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The Ricci decomposition of the inertia tensor for a rigid body in arbitrary spatial

dimensions
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(Dated: February 9, 2023)

The rotations of rigid bodies in Euclidean space are characterized by their instantaneous angular
velocity and angular momentum. In an arbitrary number of spatial dimensions, these quantities are
represented by bivectors (antisymmetric rank-2 tensors), and they are related by a rank-4 inertia
tensor. Remarkably, this inertia tensor belongs to a well-studied class of algebraic curvature tensors

that have the same index symmetries as the Riemann curvature tensor used in general relativity.
Any algebraic curvature tensor can be decomposed into irreducible representations of the orthogonal
group via the Ricci decomposition. We calculate the Ricci decomposition of the inertia tensor for a
rigid body in any number of dimensions, and we find that (unlike for the Riemann curvature tensor)
its Weyl tensor is always zero, so the inertia tensor is completely characterized by its (rank-2) Ricci
contraction. So unlike in general relativity, the Weyl tensor does not cause any qualitatively new
phenomenology for rigid-body dynamics in n ≥ 4 dimensions.

I. INTRODUCTION

A first course in classical mechanics usually begins by
discussing the rotation of rigid plane figures in two dimen-
sions. In this context, students are taught the familiar
equations for the 2D rigid-body rotation about a fixed
point

L = I(2D)ω, τ =
dL

dt
= I(2D)α, T =

1

2
I(2D)ω2, (1)

where L is the body’s angular momentum, I(2D) =
∫

dmr2 is its moment of inertia about the point of rota-
tion (dm = σ(r) d2r with σ(r) the area mass density), ω
is its angular velocity, τ is the net external torque

∑

r Fθ

applied to it, t is time, α is the body’s angular acceler-
ation, and T is its rotational kinetic energy. In the 2D
context, I(2D) and T are considered to be nonnegative
scalars and L, ω, τ , and α to be signed scalars whose
signs represent a counterclockwise or clockwise orienta-
tion. Students are sometimes vaguely told that similar
formulas often work for 3D rotation about axes with high
symmetry and given somewhat mysterious formulas for
the moments of inertia about various axes for various 3D
shapes.

A later course will usually cover the rotation of rigid
bodies in 3D more systematically. Students learn that in
3D, equations (1) generalize to

L = I(3D)
ω, τ =

dL

dt
, T =

1

2
ω · I(3D) ·ω :=

1

2
ωiI

(3D)
ij ωj

(2)
(in the inertial “laboratory” frame of reference) [1]. The
kinetic energy T remains a scalar quantity, but L, ω, τ ,
and α are now considered to be vector quantities. Now
L =

∫

r × dm v(r) (where now dm = ρ(r)d3r with ρ(r)
the volume mass density), ω is oriented along the axis
of rotation with a magnitude equal to the angular speed,

∗ tparker@alumni.physics.ucsb.edu

τ =
∫

r × dFext(r), and α = dω/dt. (More precisely,
they are all pseudovector quantities that do not change
orientation under a parity inversion.) The scalar moment
of inertia I(2D) generalizes to a symmetric rank-2 inertia
tensor, or (more prosaically but concretely) a symmetric
3 × 3 matrix I(3D). The components of this tensor are
determined by the rigid body’s mass distribution:

I
(3D)
ij =

∫

dm
(

r2δij − rirj
)

. (3)

Since the tensor is represented by a real symmetric ma-
trix, it can always be diagonalized. Its eigenvectors are
referred to as the rigid body’s principal axes and the
corresponding eigenvalues are the principal moments of

inertia about those axes. Only for rotations about the
principal axes do the vector equations (2) simplify to the
scalar equations (1).

The tensor I(3D) is no longer necessarily constant in
the laboratory frame as its orientation changes, so the
easiest course of action is often to shift to a non-inertial
“body” frame of reference in which I(3D) is constant, even
at the expense of the additional complications from work-
ing in a non-inertial reference frame. Any student who
has studied rigid-body motion in 3D can testify that the
relatively simple equations (2) and (3) can already lead
to very complicated and unintuitive rotational dynamics.

But three dimensions are not the end of the story.
What about an arbitrary number of dimensions n? Rigid-
body rotation in higher than three dimensions is admit-
tedly less realistic than n = 2 or n = 3, but consider-
ing the fully general case is still an interesting thought
exercise that will yield unexpected connections to the
study of general relativity, which is naturally formulated
in greater than three dimensions.

Although this article will eventually use some advanced
tools developed to study general relativity, most of it
should be accessible to someone with a solid understand-
ing of advanced undergraduate classical mechanics. We
leave some of the more technical mathematical details in
the footnotes.

http://arxiv.org/abs/2302.04092v1
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II. MATHEMATICAL PRELIMINARIES

(This section can be skipped by those who are less
concerned with the mathematical details.)

We define a rigid body to be a set of points whose rel-
ative distances remain constant. An extended body can
only remain rigid if the causal influence of an external
force on one point is instantly transmitted to all other
points, so rigid bodies cannot exist in a relativistic setting.
Moreover, we will require that the body is free to perform
unconstrained rotation, which requires that space be flat.
We will therefore work in the Euclidean space R

n en-
dowed with the usual flat and positive-definite Euclidean
inner product (except where indicated otherwise).1 We
will always work in Cartesian coordinates, in which the
metric indices are given by the Kronecker delta δij . We
will use the Einstein summation convention that repeated
indices are summed from 1 to n, and we will not distin-
guish between raised and lowered tensor indices. We will
denote the (constant) Euclidean metric tensor by δ and
will only occasionally use g to denote the metric tensor
field for an arbitrary (potentially curved) manifold.

A. The exterior algebra

Several ideas from the exterior algebra will be very use-
ful [2]. If k is a natural number, then a k-vector or multi-

vector is an element of Λk(V ), the kth exterior power of a
vector field V .2 At a “physicist’s level of rigor”, Λk(V ) is
the space of totally antisymmetric rank-k tensors over V .
A p-vector A and a q-vector B can be combined together
into a (p+ q)-vector using the wedge product

(A ∧B)µ1,...,µp+q
=

(p+ q)!

p! q!
A[µ1...µp

Bµp+1...µp+q ],

where [ ] around tensor indices denotes total antisym-
metrization.3 A multivector is simple (or decomposable

1 In this article, the notation Rn always refers to the full Euclidean
inner product space, not just the vector space.

2 We use the terminology convention that “multivectors” must be
homogeneous with fixed k. The terms “multivector”, “bivector”,
etc. are often associated with the somewhat obscure formalism
of geometric algebra, but this article does not use any concepts
from geometric algebra – just the simpler and much more stan-
dard exterior algebra of totally antisymmetric tensors. Some
physicists familiar with general relativity might be more used to
referring to totally antisymmetric tensors as “differential forms”.
But strictly speaking, differential forms are smooth multivector
fields that are functions of a spacetime manifold. The bivectors
discussed in this article are not local fields but correspond to
individual extended objects, so they are just fixed bivectors and
not differential forms.

3 There are two different normalization conventions for the wedge
product in common use. In this article, we use the “geometer’s
convention” that is standard in physics rather than the “alge-
braist’s convention”. See [3] for a detailed discussion of the pros
and cons of each convention.

or a k-blade) if it can be expressed as a wedge product
v1 ∧ · · · ∧ vk of k rank-1 vectors vi.
Λk(Rn) is a real vector space of dimension

(

n
k

)

, since a
natural basis is the set of simple wedge products ei1∧· · ·∧
eik of k unit vectors within an orthonormal basis for R

n.
Moreover, we can use the inner product on R

n to map
any multivector A ∈ Λk(V ) to its Hodge dual multivector
⋆A ∈ Λn−k. For Euclidean space, the Hodge dual of a
multivector is just proportional to its contraction with
the totally antisymmetric Levi-Civita tensor ǫµ1...µn

:

(⋆A)µ1...µn−k
=

1

k!
ǫµ1...µn−kν1...νkAν1...νk .

(The formula is more complicated for more general man-
ifolds.) For a Reimannian (i.e. positive-definite) met-
ric, the double Hodge star of a k-vector A ∈ Λk(Rn) is
⋆ ⋆ A = (−1)k(n−k)A. The vector space Λk(Rn) inherits
its own inner product from the Euclidean inner product.
The inner product between simple k-vectors is given by

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧wk〉 := detM, Mij := 〈vi, wj〉,

and it extends to general multivectors by linearity. As a
special case, the norm-squared of a simple k-vector v1 ∧
· · · ∧ vk equals the Gram determinant of the matrix with
entries 〈vi, vj〉.

4

B. Rotations in arbitrary dimensions

By definition, a rotation R of n-dimensional Euclidean
space preserves angles and distances between points, and
more generally it preserves the Euclidean inner product
between vectors. It is also straightforward to show that
a rotation must be a linear transformation on vectors.
Therefore, for any vectors v and u, δ(v, u) ≡ δ(Rv,Ru).
In matrix language, this becomes

(Rv)T δ(Ru) = vTRT δRu = vT δu,

where δ represents the n× n identity matrix. Since this
equation must hold for all vectors u and v, we must have
that RT δR = δ. If we only consider proper rotations,
which are connected to the identity operator, then the set
of proper rotation operators form the Lie group SO(n).

Angular velocity and angular momentum correspond
to infinitesimal rotations, which are elements of the Lie

4 We will use the normalization convention that when calculating
the inner product of k-vectors, the combinatorial factor 1/k! goes
into the index contraction rather than into the antisymmetric
tensors that represent the orthonormal basis vectors êi1∧· · ·∧êik
for Λk(Rn). That is, the tensors that represent êi1 ∧ · · · ∧ êik
have elements 1, 0, and −1 for all k, while the inner product on
the exterior algebra Λk(Rn) is given by 〈A,B〉Λk(Rn) = 1

k!
AIBI

(where I denotes the multi-index (i1, . . . , ik)) instead of by the
usual inner product AIBI on the tensor algebra.
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algebra so(n). To see what the elements A of (the fun-
damental representation of) so(n) look like, we can Tay-
lor expand the rotation operator in equation RTR = δ
to first order in the rotation angle θ: letting R =
δ + θA+ o(θ2) gives

(

δ + θAT + o(θ2)
)(

δ + θA+ o(θ2)
)

= δ + θ
(

A+AT
)

+ o(θ2)

= δ,

so A + AT = 0 and A must be an n × n antisymmetric
matrix. An infinitesimal rotation generator A ∈ so(n)
can be mapped to a rotation R ∈ SO(n) through a
non-infinitesimal angle θ by the exponential map R =
exp(θA).5 For matrix representations like the one that
we are implicitly considering, the exponential map is just
the ordinary matrix exponential.

At our level of rigor, antisymmetric matrices are bivec-

tors in Λ2(Rn). So in general dimensions, an infinitesimal
rotation is not represented by a (pseudo-)vector but by
a bivector [4].6

More concretely, if xi and xj are orthonormal vectors
in R

n, then an infinitesimal rotation in the i-j plane (ori-
ented so that xi rotates into xj) is generated by the sim-
ple bivector xi ∧ xj . More generally, the magnitude of
a simple bivector gives the (infinitesimal) angle of rota-
tion, and its sign (or equivalently, the ordering of the
two vectors being wedged together) gives the orientation
of the rotation.7 A simple bivector generates a rotation
in a single plane that leaves all orthogonal directions un-
changed. (In n > 3 dimensions, we cannot describe this
as a rotation about a single 1D axis, because there are
multiple directions that are all orthogonal to the plane
and to each other.) All bivectors over R

n are simple if
n ≤ 3, so all rotations occur in a single plane. But not
all bivectors are simple if n ≥ 4; instead, any bivector in
Λ2(Rn) can be decomposed into a sum of at most

⌊

n
2

⌋

orthogonal simple bivectors (where ⌊ ⌋ denotes the floor
function). This decomposition is generically unique, un-
less multiple simple bivectors have the same magnitude

5 In the context of quantum mechanics, physicists usually use the
convention that generators are Hermitian operators and the ex-
ponential map is given by A → exp(−iAt/~), where t is a contin-
uous real parameter like time, distance, or angle. In this article,
it will be easier to stick to real numbers and use the phase con-
vention more common among mathematicians.

6 The Lie algebra so(n) is isomorphic to Λ2(Rn) as a vector space,
but instead of the wedge product it has a Lie bracket given by
the matrix commutator. We will not need this Lie bracket in
this article.

7 When we say that rotations are “infinitesimal”, we mean that they
are small enough that we can neglect any small non-commutative
composition effects and add them together without keeping track
of ordering. The higher-order non-commutative effects are cap-
tured by the Lie bracket structure mentioned in a previous foot-
note.

[4].8 Therefore, not all rotations of higher-dimensional
Euclidean space occur in a single plane; a general rota-
tion of Euclidean space in n dimensions is generated by
orthogonal planes rotating simultaneously (generically at
different speeds).

In three dimensions, the usual (pseudo-)vector repre-
sentations of angular velocity, angular acceleration, angu-
lar momentum, and torque are all derived from the fun-
damental infinitesimal pseudovector rotation dθ. These
pseudovector representations are the Hodge duals of the
corresponding bivectors. (The fact that they transform
as pseudovectors is a clue that a bivector description is
more fundamental, because unlike pseudovectors, bivec-
tors transform in the natural way under parity inversion
[4].) The bivector representations of all of these quanti-
ties are defined in any dimension, but the pseudovector
representations only make sense for n = 3. As expected,
for n = 2 the bivector space is one-dimensional, represent-
ing the single scalar degree of freedom for plane rotations.
For n = 3, the bivector space is three-dimensional, corre-
sponding to the usual axis-magnitude representation of
a 3D rotation. But for n = 4, the bivector space is six -
dimensional – more than the four degrees of freedom that
we might expect based on our 3D intuition.

III. THE INERTIA TENSOR IN ARBITRARY

DIMENSIONS

In three dimensions, the inertia tensor is a linear map
that maps an angular velocity (pseudo-)vector to an an-
gular momentum (pseudo-)vector. But in arbitary dimen-
sions, angular velocity and angular momentum are repre-
sented by bivectors, not vectors. The inertia tensor there-
fore generalizes to a rank-4 tensor I : Λ2(Rn) → Λ2(Rn)
that linearly maps bivectors to bivectors. In terms of
indices, this becomes9

Lij =
1

2
Iijklωkl. (4)

More abstractly, the inertia tensor can still be thought of
as a linear operator on a real inner product space – but
the inner product space is no longer the n-dimensional

8 In matrix language, a real antisymmetric n × n matrix A repre-
sents a simple bivector iff there exists a nonzero vector v ∈ R

n

such that A[ijvk] ≡ 0. This is true for all real antisymmetric
n × n matrices A if n ≤ 3, but only for some such matrices if
n ≥ 4. Geometrically, it means that the vector v lies in the
unique plane in Rn spanned by the simple bivector A.

9 The factor of 1/2 in (4) is not necessary. We simply include it
to match the standard normalization for the 3D rank-2 tensor,
and to parallel our conventions for the inner product on Λk(Rn)
and the Hodge star operator that we normalize a contraction of
k totally antisymmetric tensor indices by 1/k!. But the tensor
contraction in (4) does not represent an inner product on Λk(Rn),
so we could also consistently absorb the factor of 1/2 into the
normalization of I.
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physical Euclidean space, but the
(

n
2

)

= 1
2n(n − 1)-

dimensional inner product space Λ2(Rn) of bivectors on
R

n. This linear operator will turn out to be self-adjoint,
just like in the 3D case.

After all this setup, it is actually very simple to derive
the inertia tensor. In arbitrary dimensions, we do not
have a cross product, so the angular momentum gener-
alizes to a bivector wedge product of the vectors r and
dm v:

L =

∫

r ∧ (dm v).

(dm now represents the arbitrary-dimensional volume
form ρ(r) dnr.) With our choice of sign conventions, the
3D rigid-rotation formula v = ω × r (which ultimately
derives from dr = dθ × r) generalizes to vj = rkωkj . So

Lij =

∫

dm
(

2r[ivj]
)

=

∫

dm
(

2r[i|rkωk|j]

)

(5)

=

∫

dm
(

2r[i|rkδ|j]lωkl

)

This equation would seem to suggest that Iijkl =
∫

dm
(

4r[iδj]lrk
)

. Strictly speaking, this formula is cor-
rect in the sense that it returns the correct value of L,
but it contains unphysical degrees of freedom. The iner-
tia tensor inputs a bivector angular momentum ω that is
always antisymmetric, so any part of Iijkl that is symmet-
ric in k and l will vanish by symmetry when contracted
with ωkl, and only the part that is antisymmetric in k
and l will affect the output L. We therefore explicitly
antisymmetrize I on k and l to more clearly show which
are the true degrees of freedom that affect the angular
momentum:

Iijkl =

∫

dm
(

−4r[iδj][krl]
)

(6)

=

∫

dm (−riδjkrl + riδjlrk + rjδikrl − rjδilrk).

In three dimensions, (4) can be reformulated in terms
of pseudovector quantities as

L = ⋆L = ⋆

(

1

2
Iω

)

= ⋆

(

1

2
I(⋆ω)

)

,

or in index notation,

Lp =
1

4
ǫpijIijklǫklqωq.

Comparing with the first equation in (2), we see that

I(3D)
pq =

1

4
ǫpijIijklǫklq =

∫

dm
(

r2δpq − rprq
)

,

which agrees with (3).

The inertia tensor satisfies several index symmetries:

Iijkl = −Ijikl = −Iijlk (7a)

Iijkl = Iklij (7b)

Iijkl + Iiklj + Iiljk = 0. (7c)

Remarkably, these are the exact same symmetries satis-
fied by the Riemann curvature tensor in general relativity
[5]. But there is one important structural difference be-
tween the inertia tensor and the Riemann curvature ten-
sor: the inertia tensor is a single fixed tensor, while the
Riemann curvature tensor is a tensor field defined over a
spacetime manifold.10 The last section of this article ex-
ploits this parallel by using tools from general relativity
to study the inertia tensor for rigid bodies in Euclidean
spacetime.

IV. THE RICCI DECOMPOSITION OF THE

INERTIA TENSOR

A. Algebraic curvature tensors

Any rank-4 tensor that satisfies the index symmetries
(7), including the inertia tensor I given by (6), is referred
to as an algebraic curvature tensor by analogy with the
Riemann curvature tensor [7].

Identity (7c) is known as the first or algebraic Bianchi

identity.11 It follows from identities (7a) and (7b) if n = 2
or 3, but is an independent condition if n ≥ 4 [7]. Iden-
tity (7a) simply means that an algebraic curvature tensor
can be thought of as a linear operator on Λ2(Rn). Iden-
tity (7b) means that this operator is self-adjoint, just as
the rank-2 inertia tensor is in 3D. Therefore, there always
exists a complete orthonormal basis of

(

n
2

)

eigenbivectors

ω(i) with eigenvalues I(i) (the principal moments of iner-
tia) such that if the rigid body is rotating with angular
velocity ω(i), then its angular momentum L = I(i)ω(i).
These eigenbivectors are the generalizations of the princi-
pal axes in 3D (but in higher dimensions, they may not be

10 There is a subtle point here. The integrated tensor I is indeed
just a single tensor with no spatial dependence. But, as men-
tioned above, the differential dm is technically a true differential
volume form on Rn (although the full machinery of differential
forms is somewhat overkill for integrating over Euclidean space).
The integrand in parentheses in (6) explicitly depends on the po-
sition r and so is obviously a tensor field that varies over space.
Taken together, the full differential form being integrated in (6)
is a tensor-valued volume form [6]. Tensor-valued differential
forms cannot be integrated over generic curved spaces, because
there is no natural way to parallel-transport the tensor at each
point in the manifold to the same base point so that the ten-
sors can be added together within the same vector space. But
vector-valued differential forms defined on a flat manifold can be
integrated, because the vector spaces at each point are naturally
isomorphic.

11 In keeping with Stigler’s law of eponymy, the algebraic Bianchi
identity was discovered by Ricci.
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simple and so may not correspond to rotations within a
single plane). In general relativity, this approach (think-
ing of the Riemann curvature tensor as a self-adjoint op-
erator on Λ2(M) and considering its eigendecomposition)
leads to the Petrov classification of spacetimes [8].

B. The Kulkarni-Nomizu product

It will be convenient to introduce the bilinear Kulkarni-

Nomizu product of symmetric rank-2 tensors [7]. If A
and B are symmetric rank-2 tensors, then their Kulkarni-
Nomizu product A ? B is a rank-4 tensor defined by

(A ? B)ijkl := AikBjl −AilBjk −AjkBil +AjlBik.

Any Kulkarni-Nomizu product is an algebraic curvature
tensor that satisfies (7) (although the converse is not
true).12 The Kulkarni-Nomizu product is symmetric:
A ? B ≡ B ? A.

Note that

(A ? A)ijkl = 4Ai[kAl]j .

For an arbitrary two-dimensional curved surface, the Rie-
mann curvature tensor field equals 1

4Rg ? g, where R is
the Ricci scalar field (twice the Gaussian curvature) and
g is the metric tensor field. All space forms – Rieman-
nian manifolds of any dimension with constant sectional

curvature – also have a Riemann curvature tensor field
equal to 1

4Rg ? g, although in this case the Ricci scalar
field R is constant over the manifold.

Also note that if v is a rank-1 vector, then

(A ? (v ⊗ v))ijkl = −4v[iAj][kvl].

Equation (6) therefore simplifies to the compact expres-
sion

I = δ ?

∫

dm (r ⊗ r). (8)

C. The Ricci decomposition

If R is either an algebraic curvature tensor on R
n or

an algebraic curvature tensor field on an arbitrary n-
dimensional manifold with metric tensor g, then R has

12 There is a formal similarity between the commutation relations
[Jµν , Jρσ] for the Lie algebra so(3, 1) (the generators of the
(3 + 1)D Lorentz group) and the formal Kulkarni-Nomizu prod-
uct −i η ? J , where η is the flat Minkowski metric with signa-
ture (−,+,+,+) (and we use the standard physicists’ convention
for the normalization of the generators, rather than the mathe-
maticians’ convention used in the main text) [9]. But the latter
expression is not actually a true Kulkarni-Nomizu product, be-
cause the tensor J is antisymmetric rather than symmetric. The
commutator is therefore not an algebraic curvature tensor; it
is antisymmetric rather than symmetric under the simultaneous
exchange (µ ↔ ρ, ν ↔ σ), and requirement (7b) is violated.

only one independent single trace: the rank-2 symmetric
Ricci-contracted tensor (or tensor field)[7]13

R
(2)
jl := Rijil.

The other five single traces equal ±Rjl or 0. The only
independent double trace of R is the Ricci-contracted
scalar (or scalar field)

R(0) := R
(2)
ii = Rijij .

From these, we can form the trace-free Ricci-contracted
tensor (or tensor field)

R̂(2) := R(2) −
1

n
R(0)g.

R can be naturally decomposed into a (direct) sum of
three irreducible representations of the orthogonal group
O(n):

R = S + E + C. (9)

This decomposition is known as the Ricci decomposition

[7]. Here S, E, and C are themselves algebraic curvature
tensors (or tensor fields) given by

S :=
R(0)

2n(n− 1)
g ? g

E :=
1

n− 2
R̂(2)

? g

C := R− S − E.

For n = 2, only the S term is well defined, so the de-
composition is trivial. For n = 3, the C term vanishes
identically. For n ≥ 4, all three terms are generically
nonzero.

Equation (9) is mathematically trivial by the definition
of C, but the Ricci decomposition is useful because each
term lies in a different irreducible representation of the
orthogonal group. Loosely speaking, the S term contains
the doubly-contracted degree of freedom in the algebraic
curvature tensor that transforms under rotations as a
scalar, the E term contains the singly-contracted degrees
of freedom that transform under rotations as a traceless
symmetric rank-2 tensor, and the C term contains the
uncontracted degrees of freedom that transform under
rotations as a rank-4 tensor.

In general relativity, the S+E terms contain the same
information as the Ricci tensor field, which reflects space-
time’s local response to matter, while C is the Weyl
tensor field, which is totally traceless and contains the

13 If we consider the linear map from the space of symmetric rank-2
tensors A to the space of algebraic curvature tensors that is given
by A → g ? A (where g is an arbitrary inner product on R

n),
then this map turns out to be exactly the transpose of the Ricci
contraction.
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gravitational degrees of freedom that propagate through
vacuum. We can simplify the former sum to

S + E = A ? g, (10)

where the symmetric rank-2 tensor

A :=
1

n− 2
R̂(2) +

1

2n(n− 1)
R(0)g

=
1

n− 2

(

R(2) −
1

2(n− 1)
R(0)g

)

is known as the Schouten tensor for the algebraic cur-
vature tensor [10].14 The Schouten tensor and the Ricci
tensor are very closely related, and either can be easily
derived from the other; they are essentially just rescaled
and trace-adjusted versions of each other.

For the fixed inertia tensor (6), we have (shifting nota-
tion from R to I)

I(2) =

∫

dm
(

(n− 2)r ⊗ r + r2δ
)

I(0) = 2(n− 1)

∫

dm
(

r2
)

Î(2) = (n− 2)

∫

dm

(

r ⊗ r −
1

n
r2δ

)

A =

∫

dm (r ⊗ r). (11)

Combining equations (10), (11), and (8), we see that I =
S + E and so C = 0. Unlike for the Riemann curvature
tensor in general relativity, the Weyl component of the
inertia tensor for rigid-body rotation vanishes identically
in all dimensions.

The inertia tensor I is fully characterized by its
Schouten tensor (11) via equation (8). For n ≥ 3 dimen-
sions, the inertia tensor only has the 1

2n(n+ 1) indepen-
dent degrees of freedom of its Schouten tensor. For n ≥ 4,
this is less than the 1

12n
2(n2 − 1) degrees of freedom in a

generic algebraic curvature tensor.
Moreover, the fact that the Weyl part of I vanishes

follows directly from equation (8) by rotational symme-
try. I depends only on a rank-2 symmetric tensor. So
the degrees of freedom of I must all transform under ro-
tations as rank-2 symmetric tensors, which means that
they must lie in the S ⊕ E representation of the orthog-
onal group. This implies that I can only have nonzero
S and E components in the Ricci decomposition, and

its Weyl component C must vanish. We therefore could
have concluded that C = 0 directly from equation (8)
without explicitly working out any of the traces of I or
the Schouten tensor (although in this case, doing so is
not difficult).

Equation (8) implies a high redundancy in the com-
ponents of the inertia tensor I that simply reflects the
fact that much of the “work” that I is doing is simply
matching up indices correctly in the tensor contraction.
If an algebraic curvature tensor on R

n has vanishing Weyl
component – or equivalently, if it can be expressed in the
form A?δ – then its action (4) simply maps the bivector
ω to twice the antisymmetric part of the matrix product
Aω. So in order to calculate the angular momentum L
corresponding to an explicit angular velocity bivector ω,
the most efficient course of action is often to entirely skip
calculating I and to directly use equation (5).

In three dimensions, the standard 3D inertia tensor (3)
can be expressed in terms of the Schouten tensor (11) by

I(3D) = Tr(A)δ −A.

The phenomenology of general relativity changes qual-
itatively between n ≤ 3 and n ≥ 4 spacetime dimen-
sions. If n ≤ 3, then the Weyl tensor field vanishes (or
is undefined), so no gravitational degrees of freedom can
propagate locally through a vacuum. But if n ≥ 4, then
the possibility of a nontrivial Weyl tensor field enables
much richer phenomenology, such as gravitational waves.
We have shown that in arbitrary dimensions, the inertia
tensor for rigid-body rotation is an algebraic curvature
tensor that shares many mathematical similarities with
the Riemann curvature tensor. From this parallel alone,
we might have guessed (by analogy with general relativ-
ity) that the possibility of a nonzero Weyl tensor in the
inerta tensor qualitatively changes the phenomenology
of rigid-body dynamics in n ≥ 4 dimensions. But we
have shown that this guess is not true, because there is
a crucial difference between the Riemann and the inertia
tensors: the latter cannot contain a Weyl tensor even in
n ≥ 4 dimensions.15
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14 Some sources normalize the Schouten tensor to be twice this
expression or to have the opposite sign.

15 Of course, there is a much more obvious difference between the
Riemann and the inertia tensors: the former is a tensor field that
varies over a spacetime manifold, while the latter is just a fixed
tensor. So the analogy is only rough, and this guess may not
have been very plausible in the first place.

Moreover, we are not claiming that there are no qualitative
differences between rigid-body dynamics in n ≤ 3 and n ≥ 4

dimensions. There are — most notably, the fact that in n ≥
4 dimensions there exist non-simple bivectors, which generate
proper rotations that are not confined within a single plane. (In
four dimensions, these are sometimes called double rotations.)
We are only making the narrower claim that – in contrast with
general relativity – Weyl tensors do not cause qualitatively new
phenomenology in higher dimensions.
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