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A set of constitutive equations, valid for arbitrary linear bulk flows, is derived for 

a dilute suspension of nearly spherical, rigid particles which are subject to rotary 

Brownian couples. These constitutive equations are subsequently applied to find 

the resulting stress patterns for a variety of time-dependent bulk flow fields. 

The rheological responses are found to exhibit many of the same qualitative 

features as have been observed in recent experimental investigations of poly- 

meric solutions and other complex materials. 

1. Introduction 

The bulk stress of a suspension of rigid particles in a Newtonian fluid is sensitive 

to the orientation distribution of the particles. In  this paper we consider a dilute 

suspension of spheroids under circumstances in which the orientation distribu- 

tion is determined by the competition of random disorientating Brownian 

couples acting against the tendency towards a preferred alignment which results 

from the action of the bulk flow. 

The earliest theoretical investigations of this model were restricted to steady 

bulk shear ffow and small deformation rates, and used energy dissipation argu- 

ments which yield only the effective viscosity (cf. Boeder 1932; Burgers 1938). 

In  1962, Giesekus calculated the full bulk stress tensor for steady shear in the 

limit of low shear rates. The low deformation rate results were partially extended 

to higher shear rates by Scheraga (1955) and Takserman-Krozer & Ziabicki 
(1963) by the numerical evaluation of a larger number of terms in an asymptotic 

expansion about the low deformation rate limit, and by Stewart & Smensen 

(1972) by the application of Galerkin’s methods. The extension to time-dependent 

and other types of flow has not yet received much attention in spite of its obvious 

importance, the main previous works being the investigations of oscillating shear 

flow by Kirkwood & Auer (1951) and Kirkwood & Plock (1956), Giesekus’s 

(1962) restatement of his steady shear results in a second-order form applicable to 

all flow fields, and Takserman-Krozer & Ziabicki’s (1963) study of steady axi- 

symmetric extensional flow. 
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Recently the present authors have discussed the rheological (Hinch & Leal 

1972) and the rheo-optical (Leal & Hinch 1972) properties of a dilute suspension 

of spheroids for steady shear flowf in an exhaustive set of limiting cases which 

encompasses the whole range of flow strengths. For particle aspect ratios (the 

ratio of the major to minor semi-diameters) differing significantly from unity, 

approximate solutions were obtained for weak shear flow (a restatement of 

Giesekus 1962), for strong shear flow (a problem commenced in Leal & Hinch 

197 1) and finally for a new intermediate range of flow strengths when the particle 

aspect ratio is extreme. As the shear rate is increased from zero, the microstruc- 

ture, which is statistically isotropic in the rest state, becomes increasingly aniso- 

tropic: the orientation of the particles becomes dominated by the bulk flow 

rather than Brownian motions. This shear-dependent orientational anisotropy 

results in non-Newtonian rheological behaviour. For example, the effective 

viscosity of the suspension is found to exhibit shear thinning, decreasing from a 

constant value in the limit of small shear rate to a second constant value as the 

orientation distribution achieves its large shear rate limiting form. The principal 

and secondary normal stress differences are non-zero, of opposite sign, unequal in 

magnitude and for low rates of shear, increase quadratically in the shear rate, 

finally tending to constant values in the limit of high shear rates. 

Because the calculations were restricted to various limiting cases of possible 

shear rate, as noted above, no generally applicable constitutive equation could 
be obtained except in the special case of near-spheres. I n  this limit, an explicit 

nonlinear representation of the bulk stress which is valid over the complete range 

of shear rates was found. Particularly significant is the fact that the near-sphere 

suspension was found to differ from the general case only in the relative magni- 

tude of the predicted non-Newtonian effects, not in the qualitative manner of its 

behaviour. Since an explicit representation which is valid for arbitrary shear 

rates is possible, the near-sphere model would thus seem to offer a potentially 

valuable system for examining a t  least the qualitative aspects of the suspension 

behaviour in more general bulk flows. 

In  this paper we derive a simple set of rheological constitutive equations for a 

general-tensorial time-dependent deformation gradient. The asymptotic expan- 

sion used for the particle orientation is a generalization of that given by Peterlin 

(1938). Specifically, the limit considered is that of the aspect ratio tending to 

unity, for a fixed flow strength which can be of arbitrary magnitude compared 

with the Brownian effects. As we shall see, however, this form of the double limit 
can be relaxed for certain flow forms, e.g. for shear but not for pure strains. In  

the latter case the approximation does exclude some qualitative features of the 

suspension rheology : for example, there is no constant limit effective viscosity for 

large strain rates within our model; instead, with increasing strain rate, the 

viscosity increases until the validity constraints are violated. 

To help comprehend the constitutive equation, which contains both non- 

linearity and a memory effect, we subsequently apply it to several illustrative 
deformation histories to deduce the response of the suspension. The particular 

generalization of these shear flow results to a wider class of steady two-dimensional 
flov s was also noted. 

f 
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flow examples we study are: simple shear - the steady case, the start-up to and 

the relaxation from the steady case, small amplitude oscillations, and small 

amplitude oscillations superimposed on a steady arbitrary strength shear; 

axially symmetric strain- the steady case, the Heaviside start-up and the ramp 

start-up; a steady shear with superimposed small amplitude oscillations of a 

transverse shear; and finally the steady Maxwell orthogonal rheometer flow. 

We shall remark on the similarity of many of the qualitative features of this 

suspension with experimentally observed behaviour of quite different complex 

materials. We hope that our simple model might be useful in beginning to under- 

stand the physics of the orientation of the microstructure, which we believe is 

common to many complex materials. 

The only other general study of a dilute suspension of axially symmetric 

particles subject to Brownian couples is that of Bird, Warner & Evans (1971), 

who investigated dumb-bells in the limit of weak flow strengths. Their double 

limit is that of infinite aspect ratios, followed by dominant Brownian effects. 

2. The constitutive relation 

We consider a dilute suspension of identical rigid spheroids which are free 

from externally applied couples and forces but are subjected to rotary Brownian 

movements. We understand dilute t o  imply, as usual, that the suspended particles 

are hydrodynamically independent. We therefore begin by looking a t  the free 

motion of a single spheroid subjected to the external flow 

U(X, t )  = r(t). X. 

The velocity gradient tensor may be expressed as 

l ? = E + 8 ,  E T = E ,  Q T = - S 2 ,  

where E ( t )  is the rate-of-strain tensor and D(t) the vorticity tensor. The more 

common vorticity vector 8 is given by 

Q . = - l s  Q 
2 i jk j k .  

We denote the particle aspect ratio by r ( r  > 1 for a prolate spheroid) and specify 

the orientation of the spheroid by the direction of a unit vector p coaxial with its 

axis of revolution. 

In  the absence of inertial, Brownian motion and particle interaction effects, 

Jeffery’s (1922) solution shows the angular velocity 8’ of the spheroid to be 

r2- 1 
given by 

8’ = 8 + - p A (E . p). 
r2+ 1 

Hence, the time change in orientation is 

r2- 1 
p = 8. p +, [E. P-  P(P- E.  PI]. 

r + I  

Bretherton (1962) has noted that nearly all axially symmetric particles rotate 

according to this expression provided that r is replaced by an appropriate aspect 

ratio. 
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As is customary, the statistics of a particle’s orientation are described using the 

probability density function N(p), defined such that the probability of the 

particle being oriented within an elementary solid angle dw of a is N dm. The 

space of all possible orientations is identical to the surface of a unit sphere. 

Since the particle must have some orientation at  each instant, the probability 

density is normalized by 

l m N d w  = 1.  

Following Burgers (1938) and subsequent workers, temporal changes in N are 

governed by the equation 
aN/at+V.F = 0, 

expressing the conservation of probability density with a flux F of particle proba- 

bility in the orientation space given by 

F = fiN-DVN, 

where D is the rotational Brownian coefficient, which has been defined for 

spheroids in Leal & Hinch (1971). Combining the above equations gives 

aivlat + v .  (ON) = DV~N,  

or in terms of derivatives with respect to p 

We follow Giesekus (1962) and split the bulk (volume averaged) stress into 

two parts : 

Q = ( - ~ I + ~ , u E ) + Q ’ ,  

the first representing the stress which would occur in the absence of particles and 

the second, Q’, representing the particle contribution. The particle contribution 

a’ to the bulk stress is itself conveniently written as the sum of two parts: as, 

the strain-stress representing the contribution from a particle which is undis- 

turbed by Brownian motion except insofar as it governs the orientation dis- 
tribution, and oD, the diffusion-stress representing the contribution arising from 

the effective particle rotation associated with the rotary Brownian diffusion 

process. 

The strain-stress as for a particle a t  one particular orientation is evaluated 

following Batchelor ( 1970). The contributions from each possible orientation 

are found, weighted according to the probability of a particle being so aligned 

and finally summed. Further details of the calculation may be found in Hinch & 

Leal (1972). The result for near-spheres is 

Q s - - 2 /u. @,r395 114 7~ 2 (pppp): E + (Be - BE’) [(pp) . E + E . (pp)] + #( 1 - + + +?) E}, 

(2) 
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where E = r - 1 < 1, @ is the volume concentration of suspended particles and 

,u the viscosity of the ambient suspending liquid. The pointed brackets denote an 

average over the orientation space of the included function, i.e., 

( M )  = j M(P)N(P)  dm. 
W 

In  a similar manner the diffusion-stress may be evaluated, with the result 

gD = 2p@{9D~(pp)}. (3) 

These expressions (2) and (3) are equivalent to those of Giesekus (1962) in the 
case of a shear flow, as well as the equations (9) and (10) of Hinch & Leal (1972). 

The stress contribution of any particle of revolution will be qualitatively similar 

but with the shape-dependent coefficients differently related to the effective 

particle aspect ratio. 

In  order to evaluate the averages ( } in the expressions for the bulk stress, it is 

necessary to derive a solution of (1) for the orientation distribution function. An 

approximate series solution valid for nearly spherical spheroids in a steady simple 

shear flow was given by Peterlin (1938). Peterlin & Stuart (1939) used this 

solution to determine the effective viscosity of the suspension in the limit of 
strong Brownian motion. Later this unnecessary restriction to strong Brownian 

motion was removed in calculations of certain optical properties (Sadron 1953) 

and of the bulk stress for steady shear flows (Hinch & Leal 1972). In  addition, 

Scheraga (1955) included a very large number of terms of Peterlin’s series 

solution to calculate the effective viscosity for & 6 r 6 300 and 0 6 r/D < 60. 

In  the following, Peterlin’s expansion is applied to the general linear time- 

dependent flow. 

We begin with the formal expansion in the small parameter (r2 - l)/(r2 + 1)  : 

r2- 1 
N = N o + F N l +  ... . 

r + 1  

The strict double limit we are taking here is r +  1 with (l/D)E, (l/D)S2 fixed. 

However, it  can be shown that this may be relaxed to requiring the eigenvalues 

of the matrix 

- -  ’ (r21 E+P) 
D r 2 + 1  

to have small positive parts. In  the case of shear flow this reduces to the uncon- 

strained limit r -+ 1, but for pure strains it is necessary to keep 1 E 1 (r2 - l ) /D(r2  + 1) 

small. 

Substitution of the expansion into the (1) generates the problems 
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At the zeroth order the particles are spheres. Any central axis of a sphere can be an 

axis of revolution, so that the orientation of ‘the ’ principal axis must be purely 

random, i.e. No = 11477. The forcing of Nl by the right-hand side of (4) is thus 

calculated as 

(31477) p . E . p. 

This suggests trying a general quadratic form for N,: 

Nl = (1/477)p. A.  p, 

where A(t) is symmetric and traceless. The latter condition is a consequence of 

the normalization. Substituting this form for Nl into (4) yields 

9Algt + 6DA = 3E, ( 5 )  

where 9/9t is the Jaumann derivative: 

9A/at  = aA/at + A .  8 -8. A. 

The angle averages for the bulk stress can now be found to sufficient accuracy 

in terms of A. Two identities for the projection averages are needed: 

Thus, e.g. 

J-mp,pja* = - 477 6.. 
3 13’ 

2 r 2 - I  

1 5 r 2 + 1  
(pp) = 41 f- - 

The bulk stress contribution due to the presence of the suspended particles is 
then found from (2) and (3) to be 

Q’ = 2pQ{$ E + e2 [aE + gDA + +( E . A + A .  E - 31 ( A  : E )  )I + O( c3)}. (6) 

The equations (5) and (6) represent the constitutive relation for the suspension 

and are the main results of this section. From a continuum-mechanics point of 

view, our model is an example of a simple class of anisotropic fluids. However, in 

distinction from the approach of continuum mechanics, each term of the model’s 

constitutive equations can be related to a specific microstructural effect, and 

further, our analysis has determined explicitly the material coefficients. We 

believe that the natural appearance of the Jaumann derivative in this expression 

and other expressions in suspension rheology (cf. Frankel & Acrivos 1970) is 
significant in view of the apparent inability of general continuum mechanics to 

distinguish between this and other invariant time derivatives. It will be noted 

that the stress deviates from the Einstein value of @@pE by quadratically small 

terms. In  our opinion, the value of the results (5) and (6) is not primarily their 

potential technical application but the explicit representation of a complex 

material. The memory of the suspension enters with the time derivative of (5). 

The nonlinear behaviour is present in the second 6DA term of ( 5 )  compared with 

the Jaumann derivative (gA/9t)  (doubling I’ will not double A), and in the 

product of E and A in (6). The nonlinear effect will be shown in a following section 
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to yield a strain-thickening viscosity. As was indicated previously, the combined 

memory and nonlinear effects in shear flow produce a shear-thinning viscosity 

and normal stress differences (see the following section and also Hinch & Leal 

1972), as well as a lag in the material response to imposed temporal variations in 

the bulk flow. 

Quite similar constitutiverelations to (5) and (6) have been found in suspensions 

of other near-spherical particles. Goddard & Miller (1967) have an elasticity 

resisting the distortion of the particle shape instead of Brownian diffusion 

resisting anisotropy in the orientation distribution, whereas Frankel & Acrivos 

(1970) have a surface tension playing a similar role for a suspension of drops. 

These other studies were mostly restricted to low bulk deformation rates. 

In the following sections, we apply the relations (5) and (6) to several specific 

bulk flows in order to indicate the types of material response which this near- 

sphere suspension is capable of producing. We shall restrict our attention to 

simple flows which could be used in principle to actually measure the response of 
the materials. An alternative scheme to that followed here would be to exploit 

the calculus of the Jaumann derivative, as developed by Goddard & Miller (1966), 

invert (5) and hence achieve an explicit representation for the stress in terms of 

the history of the strain rate. This expression for general flows is complex, 

involving material integrals of the product of the material matrizant tensor with 

the strain rate tensor, and is still not easily interpretable without reverting to 

specific flows. 

There are two approximate solutions of (5) and (6) for general flows which are 

relatively simple. When the flow is weak and slowly varying the constitutive 

equations reduce to the second-order fluid form 

the next term in the approximation scheme is the third-order fluid correction 

For weaker flow strengths but with no limitation on the time changes the appro- 

priate approximation is known as the linear viscoelastic form: 

These limiting forms illustrate the general ability of anisotropic fluid models to 

reproduce the same asymptotic forms as the so-called isotropic (simple fluid) 
models in the limit of small deformation rates, provided only that the anisotropy 

is induced by the flow and is not inherent in the material a t  rest. To the extent 

that the non-Newtonian features of some materials, such as the suspension under 

present consideration, are a result of induced microstructural anisotropy, we 

submit that the anisotropic fluid theories should be preferred to the more 

common ‘isotropic’ simple fluid theories. 
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3. Shear flow 

The time-dependent two-dimensional simple shear flow 

u = y(t)y,  2, = w = 0 

offers a variety of interesting types of material deformation histories, many of 

which correspond closely to experimental conditions. The cases that we shall 

consider in this section are the sudden application of a steady shear, which will 

also yield the constant-shear solution, the sudden ending of a steady shear, an 

oscillatory shear for weak flow strengths and finally an arbitrary strength 

steady shear on which is superimposed a small oscillation. Bird et al. (1971) have 

recently studied a number of these same examples for a suspension of dumb- 

bell-shaped particles in the limit of weak shear flow (strong Brownian motion) 

To solve ( 5 )  for the components of A, the particular form of the flow gradient is 

substituted. This yields a single and two coupled first-order ordinary differential 

equations, together with one redundant relationship expressing the traceless 

property of A. It is convenient to eliminate the trace condition by the introduc- 

tion of a new variable A, such that 

I Y l P  1. 

A,, = -&A,,+A, A,, = - $A,,-A. 

The differential equations can be solved explicitly: 

A,,(t) = A,,(0)e-6Dtcos 

e-6D(t--7) y (7) sin ( /: y d r  ') dr ,  

+ A,,( 0 )  e-6Dt sin (/: fy  d r )  , A13(t) = A13( 0) e-6Dt cos 

A23(t) = AZ3( 0) e-6Dt cos (1: ,./dr) - A,,(0)e-6Dt sin (1: + y d r )  ,I 
A33(t) = A33(0) e-6Dt. 

The coiinexion between this solution and that obtained from the calculus of the 

Jaumann derivative for more general flows should be apparent. The appearance 

of the exponential factor e-'jDt in these expressions means that the orientation 

state becomes independent of the initial conditions (as specified by A(0)) as time 
advances. In  the sense of continuum mechanics, this suspension has a fading 

memory for past configurations. 
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In  shear flow, equation (6) for the particle stress reduces to 

753 

Normal stress differences are employed in order to eliminate the arbitrary iso- 

tropic pressure. 

3.1. The starting problem 

As a first example of a time-dependent shear, we consider the response of the 

suspension to a suddenly imposed shear flow of constant magnitude, 

0 t < 0 ,  

2 0, 
Y( t )  = {? 

where y is a constant. As can be seen in (7) ,  the immediate response of the material 

will depend on the initial orientation state of the suspension. Here we suppose 

that the particle orientations are completely random at the initial instant, 

corresponding to the state that will inevitably be attained in a quiescent sus- 

pension owing to the randomizing effect of Brownian rotations. Hence 

A=O at t = 0 .  

With these initial conditions the solution (7 )  takes the form 

A,, = A,, = A,, = 0, 

A 12 - 3 P  1 + P 2 [ ( 1 - e - 6 D t ~ ~ ~ y t ) + P e - 6 D t s i n y t ] ,  

A = - -  ' 1 - e-6Dt cos yt)  - e-6Dt sin yt],  
2 1 +p 

and the particle contribution to the bulk stress is 

( ( I  - e-6Dtcos y t )  +pe-6Dtsin y t )  
3 1  

3 1  
a;, - 4, = @pye2 - - [ I2,4 1 - e-6Dt cos y t )  + ( 5,P - 7 )  e-6Dt sin yt]  , 

35 1 + p 2  

I [ - 2/3( 1 - e--6Dt cos yt)  + (5P2 + 7 )  e-6Dt sin yt]  , - 4, = @pye2-- - 
35 1 + p 2  

= a;, = 0, 

3 1  

48 FLM 55 
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where the shear strength is non-dimensionalized with the Brownian diffusion 

coefficient p = y/6D. 

The material response a t  large times is precisely that described previously for 

steady shear. The effective viscosity is shear-thinning with constant limiting 

values for large and small shear rates. This shear thinning can be interpreted in 

terms of the microstructural dynamics. The degree of alignment of the particles 

with the direction of the flow increases with the shear rate. In  such an orientation, 

the particles cause less disruption to the basic flow. The corresponding normal 

stresses are non-zero and unequal. They increase quadratically in y for small 

shear rates (p < l),  and finally tend to constant limits (as /? + 1) which are 

independent of y. This predicted behaviour is qualitatively similar to actual 

experimental results in a variety of polymeric solutions and melts, though, of 

course, the magnitudes and other quantitative features are not reproduced 

because of obvious differences between the microstructure of these materials 

and that of the dilute suspension considered here. 

While the details of the transient response depend upon the magnitude of the 

shear rate y and the diffusion coefficient D ,  several general features may be noted. 

First, the material response is characterized by two natural time scales, (6D)-l 
and y-l, arising respectively from the diffusive and advective aspects of the 

microscale particle motion. Second, the transients are oscillatory with frequency 

y and are exponentially damped with increasing time. For example, the effective 

viscosity, defined as the ratio of the shear stress to the shear rate, starts with the 

value 

attains a maximum value 

after a time t = 71.12~ and thereafter oscillates with decreasing amplitude about 

the final steady-state value 

The initial value is that expected in the absence of Brownian rotations and can be 

attributed to the instantaneously established rotation of the suspended particles. 

The oscillatory behaviour, including the overshoot phenomenon, is generated by 

the oscillatory bulk strain experienced by the particles as they execute their 

Jeffrey orbits. The temporal development on the scale (6D)-l arises from the 
change of the distribution due to the diffusive action of rotary Brownian move- 

ments. It should also be noted that for a given material the overshoot in the shear 

stress is enhanced by higher shear rates and in the limit tends to a constant 

value of 15B@pDc2. Similar transient behaviour has been observed (Booij 1966; 

Vinogradov & Belkin 1965) in a variety of polymeric materials. I n  particular 

Vinogradov & Belkin (1965) found in polymer melts an overshoot in the shear 

stress whose magnitude increased with y, and which occurred at a time that 
decreased with increasing y. 
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In contrast to the shearing stress, the transverse and streamwise normal stress 

differences are initially zero because of the isotropic orientation at  the start. 

Non-zero normal stress differences are established in an oscillatory manner as the 

orientation distribution becomes anisotropic. In  the steady state, the Weissenberg 

hypothesis (which assumes that the secondary normal stress difference vanishes) 

is approximated in a numerical sense, because 

ui1-ui3 = 6 ( g i 3 - ( ~ & )  as t+w. 

However, a t  intermediate times the stress is dominated by the oscillatory 

component sinyt, and hence the normal stress differences can be of similar 

magnitude (and sign). 

3.2. The stopping problem 

The second example, closely related to the first, involves the sudden termination 

of a steady shear flow, 

The initial conditions for A will be taken as the steady-state values obtained 

above. The solution (7) then becomes 

A13 = A23 = As3 = 0, 

A=---- P2 e-6Dt 

2 1 + p  ’ 

where p is again the non-dimensional shear rate y/6D. Substituting these into 

the expressions (8) for the stress yields 

aI2 = @pys2-- e-6Dt 

5 1 + p 2  ’ 
3 P  ri3 - uH2 = @ p y ~ ~  - - e-6Dt. 
5 1 + p 2  

ril - g& = 

Thus the preferred alignment and the stress relax exponentially with a charac- 

teristic time scale (SD)-l. The stress also suffers, a t  theinitial instant, an immediate 

reduction to a small fraction of its value in steady shear. This reflects the fact that 

the contribution due to the particle motion about the Jeffrey orbits vanishes 
instantaneously (when microscale fluid and particle inertia are neglected). 

Alternatively we may note that the suspension is nearly Newtonian, and that the 

Newtonian stress vanishes with the shear. 

Experimental observations in polymeric solutions and melts (see e.g. Huppler 

et al. 1967) again show qualitatively similar behaviour in that the shear stress 

relaxes more quickly than the normal stresses. It is also observed that the stress 
relaxes more rapidly when the preceding shear is stronger, and this is not 

reflected in our expressions. As we shall see, this is one of the few characteristics 
of experimental materials which is not qualitatively described by the near-sphere 

48-2 
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suspension. We can only speculate that the more efficient relaxation from higher 

flow strengths may reflect a difference in the relative excitation of several modes 

which take a spectrum of decay times. 

3.3. Oscillatory weak shear 

As a third example, we consider an oscillatory simple shear flow 

y ( t )  = ysinwt. 

Our primary interest here is the material response after a time sufficiently long 

that the transients can be ignored, leaving only the stationary time-dependent 

response. For this large-time behaviour the coefficients Aij are independent of the 

initial orientation state. The magnitude of the flow strength will be restricted by 

y < max ( w ,  D) .  

We introduce the non-dimensional frequency and shear rate 

= w/6D, p = y/6D 

to obtain the following simplified expressions for the solution (7 ) :  

A,, = A,, = A,, = 0, 

A,, = $P(sin wt - a cos w t ) / (  1 + a2) + O(p/(  1 + a)),, 

A = $p2[ 1 - (3a sin 2wt + (1  - 2a2) cos 2wt)/( 1 + 4a2)]/( 1 + a2) + 0(/3/( 1 + a))4. 

Substituting these formulae into (8), the particle stress is easily shown t o  be 

ai2 = @,uy{$ sin wt + e2[& sin ot + :(sin wt - a cos ot)/( 1 + a2)]>, 

a;, - vi3 = @pye2&/l{6 - [(5a2 + 78)a sin 2wt + (3a2 + 6) cos 2wt] /  

aL2 - a& = @pye2&,0{ - 1 + [( 10a2 - 8)a sin 2wt + ( 17a2 - 1) cos 2wt]/ 

(1+4a2)}/(1+a2), (11)  1 ( 1 + 4a2)}/( 1 + a2). 

It is customary to discuss the shear stress in terms of a complex viscosity 

Hence 7’ = p{ 1 + @[$ + 2 8  2 + te2/( 1 +a2)]},  

7’’ = p@e2 x gal( 1 + a2). 

The real part of the intrinsic viscosity decreases monotonically as the frequency of 
the shear flow increases, whereas the imaginary part exhibits a maximum a t  an 

intermediate w, tending to zero in both the limits w + 0 or co. The existence of a 

positive 7“ results from the memory of the microstructure: this term represents 

the phase lag of the orientation state in adapting to the changing strain field. 

The reduction in the magnitude of the viscosity as the frequency increases may be 

interpreted as a decrease in alignment of the particles in the direction of maximum 
strain (and therefore disruption to the flow), because in a rapidly oscillating 

system there is insufficient time for the orientations to change. 
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The normal stress differences show both a steady and an oscillatory component, 

the frequency of the latter being twice that of the basic imposed flow. Note that 

it is possible for the normal stress differences to change sign for part of the cycle. 

A relatively large number of experimental investigations of this oscillatory 

shear have been carried out, many of which are summarized by Ferry (1970). 

We call particular attention to the recent works of Ferry, Holmes, Lamb & 

Matheson (1966), Moore, McSkimin, Gieniewski & Andreatch (1969), Endo & 

Nagasawa (1970) and finally, Wales & den Otter (1970). They found that the 

shear stresses oscillate with the same frequency as the applied shear flow, and 
have a magnitude proportional to the applied shear amplitude. Furthermore, the 

dynamic viscosity v f  is found to decrease from a constant value at  low frequencies 

to a non-zero but smaller value in the limit as w +a. In  addition, a maximum in 

the component 7” is aIso observed at  an intermediate value of w .  Finally, the 

normal stress differences are observed to consist of a steady part, plus an oscil- 

latory component with twice the applied frequency whose magnitude is propor- 

tional to the square of the applied shear. This behaviour is qualitatively identical 

to the predicted behaviour in the near-sphere suspension. 

One of the reasons for the concentrated experimental effort with oscillatory 

shear has been the suggestion, by various investigators, of a relation between the 

dynamic stress variation with frequency w and the steady stress variation with 

shear rate y.  The existence of such a relationship would clearly be of considerable 

significance since it would allow one to use dynamic measurements as a function 

of frequency to get steady shear rheological information, especially in the range of 

large y where the steady shear experiments are difficult. Unfortunately, it is 

only in the opposite limit that the relationships are well-established (see Wales & 
den Otter). A comparison of the stress distributions (9) and (11)  shows the fol- 

lowing exact relations for a suspension of near-spheres at  arbitrary y and w :  

P*(P)IS = vf(a)lo,a=p 

( 4 1 -  4 3 )  (&I ,  = 6(43- 4 2 )  @)Is = Y-v”(a)Ylo,a=/9, 

where the subscripts s and o imply ‘steady’ and ‘oscillating’ respectively. 

Coleman & Markovitz (1964) suggested a normal stress relationship which is 

equivalent to part of our expression. They expected it to be valid only for low 

shear rates which in our problem means for /?( = a) < 1. Our expressions, on the 

other hand, are valid for all ,6( = a). 

3.4. Slightly unsteady shear 

The final example of a time-dependent unidirectional shear that we consider is a 

steady flow on which is superimposed small oscillations in time. The applied 

shear is given by y(t) = y( l+~s inwt) .  

As in the previous case, we find it necessary to restrict attention here to small 

magnitudes of the oscillation, K < 1, so that we can use a perturbation expression 

in the small parameter K to achieve approximate solutions for the coefficients A,. 

We are primarily interested in the long-time stationary behaviour of the system, 

when these coefficients will be independent of the initial orientation state. 
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Using the long-time solutions to (7) correct to O ( K ~ ) ,  the asymptotic expansion 

The particle contribution to the bulk shear stress oscillates about a constant 

value 

which differs only at  O ( K ~ )  from the steady flow value (K = 0). Hence, it may be 

seen that the presence of the oscillating shear does produce a slight O ( K ~ )  shear 

thinning in the steady component of shear stress, which results from the average 

strain seen by the non-uniformly rotating particles. The effects of an increasing 

rate of steady shear upon the steady component of stress, and of an increasing 

frequency of oscillating shear upon the oscillating component of stress, have 

already been noted as shear-thinning in previous sections and these features are 

preserved in the present example. The effect of increasing steady shear rate upon 

the oscillating shear stresses at  O(K) is also to decrease their effective viscosity 
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(cf. previous case). This is caused by the particle alignment in the direction of the 

flow created by the steady shear. Examination of the sign of the out-of-phase 

shear stress component reveals the very interesting prediction that the oscillating 

shear stress may either lead or lag the applied shear flow depending on whether a2 

is smaller or larger than 3p2 - 1. When the flow is sufficiently strong, ,8 > 3-4, 

a2 can be smaller than 3p2- 1 at lower frequencies. This phenomenon can be 

explained by the fading memory of the microstructure rotating with the vorticity 

of the basic steady flow. 

The normal stresses oscillate slightly, at  O(K),  about the steady shear values 

with the frequency of the imposed oscillations. This should be contrasted with 

the second-harmonic oscillations of the normal stress in the absence of the steady 

component of the shear (cf. previous case). Second-harmonic terms would arise at 

O ( K ~ )  in the present calculation but we have not exhibited them in order to 

maintain a reasonable degree of brevity. 

As with the other problems presented so far, a number of experimental investi- 

gations of polymer rheology have used an oscillating shear superimposed on a 

steady shear. Particularly noteworthy are the investigations of Booij (1966, 

1968). Booij found that in the linear range the steady part of the shear stress was 

unchanged by the small oscillations, and that the oscillating part had a magni- 

tude proportional to K and a frequency equal to that of the applied oscillations. 

The steady shear caused a decrease in the effective viscosity seen by the oscillating 

shear, and the phase of the shear stress showed the phenomenon of leading the 

shear rate at the lower frequencies. The normal stresses exhibited a steady part 

owing to the steady shear, and in the linear range, a component which oscillated 

with the imposed frequency. Finally, all the stress components also showed 

second-harmonic oscillations as K became sufficiently large. All of these measured 

characteristics are qualitatively similar to the behaviour of our simple near- 

sphere suspension. 

4. Axisymmetric pure straining motions 

The next class of examples contains unidirectional elongational flows defined 

by 
u = - @(t)x, ?J = - &E(t)y,  w = E(t)z. 

There is no vorticity in this flow so the near-sphere analysis will be restricted by 

(E(r2- I) / (++ l)Dl < 1. We shall investigate two start-up problems in this 

section: the Heaviside start-up to a constant strain rate, and the ramp start-up 

corresponding to a strain rate which increases linearly with time. The large-time 

limit of the Heaviside start-up yields the constant strain rate solution. 

With no vorticity in the flow, the governing problem ( 5 )  reduces to five inde- 

pendent first-order ordinary differential equations together with one redundant 

relation. For the sake of economy, we shall confine attention to axially symmetric 

orientation distributions, and therefore axially symmetric stresses. The solution 

( 5 )  is thence 

Aij = 0, i p j; A,, = A,, = -&A,  A,, = A ,  
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where 

The particle contribution to the stress (6)  is 

CT!. = 0, i =l= j; v;l = aL2 = - &’, u& = d, 
13  

(14) 
6 0  

where 

It should be noted that for all initial conditions the stress tensor must eventually 

take the Newtonian form in this class of flows (although the effective viscosity will 

vary). 

4.1. The starting problem 

The starting-up problem for the elongational flow 

with random initial conditions ( A  = 0, t < 0)  yields for t > 0 

1E 

2 0  
A(t) = - - ( 1 - e - 6 D t )  

and 

The effective viscosity ,u* increases monotonically in time from its initial value of 

2 6  2 
P”l0 = P P  + @ ( $ + m e  )I 

to the final steady-state value of 

in a characteristic time of (6D)-l. The steady effective viscosity shows the 

familiar strain thickening, with a linear increase for increases in E/D. 
The non-Newtonian effects have been confined to be of O(e2) in our formulation 

(5)and(B),i.e. theaboveresultsarelimitedto IEs/D/ < 1.Itisnot difficult tofind 

that when lEe/D( 1 the steady effective viscosity tends to a constant value 

,u[i + @($ ++)I if EE > 0, 

,u[I + @(; -&)I if Ee < 0. 
P * l m  = { 

It can be further shown that the steady effective viscosity takes, at  arbitrary 

values of eE/D (but E --f 0) ,  the form 

where J ( z )  = e-Qerf [Q( - 3x)$]/( - 3x)4 and 2 = sEfD. 

The strain thickening is a result of the preferential alignment of the particles 

along the principal axis of the strain. In that direction the particles reach out, on 



A suspension of nearly spherical particles 761 

average, into the largest relative flow, and so through the no-slip condition 

create the greatest net disturbance. This strain-thickening mechanism should 

generalize to other materials with a similar microstructure that can be preferen- 

tially aligned. Indeed recent experimental measurements of polymeric materials 

(Metzner & Metzner 1970; Astarita & Nicodena 1970) do show such a qualitative 

behaviour . 

4.2. The starting problem with linearly increasing strain 

A second, related flow is the start with a ramp function strain. One reason for the 

interest in this flow is that pure straining motions naturally produced are not 

usually steady: one would like to determine the extent to which the elongational 

viscosity for steady flow is applicable to time-dependent cases. We suppose that 

the suspension is initially in a state of random orientation. Then with 

E ( t )  =f t ,  (t 3 0) 

we find 

hence yielding the buIk stress 

A ( t )  = ( f t /2D) [I - ( 1  - e~"~) /6Dt] ,  

Comparing (16) and (15) we see that, for the particular time variation we have 

chosen, the time-dependent effective viscosity is slightly less than that given for a 

steady strain equal to the instantaneous magnitude. This is simply a result of the 

memory of the microstructure interacting with the nonliner strain-thickening 

mechanism outlined earlier: there is a lag as the orientation state adapts to the 

changing flow. At Dt becomes large (but Ieft/Dl 4 I ) ,  the transients decay away 

leaving an increasing effective viscosity which is less than the steady strain value 

by pus2f/84D2 (and this is small compared with the instantaneously evaluated 

strain thickening pe2ftf 140). We conclude therefore that the strain thickening 

will be common amongst time-dependent flows which do not change rapidly on 

the time scale (SD)-l. 

5. Slightly wobbly shear 

A rheologically interesting flow which is closely related to the slightly unsteady 

shear described earlier is the flow composed of super-imposed orthogonal shear 

flows studied experimentally by Simmons (1970) : 

u = yy, v = 0, w = p ~ ~ s i n ~ t ,  y = constant. 

We shall be interested in the long-time behaviour of the oscillating system. 

The governing problem (5) does not reduce and remains five coupled first-order 

linear ordinary differential equations with varying coefficients. In  order to 

simplify the problem we must restrict attention to  small amplitude oscillations, 

K < I .  We expand the coefficients Ai j  in an asymptotic series in the small para- 

meter K .  With the frequency and shear strength non-dimensionalized by the 

relaxation rate BD, 
OL. = p = y/6D, 
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the particle stress to O ( K ~ )  is 
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26 3 1 - 7p3 - 2sp + lop48 + 20p2s - 4s 

I + ( + P + S ) 2  

+ 2nd harmonics 

sin wt 

] COS wt + o ( K 2 ) ) ,  

26 3 1 

4 +  17p2+28+5p3~-4ps  

--.__ 3 1  8 $p3+ 18p+ 19p s + 28s) COS wt + o ( K 2 ) ) ,  

280 1 +p2 ('m 1+(&3+s)2  

&34+9/32+4-/33s 

35 1 +p2 1 + ( + / 3 + ~ ) ~  

+ 2nd 

(Ti1 - 0-i3 = @pys2-- - 

6/34+21/?2+28- 14p2s-32s 
1+K2 _- 

1 + (+P+s)2 
Vi2 - Pi3 = @py$ - - l c  

35 1 +p2(  [ 16 1 +p2 

+ 2nd harmonics 

117) 

where the summation is taken over s = - a and s = + a. The second harmonics 

have not been given as they are difficult to interpret. 

The shear stress C T ~ ~  and the two normal stress differences are changed from 

their values in a steady simple shear (cf. (9)) only at  O ( K ~ ) .  The shear stress and 

primary normal stress difference are decreased while the secondary difference is 
increased by the presence of the oscillating transverse shear. Comparing the 

shear stress in a weakly oscillating simple shear, equation ( 1 I) ,  with the trans- 

verse oscillating shear stress ci3, one finds that the basic steady shear reduces the 

complex effective viscosity seen by the transverse motions. The interaction of the 

two shear fields produces a novel stress component ai3. A full physical inter- 

pretation of these phenomena in terms of the microstructural dynamics is 

complicated in this genuinely three-dimensional time-dependent motion. We 

look forward to experimental results in this bidirectional shear flow, as no 

quantitative information is yet available to compare with our near-sphere 

suspension results. 

6. Maxwell orthogonal rheometer 

A non-viscometric flow which has been used in experimental rheology is 

zc = !22x+yy, 2, = 0, w = -ax. 
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This is a simple shear y y  combined with a vorticity 2Q about the gradient direc- 

tion. Here we shall only consider the steady response t o  a steady flow. The 

governing system (5) then simplifies to a fifth-order linear algebraic set of equa- 

tions. With non-dimensional parameters 

a = Q/6D, /3 = ?/so, 6 = (4 + 20a2 + 5p2 + 8a2p2 + I6a4 +p*)-’, 

the solution becomes 

In the limit a + 0 we recover the steady shear flow form (9) for the stress 

pattern. Comparing (18) with (9)) we see the additional rotation ( Q  $: 0) causes a 

number of changes. First, the shear stress 4, is reduced and, for certain combi- 

nations of a and p, the effective viscosity can take values less than the steady 

(a  = 0) high shear rate (p-. 00) limit. Second, the primarynormal stress difference 

a;, - is decreased while the secondary difference 4, - 4, becomes more 
negative. Eventually when a is large enough the magnitude of the secondary 
difference exceeds that of the primary difference. Finally, novel stresses vi, and 

are produced. All these effects should be interpreted as a net rotation through 

less than a quadrant by the additional vorticity 2Q of any preferential alignment. 

In the limit p+ 0, we recover some aspects of the weakly oscillating shear flow 

( I  1) .  As is noted in another theoretical model by Bird & Harris (1968, 1970), the 

shear stresses and uL3 are then given by the real and imaginary parts of the 

complex effective viscosity evaluated for the frequency w = Q,  i.e. 

(.I2 - yy’(a), ah3 N - yy ” (a )  for p-+ 0. 

The oonnexion with the oscillating shear (for weak flow strengths) is explained in 

our orientation model by the oscillating flow field a particle must experience as i t  

rotates with the vorticity 252. Thus the phase lag in time has become a phase lag in 

direction. The effect of a non-zero shear strength is to  thin both components of 

the complex viscosity, as would be expected from increased preferential align- 

ment in the flow direction. 

An experimental study of a polymer melt by Maxwell & Chartoff (1965) in 

such arheometer did reveal a number of the qualitative features contained in (18). 

The shear viscosity a,,/y did show a thinning separately due to increases in the 

vorticity and the shear strength, a and B. The orthogonal shear stress aI3 was 
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found to be linear in the shear strength (presumably only a t  low p)  with a fie- 
quency dependence which vanished in both limits a -+ 0’00, with an intermediate 

maximum. Our model only fails to yield a normal stress that is linear in the 

shear, but one should be sceptical of such an experimental observation, which 

apparently depends on the sign of the shear. 

7. Conclusions 

In  the preceding sections of this paper we derived a general expression govern- 

ing the rheological behaviour of a dilute suspension of nearly spherical particles 

subject t o  Brownian couples and have considered the application of this con- 

stitutive relation to the description of a suspension’s response for several specific 

imposed flow fields. As a result of this and previous investigations we may 

characterize the rheological behaviour as follows. 

(i) An exponentially fading memory with a characteristic time scale of 

(SO)-’. When there is a vorticity 2Q present, the response may oscillate with 

frequencies 2Q and Q owing to the rotation of the microstructure. 

(ii) A nonlinear effect of a strain-thickening viscosity in a uniaxial extensional 

motion, although the final constant limiting value of the viscosity a t  high strain 

rates is not contained within our model equations (5) and (6). 

(iii) A nonlinear effect of a shear-thinning viscosity in a shear flow, with 

constant limiting values of the viscosity a t  small and large shear rates. There is 

also a thinning action of increasing frequency in oscillatory shear and of in- 

creasing steady shear strength and/or frequency on a superimposed oscillatory 

shear (parallel or transverse). 

(iv) A nonlinear effect of unequal non-zero normal stress differences in shear 

flow. These are quadratic in the shear rate for weak flows but become constant for 

strong flows. 
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