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Colloids may be treated as “big atoms” so that they are good models for atomic and molecular
systems. Colloidal hard disks are therefore good models for 2d materials and although their
phase behavior is well characterized, rheology has received relatively little attention. Here
we exploit a novel, particle-resolved, experimental set-up and complementary computer sim-
ulations to measure the shear rheology of quasi-hard-disc colloids in extreme confinement. In
particular, we confine quasi–2d hard discs in a circular “corral” comprised of 27 particles held
in optical traps. Confinement and shear suppress hexagonal ordering that would occur in the
bulk and create a layered fluid. We measure the rheology of our system by balancing drag
and driving forces on each layer. Given the extreme confinement, it is remarkable that our
system exhibits rheological behavior very similar to unconfined 2d and 3d hard particle sys-
tems, characterized by a dynamic yield stress and shear-thinning of comparable magnitude.
By quantifying particle motion perpendicular to shear, we show that particles become more
tightly confined to their layers with no concomitant increase in density upon increasing shear
rate. Shear thinning is therefore a consequence of a reduction in dissipation due to a weakening
in interactions between layers as the shear rate increases. We reproduce our experiments with
Brownian Dynamics simulations with Hydrodynamic Interactions (HI) included at the level of
the Rotne–Prager tensor. That the inclusion of HI is necessary to reproduce our experiments
is evidence of their importance in transmission of momentum through the system.

I. INTRODUCTION

Confined fluids often exhibit modified flow behavior
compared to the bulk due to coupling to the boundary.
This may be static (i.e. structural alterations due to
energetic or entropic interactions) or dynamic (e.g. the
hydrodynamic influence of the wall). The shear viscos-
ity of simple liquids increases by orders of magnitude in
films less than ∼ 7 molecules thick1–3. This is a con-
sequence of confinement-induced solidification near the
boundary, driven by van der Waals interactions4–6. By
contrast, the viscosity of water increases more modestly
under similar conditions7,8 as confinement-induced solid-
ification is suppressed by the hydrogen bond network.

On the mesoscopic scale, rheological measurements of

a)Electronic mail: paddy.royall@epsci.psl.eu

two-dimensional soft materials typically focus on interfa-
cially adsorbed components including nanoparticles9,10,
proteins11–14, lipid15–18, surfactant19 and polymer10,20–22

monolayers or asphaltene films23–25, 2d foams26,27, Hele-
Shaw emulsions28 lipid bilayers29 dusty plasmas30 and
colloids11,31–34. The latter can be tailored to exhibit in-
teractions similar to simple models of atomic and molec-
ular systems, and since they explore phase space in
much the same way colloids provide a means to probe
the same phenomena, for example the effect of confine-
ment, and other external fields such as shear, upon phase
behavior35–37. Due to their mesoscopic size, colloids may
be confined by walls that are smooth on the particle scale
or by walls that are rough (like atomic and molecular sys-
tems).

Another class of materials at a somewhat larger length-
scale is (athermal) granular matter and here too individ-
ual particles may be studied, and even the force net-
works between them38. Under vibration, granular mat-
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ter can mimic the phase behavior of thermal systems39.
The rheology of granular matter has received consider-
able attention40–46. Like suspensions of colloids, gran-
ular materials become very much more viscous at high
packing fraction, however the limiting case of divergence
viscosity is jamming in the case of grains, rather than the
thermal glass transition (which occurs at a lower pack-
ing fraction) in the case of colloids47. At the microscopic
level, the shear response of colloidal and granular systems
is distinguished in that colloidal particles usually do not
come into physical contact with each other or with the
walls of the sample cell. Therefore, dissipation occurs
through hydrodynamic coupling and Brownian motion
rather than friction due to direct contacts as in granular
matter. Very occasionally, under extreme shear rates for
example, contact can occur, leading to very sudden shear
thickening48,49.

In colloidal systems at volume or area fractions where
glassy dynamics are encountered, researchers report both
increases and decreases in viscosity with respect to the
bulk depending on the degree of confinement and the
boundary details. Relaxation may be accelerated (decel-
erated) near smooth (rough) walls50–52. These effects are
attributed to boundary-induced structural modification
dependent on the shape, roughness, wetting characteris-
tics or interaction potential of the wall (to name but a
few possibilities)53–55. As a general rule, the formation
of well-defined particle layers is associated with faster re-
laxation or reduced viscosity.

The bulk rheology of a hard-sphere-like (or hard-disc-
like) colloidal suspension depends on its volume (or area)
fraction, φ56, and the shear rate, γ̇. At low shear rates,
viscosity decreases with γ̇57–60. For volume (area) frac-
tions approaching the hard sphere (disc) glass transition,
shear thinning occurs after the applied stress exceeds a
yield stress on the scale of kBT/a

3, where kBT is the
thermal energy and a is the particle radius59–64. Upon
increasing γ̇, hard sphere suspensions exhibit a Newto-
nian plateau followed by shear thickening at very high
shear rates57,58,65,66. Shear thinning in these systems is
attributed to stratification of particles decreasing resis-
tance to flow, while shear thickening at high γ̇ is a con-
sequence of frictional particle surfaces67.

While the rheology of (3d) colloidal hard spheres has
been extensively studied68–70 attention to their 2d ana-
logue, hard discs has focussed on quiescent (unsheared)
systems71–80. Here, we focus on the rheology of con-
fined colloidal hard discs. We present experiments on a
quasi-hard-disc system of spherical colloids adjacent to a
solid substrate confined by 27 identical particles optically
trapped along a circular boundary and subjected to shear
by boundary rotation. These are accompanied by com-
puter simulation of a 2d system using Brownian Dynam-
ics with hydrodynamic interactions (HI) included at the
level of the Rotne–Prager tensor. Under quiescent con-
ditions, our system has a bistable state between a hexag-
onal configuration that distorts the flexible walls [Fig. 1
(b)] and a layered fluid where hexagonal ordering is sup-

pressed [Fig. 1 (a)]. Hexagonal configurations exhibit
voids adjacent to the wall, enabling relaxation mecha-
nisms that are absent in the bulk78. Under shear, hexag-
onal configurations rotate as a rigid body, slipping only at
the wall interface, while layered fluid configurations slip
between each layer. At higher shear rates, the system is
shear melted and only the layered fluid is observed81.
It has subsequently been shown that simulations of a
similar system exhibit distinct regions of shear thinning
and thickening as a function of shear rate82,83. Here,
we develop a layer-by-layer approach to determine lo-
cal rheological properties directly from experiments and
simulations via drag forces, and we characterise motion
perpendicular to shear via mean squared displacements.
Our approach opens a route to particle-level analysis of
rheological properties in experimental systems.

The key finding of this work is that, in contrast with
many molecular liquids1–3, strong confinement has lit-
tle effect on the shear rheology of colloidal quasi-hard-
discs. Our measurements are qualitatively and quan-
titatively aligned with simulations of hard discs under
steady shear62. We measure a flow curve indicative of
a yield stress, and shear thinning towards a Newtonian
plateau. Motion perpendicular to shear is suppressed
with no change in local density as shear rate is increased.
We hypothesize that this suppression of perpendicular
motion reduces the coupling between adjacent particle
layers, reducing drag and dissipation, and consequently
we measure a reduction in viscosity. This interpretation
is illustrated in Fig. 1 (h-i). Our simulations reveal that
the mechanism of momentum transfer in this system is
dominated by hydrodynamic interactions, and the ex-
cluded volume interactions between the particles play a
rather minor role.

This paper is organised as follows. Section II describes
the experimental and simulation procedures, and details
of our stress calculation. Full details of the drag coeffi-
cient determination, simulations and interlayer hopping
are provided in the Appendices. Section III A presents
key structural and dynamic measurements required for
the measurements of local shear rate, stress and viscosity
in Section III B. Section III C quantifies the motion per-
pendicular to shear. Finally, Section IV combines these
measurements to develop our explanation of shear thin-
ning. We conclude this work in section V.

II. METHODS

A. Experiment

Figures 1 (a) and (b) show micrographs and (c) shows
a side-view schematic of the system. Polystyrene spheres
of radius a = 2.5 µm and polydispersity 2% are sus-
pended in a 3 : 1 mass ratio mixture of deionised water
and ethanol, loaded into a cell constructed using three
glass coverslips and a microscope slide and sealed with
epoxy. Owing to their density mismatch with the sol-
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FIG. 1. (a-b) Annotated micrographs and (c) side-view schematic. (a) Shear-melted, layered system for Pe ≥ 5.25. (b)
Hexagonal structure at Pe = 1.75. Red crosses label optically trapped particles which are translated along the circular path
indicated by the red arrow. Polar co-ordinates, (r, θ) are defined from the centre. R is the boundary radius. Orange dashed
lines in (a) and (c) demarcate particle layers, numbered 1 to 5 from the centre. Pink lines in (b) indicate hexagonal structure.
(d) Histograms of radial particle location in experiments at Pe indicated in legend. y-axis scale is arbitrary and data are offset
in y for clarity. (e) Angular velocity profiles corresponding to experiments in (d). Vertical dashed lines demarcate layers and
zeros represent the inter-layer boundaries. (f) Area fraction as a function of layer number measured from average Voronoi cell
areas in experiment. Lines are colored according to driving Pe. Black data represent the unsheared system where differing local
structure leads to a change the distribution of local area fraction across the layers [see (d)]. (g) Area fraction from Voronoi
cell area as a function of driving Pe for each layer, measured in experiment. (h-i) Illustrated interpretation of shear thinning.
Coupling between layers depends on the range of radial motion within adjacent layers. In a slowly driven system, (h), particles
explore a larger radial extent than in a quickly driven system, (i). For larger local shear rate, particles in adjacent layers are
further apart, interlayer interactions are weaker and the effective viscosity is lower. This manifests as shear thinning.

vent, the particles quickly sediment, forming a quasi-
two-dimensional layer adjacent to the lower glass cov-
erslip, which is treated with Gelest Glassclad 18 to pre-
vent particle adhesion. The gravitational length is lg/a =
0.030±0.002, resulting in negligible out-of-plane particle
motion in the z direction, while still being far enough
from the substrate that any direct interactions with the
substrate through contacts can be safely neglected. In-
terparticle interactions are of Yukawa form with a Debye
length λD ≈ 25 nm, which is sufficiently short that they
may be considered quasi-hard-discs84. In the dilute limit,
the time for a particle to diffuse its radius (the Brownian

time) in the substrate-adjacent, quasi-two-dimensional
layer is measured to be τB ≈ 70 s.

Computer-controlled holographic optical tweezers in
an inverted microscope are used to manually gather
N = 75 particles, 27 of which are optically trapped to
form a circular boundary of radius R which confines the
remaining nconf = 48. The spring constant of the opti-
cal traps maintaining this boundary is extracted from
the trapped particle trajectories and is determined to
be k = 105(1) kBTa

−2. The colloids sediment to the
bottom of a sample cell, and thus there is a (relatively)
large amount of solvent above. We presume that any lo-
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cal heating effect is swiftly dissipated to the surrounding
solvent. When we tested the system, for example at dif-
ferent strengths of the laser tweezers, we saw no signs of
any such heating.

Using the optical tweezers, the boundary particles are
translated along a circular path through the periodic dis-
placement of the optical tweezers array in discrete steps
of length a/4. The frequency with which the array of
traps is updated defines the boundary rotation speed,
which we characterise using the boundary Péclet num-
ber, Pe = τB/τD, where τD is the time taken to drive a
boundary particle a distance a. We consider experiments
with Pe in the range 1.75 ≤ Pe ≤ 19.25.

Following the initiation of boundary rotation, the sys-
tem is left to complete 5 full rotations before micrographs
are acquired at a rate of 2 frames per second for up to
3 hours. No indication of anything other than a steady-
state behavior was found. Particle trajectories are ex-
tracted from micrographs using standard algorithms85.
Circular polar co-ordinates, r and θ, are defined from
the system centre.

B. Simulation

We perform 2d Brownian Dynamics simulations of
strongly screened charged colloids interacting via a
Yukawa pair potential under highly ionic conditions.

V (r) = V0
e−κr

κr
, (1)

with r denoting the inter-particle separation. The inverse
screening length κ is chosen as κa = 14.85 and the con-
tact potential V (r = 2a) ≈ V0kBT where V0 = 0.85, in-
formed by the experimental parameters, ensuring quasi-
hard-disc behavior81. In particular, we found empiri-
cally that κa = 14.85 was sufficiently hard to closely
reproduce key dynamical properties of the experimental
system such as the way in which layers of particles slip
past one another. Further details are available in Ap-
pendix A and Ref.81. We neglect polydispersity. Bound-
ary particles experience harmonic potentials mimicking
optical traps and are translated along a circular path at
a prescribed rate. Hydrodynamic effects are accounted
for at the Rotne-Prager level86,87 in the presence of a pla-
nar substrate (Blake’s solution88), giving the overdamped
equation of motion for a particle trajectory ri in a time
step δt

ri(t+ δt) = ri(t) +

 N∑
j=1

µ↔ijFj

 δt+ δWi. (2)

The mobility tensor µ↔ij comprises both the self-mobility
and the entrainment of particle i by the hydrodynamic
flow field created by conservative forces Fj on parti-
cle j. This force stems from pair interactions and, for
the boundary particles, the harmonic potentials. The

random displacement, δWi, is sampled from a Gaus-
sian distribution with zero mean and variance 2D0δt
(for each Cartesian component) fixed by the fluctuation-
dissipation relation, where D0 is the diffusion coefficient.
Further details are provided in Appendix A. We have pre-
viously shown that these simulations faithfully reproduce
experiments both qualitatively and quantitatively81.

C. Stress Calculation

Figure 1(a) shows that the particles organize into con-
centrated layers. This motivates our determination of the
stress, by considering each layer, i. We presume that the
angular velocity and radial position are constant within
each layer, which, as we shall show in Section III is rea-
sonable for our purposes. We thus perform a series of
force balances to obtain the stress across each layer, σi.
Within each layer there are three forces which must sum
to zero at steady state. There is some driving force (ei-
ther optical forces or the transmitted force due to the
motion of an external layer), Fext. This is balanced by
some self-drag force representing dissipation within the
layer, Fself , and some additional force that drives the
next internal layer, Fint. In the case of layer 1 (the cen-
tral layer), there is only self-drag.

The dilute limit single particle drag coefficient near the
substrate, ζemp = 1.9 × 10−7 kg s−1, is extracted from
measurements of Brownian motion in the dilute limit,
without any optical traps. However, multiple particles
moving along a circular path of radius r near a substrate
each experience reduced hydrodynamic drag due to the
presence of the other particles89. This is the drafting
effect. This drag reduction depends on the number of
particles and r, which suggests that particles in differ-
ent layers experience different drag coefficients. Based
on the discussion in Appendix B we assume a constant
drag coefficient throughout the system, ζ = 0.34ζemp,
which is reduced compared to the dilute limit drag co-
efficient due to many-body hydrodynamic effects, but is
independent of radius. This effect is discussed in greater
detail and this approximation is justified in the Appendix
B. We therefore assume that the self-drag force has the
same form for all particles and is proportional to velocity,
Fself = ζrω.

Consider layer 5, the boundary, which consists of n5 =
27 particles, each of which is located at radial position r5
and subjected to an optical force Fopt. All n5 particles
move with angular velocity ω5 and each experiences a
self-drag proportional to its velocity. Balancing the forces
on layer 5 yields:

n5Fopt − n5ζr5ω5 − F4 = 0, (3)

where F4 is the as of yet unknown force transmitted in-
wards to drive the motion of all n4 = 21 particles forming
layer 4. The force balance for layer 4 is then:

F4 − n4ζr4ω4 − F3 = 0, (4)
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where, once again, F3 is the unknown force required to
drive layer 3. Propagating the layer-by-layer force bal-
ance inwards to layer 1 reveals the retrospectively trivial
result that the optical driving forces are exactly balanced
by the self-drags experienced by all of the particles:

n5Fopt − ζ
5∑
i=1

niriωi = 0. (5)

Replacing the optical forces by the sum of the drag forces
gives the unknown force required to drive layer i, Fi, as
the sum of the drag forces on layer i and all layers that
are internal to i:

Fi = ζ

i∑
j=1

njrjωj . (6)

Assuming that the inter-layer forces act at circular con-
tact lines between layers at radial locations intermedi-
ate between the two layer centres, we calculate the two-
dimensional tangential stress on layer i:

σi =
ζ

π(ri + ri+1)

i∑
j=1

njrjωj . (7)

III. RESULTS

We begin by recapitulating the structural and dynamic
features necessary for our rheological analysis. We subse-
quently implement the analysis described in section II C
to measure the shear rheology combining particle-level
structural and dynamic information to extract stresses
from drag forces. Finally, we quantify particle motion in
the radial direction, perpendicular to shear.

A. Angular Velocity Profiles and Structure

Without shear, the system can adopt either layered
fluid or locally hexagonal structures, shown in Fig. 1
(a) and (b) respectively78. When sheared at Pe . 3,
hexagonal structures can persist and rotate as a rigid
body81. The hexagonal structure is characterised by mul-
tiple peaks in the radial density profile [black line in Fig.
1 (d)] and a flat angular velocity profile [black line in
Fig. 1 (e)]. For Pe & 3, the system is shear melted
and only layered structures are observed [coloured data
in Fig. 1 (d)]. The location of the ith peak in the lay-
ered density profile is labelled ri. Layer populations are
fixed at n1 = 3, n2 = 9, n3 = 15, n4 = 21 and n5 = 27.
In these shear melted experiments, angular velocity de-
creases in a step-like manner from the boundary to the
centre coloured data in Fig. 1 (e)], representing slipping
between adjacent layers. The average angular velocity
within layer i is denoted ωi.

The area fraction is estimated for layer i as φi =
πa2/〈AV〉i where 〈AV〉i is the average Voronoi cell area

for particles in layer i79. Figure 1 (e) shows that φ
varies from φ1 ≈ 0.8 at the centre, to φ4 ≈ 0.76 adja-
cent to the boundary. At these densities, bulk hard discs
are crystalline90. However, in shear-melted experiments,
hexagonal ordering is inhibited by the curved boundary
and the application of shear and our system is liquid-
like78,81.

Shearing the system modifies the area fraction profile
compared to the unsheared system [Fig. 1 (e)], enhancing
φ4 and suppressing φ3 and φ2. However, once the system
is shear melted, the area fraction profile is insensitive to
Pe in the range of Pe investigated, as shown in Fig. 1 (f).

B. Shear Rheology

To characterize the shear rheology, we follow the anal-
ysis in section II C and treat the shear-melted system as
a series of coupled layers, following reference26. Layers
have fixed populations, ni. We assume all particles are
located at radial position ri corresponding to the peaks
in the density profile [Fig. 1 (d)] and move with angular
velocity ωi [Fig. 1 (e)]. Viscosity is η = σ/γ̇ where σ is
the stress and γ̇ is the shear rate. The shear rate expe-
rienced by layer i is obtained from the angular velocity
profile as

γ̇i = ri
∆ωi+1,i

∆ri+1,i
, (8)

where ∆ωi+1,i = ωi+1−ωi is the step down in ω between
layer i+ 1 and layer i, and the radial separation between
the layers ∆ri+1,i = ri+1 − ri.

We determine the stress throughout the system as dis-
cussed in section II C. In particular, the corresponding
stresses, σi, are obtained via a force balance on each
layer, the key result is given in Eq. 7, that the force
required to drive layer i is the sum of the drag forces
on layer i and all layers internal to i. This force acts
along a circular interlayer contact line, giving the stress
on layer i, σi, from which we define an effective viscosity,
ηi = σi/γ̇i, for each layer.

Figure 2 shows the results of this analysis for exper-
iments (squares) and simulations (crosses). Stress is
scaled by ζ−1 τB, shear rate by τB and viscosity by ζ−1

to facilitate the comparison. Points in the main panels
are coloured according to the driving Pe, while the in-
sets present the same data coloured by the layer number.
Error bars are determined from angular velocity fluctua-
tions in each layer determined from particle tracking. We
see in Fig. 2 that the simulations do not reach such low
shear rates low rates as the experiments. Now the only
parameter that is directly set in both the experiments
and the simulations is the rotation speed of the outer
particle layer. Shear rates experienced by internal layers
are determined by the physics of the system, ie the cou-
pling between adjacent layers. So, the shear rates plotted
are measurements, not directly controlled quantities.
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FIG. 2. (a) Dimensionless stress and (b) viscosity as a function of dimensionless strain rate from experiments (squares)
and simulations (crosses). Solid (dashed) line shows Herschel-Bulkley fit to experimental (simulated) data. Points are colored
according to the driving Pe. Error bars are determined from angular velocity fluctuations in each layer. Insets show same data
colored according to particle layer as indicated in the legend.

The viscosity of hard particle suspensions depends on
shear rate and volume/area fraction56–60,62–64. The shear
rate is largest in layer 4 and smallest in layer 1 and lower
viscosity is measured for greater shear rate. However,
Fig. 1 (f) and (g) show that local area fraction is largest
in layer 1 and decreases towards the boundary. There-
fore, measuring larger viscosity nearer the centre of the
system could be a consequence of increased density, and
unrelated to the local shear rate. However, Fig. 1 (g)
shows that the area fraction of each layer is independent
of Pe, and the inset to Fig. 2 (b) shows that the viscosity
of a given layer does decrease as the shear rate increases.
We expect the spatial variation in area fraction to make
some contribution to the viscosity, but the shear rate de-
pendence is unambiguous.

The data in Fig. 2 are remarkably consistent with
theoretical predictions and simulations of unconfined bi-
nary hard discs under steady shear62. The flow curve
suggests a dynamic yield stress63,91,92, beyond which,
shear thinning is found. At high γ̇, the response ap-
proaches a Newtonian region. The solid (dashed) black
lines show Herschel-Bulkley fits to the experimental (sim-
ulated) data of the form σ = σy + kγ̇ν , where σy is the
dynamic yield stress and ν is the high shear rate expo-
nent, which is unity for Newtonian flow. The fits yield
ν = 0.82±0.03 in experiment and ν = 0.97±0.06 in sim-
ulation, consistent with weakly shear thinning (exper-
iment) and Newtonian (simulation) flow at the largest
shear rates studied. We relate the yield stress to the
change in structure upon the application of shear, from a
hexagonal to layered fluid configuration. It is possible to
fit the data in Fig. 2 with a power–law σ = k′γ̇ν

′
(rather

than the Herschel–Bulkeley fit). While the error bars in

the case of the data points corresponding to low shear
rates are large enough that the this regime can be fitted
with a power law, in fact the fit at high shear rate is much
worse than the Herschel-Bulkeley fit shown. Further de-
pendencies are of course possible, such as a power–law
with a shear–rate dependent exponent. While this would
be most interesting to explore in the future, the quality
of our existing data means that it may be challenging
to accurately discriminate between such more complex
dependencies.

The dynamic yield stress is ∼ 0.1kBT/a
2. A dynamic

yield stress is the stress required to maintain flow, and
is smaller than the static yield stress, which must be
exceeded during flow start-up. Although we focus on
yielded systems, at very low Pe the system is unyielded
and rotates as a rigid body81. Rigid-body rotation re-
quires the local stress to be less than the static yield
stress. Therefore, the stress measured in unyielded sys-
tems is a lower limit estimate of the static yield stress. In
experiment, the largest stress for which the system does
not yield, is ∼ 1.9 kBT/a

2, which is comparable to yield
stresses at the scale kBT/a

3 in hard spheres59,60,63,64.

The crossover from shear thinning to Newtonian flow
occurs in the range γ̇τB ∼ 10−1 to 100, which is coinci-
dent with this crossover in simulations and theory of hard
discs62, hard spheres58, and charged colloids93,94. That
the rheology under such strong confinement bears even
a qualitative resemblance to bulk behaviour is a remark-
able finding. Many molecular liquids and complex fluids
exhibit increases in viscosity of many orders of magni-
tude when confined to a few particle layers1–3,50–52, but
this is not the case for colloidal hard discs, which repro-
duce their predicted bulk rheology when confined to a
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FIG. 3. Radial mean squared displacements. All experimental data in (a) layer 4, (b) layer 3, (c) layer 2, and (d) layer 1.
Black points and grey shaded regions represent average and standard deviation of behaviour in 5 unsheared experiments. All
simulation data in (e) layer 4, (f) layer 3, (g) layer 2, and (h) layer 1. (i) All layers in a single experiment driven at Pe = 14.
(j) All layers in a single free centre simulation driven at Pe = 14. Points in (a-h) coloured according to driving Pe and in (i)
and (j) according to layer number as indicated in the legends. Lines in (i) and (j) show fits to Eq. 9 as described in the text.

system only 8 particles across. We emphasize that the
yield stress is likely related to the shear–induced melting
of hexagonal order in this system. This ordering we have
investigated previously81,84.

C. Motion Perpendicular to Shear

At the particle population of interest, and on the
timescale of the experiment, particles are confined to lay-
ers (Appendix C). However, within the layers, they ex-
hibit positional fluctuations in the radial direction as in-
dicated by the width of the peaks in Fig. 1 (d). The mean
squared displacement (MSD) in the radial co-ordinate is
shown in Fig. 3 for all experiments (a-d) and simula-
tions (e-h). Black points in the experiment panels show
the radial MSD for Pe = 0, averaged over 5 experiments.
These MSDs grow with time up to a plateau which rep-
resents the confinement within layers. In the case of the
experiments, the increase to a (somewhat noisy) plateau

is continuous, in some simulation data, notably for layer
2, there is some evidence of two timescales in the radial
MSD [Fig. 3(g)]. Given that this two timescale behavior
is only evidenced in layer 2 of the simulations, and not
at all in the experiments, we focus on a single timescale,
τrad as determined below in Eq. 9.

Within each layer, the radial MSD approaches its
plateau more quickly as Pe is increased, indicating a cou-
pling between radial and tangential motion. The shear
rate is largest in layer 4 and decreases towards the system
centre. The long-time plateau is reached most quickly in
layer 4, and progressively more slowly in layers 3 and 2.
Therefore, larger γ̇ causes faster radial motion. Addi-
tionally, in all but the central layer, shearing increases
the plateau above that measured in the unsheared sys-
tem (black data) indicating that the amplitude of radial
motion is increased under shear.

Radial MSDs are fit with a function of the form

〈∆r2(t)〉 = A
(

1− e−t/τrad
)
, (9)
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which captures their growth with A the plateau height.
Example fits for all four layers in an experiment and a
simulation at Pe = 14 are shown in Fig. 3 (i) and (j). We
note that not all of the fits in (i) and (j) are of high qual-
ity. While we did find an improved fitting with the use
of two timescales (i.e. two independent contributions to
the right hand side of Eq. 9), in fact the small timescale
proved to be very scattered, and its physical significance
was unclear. A more sophisticated treatment than we
have performed here with Eq. 9 would be interesting to
explore in the future.

Figure 4 shows the radial MSD plateau height A and
timescale τrad as a function of the local shear rate for
all experiments and simulations. The fit to the plateau
height [Fig. 4 (a)] reveals a downward trend with increas-
ing γ̇ in both experiment and simulation for all layers
except layer 1. Figures 3 (a-d) show that shear enhances
radial motion compared to the unsheared case (with the
exception of layer 1). But, fitting reveals that this en-
hancement is greatest for lower shear rates. Particles are
maximally radially mobile at the onset of shear melting
to a layered fluid, and become increasingly confined in
their layers at higher γ̇.

The timescale τ shows a similar dependence on γ̇ [Fig.
4 (b)], decreasing as γ̇ increases, indicating a faster ap-
proach to the long-time plateau. When subjected to
faster shear, particles more quickly explore their full
range of motion perpendicular to shear. This is very
clearly evident for layers 2 to 4 in experiments. Once
again, layer 1 does not follow the trend evident in layers
2 to 4.

IV. DISCUSSION

The rheology of our system is similar to that of bulk
colloidal hard discs, with evidence for a yield stress and
shear thinning62. Our particle-resolved approach allows
us to address the origins of this yield stress and shear
thinning. The former we believe is related to the break-
down of hexagonal configurations found in the absence
of shear. The latter seems to be similar to the 3d case
of shear-induced stratification58. We have shown that
motion parallel and perpendicular to shear are coupled.
At larger local shear rate, particles more quickly explore
their layer radially. Simultaneously, the extent of radial
motion within the layer is reduced and they are more
tightly confined. This is concurrent with shear thinning.

In colloidal hard sphere (and disc) systems, shear thin-
ning is attributed to increased stratification parallel to
shear as shear rate is increased94,95. When particles are
organised into layers, interactions between them become
weaker and consequently the resistance to flow is reduced.
Concentric particle layers are enforced by the boundary
of our system, and therefore the flow resistance is in-
herently lower than in a bulk suspension at comparable
density. However, Fig. 2 shows that shear thinning is
observed. We explain this fact using the data of Sec-
tion III C. Radial motion is suppressed as shear rate is
increased, but Fig. 1 (f) shows that local area fraction
is independent of Pe. Faster shearing does not increase
the packing density of particles, yet they exhibit more
tightly confined dynamics. Radial motion brings parti-
cles to interact with particles in adjacent layers, which
dissipates energy and resists flow. Suppressed radial mo-
tion with no concomitant increase in area fraction means
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that particles in adjacent layers are, on average, further
apart and their interactions with one another are weak-
ened. This results in a reduction in drag between layers,
and therefore flow resistance, or viscosity. This interpre-
tation is illustrated in Fig. 1 (h) and (i). Thus, the radial
dynamics suggest the rheology — at larger shear rates,
particles are more tightly confined to their layers at con-
stant density. This reduces interlayer drag and leads to
shear thinning.

What is the nature of the interactions that dominate
the rheology of our system? Our simulations include hy-
drodynamic interactions at the Rotne–Prager level for
the particle–particle interactions and also the Blake ten-
sor for the coupling to the substrate. We found it nec-
essary to include HI at this level to reproduce the be-
havior of the experiments. Pure Brownian Dynamics
(without HI between the particles) leads to weak mo-
mentum transfer through the system, due to a far higher
level of slip between the layers than is encountered in
the experiments. Therefore we conclude that momentum
transfer is dominated by HI and that steric effects due
to the excluded volume of the particles play a secondary
role. Thus, compared to molecular systems, where van
der Waals interactions can lead to solidification near the
boundary, here instead there are two important differ-
ences: (i) there is no equivalent of the long–ranged van
der Waals interactions in our hard discs, with no mech-
anism for solidification. (ii) The momentum transfer is
dominated by solvent–mediated hydrodynamic coupling,
which is absent in molecular systems. The importance
of hydrodynamic coupling between the particles suggests
that similar behavior might be encountered in wet gran-
ular matter48,49. However in our system, the lack of di-
rect particle–particle contacts (and increased ordering)
enables a purely shear–thinning regime.

V. CONCLUSION

We have investigated the rheology of colloidal hard
discs confined in a layered fluid configuration under shear
and hexagonal configuration with very weak or no shear
in experiment and simulation. Using a particle-level anal-
ysis, we infer the inter-layer forces from drag forces and
the driving force exerted by optical tweezers. Since this
system is dissipative and in steady state, balancing the
forces on each layer allows the measurement of the local
viscosity. This is the first experimental measurement of
the viscosity of a hard-disc-like colloidal system under
steady shear.

The flow curve is indicative of a dynamic yield stress
and shows that the confined hard disc system exhibits
shear thinning at low shear rates and approximately
Newtonian behavior for γ̇τB & 0.1. The dynamic yield
stress is ∼ 0.1 kBT/a

2. We find evidence for a static
yield stress with a lower bound of 1.9 kBT/a

2. This is re-
markably similar to sheared, unconfined, bidisperse hard
discs and bulk hard spheres. This is by no means an

anticipated result as strongly confined systems regularly
exhibit very different rheological responses to their bulk
counterparts1,3,51,52. In our system, there is a change
in structure, in that the system undergoes shear melting,
which we relate to the yield stress. In the future, it would
be intriguing to explore the response of this system to os-
cillatory shear and to investigate any yield stress in more
detail.

Shear thinning in colloidal hard particle systems is due
to shear-induced layering progressively reducing off-axis
interparticle collisions as shear rate is increased, reducing
the viscosity. By measuring the particle motion perpen-
dicular to the direction of shear, we show that this is also
the case in our system. At higher shear rate, radial mo-
tion is suppressed without a change in local density and
therefore interlayer particle collisions are reduced, reduc-
ing the coupling and dissipation between layers, and the
therefore the viscosity.

Colloidal hard discs and spheres under extreme con-
finement behave remarkably similarly to their bulk coun-
terparts in both 2 and 3 dimensions and are qualitatively
different to systems dominated by van der Waals interac-
tions, for which viscosity increases massively on increas-
ing confinement1–3. We attribute this to an absence of
long–ranged vdW interactions in our system. Further-
more, we infer from our computer simulations that hydro-
dynamic coupling between the particles is the dominant
mechanism of momentum transfer with excluded volume
interactions playing a secondary role. This latter obser-
vation suggests that similar behavior might be observed
in wet granular matter, in the case that interactions due
to contacts between particles are not dominant48,49.

We have considered a particular geometry here, where
a population of quasi-hard discs are effectively “cor-
ralled” by 27 tweezer particles arranged in a circle. Of
course other geometries are possible. In the case of planar
shear. we expect that behavior we observe would also be
found, as one would expect particles to form layers paral-
lel to the confinement, as is the case here. Depending on
the particle spacing one might expect coupling between
the packing of free particles and of wall particles.

In the future, it would be attractive to carry out a more
complete inclusion of the HI than we have done here, for
example with Lattice-Boltzmann dynamics or Stochas-
tic Rotation dynamics. In particular, it would be useful
to enquire whether such a description would exhibit the
shear–thinning behavior seen in the experiments, and fur-
thermore to explicitly probe lubrication phenomena ne-
glected in the simulations we have performed here. It
would also be interesting to develop a better description
than the fit we have used to describe the radial MSDs in
Eq. 9.
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Appendix A: Simulation Details

We perform Brownian dynamics simulations of N par-
ticles interacting via a Yukawa pair potential (Eq. 1).
Additionally, each of the 27 particles in the outermost
boundary layer is exposed to a harmonic potential mim-
icking the optical traps employed in experiment, given
by

Vt(|ri − ri,0|) =
k

2
|ri − ri,0|2, (A1)

where ri is the position of ith particle and ri,0 the center
of its potential well, with k denoting the trap strength.
At each time step δt, the locations of the 27 harmonic
potential minima, ri,0, are translated a predetermined
arc length, l, along the boundary, resulting in a rotation
velocity l/δt. The velocity, and thus the Péclet number,
is controlled by altering this arc length.

The hydrodynamic interactions between colloids of ra-
dius a are modeled on the the Rotne-Prager level86,87. To
account for the hydrodynamic effect of the planar sub-
strate that is present in experiments we first consider

Blake’s solution
↔
GB88, which uses the method of images

to obtain the Green’s function of the Stokes equation
satisfying the no-slip boundary condition at z = 0. Fur-
thermore, the hydrodynamic entrainment effect of the
motion of particle j at rj on another particle i at ri is
approximated by a multipole expansion87,96 to the sec-
ond order in a leading to the Rotne-Prager level of the

Blake tensor

↔
GRPB(ri, rj) ≡

(
1 +

a2

6
∇2

ri +
a2

6
∇2

rj

)
↔
GB(ri, rj)

=
↔
GRP(rij)−

↔
GRP(Rij) +

↔
∆G(Rij),

where rij = ri − rj is the vector between particles i and
j, and Rij = ri − rj is the vector between particle i
and the image of particle j at rj = (xj , yj ,−zj). The

Rotne-Prager tensor
↔
GRP is given as97

↔
GRP(r) =

1

8πη|r|

(
I
↔

+
r⊗ r

|r|2

)
+

a2

4πη|r|3

(
I
↔

3
− r⊗ r

|r|2

)
.

with fluid viscosity η. The last term in Eq. A2 involves
the Rotne-Prager correction terms to the Stokes and
source doublets, with its (off-)diagonal elements reading
as87

∆Gαα =
1

4πη

[
−zizj
R3

(
1− 3

R2
α

R2

)
(A2)

+
a2R2

z

R5

(
1− 5

R2
α

R2

)]
, (A3)

∆Gαβ =
1

4πη

(
3zizjRαRβ

R5
− 5a2

RαRβR
2
z

R7

)
, (A4)

where α, β ∈ {x, y}, and Rα, Rβ corresponding to α- and
β-component of Rij , and zi specifying the z-coordinate of
particle i. Note that in simulations all particles have the
same vertical distance z from the substrate as adjusted
according to the experimental gravitational length.

The no-slip boundary at the wall alters the particles’
self-mobilities. We therefore employ a Rotne-Prager level

self-mobility tensor
↔
GRPB
self (z) ≡ µRPB

‖ (z) I
↔

to obtain an

expression for the dependance of the self-mobility of a
colloid separated from a wall by distance z with the di-
agonal element being87

µRPB
‖ (z) = µ0

(
1− 9a

16z
+

1

8

(a
z

)3)
+O(a4), (A5)

and µ0 = 1/(6πηa) describing the Stokes self-mobility.
Finally, the equation for the trajectory ri of a colloidal

particle i obeying Brownian motion after a time step δt
reads

ri(t+ δt) = ri(t) +

 N∑
j=1

µ↔ijFj

 δt+ δWi, (A6)

where µ↔ij is given as

µ↔ij =
↔
GRPB
self (zi)δij + (1− δij)

↔
GRPB(ri, rj), (A7)

which comprises both the self-mobility part and the en-
trainment of particle i by the hydrodynamic flow-field
created by conservative forces Fj acting on particle j.
This force stems from the pair interactions, V , and for
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the 27 driven wall particles also from the harmonic trap
potential Vt. The random displacement δWi is sampled
from a Gaussian distribution with zero mean and vari-
ance 2D0δt (for each Cartesian component) fixed by the
fluctuation-dissipation relation, where D0 is the diffusion
coefficient.

In the simulations, the length scale is set by κ, the en-
ergy scale by kBT , and the time scale by τ = 1/(κ2D0).
The inverse screening length κ has been chosen as κa =
14.85, where the experimental value of the radius served
as a reference. Consequently, the corral radius has been
set to κR0 = 128 yielding the experimental ratio of
R0/(2a) ≈ 4.31. The high screening at κa = 14.85 to-
gether with the contact potential chosen as V (r = 2a) ≈
0.85kBT ensures the quasi hard-disc-behaviour. Another
crucial parameter in our system is the trap strength
which has been set to λ = 0.42κ2kBT in order to mimic
the laser trap strength in the experiments. The time step
is chosen as δt = 10−4τ . Our simulations run for up to
8×103τ , corresponding to approximately 35.5τB with τB
being the experimental Brownian time, ie., the time one
colloid needs to diffuse a length equal to its radius.

Appendix B: Determining the Drag Coefficient

The analysis described in the next section relies on
knowledge of the drag forces acting on each each particle
to extract dimensional forces, and therefore stresses and
viscosities. Thus, it is necessary to know the single parti-
cle drag coefficient for our a = 2.5 µm radius polystyrene
spheres undergoing quasi-two-dimensional motion near
the substrate. To this end, we track the diffusive motion
of these particles in the dilute limit, without any optical
traps, and show the resulting mean squared displacement
in Fig. 5 (a). The Stokes-Einstein relation says that this
is linear in time, with gradient 4kBT/ζ. Thus, we per-
form a linear fit to the experimental data in Fig. 5 (a)
and obtain an empirical measurement of the single par-
ticle drag coefficient to be ζemp = 1.9 × 10−7 kg s−1.
This represents an approximate four-fold increase over
the Stokes drag coefficient ζ0 = 6πηa = 4.7×10−8 kg s−1

for spheres of 2.5 µm radius in water.
However, it is known that multiple particles moving

along a circular path of radius r each experience re-
duced hydrodynamic drag due to the presence of the
other particles89. This is the drafting effect. Ladavac
& Grier give an approximate result at the level of the
Stokeslet approximation for the single-particle drag co-
efficient when n particles of radius a are equally spaced
on a ring of radius r, where r � a, and near a planar
substrate89.

ζwN
ζw0

=

1 +
3aζw0
8rζ0

n∑
j=2

[
(1 + cos θ1j)(1− 3 cos θ1j)√

2− 2 cos θ1j

h

r
+

8 cos θ1j
(2− 2 cos θ1j)3/2

h2

r2
+

6(1 + cos θ1j)(5 cos θ1j − 3)

(2− 2 cos θ1j)3/2
h3

r3

]
−1

(B1)

This result is truncated at order (h/r)3. Here θij =
(2π/n)(j − i) is the angular separation between parti-
cles i and j and h is the distance between the substrate
and the particle centres.

Using the radial location of each layer’s peak, ri, and
the layer populations ni, we calculate this modification to
the drag coefficient for our system, assuming h = a+ lg,
that is that the particles are located one gravitational
length above the substrate. The dependance on the ra-
dius of the circular path and the number of particles sug-
gests that particles in different layers of our system will
experience different drag coefficients. The results of this
calculation are shown in Fig. 5 (b). The drag correction
calculated using equation B1 for layer 1 is negative, an
unphysical result that is a consequence of the fact that
equation B1 is valid only for r � a, which is not true for
layer 1 as r1 ≈ a. Therefore, ignoring the invalid layer 1
result, it is evident that the drafting effect results in a re-
duced drag coefficient compared to the dilute limit single-
particle wall-corrected drag coefficient ζw0 . Furthermore,
the anticipated dependence of ζwN on radial position is ev-

ident, though weak. If we identify our empirically mea-
sured wall-corrected drag coefficient, ζemp, with ζw0 , then
we anticipate that particles in our system will experience
a drag coefficient of approximately 0.34 ζemp due to the
drafting effect, where 0.34 is the average of ζwN/ζ

w
0 over

layers 2 to 5, indicated by the dashed line in Fig. 5 (b).

Estimating the true drag correction is further compli-
cated by the fact that our system consists of a series
of concentric and closely interacting layers. Equation
B1 considers a single circular particle layer in isolation,
and therefore cannot be a true description of our system.
The effective drag coefficient experienced by a particle in
layer i likely depends on the motion of particles in lay-
ers i + 1 and i − 1 in addition to the other particles in
layer i. Therefore, the calculated reduction in drag is re-
ally only an order-of-magnitude estimate of the drafting
effect. The sum in equation B1 is dominated by con-
tributions from particles j = 2 and j = n, which are
the neighbouring particles of particle 1. Since the sep-
aration between neighbouring particles is approximately
the same in all layers, and since the radial dependence
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FIG. 5. (a) Mean squared displacement in the dilute limit in the absence of optical traps. Line is linear fit used to extract
the empirical drag coefficient. (b) Drag coefficient correction term of the form in89 as a function of radial location, calculated
using experimentally measured layered structure. Horizontal dashed line shows the average over layers 2 to 5.

of of ζwN is predicted to be weak, we treat the drag coef-
ficient as being independent of radial position and equal
to ζ = 0.34 ζemp. This assumption is necessary to esti-
mate the drag coefficient in layer 1, for which equation
B1 is invalid, as indicated its prediction of a negative
drag coefficient in this region.

Appendix C: Interlayer Hopping at Lower Population

Figure 6 shows the time evolution of layer populations
in experiments driven at Pe = 17.5 for confined popula-
tions (a) nconf = 44 and (b) nconf = 48. In the more
densely packed system at nconf = 48 the populations of
all layers are constant in time, as required for the rheolog-
ical analysis described in the main manuscript. When the
population is reduced to nconf = 44, however, particles
occasionally move between layers. When layer popula-
tions are not fixed, the rheological analysis as described
in the main manuscript cannot be applied, and so we
have focused our attention on the nconf = 48 system.
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FIG. 6. Time evolution of layer populations ni measured in experiments driven at Pe = 17.5 with confined populations (a)
nconf = 44 and (b) nconf = 48.
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