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It is shown here that R? and R? terins dominate over Bin-
stein - Hilbert term in the gravitational action till energy mass
scale M > 1.19 x 10!%GeV . In the presence of these higher -
derivative terms , action for Riccions is obtained with (quartic
self interaction potential. It is interesting to sec that instanton
solution for Riccions gives rise to primordial inflation with-
out any phase transition and symumetry breaking . PACS nos.
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1.Introduction

Einstein’s theory of gravity needs modification as it 1s non
- renormalizable and exhibits solutions having point - like sin-
gularitics,where physical laws collapse [1]. In this context,
cfforts have been made to study higher - derivative gravity
adding termsit?, R, M, 1?,,,,p,,1?’“’””, OR andR* cte. to the
Binstein - Hllbelt lag)rangmnm = (G is the Bmwtdtlondl con-
stant ).Here I?,,,, are components of Riemann Curvature ten-
sor , It,, are components of Ricel tensor and R i1s trace of
Ricci tensor , which is called Ricci scalar . O is defined as

J()Ip (vV—g9""; ()u . These curvature terms depend on com-
ponents of the metric tensor g, given by the distance function

dS* = gpdatda?, (1‘.1)

Higher - derivative gravity obeys the principle of covartance
and the principle of equivalence . which are the basic princi-
ples of the general relativity . Thesce theories have problem at
perturbation level where ghost terms appear in the Feyvnman
propagator of graviton [2].

Recently, an entirely different physical aspect of I\ -pravity
has been discussed in refs.[3 - 6]. In these references | it is found
that at high energy level . Ricci scalar R manifests itself in two
different ways (1) as a spinless matter field and (2) as a geo-
metrical field (which is its usual nature at low energy ), wherceas
at low energy it behaves as a geometrical field only .

Before going into further details,it is better to give brief
discussion on dual role of Ricei scalar at high cnergy leveln



refs.[3 - 6], the action for R?- gravity is taken as

S, = /(1%\/—[

e + &R, " + BR?|, (1.2)

where G is the Newtonian gravitational constant which is equal
to Mp? (Mp is the Planck mass) in natural units (h = ¢ =
Lwhere /i ande have their usual meaning) adopted throughout
the paper.Here & and 3 are dimensionless coupling constants.
Iimposing invariance of S’_,, under transformations ¢, — ¢, +

6g,,,01ne obtains field equations

1 1
(1/167TG)(R“,, - —Q‘QIWR) + d(RP R;u/ - '2—_(//11/DR

pvp
1 -~
F2R Ry = 5B Ros) + 32 R0 — 29,01

1 .
_'Q'Q;U/RZ + ZRR/H/) = 0. (1.3)

Trace of these field equations is given as
OR+ m‘R =0, : (1.4)

where m?* = [87G(5a+ 12/3)]7"/%. Here @ and /3 are chosen such
that (5 + 12/3) > 0 to avoid the ghost problem.

It 1s known that I and R, are combinations of second or-
der partial derivatives and square of first order partial deriva-
tives of ¢,, w.r.t. space - time coordinates.  Morcover, g,
are dimensionless. So, mass dimension of R and R, are 2.
’lr{( ('()1‘1‘(‘_51)()11(15 to %1— and
(alr,, R + /31?;-2) corresponds to (G 4+ B)M*. So, it is found
that when M > [167(& + /?)]"1/21\117. R%-terms will dominate

Thus,in terins of mass scale



over

m[;'(', and contrary to it, Tiflj_(_ will dominate over R%-terms
when M < [167(& + 3)]7 %M [6).

It is clear from the above discussion that eq.(1.4) can be
obtained only when R%-terins are not insignificant compared
to lincar term TE%(— in S, which is possible at the energy mass
scale

M > [167(a + B)] V2 M)p (1.5).
Eq.(1.5) shows that M > 100Gev only when (& + 3) ~ 10%,

which means that coupling constants associated with R%-terms
should be extremely large.Now one can think that if coupling
constants of R?-terms are so strong. these terms should man-
ifest themselves at low energy also. But we do not observe
manifestation of higher - derivative terms in gravity at low en-
ergy level. It indicates that these coupling constants should be
small enough so that R*-terns be relevant at high energy only.
On the basis of above discussion,a and /3 are chosen to satisfy
the following equations

5+ 123 = 2 " (1.6a)

and

a+3=1. (1.6)

for the sake of convenience. Under these conditions ( given by
e.(1.6)), m is given by

m = 1.41 x 10""Gev
and the inequality (1.9) looks like

M > 1.41 x 10MGew.



Now the question arises whether eq.(1.4) can be treated as
Klein - Gordon equation of R like Klein - Gordon equation for
other scalar fields ¢ given as

O¢ + mip = 0. (1.7)

On comparing eqs.(1.4) and (1.7). one finds two problems.
Firstly, mass dimension of ¢ is 1 |, whereas niass dinnension
of R i1s 2. Second problem is more serious in the seuse that
operator O and R both depend on g,,,while ¢ does not depend
On G-
To evade the first problem, eq.(1.4) can be wmultiplied by
n ( where | 7 |= 1 and dimension of 7 is (mass)™!') and it is
rewritten as
OR+ m’R =0, (1.8)

where R = nR. Mass dimension of 7 is 1.But even e (1.8) 1s
not free from the second problem.

High energy modes excite the physical system at sinall Tength
scales. Thus one finds that high frequency modes probe the
geometry in the small vicinity of a space - time point with co-
ordinates {0 = 0,1,2,3}. g, can be expanded around this
point as

’ 1 2 Q 5 1 7 (4
..(]/W("L') = U;W(:l") + ER;NWH(:U)?/ .7/!3 - ‘607-]?,101/[7(-’“)!/ '!/ﬂ‘!/?‘{‘
1 2 A ‘N oa. G4 6
g fnavsins + e Rawsn Iys | (O Y7y 4 . (1.9)
where y* = 2% — 2%a = 0,1,2,3) and g, () = 1,,. Using

these expansions ( given by eq.(1.9)), one obtains operator O
as

2 0
0=gv—9 _ 4 p

o 1.10a
dardr? + Oav ( )



where

g (x) = g" (&) — 51?"{3(7)7/ y” 0 Ry Yy~

1
[5—61?,“,,,/375—{— 45120,,/3,\1?7,,6]( Syt Py Tyt 4+ . (1.100)

and

v 1 v Q 1 v
B = [galeﬂ 39 Raﬁ}( Vyy” - [%R/mﬁ

2 Av 1 v 2 v ,
=R R (@) + [—-—megﬂmﬁ%}(nv)x

« § w N
yyTy’ — [QOR’ w7 RmR,,aJ(-’lf)y vy’ -
1 w 2 bYY) . 1 ’ Y
[%Rilﬁ;‘”l + —= RuﬁAR‘yll]( ) '/ U - 61?7(’('1:) [ 0 L 7\/1
—1—2-(7”[?,,/;]( Yty (1.10¢)

Thus, at high energy level, one can work in the small neigh-
bourhood of a point {£}.where O depends on curvature terims
evaluated at this particular point and R(x) is defined at an
arbitrary point in the neighbourhood. So, at high cnergy | it
is possible to have R independet of O and it can be treated as
¢ , given by eq.(1.7).Physically, it means that, at high energy
scales, It behaves as a spinless matter ficld, which is not pos-
sible at low energy scales due to insignificance of R?% - terns
compared to IGR( in the gravitational action. Morcover, ex-
pansion of g, in the small neighbourhood of a point is not
physically viable at low energy scales, because extremely small
distances can not be observed by low frequency modes

0



From the above discussion , it is clear that Ricel scalar has
dual role at high energy (1) as a spinless matter field and (2)
as a geometrical field. The matter aspect of Ricci scalar is
exhibited by R. The geometrical aspect is exhibited by ¢,

Taking the matter aspect of R, the lagrangian corresponding
to eq.(1.8) can be written as

1 -~ = ~
L= 5 {g’”’(?,,RO,,R — m?R? (1.11)

with action [d*'zL , where R is taken as a basic physical field
and invariance of this action under transformation R — R+6R
yields eq.(1.8). When R is treated as a geometrical field, g,
are considered as basic fields. In quantum field theory, fields
arc treated as physical concepts describing elementary parti-
cles. So particles , described by R, are hereafter called riccions
(which are new particles different from gravitons in the sce-
nario of pure gravitational theories). Riccions are massive spin-
less particles, whereas gravitons are spin - 2 massless particles.
Propagator for riccions is expected to be ghost - free contrary
to gravitons from higher - derivative gravity.

In the present paper, R? - terms are also added to the grav-
itational action . As a result, riccions are obtained with a
quartic self potential. It 1s interesting to sce that imstanton
solution for riccions gives rise to primordial inflation without
any phase transition and spontancous symmetry breaking.

The main text of the paper starts from section 2 . where
an extended form of gravitational is considered and instanton
solution is obtained for riccions. Section 3 contains discussion
on primordial inflation obtained using the instanton solution.
Section 4 i1s the concluding section, where 1t 1s shown that



entropy problem can be solved in Einstein phase using results
obtained in previous sections.

2. Instanton solution for riccions

Here the gravitational action is taken as

S, = / d'z/=g [ — &R, R"™ — BR* + M'R*|  (2.1)

167G
where & , 3 and ) are dimensionless coupling constants satisfy-
ing eqs.(1.6). Here G is the Newtonian gravitational constant
as given in the previous section.

Invariance of S, under transformations G = G + 60,0
yields the gravitational field equations

ll 0

. 1 o
(I/IGWG)(R'“U - —2“(11“/1?) (R - Rl”/
1 a 1 6 5 .

—Ef]/tUDR + QR/‘R(,U - ‘é'gl“,R Ra’g) — /j(?]?;/,,,

v

‘ 1
~29,,0R — 5 ~guwl? 4+ 2RR,,) + M (GR?

1 . .
~6g,,OR? — 5;],”1?-‘ +3R*R,,) =0 (2.2)
Trace of these field equations yields
~ OR+ MR — 18\)°0R* = 0 2.3
o T O+ A ) (2.3)

Using Gauss’s divergence theorem

/(14:1:\/—(151?2: ay/—gn" R ”,
JQ
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which yields
M > 1.19 x 102" V1GeV” (2.7)

as & and f3 satify the equation 5 + 1273 = 2.

[t means that when M < 1.19 x 1()”/\"‘/4Cr'('\/',]—(—).’;f(—’, will dom-
inate over higher - derivative terms and Einstein’s thicory of
gravity will be effective.

Energy - momentum tensor components for Riccions are
obtained as

S - 1 S AN/, MAEN2
Ty = 0RO — g | 29" O, RO R — = (R* — = d
/ / } 2 P 4

167
. S A .
_ZT]R[U/DR - 2)\7/ (Rz - ]GI"'[\>RR/”/ - SAII [(Rz
M2 N - - M2 -
— ANg,Ol R — 2.8
lGﬂA)R] o T O ( 167r/\)R (2:8)

After getting the lagrangian for It . given by ¢q.(2.10) ,
can find the condition for the finite Euclidean action corre-
sponding to this lagrangian , which gives the classical path for
imaginary time called instanton. '

0110

If carly universe is spatially flat | homogencous and isotropic,
its geometry can be described by the Robertson - Walker line
- clement

dS?* = dt* — a*(t)[da? + dy? + d:=2). (2.9)

In the background geomatry of the model | given by eq.(2.9) .
the Riccion energy can be written as

AR
t

E = lqou(

2 ‘ |
5 ) LV(R). (2.10)
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Now using t = —i7,0ne obtains that

R— —R (2.11)
and N
1 7dRN? ~
E=—=(=2) + V(i) (2.12)
2\dr
Thus , in imaginary time , R can go from R = ——\//:—%%\ state

o Mp o po _ i B o— () i o
to R = + s state with £ = 0. S(,t,tm}, E = (~) m eq.(2.12),
one obtains the classical trajectory in R — V(RR) plane with
Imaginary time as

~ Mp MpT -
R= ——tanh| — . 2.13a
V167 A (4\/27l’> ( )

which is an instanton solution . The action for this trajectory
1 imaginary time system can be calculated as

o~

. [ LodiNg Nyg=,  M2N2
3 3 Lddn Ay AMp
op = / dra (T)[Z((IT> + 4<R 1G7r,\> ]
PA T 4 e, ML |
- ——2——/dra (T)(R - T6¥X> , (2.130)

using eq.(2.12)with E = 0. Here I is the spatial voluine. After
getting a(7) , it will be shown below that Sp is finite, which is
must for the trajectory , given by eq.(2.13a), to be an instan-
ton.
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3.Primordial inflation

The basic equation showing physical aspect of R is eq.(2.5).
So I, given by eq.(2.13a),should satisfy e.(2.5) for the sake of
consistency. In the background geometry of the early wniverse,
given by eq.(2.9) , eq.(2.5) is written as

o 3a - - ME
R+ —R=-AR(R* - /).
( 167(/\ )
Connecting eqs.(2.13) and (3.1), one finds that eq.(3.1) is sat-
isfied by It | given by eq.(2.13), only when

S 48.8\/ 2w
- Mp

astanhl2.2 = 1 and Sech12.2 = 0. For 7 < 1.22x1077GeV 1,
eq.(3.1) yields f—l = 0, which satisfies e.(2.13) only when 7 = 0.
Morcover , components of energy - momentuu tensor is con-
plex for 7 < 1.22 x 1077GeV =1 So | to be on safe side |, one
can take 7 > 1.22 x 1077Ge V=1 which vields

(3.1)

a

T =1.22 x 1077 GeV ™! (3.2)

~ l\f[p
Il = : (3.3)
V167 A
With ¢t = —i7,R is obtained from the line - clement | given by
eq.(2.9), as
. 174 ’ 2
R= ——67;[51— + (ﬁ) } (3.4)
a g

where prime denotes derivation with respect to 7. Thus for
7> 1.22 x 10717GeV =1 [ one obtains from cqs.(3.3) and (3:1)

d a2 Mp s
_+(_) = - (3.5)
(l ( 2‘1//\/j‘:7r
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The first integral of the differential equation (3.5) is

1\'[[)(14
967}\/X7r’

where A is an integration constant which can be absorbed
through rescaling a — AY%a. As a result | eq.(3.6) can be
re - written as

a?d? = 4 — (3.6)

Adt=1- _Mpa” (3.7)
961V AT
which yields the solution
a? = (Lgcos[Z(aé—%%;)l/z(T — 70)]. (3.8a)
with
ai = (M 2, (3.8D)

1\’_[[7
Using eqs.(3.8) in eq.(2.13h)

A3 T 96V A . MY MpT
Sr < { 3/4 I S “,4
F=7 /(T( i o AT

= 1.23 x A8 A

Now using 7 = 1t , one obtains from cgs.(3.3)

. Vo 12 |
@ = ageosh'/? [2(-’—’—) (-t ] (3.9)
0 967}\/}7{ ( (J) _

As discussed above | solutions (given by eqs.(3.8) and (3.9) are
valid for t = 7 > 1.22 x 107""GeV ™! . So one can take

ty=1.22 x 1077 Gev L

13



CWhen t >t 4 1.03 x 1079AY4Get !

=~ [( M >l/z(r f )] (3.10)
(I = Qqgex) e — — 1 . DR
net 9671\/X7r ! :

Thus it is obtained that inflationary scenario starts at 1.22 x
1077GeV ! ~ 8.03 x 107"Sec. ie. well before Grand Unified
phase transition which is expected to occur at 107 Sec.[7].
This phenomenon is called primordial inflation [ 8,9).

It 1s interesting to see that primordial inflation is obtained
here without any kind of phase transition and spontaneous
aymmetry breaking . So the model is free from probleins arising
out of phase transitions . It is free from fine - tuning problem
also . Moreover, it can explain existence of extremely large
ceutropy in the early universe. This model can provide sufficient
inflation when

t =ty 4 2.68 x 107" NG ey -t (3.11)

as at this particular time a = 1.69 x 10%ay = 1.09 x 10¥'\1/5,
The entropy in the universe can be calculated as

S o~ (4/3)a’T". o (3.12)

As discussed above | higher - derivative terms will dominate
over Einstein - Hilbert action till 1.19 x 10"A"1Ge V. So infla-
tionary scenario (obtained here) can continue till energy falls
to this level as below this level Einstein phase will start and
Riccl scalar will behave as a geometrical field only .



4.Concluding remarks

In the Einstein phase | the ammount of entropy wequired to
solve the fine - tuning problem is > 1087 [7.10]. The entropy
in the above model can be caleulated using eq.(3.12) after suf-
ficient inflation as

S > 2.9 x 10"\7Y8, (4.1)

which shows that the required amount of entropy can be gen-
crated provided that

= 1. (4.2)
Determination of dimensionless coupling constant A removes
arbitrariness in energy mass scales and timme for various stages
obtained above . Using this value of A | one obtains that higher
- derivative terms will dominate over Einstein - Hilbert termn

in S, till energy mass scale comes down to
M > 11.9x 10"GeV (1.3)
Exponential expansion of the model will start when
t > to+1.03x 107°GeV ™!
and sufficient inflation will be obtained when
t=ty+2.68 x 107"'Gel" "
At this particular time ( time of sufficient mflation )

a = 1.04 x 10**

Author is thankful to Prof. IX.P.Sinha for encouragement
and helpful suggestions during preparation of this paper .
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