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ABSTRACT

The backbone of standard cosmology is the Friedmann–Robertson–Walker solution to Ein-

stein’s equations of general relativity (GR). In recent years, observations have largely confirmed

many of the properties of this model, which are based on a partitioning of the universe’s en-

ergy density into three primary constituents: matter, radiation and a hypothesized dark energy

which, in � cold dark matter (�CDM), is assumed to be a cosmological constant �. Yet with

this progress, several unpalatable coincidences (perhaps even inconsistencies) have emerged

along with the successful confirmation of expected features. One of these is the observed

equality of our gravitational horizon Rh(t0) with the distance ct0 light has travelled since the

big bang, in terms of the current age t0 of the universe. This equality is very peculiar because it

need not have occurred at all and, if it did, should only have happened once (right now) in the

context of �CDM. In this paper, we propose an explanation for why this equality may actually

be required by GR, through the application of Birkhoff’s theorem and the Weyl postulate, at

least in the case of a flat space–time. If this proposal is correct, Rh(t) should be equal to ct for

all cosmic time t, not just its present value t0. Therefore, models such as �CDM would be

incomplete because they ascribe the cosmic expansion to variable conditions not consistent

with this relativistic constraint. We show that this may be the reason why the observed galaxy

correlation function is not consistent with the predictions of the standard model. We suggest

that an Rh = ct universe is easily distinguishable from all other models at large redshift (i.e. in

the early universe), where the latter all predict a rapid deceleration.

Key words: cosmic background radiation – cosmological parameters – cosmology: observa-

tions – cosmology: theory – dark energy – distance scale.

1 IN T RO D U C T I O N

The standard model of cosmology, based on cold dark matter and a

cosmological constant Lambda, is today confronted with several in-

consistencies and unpalatable coincidences, even though it arguably

represents the most successful attempt at accounting for the cosmo-

logical observations. Many have written extensively on this subject,

including, e.g. Spergel et al. (2003) and Tegmark et al. (2004). For

example, �CDM has been used with measurements of the cosmic

microwave background (CMB) radiation to infer that the universe

is flat, so its energy density ρ is at (or very near) its ‘critical’ value

ρc ≡ 3c2H 2/8πG, (1)

where H is the Hubble constant and the other symbols have their

usual meanings. Yet among the many peculiarities of the standard

model is the inference that the density ρde of dark energy must

⋆E-mail: melia@as.arizona.edu (FM); ashevchuk@as.arizona.edu (ASHS)

†Sir Thomas Lyle Fellow and Miegunyah Fellow.

itself be of order ρc. Worse, no reasonable explanation has yet been

offered as to why such a fixed, universal density ought to exist at

this scale. It is well known that if � is associated with the energy of

the vacuum in quantum theory, it should have a scale representative

of phase transitions in the early universe – 120 orders of magnitude

greater than ρc.

The most recent – and perhaps most disturbing – coincidence

with �CDM is the apparent equality of our gravitational horizon

Rh(t0) with the distance ct0 light has travelled since the big bang (in

terms of the presumed current age t0 of the universe). This equality

was first identified as a peculiarity of the standard model in Melia

(2003) and has come under greater scrutiny in recent years (Melia

2007, 2009; Melia & Abdelqader 2009; van Oirschot, Kwan &

Lewis 2010; see also Lima 2007, for a related, though unpublished,

work).

The purpose of this paper is to advance a possible explanation

for why the observed equality Rh(t0) = ct0 may in fact not be a

coincidence of any particular model, such as �CDM. Rather, we

suggest a reason why it may be required for all cosmologies, by an

application of Birkhoff’s theorem and its corollary, together with
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2580 F. Melia and A. S. H. Shevchuk

the Weyl postulate, to the properties of the Friedmann–Robertson–

Walker space–time. More importantly, we show that, at least for

flat cosmologies, this equality may actually be upheld for all cos-

mic time t which, however, would not be entirely consistent with

�CDM, or any other cosmological model we know of. We shall

see that if our proposal turns out to be correct, models such as

�CDM would then be compelled to fit the data subject to the con-

straint Rh(t0) = ct0 today, but would therefore incorrectly ascribe

the universal expansion to variable conditions inconsistent with this

time-independent general relativity–Weyl (GR–Weyl) constraint in

the past. We conclude by suggesting that an Rh = ct universe is

unmistakably distinguishable from all other models through a com-

parison with standard candles at redshifts extending beyond the

current Type Ia supernova limit at ∼1.8, therefore providing a reli-

able test of our proposal when compared to other models.

2 TH E FRW E QUAT IO N S

Standard cosmology is based on the Friedmann–Robertson–Walker

(FRW) metric for a spatially homogeneous and isotropic three-

dimensional space, in which the coordinates expand or contract as

a function of time:

ds2 = c2 dt2 − a2(t)[dr2(1 − kr2)−1 + r2(dθ2 + sin2 θ dφ2)]. (2)

The coordinates for this metric have been chosen so that t represents

the time measured by a comoving observer (and is the same every-

where, so it functions as a ‘community’ time), a(t) is the expansion

factor and r is an appropriately scaled radial coordinate in the co-

moving frame. The geometric factor k is +1 for a closed universe,

0 for a flat, open universe, or −1 for an open universe.

Applying the FRW metric to Einstein’s field equations of GR, one

obtains the corresponding FRW differential equations of motion.

These are the Friedmann equation,

H 2 ≡
(

ȧ

a

)2

=
8πG

3c2
ρ −

kc2

a2
, (3)

and the ‘acceleration’ equation,

ä

a
= −

4πG

3c2
(ρ + 3p). (4)

An overdot denotes a derivative with respect to cosmic time t,

and ρ and p represent the total energy density and total pressure,

respectively. A further application of the FRW metric to the energy

conservation equation in GR yields the final equation,

ρ̇ = −3H (ρ + p), (5)

which, however, is not independent of equations (3) and (4).

3 T H E B I R K H O F F T H E O R E M A N D T H E

O B S E RV E R ’ S G R AV I TAT I O NA L H O R I Z O N

In comoving coordinates, the proper distance R(t) is measured at

constant t and one can easily see from equation (2) that for purely

radial paths in a flat cosmology, R(t) = a(t)r. It is sometimes useful

to recast equation (2) in terms of R(t) (see equation 9) which can re-

veal e.g. the dependence of the metric coefficients on the observer’s

gravitational horizon, which we now define.

The Hubble radius is the point at which the universal expan-

sion rate Ṙ(t) = ȧ(t)r equals the speed of light c. But though

this radius is well known, it is rarely recognized as just a mani-

festation of the gravitational radius (see Melia 2007), because ev-

ery observer experiences zero net acceleration from a surrounding

isotropic mass, suggesting that no measure of distance equivalent

to the Schwarzschild radius is present in cosmology.

But in fact the relative acceleration between an observer and any

other space–time point in the cosmos is not zero; it depends on the

mass–energy content between himself/herself and that point. This is

most easily understood in the context of Birkhoff’s theorem and its

corollary (Birkhoff 1923) – a relativistic generalization of Newton’s

theory, that the gravitational field outside a spherically symmetric

body is indistinguishable from that of the same mass concentrated

at its centre.

What is particularly germane to our discussion here is the corol-

lary to this theorem, describing the field inside an empty spherical

cavity at the centre of an isotropic distribution. The metric inside

such a cavity is equivalent to the flat-space Minkowski metric ηαβ , a

situation not unlike that found in electromagnetism, where the elec-

tric field inside a spherical cavity embedded within an otherwise

uniform charge distribution is zero. Not surprisingly, the corollary

to Birkhoff’s theorem is itself analogous to another Newtonian result

– that the gravitational field of a spherical shell vanishes inside the

shell. So even in the classical limit, one can argue that the medium

exterior to a spherical cavity may be thought of as a sequence of

ever-increasing spherical shells, each of which produces a net zero

effect within the cavity.

To understand the emergence of a gravitational radius in cos-

mology, imagine placing an observer at the centre of this spherical

cavity with proper radius Rcav, surrounding him/her by a spherically

symmetric mass with a proper surface radius Rs < Rcav. The metric

in the space between the mass and the edge of the cavity is given by

the Schwarzschild solution, and the relative acceleration between

the observer and Rs is simply due to the mass enclosed within Rs,

which we may write in terms of the cosmic energy density ρ(t) as

M(Rs) = Vprop

ρ(t)

c2
, (6)

where

Vprop =
4π

3
R3

s (7)

is the proper volume.1

The criterion we will use to define the gravitational radius Rh is

Rh ≡
2GM(Rh)

c2
(8)

(see Melia 2007, Melia & Abdelqader 2009). As we shall see be-

low, the FRW equations in principle allow many different kinds

of solutions with their own particular form of the expansion fac-

tor a(t). When we impose the condition in equation (8), however,

only one of these solutions is permitted. This unique solution cor-

responds to the observed equality Rh(t0) = ct0, which is most easily

inferred from the measurement of H0 in the project to measure H0

and the equation of state (SHOES) (Riess et al. 2009), refining the

value previously obtained through the Hubble Space Telescope Key

Project on the extragalactic distance scale (Mould et al. 2000). The

Hubble constant, H0 ≡ H(t0) = 74.2 ± 3.6 km s−1 Mpc−1, is now

known with unprecedented accuracy. In the context of �CDM, the

density ρ is at (or very near) its ‘critical’ value ρc, and with this H0,

Rh(t0) ≈ 13.7 billion light-years (≈ct0).

1 To be absolutely clear about this definition, we emphasize the fact that

Vprop is the volume within which the comoving density of particles remains

fixed as the universe expands.
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The Rh = ct Universe 2581

Equation (8) explains why the Hubble radius exists in the first

place and is our proposal for a resolution of the Rh(t0) = ct0 co-

incidence in the standard model. Ironically, though many may be

unaware of the existence of this radius, de Sitter’s own solution to

Einstein’s equations was actually first written in terms of what we

now call the proper distance R(t) = a(t)r; a limiting radius equivalent

to Rh appeared in his form of the metric (see de Sitter 1917).

It is now well known that de Sitter’s space–time describes a

universe driven by an exponential scale factor a(t). In the more

general case, it is not difficult to show, in terms of the proper radii

R and Rh, that equation (2) transforms to

ds2 = 
 c2dt2 + 2

(

R

Rh

)

c dt dR − dR2 − R2 d�2 (9)

(Melia & Abdelqader 2009), where the function


 ≡ 1 −
(

R

Rh

)2

(10)

signals the dependence of the metric on the proximity of the proper

radius R to the gravitational radius Rh. We have here assumed a flat

universe with k = 0, as indicated by the precision measurements of

the CMB radiation (Spergel et al. 2003). The reader will also note

that, formally, Rh functions as the static limit, since the interval

ds becomes unphysical at any fixed proper distance R beyond Rh.

However, there is no such exclusion on the viability of this metric

beyond Rh when Ṙ �= 0, such as we have for sources receding from

us with the Hubble expansion (more on this below).

The impact of equation (8) may now be gauged with the use of

equation (3), yielding (with k = 0)

Rh =
c

H (t)
= c

a

ȧ
(11)

(see Melia & Abdelqader 2009). This is in fact also the definition of

the better known Hubble radius, which is therefore simply another

manifestation of the gravitational radius Rh. Thus, given what we

know about the analogous gravitational radius of a static spherical

mass, it is not surprising that the expansion rate Ṙ should equal c

when R → Rh, just as the speed of matter falling towards a black

hole reaches c at the event horizon. This may be seen most easily

from the definition of R and equation (11), which together give

Ṙ = c
R

Rh

, (12)

and therefore Ṙ = c when R = Rh. Below we analyse the role of

Rh further and see that, even though equation (9) is quite general

as written, the definition of the gravitational radius in equation (8)

actually selects out only one specific FRW solution, which we are

proposing as the correct cosmic space–time.

4 C O N S I S T E N C Y W I T H T H E W E Y L

POSTU LATE

As a prelude to our further consideration of Rh, we re-affirm the fact

that the Universe appears to be homogeneous and isotropic on large

scales, meaning that observations made from our vantage point are

representative of the cosmos as viewed from anywhere else. Known

as the cosmological principle, the assumption of homogeneity and

isotropy is essential to any attempt at using what we see here from

Earth as a basis for testing cosmological models.

On large scales, at least, the universe appears to be expanding in

an orderly manner, with galaxies moving apart from one another

(except for the odd collision or two due to some peculiar motion

on top of the ‘Hubble flow’). Galactic trajectories on a space–time

diagram would therefore show world lines forming a funnel-like

structure in which the separation between any two paths is steadily

increasing with time t.

Homogeneity and isotropy are consistent with this type of regu-

larity and together suggest that the evolution of the universe may

be represented as a time-ordered sequence of three-dimensional

space-like hypersurfaces, each of which satisfies the cosmological

principle. This intuitive picture of regularity is often expressed for-

mally as the Weyl postulate, after the mathematician Hermann Weyl,

who did much of the early work on this subject in the 1920s (see

e.g. Weyl 1923).

The most general line element satisfying the Weyl postulate and

the cosmological principle is given by equation (2), in which the

spatial coordinates (r, θ , φ) are constant from hypersurface to hy-

persurface in the expanding flow, while the temporal behaviour of

the scale factor a(t) reflects the dynamics of the expanding cosmos.

This metric was first rigorously derived in the 1930s by Robertson

(1935) and (independently) Walker (1936), using the ideas espoused

earlier by Weyl.

It is therefore clear that any proper distance in this space–time

is measured on a space-like hypersurface in the foliated sequence

orthogonal to the non-intersecting geodesics. We have shown in

Section 3 that the Hubble radius is itself the distance Rh. But ac-

cording to the definition of Rh in terms of Vprop in equation (8), Rh

must itself be a proper distance

Rh = a(t)rh, (13)

with the property that rh is a constant comoving coordinate; other-

wise, Vprop would not represent the volume within which the particle

density is constant in the comoving frame. Comparing equations

(11) and (13), we therefore see that

rh ≡
c

ȧ
, (14)

which means that ȧ itself must be constant for consistency with

the Weyl postulate. This is the most important consequence of our

definition of Rh in equation (8).

From equation (4), we infer that the acceleration ä is zero either

for an empty universe (in which ρ = p = 0) or one characterized by

an equation of state w = −1/3 (refer to Appendix A for some ad-

ditional insight into why these two conditions are actually related).

And it is trivial to see from equation (11) that

Rh = ct (15)

for all cosmic times t, not just the current value t0.

Within the framework of our proposal, one may then understand

why today we ‘measure’ Rh(t0) to be equal to ct0 (within the obser-

vational errors), because in a flat universe (k = 0) consistent with the

Weyl postulate and the cosmological principle, these two quantities

must always be equal.

5 C O S M O L O G I C A L M O D E L S

Let us now see how this result impacts the standard model of cos-

mology. We suppose that

ρ = ρm + ρr + ρde, (16)

where, following convention, we designate the matter, radiation and

dark energy densities, respectively, as ρm, ρr and ρde. We will also

assume that these energy densities scale according to ρm ∝ a−3,

ρr ∝ a−4 and ρde ∝ f (a). (If dark energy is indeed a cosmological

constant �, then f (a) = constant.) Thus, defining

�m ≡
ρm(t0)

ρc

, (17)

C© 2011 The Authors, MNRAS 419, 2579–2586
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2582 F. Melia and A. S. H. Shevchuk

�r ≡
ρr(t0)

ρc

(18)

and

�de ≡
ρde(t0)

ρc

, (19)

with the (flatness) constraint

�m + �r + �de = 1, (20)

we may rewrite the Friedmann equation as
(

da

dt

)2

= H0
2

{

1 + �m

(

1

a
− 1

)

+ �de

(

a2f − 1
)

}

. (21)

We have here normalized the expansion factor so that a(t0) = 1,

which we assume throughout this paper.

Introducing the cosmological redshift z, where

1 + z =
1

a(t)
, (22)

we can re-arrange this equation to read

1

(1 + z)2

dz

dt
= −H0

{

1 + �m

(

1

a
− 1

)

+ �de

(

a2f − 1
)

}1/2

,

(23)

so that

H0

∫ t0

te

dt =
∫ z(te )

0

dz

(1 + z)2[1 + �mz − g(z)�de]1/2
. (24)

That is

c(t0 − te) = Rh(t0)

∫ z(te)

0

dz

(1 + z)2[1 + �mz − g(z)�de]1/2
, (25)

where we have also defined the function g(z) ≡ f /(1 + z)2 − 1,

and z(te) is the redshift of light reaching us at t0 but emitted at

cosmic time te. In this expression, we have used the equality Rh =
c/H, which is valid in a flat (k = 0) cosmology. Other than this

flat condition, equation (25) is identical to that obtained in the

concordance model, subject to the density in equation (16).

If we now put te → 0 and z(te) → ∞, then clearly

ct0 = Rh(t0)

∫ ∞

0

dz

(1 + z)2[1 + �mz − g(z)�de]1/2
. (26)

Our proposed form of the gravitational (i.e. Hubble) radius in equa-

tion (8) leads to the equality Rh(t0) = ct0. Therefore, any cosmolog-

ical model consistent with the Weyl Postulate and the cosmological

principle must satisfy the condition
∫ ∞

0

dz

(1 + z)2[1 + �mz − g(z)�de]1/2
= 1. (27)

Although not immediately obvious, this constraint implies that no

matter what period of deceleration or acceleration the universe may

have experienced in its past, its overall acceleration averaged over

the time t0 must be zero (Melia 2009). We can best see this directly

from the FRW equations, which indicate that

Ṙh ≡
dRh

dt
=

3

2
(1 + w)c, (28)

where the parameter

w ≡
p

ρ
(29)

characterizes the total pressure p in terms of the total energy density

ρ. Under the assumption that Rh was much smaller in the distant

past than it is today, we can easily integrate this equation to get

Rh(t0) =
3

2
(1 + 〈w〉) ct0, (30)

Figure 1. The integral in equation (27) as a function of �m, assuming a

flat cosmology, for the standard model (i.e. �CDM). The integral equals 1

when �m ≈ 0.27 (and �de ≡ �� ≈ 0.73). It is important to emphasize that

this inferred value of �m comes, not from fits to the cosmological data using

the �CDM decomposition in equation (16) but, rather, from the imposition

of the Weyl postulate expressed through equation (27).

where

〈w〉 ≡
1

t0

∫ t0

0

w(t) dt . (31)

Thus, in order for Rh(t0) to be equal to ct0 (which in turn leads

to equation 27), we must have 〈w〉 = −1/3, corresponding to an

average acceleration 〈ä〉 = 0 in equation (4).

Any cosmological model that purports to correctly trace the uni-

versal expansion must simultaneously satisfy equation (27) and the

condition 〈w〉 = −1/3. In �CDM, for example, dark energy is con-

sidered to be a cosmological constant, so g(z) = z(2 + z)/(1 + z)2. In

Fig. 1, we plot the value of the integral in equation (27) as a function

of �m for a flat �CDM cosmology. Not surprisingly, the integral is

1 when �m ≈ 0.27, consistent with the optimized parameters of the

concordance model (see e.g. Spergel et al. 2003).

Using the same optimized parameters to evaluate the integral in

equation (31), we obtain the time-averaged value of w plotted as a

function of cosmic time in Fig. 2. We see that 〈w〉 ≈ −1/3 at t ≈
1/H0, consistent with the fit shown in Fig. 1. Clearly, the simplest

way to satisfy both equation (27) and the constraint 〈w〉 = −1/3

would be to have w = −1/3 for all cosmic time t. But this is not what

happens in �CDM, as one can trivially see from Fig. 2. Instead, one

must adjust the values of �m and �de in order to make the integral

in equation (27) come out to be 1, which ensures that 〈w〉 = −1/3

today, but neither w nor 〈w〉 is equal to −1/3 at any other time. This

is far from satisfactory, however, because (as noted previously by

Melia 2009) the time-averaged value of w could then be equal to

−1/3 only once in the entire history of the universe, and that would

have to happen right now.

C© 2011 The Authors, MNRAS 419, 2579–2586
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The Rh = ct Universe 2583

Figure 2. Average value of w (equation 29) as a function of t0, in units of

1/H0, for the standard model (i.e. �CDM). The dashed line corresponds to

〈w〉 = −1/3.

6 T H E L U M I N O S I T Y D I S TA N C E

The distinction between our proposed cosmology with Rh = ct (for

all t, not just t0) and other FRW models with past epochs of de-

celeration is quite pronounced at redshifts larger than the current

limits (∼1.5–2) of study. This happens because the application of

Birkhoff’s theorem, together with the Weyl postulate and the cos-

mological principle, suggests that w = −1/3 for all t, whereas 〈w〉
in �CDM changes with cosmic time (see Fig. 2).

Based on current Type Ia supernova measurements, the use of

�CDM as the standard evolutionary model seems to provide an

adequate fit to the data. This could present a problem for our pro-

posal because our explanation for the observed equality Rh(t0) = ct0

would suggest that the �CDM version of the luminosity distance

dL used to fit the Type Ia supernova data (e.g. the ‘gold sample’ in

Riess et al. 2004) is not correct in a flat space–time (see also Riess

et al. 1998, Perlmutter et al. 1999). However, the disparity between

this version of dL and that required by a flat cosmology with w =
−1/3 increases with redshift, so in principle we should be able to

distinguish between the two by observing events at sufficiently early

times.

In �CDM, the luminosity distance is given as

dL = (1 + z) Rh(t0)

∫ z

0

du

[�m(1 + u)3 + �de(1 + u)α]1/2
, (32)

where, strictly speaking, dark energy is a cosmological constant, so

that �de ≡ �� and α ≡ 3(1 + wde) is zero, since wde ≡ w� = −1.

Using this distance measure, Riess et al. (2004) find that the ‘gold

sample’ of 157 Type Ia supernovae (SNe Ia) is consistent with an

�m = 0.27, �� = 0.73 cosmology, yielding χ 2
d.o.f. = 1.13. Adding

several free parameters, specifically an acceleration parameter q0 ≡
−ä(t0)a(t0)/ȧ(t0)2 and dq/dz evaluated at z = 0, Riess et al. (2004)

find an even better fit with �m = 0.3 and �� = 0.7, yielding

χ 2
d.o.f. = 1.06.

At face value, this is a reasonable fit. The caveat, of course, is that

one must use many free parameters with this model. One should

also question the validity of introducing two new parameters (q0 and

dq/dz) independent of �m and �de, given that the expansion history

of the universe in �CDM is completely specified once the latter two

are selected. As it turns out, the additional free parameters improve

the fit because the current acceleration needs to be counterbalanced

by an earlier deceleration that together yield an overall expansion

consistent with a coasting universe (i.e. 〈q〉 = 0, equivalent to 〈w〉 =
−1/3).

In contrast, the luminosity distance in a universe with Rh = ct is

given by the expression

dL = (1 + z)Rh(t0) ln(1 + z) (33)

(see also Melia 2009). Here, the only parameter is the Hubble

constant H0, which enters through our gravitational radius Rh(t0).

This is the proper form of the luminosity distance to use in the

analysis of Type Ia supernova data if our understanding of the

relativistic constraint Rh = ct is correct. However, this form of

the luminosity distance, without the luxury of extra free parameters,

does not fit the current sample of Type Ia supernova as well as

equation (32).

Interestingly, equation (33) does fit the data adequately at low

and high redshifts, but not in between, as may be seen, e.g. in fig. 6

of Riess et al. (2004). This could be an important clue, because the

difficulty with interpreting the data at intermediate redshifts is made

more evident through a comparison of the gold sample with other,

newer compilations. Though all of the currently available SNe Ia

catalogues yield a consistent and robust value of �m (i.e. ≈0.27),

they vary significantly when it comes to the inferred redshift zacc at

which deceleration is meant to have switched over to acceleration

in the present epoch. For example, the gold sample gives a value

zacc = 0.46 ± 0.13 (Riess et al. 2004). The so-called Union2 sample

contains 557 events in the redshift range 0.015 < z < 1.4 (Amanullah

et al. 2010). The analysis of these data alone yields zacc ≈ 0.75,

though with a fairly large uncertainty (±0.35), and a combination

of the Union2 sample with the CMB measurements yields zacc =
1.2 ± 0.10. The data gathered by the project known as ‘Equation of

State: SupErNovae trace Cosmic Expansion (ESSENCE)’ span the

redshift range z = 0.2–0.8 (Wu et al. 2008). Their analysis yields a

transition redshift zacc ≈ 0.632, roughly in the range of the others,

but not as tightly consistent with them as the value of �m, which

ESSENCE finds to be ≈0.278, quite close to the value calculated

from both the gold and Union2 samples.

7 D I SCUSSI ON

We draw several conclusions from this comparison. It is possible,

though we believe unlikely, that �CDM is correct after all and that

equation (27) is simply a coincidence, as improbable as that may

be. It would then be incumbent upon us to understand where our

argument for the constraint Rh = ct has gone wrong. We stress,

however, that we have examined the need for this equality only for

a flat cosmology (i.e. k = 0). The disparity between this condition

and the Type Ia supernova data may be telling us that the universe is

not flat after all – if it turns out that the constraint Rh = ct does not

apply when k �= 0. We will examine this situation next and report

the results elsewhere.

On the other hand, it could very well be that �CDM is currently

providing a reasonable fit to the Type Ia supernova data only because

(i) it has several free parameters, some of them (q0 and dq/dz)

possibly inconsistent with the others (e.g. �m and �de); and (ii) other

factors, perhaps astrophysical in origin, are biasing the observed

supernova luminosities at intermediate redshifts. Certainly, the fact

that zacc varies widely from sample to sample could be an indication

that this might be happening.

Of course, there are many other consequences of the Rh = ct

constraint, e.g. with regard to baryogenesis, nucleosynthesis and

structure formation, all of which would have been affected in terms
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2584 F. Melia and A. S. H. Shevchuk

of when they could have occurred, if not the physical conditions

prevalent at those times. Although it is beyond the scope of the

present work to fully explore all of these processes, a detailed

account is necessary before the viability of our proposal can be

fully assessed.

This extended analysis is necessary because the current situation

with the standard model is far from adequate. For example, �CDM

does not provide a compelling explanation for the galaxy correlation

function. Over the past four decades, the successively larger galaxy

redshift surveys have mapped the distribution of galaxies with ever-

increasing precision, confirming correlation functions consistent

with a single power law on all scales (e.g. Marzke et al. 1995;

Zehavi et al. 2002), from large regions (r > 10 Mpc) exhibiting

slight density fluctuations, to collapsed, virialized galaxy groups

and clusters (r < 1 Mpc). The lack of any observational feature

signalling the transition from one physical domain to the next is

surprising when viewed within the context of the standard model

(see e.g. Li & White 2009), because the matter correlation function

in the concordance model differs significantly from a power law.

The most recent attempts at accounting for the unexpected galaxy

correlation function have relied on several new, fine-tuning addi-

tions in order to get the correct profile (see e.g. Watson, Berlind &

Zentner 2011). But the various contributing effects are intertwined

and no simple, universal rule exists for which a power-law correla-

tion function emerges. The evolving competition between accretion

and destruction rates of subhaloes over time is required to have

struck just the right balance at z ≈ 0, leading Watson et al. (2011) to

conclude that the power-law galaxy correlation function is a cosmic

coincidence.

Part of the difficulty with this type of analysis is that, besides

gravity and pressure, other physical processes can play an impor-

tant role in the formation of structure and these are not easy to

handle. For example, in baryonic models, the most important phys-

ical phenomenon is the interaction between baryons and photons

during the pre-recombination era and the consequent dissipation

due to viscosity and heat conduction.

In so far as the Rh = ct universe is concerned, we can leave

these elements aside for the moment and at least suggest how the

fundamental equation describing the dynamical growth of density

fluctuations would appear in this cosmology. Defining the density

contrast δ ≡ δρ/ρ in terms of the density fluctuation δρ and unper-

turbed density ρ, we can form the wave-like decomposition

δ =
∑

κ

δκ (t)eiκ ·r , (34)

where the Fourier component δκ depends only on cosmic time t, and

κ and r are the comoving wavevector and radius, respectively. In

the linear regime, the κth perturbative mode satisfies the equation

δ̈κ + 2
ȧ

a
δκ =

(

4πG

c2
ρ −

v2
s κ

2

a2

)

δκ , (35)

where a dot signifies differentiation with respect to t, a = a(t) is the

cosmic expansion factor we defined earlier and v2
s ≡ dp/dρ is the

adiabatic sound speed squared in terms of the pressure p and energy

density ρ (see e.g. Tsagas 2002).

The second term on the left-hand side is due to the cosmic expan-

sion and always suppresses the growth of δκ . The combined term on

the right-hand side reflects the conflict between gravity (4πGρ/c2)

and pressure support (−v2
s κ

2/a2). Defining the proper wavelength

of the perturbation λ ≡ 2πa/κ , one sees immediately that whether

gravity or pressure support dominates depends on whether λ is

greater or smaller than the so-called Jeans length

λJ ≡ vs

√

πc2

Gρ
. (36)

In the standard model, one solves equation (35) by first choosing the

constituents of the universe (e.g. baryonic matter, cold dark matter

and radiation) contributing to ρ, adopting an equation of state to

calculate p and therefore vs, and then integrating δκ over time from

an assumed set of initial conditions.

The origin of the initial seed perturbations is uncertain, one pos-

sible explanation being that they are quantum fluctuations boosted

to macroscopic scales by inflation. The primordial power spectrum

is usually assumed to have a power-law dependence on scale,

P (κ) = Aκn, (37)

with a scale-invariant spectral index n = 1 and an unknown nor-

malization factor A that must be determined observationally. The

initial conditions for the solution to equation (35) follow from this

because at any redshift z, the power spectrum may also be written

as

P (κ, z) = 〈|δκ (z)|2〉, (38)

so the starting size of the fluctuation is

δκ ∝ κ1/2. (39)

Equation (35) is adequate for most applications, but not in situ-

ations where the pressure is a significant fraction of ρ. In general

relativity, both ρ and p contribute to the ‘active’ mass inducing

curvature, as evidenced by the appearance of both ρ and p in equa-

tions (4) and (5). Thus, to analyse the growth of perturbations in

an Rh = ct universe, we must resort to the relativistic version of

equation (35). Fortunately, this transition is greatly simplified by

the very simple equation of state implied by the condition Rh = ct

given by

p = wρ (40)

with w = −1/3, as we discussed earlier.

For a universe with density ρ and pressure p = wρ, the linear

relativistic version of equation (35) is

δ̈κ +
(

2 − 6w + 3v2
s

) ȧ

a
δ̇κ − 3/2

(

1 + 8w − 3w2 − 6v2
s

)

(

ȧ

a

)2

δκ

= −
κ2v2

s

a2
δκ . (41)

Therefore, for an Rh = ct universe, the dynamical equation for δκ is

δ̈κ +
3

t
δ̇κ =

1

3
c2

( κ

a

)2

δκ . (42)

We need to emphasize several important features of this equation.

First of all, the active mass in this universe is proportional to ρ +
3p = 0, and therefore the gravitational term normally appearing

in the standard model is absent (see equation 35). But this does

not mean that δκ cannot grow. Instead, because p < 0, the (usually

dissipative) pressure term in equation (35) here becomes an agent

of growth. Moreover, there is no Jeans length scale. In its place is

the gravitational radius, which we can see most easily by writing

equation (42) in the form

δ̈κ +
3

t
δ̇κ −

1

3

�2
κ

t2
δκ = 0, (43)

where

�κ ≡
2πRh

λ
. (44)
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The Rh = ct Universe 2585

Note, in particular, that both the gravitational radius Rh and the

fluctuation scale λ vary with t in exactly the same way, so �κ is

therefore a constant in time. But the growth rate of δκ depends

critically on whether λ is less than or greater than Rh.

A simple solution to equation (43) is the power law

δκ (t) = δκ (0)tα, (45)

where evidently

α2 + 2α −
1

3
�κ = 0, (46)

so that

α = −1 ±
√

1 + �2
κ/3. (47)

Thus, for small fluctuations (λ ≪ Rh),

δκ ∼ C1κ
1/2t�κ /

√
3 + C2κ

1/2t−�κ /
√

3, (48)

whereas for large fluctuations (λ ≫ Rh),

δκ ∼ C3κ
1/2 + C4κ

1/2t−2, (49)

where the Ci constants depend on the initial conditions.

Beyond this point there are too many unknowns to pin down

the final galaxy correlation function resulting from these growth

functions. For example, we do not know how to set the values of

C1, C2, C3 and C4 in a model-independent way, nor does any of these

analyses take into account the non-linear growth that follows. But

already we can point to a decided advantage of the Rh = ct universe

over �CDM. Whereas the concordance model predicts different

distributions at different scales, in part because of the influence of

the Jeans length, no such transition region exists for the Rh = ct

universe. Instead, the fluctuation growth is driven by the pressure

term, which looks the same no matter the perturbation length λ ≪
Rh. At least in this regard, the Rh = ct universe appears to be a better

match to the observations.

8 C O N C L U S I O N

Fortunately, a resolution to the �CDM versus Rh = ct universe

dilemma will surely come with the observation of standard candles

at redshifts even greater than 1.8 (roughly the current upper limit

to the Type Ia samples). A cosmology with the time-independent

constraint Rh = ct predicts a luminosity distance unmistakably dis-

tinguishable from that of all other models. And the differences will

manifest themselves most prominently early in the universe’s ex-

pansion (i.e. at large redshift z), where all other models (including

�CDM) predict a rapid deceleration.
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APPENDI X A

The fact that Rh = ct in both an empty universe (Milne 1940) and a

flat (k = 0) universe is not a coincidence, as one may appreciate from

a simple heuristic argument justified by the corollary to Birkhoff’s

theorem. As noted by Weinberg (1972), the fact that the gravitational

influence of any isotropic, external mass–energy is zero within a

spherical cavity permits the limited use of Newtonian mechanics to

some cosmological problems, which we can use here to gain some

insight into the dynamics implied by k = 0.

Consider a sphere ‘cut out’ of a homogeneous and isotropic uni-

versal medium with (proper) radius Rs(t) = a(t)rs. Adopting the

cosmological principle, we assume that the density within this re-

gion is a function of time t only and that every point within and

without the sphere expands away from every other point in propor-

tion to the time-dependent scale factor a(t), which itself is the same

everywhere. According to Birkhoff’s theorem and its corollary, we

only need to consider contributions to the energy from the contents

enclosed within Rs to determine the local dynamics of this region

extending out to Rs.

Relative to an observer at the centre of this sphere, the kinetic

energy of a shell with thickness dR at radius R is therefore

dK = 4πR2 dR
1

2

ρ(t)

c2
Ṙ2, (A1)

and integrating this out from r = 0 to rs, one easily gets the total

kinetic energy of this sphere relative to the observer at the origin:

K =
2π

5

ρ(t)

c2
a3ȧ2 rs

5. (A2)

Let us now calculate the corresponding gravitational potential

energy of this spherical distribution (remember that this is a classical

approach). The potential energy of the shell at R is

dV = −4πR2 dR
ρ(t)

c2

GM(R)

R
, (A3)

where

M(R) =
4π

3
R3 ρ(t)

c2
(A4)
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2586 F. Melia and A. S. H. Shevchuk

is the total mass enclosed inside radius R. And integrating this out

from r = 0 to rs, we see that the total potential energy of this sphere

(as measured by the observer at the origin) is

V =
16π

2G

15

ρ(t)2

c4
a5rs

5. (A5)

Classically, then, the observer measures a total energy of this

sphere given by

E =
2π

5

ρ(t)

c2
a3ȧ2 rs

5 −
16π

2G

15

ρ(t)2

c4
a5rs

5, (A6)

which may be re-arranged to cast it into a more recognizable form:

(

ȧ

a

)2

=
8πG

3c2
ρ(t) +

5c2E

2πρ(t) a5 rs
5
. (A7)

Evidently, the local conservation of energy relative to the observer at

the origin is actually the Friedmann equation (3), when we identify

the spatial curvature constant as

k ≡ −
10

3 rs
2

(

ǫ

ρ

)

, (A8)

where

ǫ ≡
3E

4π Rs
3

(A9)

is the total local energy density. A universe with positive curvature

therefore corresponds to a net negative energy, which means the

system is bound, whereas a negative curvature is associated with

a positive total energy density (ǫ > 0), characterizing an unbound

universe.

A universe with net zero energy is therefore flat (k = 0), and the

latest cosmological measurements (see e.g. Spergel et al. 2003) are

apparently telling us that this is the state we are in. Let us remember

that general relativity is a local theory; it tells us only about the

gradient of the space–time curvature locally due to the presence of

a source at that point. As far as general relativity is concerned, the

local dynamics of a universe with net zero energy density (ǫ = 0)

is indistinguishable from an empty (or Milne) universe. This is the

reason why ä = 0 in both cases, and why Rh = ct.
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