(t sin 0) sin"-2 0 dO, (5) 

then 

2 ff/2 h(r sin 0) sin"-1 0 dO = ~(r) ,  
7~ 

0 < r <  oo. 

So the function f = h +, the positive part of h, satisfies (4) for all r. It remains to 
show that this f is nonincreasing and that the corresponding measure g satisfies 
#(R"-1 )  <_ 2nl/4. Now, from (4) 

;? ) h(t) - t" -  2 dt t"-1 (l(t sin 0) sin"-2 0 dO 

_ 1 fff,2 ( x / ~ ) ,  (n - 1 - t 2 sin 2 0) sin "-2 0 '  e -t~2/2)si"2~ dO 

e - t2/2 f~/2 
- ( x / ~ ) ,  (n -- 1 - t 2 s i n  2 0)  s i n  " - 2  0 .  e (t~/E)e~176 dO. (6) 

This expression is obviously positive if 

0 _< t < x / / n -  1. (7) 

Also, it is evident that the integral has a power series expansion in t z, valid for 
all t; for k > 1, the coefficient of t 2k is 

n - 1 ( . ~ /2  
2 ~ ( J o  c ~  1 f~/2 COS 2 k -  2 0 sin" 0 dO 

2 k- l(k - 1)! Jo 

1 1 Itj2 Cos2k-2 0 sin" 0 dO < O. 
2kk ! 3o 

This shows that  the function tw-~et=/2h(t) is decreasing on [0, ~ )  so that h is 
decreasing where it is nonnegative and f = h + is nonincreasing. 
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Now,  the coefficient of  t o in the integral  in (6) is 

f•/2 
f~/2 

(n - 1) s in"-2  0 dO = n sin ~ 0 dO 

and  that  of  t 2 is - � 8 9  r jo sin" 0 dO. So 

h(t) ( x / ~ ) ,  n sin" 0 dO 1 2n 

so the un ique  zero  of  h in [0, oo) occurs  at  some  n u m b e r  s < x/2n.  R e m a r k  (7) 

shows tha t  s > x / / ~ -  1 > 1. Observe  that  

#(R " -1 )=  | f(Ixl) dx 
dR n - - I  

= (n -- 1)v._ 1 f ;  f(r)r"- 2 dr 

( n -  1)n ("- 1)/2 f~  
-- r'~n 7 1 ~  .Jo h(r)r "-2 dr 

= (n - 1) s " -1  e -~/2)~i"~~ sin " -2  0 dO 

= 2"/=- qr((n - I)/21,,/~ e -'`/2 x / l _  (t/s) 2 dt. 

It  is simplest  to es t imate  this integral  in two  parts.  F o r  0 < t _< s - 1, 

1 1 
< < x//'s since s > 1. 

, / 1  - ( t / s )  2 - , / 2 / ~  - 1 / s  ~ 

Hence  

f ~ - i  tn-2 1 e-t2~2 dt 
2./2 - 1F((n ~- 1)/2)x/~ x/1  - (t/s) 2 

1 f ~  e-~2/2t "-2 dt 
= " / ;  2 " / ~ - ' r ( ( .  - l ) / 2 ) v g  Jo 
= < since s < . 
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On the other hand, 

- t 2 / 2 t n  - 2 = e -  ("- 2)/2(/,/ _ 2)t.- 2)/2 m a x  e 
t 

and Stirling's formula shows that 

2./2 -1F((n - I)/2)x/~ 

Hence 

1 e -  t. - 2 ) / 2 ( n  _ 2)(.- 2)/2 < - - .  

7~ 

x /~ f~  ~ t "-2 l f f _  dt 1 e -t2/2 dt < - 
2 "/2- 'F((n - 1)/2) -1 x/i--_ (t/s)2 - rc , x/fi _ (t/s)2 

s ( 2  n - l ( 1  ! ) )  = - - si - 

]./1/4. [ ]  

4. Some Further Remarks 

The proof  of Theorem 4 shows something more general  Let f :  [0, ~ )  ~ [0, ~ )  
be nondecreasing and set 

= (n - 1)vn-1 f ;  R f (r)r ~-  2 dr. 

Define g: I~" ~ [0, ~ )  by g(x) -- ~(IxJ) where 

2 f f 2  = - f (r  sin 0) sin"-1 0 dO. (8) O(r) 

Then, for any rectifiable hypcrsurface S ~ R", there is a line which meets S at 
least 

~ 0 times. (9) 

The fact that g(x) = e -Ixt2/2 cannot  arise from a suitable f via (8), suggests that it 
is the wrong function to consider. It makes sense to ask whether there is a function 
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9 satisfying (9) with R = 1 (say), and such that any rectifiable surface S, with small 
curvature, is hit at most about 

sup~ f~ 9 

times, by any line (the sup being taken over translates ~ of S). 
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