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Abstract

The Richtmyer-Meshkov instability is important in a wide variety of applications in-

cluding inertial confinement fusion and astrophysical phenomena. In some of these

applications, the fluids involved may be plasmas and hence be affected by magnetic

fields. For one configuration, it has been numerically demonstrated that the growth of

the instability in magnetohydrodynamics is suppressed in the presence of a magnetic

field. Here, the nature of this suppression is theoretically and numerically investi-

gated.

In the framework of ideal incompressible magnetohydrodynamics, we examine the

stability of an impulsively accelerated, sinusoidally perturbed density interface in the

presence of a magnetic field that is parallel to the acceleration. This is accomplished

by analytically solving the linearized initial value problem, which is a model for the

Richtmyer-Meshkov instability. We find that the initial growth rate of the interface

is unaffected by the presence of a magnetic field, but for a finite magnetic field the

interface amplitude asymptotes to a constant value. Thus the instability of the inter-

face is suppressed. The interface behavior from the analytical solution is compared

to the results of both linearized and non-linear compressible numerical simulations

for a wide variety of conditions.

We then consider the problem of the regular refraction of a shock at an oblique,

planar contact discontinuity separating conducting fluids of different densities in the

presence of a magnetic field aligned with the incident shock velocity. Planar ideal

MHD simulations indicate that the presence of a magnetic field inhibits the depo-

sition of vorticity on the shocked contact, which leads to the suppression of the

Richtmyer-Meshkov instability. We show that the shock refraction process produces

a system of five to seven plane waves that may include fast, intermediate, and slow

MHD shocks, slow compound waves, 180o rotational discontinuities, and slow-mode

expansion fans that intersect at a point. In all solutions, the shocked contact is

vorticity free and hence stable. These solutions are not unique, but differ in the

type of waves that participate. The set of equations governing the structure of these
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multiple-wave solutions is obtained in which fluid property variation is allowed only

in the azimuthal direction about the wave-intersection point. Corresponding solu-

tions are referred to as either quintuple-points, sextuple-points, or septuple-points,

depending on the number of participating waves. A numerical method of solution

is described and examples are compared to the results of numerical simulations for

moderate magnetic field strengths. The limit of vanishing magnetic field at fixed

permeability and pressure is studied for two solution types. The relevant solutions

correspond to the hydrodynamic triple-point with the shocked contact replaced by

a singular structure consisting of a wedge, whose angle scales with the applied field

magnitude, bounded by either two slow compound waves or two 180o rotational dis-

continuities, each followed by a slow-mode expansion fan. These bracket the MHD

contact which itself cannot support a tangential velocity jump in the presence of a

non-parallel magnetic field. The magnetic field within the singular wedge is finite

and the shock-induced change in tangential velocity across the wedge is supported

by the expansion fans that form part of the compound waves or follow the rotational

discontinuities. To verify these findings, an approximate leading order asymptotic

solution appropriate for both flow structures was computed. The full and asymptotic

solutions are compared quantitatively and there is shown to be excellent agreement

between the two.
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Chapter 1

Introduction

Consider the interaction of a shock wave with a perturbed interface separating two

fluids of different properties. Such an interaction is illustrated in Fig. 1.1. In most

cases the perturbations will grow following the interaction. This scenario was first

considered by Markstein (1957). A rigorous theoretical and numerical analysis of

the problem was later presented by Richtmyer (1960). Richtmyer’s predictions were

then confirmed by the shock tube experiments of Meshkov (1969). This class of prob-

lems is therefore known as the Richtmyer-Meshkov instability (RMI). The mechanism

that drives the instability is the baroclinic generation of vorticity that occurs due to

the misalignment of the pressure gradient across the incident shock and the density

gradient across the interface, as shown in Fig. 1.1(a). For non-conducting fluids,

and conducting fluids in the absence of an applied magnetic field, this vorticity is

deposited on the interface during the shock refraction process. Subsequently, the vor-

ticity distribution on the interface causes the perturbations to grow. As the interface

becomes more distorted, secondary instabilities arise and a region of turbulent mixing

eventually develops (Brouillette, 2002).

The RMI is important in a wide variety of applications. One of the most significant

of these is inertial confinement fusion, which has been a major impetus for the study of

shock accelerated interfaces (Brouillette, 2002). In direct-drive inertial confinement

fusion, a capsule filled with fuel, typically deuterium and tritium, is placed at the

focus of a spherical array of lasers. The lasers heat the surface of the capsule, which
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Figure 1.1: Illustration of a shock interaction that produces the Richtmyer-Meshkov insta-

bility for a case where transmitted and reflected shocks are generated. (a) Pre-interaction

configuration. (b) Configuration during the interaction. (c) A post-interaction configura-

tion. I, T , and R designate the incident, transmitted, and reflected shocks, respectively. ρ is

density and p is pressure. The curved arrows indicate the local direction of the circulation,

Γ.

drives a spherical shock into the target, with the goal being to compress the fuel to

such an extent that the temperature and density at the center are sufficient to initiate

a fusion reaction. The RMI promotes mixing between the capsule material and the

fuel. This mixing limits the final compression of the fuel and hence the possibility

of achieving energy break-even or production (Lindl et al., 1992). The RMI is also

important in astrophysical phenomena. It has been used to account for the lack of

stratification in the products of supernova 1987A and is required in stellar evolution

models (Arnett, 2000). In supersonic and hypersonic air breathing engines, the RMI

may be used to enhance the mixing of fuel and air (Yang et al., 1993). The RMI

also arises in many combustion systems where shock-flame interactions occur, the

resulting instability is significant in deflagration-to-detonation transition (Khokhlov

et al., 1999). Finally, in reflected shock tunnels, the RMI is a possible mechanism for

explaining driver gas contamination in the absence of shock bifurcation due to the

wall boundary layer (Stalker and Crane, 1978, Brouillette and Bonazza, 1999).

In the first two applications of the RMI listed above, inertial confinement fu-

sion and astrophysical phenomena, the fluids involved may be plasmas and hence

be affected by magnetic fields. It is well known that the linear growth rate of the

Rayleigh-Taylor instability, a hydrodynamic instability related to the RMI, is miti-

gated at high wavenumbers in the presence of a magnetic field (Chandrasekhar, 1961).
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The effect of a magnetic field on the RMI, however, has not been thoroughly investi-

gated (Samtaney, 2003). For one configuration, Samtaney (2003) has demonstrated,

via numerical simulations, that the growth of the RMI is suppressed in the presence

of a magnetic field. The goal of this thesis is to theoretically and numerically in-

vestigate the cause and extent of this suppression. In the remainder of this chapter,

various results for the hydrodynamic RMI are reviewed, along with relevant results

from magnetohydrodynamics (MHD). Literature specific to each of the subtopics

addressed herein, but not the investigation as a whole, is reviewed in the relevant

chapters. Finally, the problems that are addressed in this investigation are outlined

and justified.

1.1 The Richtmyer-Meshkov instability in hydro-

dynamics

Richtmyer (1960) proposed that after the transmitted and reflected waves have trav-

eled sufficiently far from the interface, the motion of the fluid around the interface

can be considered incompressible. Motivated by this, Richtmyer applied the linear

theory of Taylor (1950), for the growth of single mode perturbations on a discon-

tinuous interface between incompressible fluids, to the case where the interface is

impulsively accelerated. From this he obtained what is known as the impulse model

for the growth rate of the interface, η̇:

η̇ = k∆V η0A. (1.1)

Here, k is the wavenumber of the perturbation, ∆V is velocity imparted to the in-

terface by the interaction with the incident shock, η0 is the initial amplitude of the

perturbations, and A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number formed from the

post-shock densities to the left and right of the interface, ρ1 and ρ2, respectively. The

post-shock value of a quantity is that which it takes immediately following the inter-

action of the incident shock with the interface. Eq. 1.1 is a model for the asymptotic
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growth rate after the passage of the incident shock, but is only valid while kη0 ≪ 1.

Richtmyer (1960) numerically solved the compressible linearized RMI problem

for the case where the incident shock is strong, the gases are ideal, and both the

transmitted and reflected waves are shocks. The compressible linear theory has since

been clarified and extended by a number of authors (Fraley, 1986, Mikaelian, 1994a,b,

Yang et al., 1994, Wouchuk and Nishihara, 1997, Velikovich, 1996). The consensus

of investigators is that in the impulse model, η0 should be set to the post-shock

amplitude of the interface if the reflected wave is a shock, and the average of the pre-

and post-shock amplitudes for a reflected rarefaction (Zabusky, 1999). The latter

prescription is due to Meyer and Blewett (1972). With the parameters chosen in this

fashion, Yang et al. (1994) conclude that the impulse model agrees well with their

compressible linear theory in the weak shock limit. As the shock strength is increased,

the discrepancy between them can become quite large. Compressible linear models of

the RMI exhibit the following important features (Brouillette, 2002): As the growth

rate increases from zero towards the asymptotic value following the shock interaction,

there is a kink in the growth rate. This is caused by the first convergence of the pair

of transverse waves behind the transmitted shock, which temporarily decreases the

growth rate. These transverse waves form because of the curvature of the shocks

generated by the interaction of the incident shock with the interface. After sufficient

time, the growth rate approaches its asymptotic value, which is well approximated

by the impulse model for weak shocks. Subsequent oscillations of the growth rate are

caused by the pressure field induced by the interaction of transverse waves downstream

of the transmitted and (if present) reflected shocks.

Much can be learned about the RMI from the vortex paradigm, in which the

instability is modeled by the evolution of a vortex sheet of varying strength that

represents the shocked interface. The distribution of circulation deposited on the

interface by the shock interaction can be estimated, for example, by using a local

shock polar analysis at each point along the interface (Samtaney and Zabusky, 1994).

An extensive discussion on the vortex paradigm can be found review of Zabusky

(1999). A number of non-linear theories have also been developed for the late time
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development of the RMI. These models were recently reviewed by Brouillette (2002),

along with the issues relating to experimental investigations of the RMI, but are not

discussed here as this thesis is concerned with the instability in the linear regime.

1.2 MHD results

As discussed earlier, Samtaney (2003) has utilized numerical simulations to demon-

strate that the growth of the Richtmyer-Meshkov instability is suppressed in the

presence of a magnetic field. The particular flow studied was that of a shock interact-

ing with an oblique planar contact discontinuity (CD) separating conducting fluids

of different densities within the framework of ideal MHD. The physical setup for this

shock interaction problem is depicted in Figure 1.2. Two cases were simulated; one

in which where was no magnetic field, and one in which an applied magnetic field was

aligned with the motion of the incident shock. Figure 1.3 shows the density fields for

these two cases after the incident shock has passed through the interface. For the

case with no applied magnetic field, vorticity is deposited on the interface during the

shock interaction. The interface is then a vortex layer and rolls up. For the case with

an applied magnetic field, the interface remains smooth and no roll-up is observed,

indicating that the instability is suppressed (Samtaney, 2003).

The suppression of the instability can be understood by examining how the shock

refraction process at the interface changes with the application of a magnetic field.

For the case with no applied magnetic field, the details of the shock refraction process

are as follows: For Samtaney’s choice of parameters, the incident shock bifurcates into

a reflected shock and a transmitted shock. The shocked interface is a vortex sheet

in the analytical solution, but in the simulation it becomes a vortex layer due to

numerical diffusion. Thus, in the absence of an applied magnetic field, the shock

refraction process deposits vorticity on the interface, causing it to be locally Kelvin-

Helmholtz unstable. When a magnetic field is present, this solution is generally not

valid because contact discontinuities cannot support a tangential velocity jump in

MHD if the magnetic field is not parallel to the discontinuity (Sutton and Sherman,
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Figure 1.2: Physical setup for the Richtmyer-Meshkov simulations of Samtaney (2003).

M is the incident shock sonic Mach number, η is the density ratio across the interface,

α is the angle between the incident shock normal and the interface, and B is the applied

magnetic field magnitude. The initial pressure in the unshocked regions is p0 = 1. Symmetry

boundary conditions are applied in the vertical direction.

Figure 1.3: Density fields from the Richtmyer-Meshkov simulations of Samtaney (2003)

after the incident shock has completely passed through the interface. The initial condition

geometry is shown in Figure 1.2. The transmitted shock is located near the right-hand

edge of each image. The top image is from a simulation with no magnetic field, while the

bottom image is from a simulation where a magnetic field is present. Note that the vertical

co-ordinate is reversed in the bottom image.



7

1965). In this case, Samtaney observes that a pair of transmitted shocks and a pair

of reflected shocks result from the shock refraction process. These shocks support

tangential velocity jumps and leave the shocked interface vorticity free, and hence

locally Kelvin-Helmholtz stable.

At the time of Samtaney’s paper, the MHD shock interaction problem had only

been investigated for special cases where the incident shock velocity and the applied

magnetic field are aligned in the reference frame of the intersection point between the

shocks. In such cases, the MHD Rankine-Hugoniot relations ensure that the magnetic

field is parallel to the shocked contact discontinuity, which allows jumps in tangential

velocity and magnetic field across it. This permits three-shock solutions to what

is referred to as the aligned field shock interaction problem (Ogawa and Fujiwara,

1996). Such solutions can be constructed using shock polar analysis and have been

studied in detail by Bestman (1975) and Ogawa and Fujiwara (1996). Solutions to

the aligned field shock interaction problem that involve expansion fans, compound

waves, or rotational discontinuities were not investigated.

Wu and Roberts (1999) and Wu (2000, 2003) have simulated the instability of

a shock accelerated tangential discontinuity in ideal MHD. The component of the

magnetic field normal to a tangential discontinuity vanishes allowing it to support

jumps in tangential magnetic field (Bt), tangential velocity, and pressure, provided

that the total pressure is continuous. Cases were simulated both with and without a

change in the sign of Bt across the tangential discontinuity. In the initial conditions,

only the discontinuity in density was perturbed, the discontinuity in Bt and pressure

remained planar. This implies that the initial interface is not a true tangential dis-

continuity, making rigorous interpretation of the results of the simulations difficult.

They find that when Bt does not change sign across the discontinuity, the instability

tends to be stabilized by the magnetic field, although the extent to which this occurs

was not quantified. The mechanism behind the stabilization was stated to be field

line tension. When Bt changes sign across the discontinuity, magnetic reconnection

events were found to occur.
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1.3 Thesis outline

Chapter 2: To demonstrate that the MHD RMI is suppressed in the presence of a

magnetic field, Samtaney (2003) simulated a shock interacting with an oblique planar

density interface. In hydrodynamics, a more widely studied flow results from a shock

wave accelerating a density interface with a single-mode sinusoidal perturbation in

amplitude. In Chapter 2, MHD simulations of this flow in the presence and absence

of a magnetic field are presented. The numerical method used to carry out the

simulations is described first, then the setup for the simulations is defined. Finally,

the results of the simulations are presented and discussed. Of particular interest is

the time evolution of the interface amplitude when a magnetic field is present, which

shows that the growth of the interface is not completely suppressed. This behavior

of the interface was not presented by Samtaney (2003) and could not be immediately

explained.

Chapter 3: To understand the behavior of the interface seen in Chapter 2, and the

effect of a magnetic field on the MHD RMI in general, a linearized model problem is

studied in Chapter 3. The model problem consists of a sinusoidally perturbed interface

separating incompressible conducting fluids of different densities that is impulsively

accelerated at t = 0. There is a magnetic field aligned with the impulsive acceleration.

The formulation, linearization, and analytical solution of the initial value problem are

presented. The key features of the resulting incompressible linear model for the MHD

RMI are then discussed.

Chapter 4: The model developed in Chapter 3 differs from the full MHD Richtmyer-

Meshkov instability in that it is incompressible, linear, and is driven by an impulse

rather than by the impact of a shock wave. In Chapter 4, the performance of the

linear model is assessed for a variety of cases by comparing it with the results of

compressible MHD simulations. In each case, impulse and shock driven linearized

simulations and a non-linear simulation were carried out. This allows the effects

on the flow of compressibility, shock acceleration, and non-linearity to be assessed

systematically. The performance of the linear model is first analyzed for a baseline
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case with small incident shock strength, initial perturbation amplitude, and applied

magnetic field magnitude. We then examine how the performance of the linear model

is affected as each of these are increased.

Chapter 5: Samtaney (2003) has identified the change in the MHD shock refraction

process with the application of a magnetic field as the mechanism by which the MHD

RMI is suppressed. In hydrodynamics, a solution to the shock refraction problem was

required in order for the analysis of the compressible RMI to be carried out (Richt-

myer, 1960). A solution technique for the MHD shock refraction problem therefore

seems essential to the analysis of the MHD RMI. In Chapter 5, such a solution tech-

nique is developed. This technique is then used to demonstrate that the structure

seen in Samtaney’s simulations, and other similar structures, are entropy-satisfying

weak solutions of the equations of ideal MHD. The effects of decreasing magnetic

field magnitude on the shock refraction process are then investigated. We find that

the types of waves arising from the shock refraction process undergo a number of

transitions, resulting in a wide variety of flow structures. It is also demonstrated that

entropy-satisfying weak solutions to the MHD shock refraction problem are generally

not unique, thus other admissibility conditions are required to select a single physical

solution.

Chapter 6: In the hydrodynamic triple-point solution to a shock refraction prob-

lem, which occurs in MHD in the absence of a magnetic field, the shocked contact

discontinuity is a vortex sheet. If, however, a magnetic field is present, even if it is

vanishingly small in magnitude, the contact discontinuity cannot support a tangential

velocity jump. This appears to be a paradox. This problem is addressed in Chapter 6,

where we examine how the solutions to the MHD shock refraction problem identified

in Chapter 5 approach the hydrodynamic triple-point in the limit of vanishing applied

magnetic field. Initially, this is done by applying the solution technique developed

in Chapter 5 to cases in which the magnetic field is small. Next, the equations gov-

erning the leading order asymptotic solution of the shock refraction problem in the

limit of vanishing applied magnetic field are derived. The chapter concludes with a
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comparison between the asymptotic and full solutions.

Chapter 7: The major findings to arise from this thesis are summarized in Chap-

ter 7.
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Chapter 2

Initial Simulations

2.1 Introduction

Samtaney (2003) has demonstrated, via planar ideal MHD simulations, that the

growth of the RMI is suppressed in the presence of a magnetic field. In his simu-

lations, a shock interacted with an oblique planar contact discontinuity (CD) sepa-

rating conducting fluids of different densities. The suppression of the instability is

caused by changes in the shock refraction process at the CD with the application of a

magnetic field, which will be discussed in detail in Chapter 5. A more widely studied

flow results from a shock wave accelerating a density interface with a single-mode

sinusoidal perturbation in amplitude. Our goal is to understand the effect of a mag-

netic field on this flow when conducting fluids are involved. As a first step towards

this goal, this flow was simulated both in the presence and absence of a magnetic

field. In this chapter, we first present the governing equations for the simulations.

The setup for the simulations is then defined and the results of the simulations are

presented. Finally, the significance of the results is discussed.

2.2 Governing equations

The governing equations for the simulations presented in this chapter are the ideal

MHD equations. For completeness, we present the following brief account of the
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assumptions that were made in deriving these equations. The complete details of their

derivation may be found, for example, in Sutton and Sherman (1965). Consider the

motion of a continuum fluid in the presence of an electromagnetic field, where the fluid

contains species that are electrically charged so that currents may flow within it. For

simplicity, the magnetization and polarization of individual particles are neglected.

Due to the ability of the fluid to conduct electricity, the electromagnetic field has two

primary effects: to create body forces that act on the fluid and to exchange energy

with the fluid (Sutton and Sherman, 1965). Accounting for these two effects, the

equations of mass, momentum, and energy conservation, respectively, in the absence

of viscosity, thermal conductivity, and interspecies diffusion are (see e.g., Sutton and

Sherman (1965)),

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
Du

Dt
= −∇p+ ρeE + J × B,

ρ
D

Dt

(

e+
1

2
u · u

)

= E · J −∇ · (pu).

Here, ρ is the density, p is the pressure, u is the velocity, B is the magnetic field,

E is the electric field, e is the internal energy per unit mass, ρe is the free charge

density, and J is the total current density, which is the sum of the conduction current

and the transport of excess charge ρeu. In the momentum equation, ρeE is the

electrostatic body force and J × B is the Lorentz force. To complete the system,

the equations governing the electromagnetic field are required. These are Maxwell’s

equations. Neglecting the magnetization of individual particles, Maxwell’s equations
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are (see e.g., Sutton and Sherman (1965)),

∇ · E =
ρe

K0

,

∇ · B = 0,

∇× E = −∂B
∂t
,

∇× B = µ0

(

J +K0
∂E

∂t

)

,

where K0 is the permittivity and µ0 is the magnetic permeability of vacuum.

In typical applications of magnetohydrodynamics, three approximations have been

shown to be accurate (Sutton and Sherman, 1965): K0
∂E

∂t
can be neglected in Maxwell’s

equations, in the total current density ρeu is small compared to the conduction cur-

rent, and ρeE may be neglected in the momentum equation. These are known as the

magnetohydrodynamic approximations. The conduction current density is denoted j

and is given by Ohm’s law. With ion slip neglected, Ohm’s law is,

j = σ (E + u × B − βj × B) ,

where σ is the electrical conductivity. Here, we consider the ideal MHD equations in

which viscosity, thermal conductivity, and electrical resistivity σ−1 are taken to be

zero. To further simplify the equations, the Hall current σβj×B and ion slip are ne-

glected in Ohm’s law (Sutton and Sherman, 1965). After applying these assumptions

and the magnetohydrodynamic approximations,

E = −u × B,

j =
1

µ0

∇× B.

Using these relations to eliminate E and j, and again applying the magnetohydrody-
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namic approximations, the following set of simplified equations are obtained:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ
Du

Dt
= −∇p+

1

µ0

(∇× B) × B, (2.2)

ρ
D

Dt

(

e+
1

2
u · u

)

= − 1

µ0

(∇× B) · (u × B) −∇ · (pu). (2.3)

∇ · B = 0, (2.4)

∂B

∂t
= ∇× (u × B) (2.5)

The final equation is known as the induction equation. It is convenient to normalize

B by
√
µ0, thus eliminating µ0 from the system of equations.

Eqs. 2.1-2.5 can be written in conservation form as follows:

∂U

∂t
+
∂Fj(U)

∂xj

= 0, (2.6)

where the vector of conserved variables U ≡ U(xi, t) is,

U = {ρ, ρui, Bi, ρeT}T ,

and the flux vectors Fj(U) are,

Fj(U) =

{

ρuj , ρuiuj + (p+
1

2
BkBk)δij −BiBj ,

ujBi − uiBj , (ρeT + p+
1

2
BkBk)uj −Bj(Bkuk)

}T

.

Here, ρeT is the total energy per unit volume of the plasma. The plasma is assumed

to be ideal with constant specific heats, allowing the following equation of state to be

used to close the set of equations:

ρeT =
p

γ − 1
+

1

2
ρukuk +

1

2
BkBk.
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Figure 2.1: Initial condition geometry for initial MHD RMI simulation.

2.3 Initial simulation setup

The simulations presented in this chapter were carried out using a method developed

by Ravi Samtaney (Computational Plasma Physics Group, Princeton Plasma Physics

Laboratory, Princeton University, NJ) for obtaining numerical solutions to the ideal

MHD equations. The numerical method is a non-linear compressible MHD solver

that uses the 8-wave upwinding formulation of Powell et al. (1999a) within an unsplit

upwinding method (Colella, 1990a). The solenoidal property of the magnetic field is

enforced at each time step using a projection method. A constrained transport step

is then used remove divergence modes with a centered finite difference representation.

This uses the formulation prescribed by Toth (2000). The details of the numerical

method are presented in Appendix A.

The initial condition geometry for the simulations is illustrated in Fig. 2.1. As in

the simulations of Samtaney (2003), the magnetic field is initially aligned with the

motion of the shock. This implies that the hydrodynamics are decoupled from the

magnetic field until the incident shock begins to interact with the interface. The flow is

characterized by the incident shock sonic Mach number, M , the density ratio across

the interface, ρ2/ρ1, the ratio of the interfaces initial amplitude to its wavelength,

η0/λ, the ratio of specific heats, γ, and the non-dimensional strength of the applied

magnetic field, β−1 = B2/(2p0). Here B is the magnitude of the applied magnetic

field and p0 is the initial pressure in the unshocked regions of the flow.

For both simulations presented in this chapter, M = 2, ρ2/ρ1 = 3, η0/λ = 0.1,
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Figure 2.2: (a) Triple-point wave structure and streamlines resulting from a shock refrac-

tion process with M = 2, α = 1, ρ2/ρ1 = 3 and γ = 5/3 in the absence of an applied

magnetic field (β−1 = 0). (b) Wave structure resulting from a MHD shock refraction pro-

cess with M = 2, α = 1, ρ2/ρ1 = 3, γ = 5/3, and β = 1. Here α is the angle between the

incident shock normal and the unshocked interface. These structures were computed using

the technique detailed in Chapter 5.

and γ = 5/3. In the simulation in which a magnetic field is present, β−1 = 1. This

set of parameters was chosen because it can be shown, using the method detailed in

Chapter 5, that the shock refraction process at the interface does not produce any

intermediate MHD shocks (the various types of MHD discontinuities are defined in

Section 5.2.2). Examples of the computed structures produced by the shock refraction

process for one particular angle of incidence are shown in Fig. 2.2. In the case without

a magnetic field, transmitted and reflected hydrodynamic shocks are generated. These

are labeled T and R, respectively. In the case with a magnetic field, four MHD shocks

are generated; a transmitted fast shock TF , a transmitted slow shock TS, a reflected

fast shock RF , and a reflected slow shock RS. It is desirable to avoid the generation

of intermediate shocks at the interface because the physical relevance of such shocks

is not yet completely clarified, as discussed in Section 5.2.3. In the simulation that

Samtaney (2003) presented in detail, one intermediate shock was generated by the

shock refraction process.
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To reduce the cost of the computations, only a half period of the interface is sim-

ulated, thus the length of each computational domain in the x-direction is Lx = λ/2.

This is possible because symmetry boundary conditions are enforced on the bound-

aries x = 0 and x = Lx. The simulations were run for a period Tsim/t
∗ = 5, where

t∗ = λ/
√

p0/ρ1. The length of each computational domain in the z-direction is

Lz = 12λ. At z = 0 and z = Lz, zero gradient boundary conditions are applied.

Spurious reflections would occur if shocks crossed these boundaries, thus the simu-

lations are terminated before any shocks exit the domain. Each physical domain is

discretized into a mesh of Nx × Nz mesh points. Here Nx = 128 and Nz = 3072 so

that the cells are square.

The interface is initially centered at zif = 3.36λ. This is so that the fastest

transmitted and reflected shocks generated by the shock refraction process at the

interface reach the ends of the domain at approximately the same time, maximizing

the duration of the simulation. Where the interface initially crosses a cell, the density

in that cell is set to the appropriate area weighted average of ρ1 and ρ2. In the initial

condition, the incident shock is represented by the appropriate discontinuous change

in fluid properties at zshock = zif − λ/5.

2.4 Initial simulation results

Time sequences of density and vorticity fields from the simulations without (i) and

with (ii) an initial magnetic field are shown in Fig. 2.3. In the simulation without a

magnetic field, the transmitted and reflected shocks are clearly visible in the density

fields. Although these shocks are curved, and are therefore sources of vorticity, the

vorticity they produce is too small in magnitude to be visible in all the vorticity

fields. Note the presence of the transverse waves that are generated downstream of

the leading transmitted and reflected shocks in each simulation. It can be seen from

Fig. 2.3(i) that the vorticity generated by the shock refraction process remains at the

interface. This causes the interface to roll up into the mushroom shape characteristic

of the hydrodynamic RMI. In ideal MHD, the evolution equation for the magnetic
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(i)

(ii)

(a)

(i)

(ii)

(b)

(i)

(ii)

(c)

Figure 2.3: Vorticity and density fields from compressible simulations withM = 2, ρ2/ρ1 =

3, η0/λ = 0.1, γ = 5/3, and (i) B = 0 or (ii) β = 1 at (a) t/t∗ = 0.2, (b) t/t∗ = 0.8, and (c)

t/t∗ = 3.4. The top half of each plot shows vorticity while the bottom half shows density.

At the time of these images, the incident shock has interacted with the interface. In (c),

the resulting transmitted fast shock is located near the right-hand end of each image while

the reflected fast shock is located beyond the left-hand edge of each image. Note that the

full computational domain is not shown; in the plots, 2 < z/λ < 10.
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field ensures that if it is zero initially, it remains zero throughout the simulation.

Thus, in the absence of a magnetic field at t = 0, the fact that conducting fluids are

involved does not alter the RMI from the hydrodynamic case. In the simulation with a

magnetic field, the transmitted and reflected fast shocks that are are clearly visible in

the density fields. The tangential velocity jumps across these shocks are considerably

smaller than those across the slow shocks, thus they are not as visible in the vorticity

fields. The transmitted and reflected slow shocks have small density jumps across

them and therefore do not feature prominently in the density fields. It can be seen

from the vorticity fields, however, that the majority of the vorticity generated during

the shock refraction process is transported away from the interface via the tangential

velocity jumps across the slow shocks. In the ideal case, this leaves the interface

with zero circulation-per-unit-length, which drastically alters its evolution. This is

evident from a comparison of Fig. 2.3(c)(i) and Fig. 2.3(c)(ii), where the interface

from the simulation with a magnetic field present exhibits none of the roll up seen in

the hydrodynamic case.

When a magnetic field is present, the additional shocks form to transport vorticity

away from the interface because in MHD, a contact discontinuity cannot support a

tangential velocity jump in the presence of a non-parallel magnetic field. To under-

stand why this is so, consider a discontinuity in the plane x = 0, across which ρ, p

and Bx are continuous and non-zero, ux = uz = By = Bz = 0, while the tangential

velocity uy is discontinuous and is given by,

uy(x) = [v̄ + ∆vH(x)]/2,

where H(x) is the Heaviside function. The electric field is then given by,

E = −u × B = [v̄ + ∆vH(x)]Bxêz/2,

where êz is the unit vector in the z−direction. Using this to evaluate the time
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derivative of the magnetic field, we obtain,

∂B

∂t
= −∇× E = ∆vδ(x)Bxêy/2,

where δ(x) is the Dirac delta function. The magnetic field in the y−direction that

develops as a result of this will produce a Lorentz force at the discontinuity. Thus

the discontinuity is not a steady solution to the equations of ideal MHD.

In the simulations, the amplitude of the interface perturbation η is computed

follows: Let ρ4 and ρ5 be the average densities immediately to the left and right of

the interface, respectively, after the incident shock has interacted with the interface.

The density midway though the thickness of the interface is then approximately,

ρmid =
ρ4 + ρ5

2
.

The interface amplitude is approximated as half the difference between the maximum

and minimum values of z where ρ = ρmid;

η =
max (z : ρ = ρmid) − min (z : ρ = ρmid)

2
.

The values of z where ρ = ρmid are computed using linear interpolation between the

cell centered values. The η histories computed from the two simulations using this

procedure are shown in Fig. 2.4. Also shown is the behavior predicted by the incom-

pressible hydrodynamic impulse model of Richtmyer (1960), which was introduced in

Section 1.1;

η̇ = η0k∆V
ρ5 − ρ4

ρ5 + ρ4

, (2.7)

where ∆V is the magnitude of the impulse and k is the wavenumber of the pertur-

bation. We take ∆V to be the mean velocity imparted to the interface during the

shock refraction process, which is 1.0709
√

p0/ρ1 for the parameters considered here.

Following the discussion in Section 1.1, the post-shock value of η0 is used as the re-

flected wave is a shock. For the simulation with B = 0, η initially grows linearly
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Figure 2.4: Interface perturbation amplitude histories from simulations with M = 2,

ρ2/ρ1 = 3, η0/λ = 0.1, γ = 5/3, and B = 0 or β = 1. The behavior according to the

incompressible hydrodynamic linear stability analysis (Richtmyer, 1960) is also shown.

after a small discrepancy following the shock interaction. Such a discrepancy was

also seen in the M = 1.2, η0/λ = 0.064 hydrodynamic simulations summarized by

Brouillette (2002). The linear growth rate after the discrepancy is less (approximately

18%) than that predicted by Eq. 2.7. This is similar to the findings of Cook et al.

(2004) for the Rayleigh-Taylor instability. They observe that the growth factor of

the interface is approximately 10% less than the value from linear stability theory

for η0/λ = 0.1. This disagreement is attributed to non-linear effects (Cook et al.,

2004). In the M = 1.2, η0/λ = 0.064 hydrodynamic results summarized by Brouil-

lette (2002), the growth rates from the front tracking simulation of Holmes et al.

(1995) and the experiments of Benjamin (1992) are consistently below that predicted

by the impulse model. At t/t∗ ≈ 1, the interface begins to roll-up and the growth

rate starts to decrease. The behavior of the interface in the simulation with β = 1 is

quite different. The interface amplitude does increase initially, but the growth rate

does not appear to be constant as in the hydrodynamic case. The growth rate then

decays to zero at t/t∗ ≈ 0.95, after which η appears to undergo long period oscil-
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lations about a mean value of 0.088λ. This is a factor of approximately 1.5 greater

than the amplitude of the interface immediately after shock compression.

2.5 Discussion

The results of the MHD RMI simulations with a sinusoidally perturbed interface are in

qualitative agreement with the simulations of Samtaney (2003), in which the interface

was planar and oblique: When a magnetic field is present, additional MHD shocks

are generated during the shock refraction process that transport vorticity away from

the density interface, suppressing the growth of the RMI. The most significant result

to arise from the simulations presented in this chapter is that the interface amplitude

still exhibits some growth in the presence of a magnetic field. The behavior of the

interface amplitude in this case, a short period of growth followed by oscillations about

a constant mean, was not reported by Samtaney and warrants further investigation.

The physics behind this behavior is explored in the chapters that follow.
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Chapter 3

Incompressible Linear Theory

3.1 Introduction

Our goal is to understand the effect of a magnetic field on the RMI of a sinusoidally

perturbed density interface when conducting fluids are involved. We consider the case

where the magnetic field is aligned with the motion of the shock. The initial condition

for this flow is illustrated in Fig. 3.1(a). As a model for this flow, we will examine

the growth of a sinusoidally perturbed interface separating incompressible conducting

fluids that is impulsively accelerated at t = 0. The setup for the model problem is

illustrated in Fig. 3.1(b). This problem is characterized by the normalized densities on

either side of the interface ρ1/ρ
∗ and ρ2/ρ

∗, the ratio of initial perturbation amplitude

to its wavelength η0/λ, the non-dimensional strength of the applied magnetic field

β−1 = B2/(2p0) , and the normalized magnitude of the impulse ∆V
√

ρ∗/p0. Here, p0

is the initial pressure of the flow and we choose ρ∗ to be ρ1 from the corresponding

shock driven flow.

3.2 Formulation

3.2.1 Governing equations of ideal, incompressible MHD

In this investigation, it is convenient to consider solutions to the linearized equations

of ideal, incompressible MHD in a non-inertial reference frame that has acceleration
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Figure 3.1: (a) Initial condition geometry for compressible RM instability. (b) Geometry

for incompressible model problem.

∆V δ(t) in the z-direction. Here, δ(t) is the Dirac delta function and ∆V ≪ c, where

c is the speed of light. In this reference frame, the ideal incompressible equations are

∇ · (u) = 0 , (3.1)

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ (∇× B) × B − ρ∆V δ(t)ez , (3.2)

∇ · B = 0 , (3.3)

∂B

∂t
= ∇× (u × B) . (3.4)

Here, ρ is the density, p is the pressure, u is the velocity, B is the magnetic field, and

ez is the unit vector that points in the z-direction.

3.2.2 Base flow

Eqs. 3.1-3.4 are linearized about a base flow that results from the impulsive acceler-

ation of an unperturbed interface. This flow has no x-dependence and zero vertical

velocity (u). Our choice of reference frame results in the horizontal velocity (w) being

zero for all time. The base flow pressure is found by integrating Eq. 3.2. The complete
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base flow is thus

ρ0(z) = ρ1 +H(z) (ρ2 − ρ1) ,

u0 = 0,

w0 = 0,

Bx0 = 0,

Bz0 = B,

p0(z, t) = −ρ1∆V δ(t)z −H(z) (ρ2 − ρ1) ∆V δ(t)z,

where H(z) is the Heaviside function. When the interface is perturbed the density

becomes ρ0(z − h), where h(x, t) is the position of the interface and h≪ λ.

3.2.3 Linearized equations

The linearized equations are obtained by assuming that all flow quantities, except

density, are of the form

q(x, z, t) = q0(z, t) + q′(x, z, t),

where q′ are small perturbations to the base flow. These expressions are then substi-

tuted into the governing equations; Eqs. 3.1-3.4. Neglecting terms involving products

of perturbations, the resulting linearized equations are

∂u′

∂x
+
∂w′

∂z
= 0, (3.5)

ρ
∂u′

∂t
+
∂p′

∂x
= B

(

∂B′
x

∂z
− ∂B′

z

∂x

)

, (3.6)

ρ
∂w′

∂t
+
∂p′

∂z
= (ρ2 − ρ1) [H(z) −H(z − h)] ∆V δ(t), (3.7)

∂B′
x

∂x
+
∂B′

z

∂z
= 0, (3.8)

∂B′

∂t
= B

∂u′

∂z
. (3.9)
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Note that the forcing resulting from the impulse is non-zero only in a small region

between z = 0 and the interface. We assume that all perturbations have the form

q′(x, z, t) = q̂(z, t)eikx, (3.10)

as we will see that the solution is not separable in z and t. We take our initial

conditions to be at t = 0−, just prior to the impulsive acceleration, when the velocity

and magnetic field perturbations are zero. Taking the temporal Laplace transforms

of Eqs. 3.5-3.9 outside of the forced region in each fluid gives

ikUi +DWi = 0, (3.11)

sρiUi + ikPi = B [DHxi
− ikHzi

] , (3.12)

sρiW +DPi = 0, (3.13)

ikHxi
+DHzi

= 0, (3.14)

sHxi
= BDUi, (3.15)

sHzi
= BDWi, (3.16)

where U , W , Hx, Hz, and P are the temporal Laplace transforms of û, ŵ, B̂x, B̂z,

and p̂, respectively, i = 1 or 2, and D ≡ ∂/∂z.

3.2.4 Spatial behavior

Eqs. 3.11-3.16 can be combined to give the following ODE for W :

(

D2 − ρis
2

B2

)

(

D2 − k2
)

Wi = 0, (3.17)

which has the general solution

Wi = Ai(s)e
kz +Bi(s)e

−kz + Ci(s)e
sz/CAi +Di(s)e

−sz/CAi , (3.18)
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where CAi = B/
√
ρi is the Alfvén wave speed in fluid i. The inverse Laplace trans-

forms (ILTs) of the first two terms have the form f(t)e±kz while the ILTs of the last

two terms have the form H(t ± z/CAi)f(t ± z/CAi). This causes the solution to be

non-separable in z and t.

3.2.5 Boundary conditions

Solutions to Eqs. 3.5-3.9 are subject to a number of boundary conditions. The pertur-

bations must be bounded as |z| → ∞, thus A2(s) = 0 and B1(s) = 0. Also, we require

that there be no incoming waves from z = ±∞, thus C2(s) = 0 and D1(s) = 0. Note

that we have assumed B > 0 and k > 0. The resulting expressions for W1 and W2

are

W1(z, s) = A1(s)e
kz + C1(s)e

sz/CA1 , (3.19)

W2(z, s) = B2(s)e
−kz +D2(s)e

−sz/CA2 . (3.20)

At the contact (z = h(x, t) = η(t)eikx), w′, B′
x, and B′

z must be continuous (Chan-

drasekhar, 1961). Taking the Laplace transforms of these variables and using Eqs. 3.11-

3.16 to express each in terms of W , these boundary conditions become, to leading

order in h,

[W ]z=0 = 0, (3.21)

[DW ]z=0 = 0, (3.22)

[

D2W
]

z=0
= 0, (3.23)
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Figure 3.2: The region (shaded area) and integration path (dashed line) considered in

deriving the dynamic condition.

where [q]z=0 ≡ q2|z=0− q1|z=0. Using Eq. 3.19 and Eq. 3.20 to express these boundary

conditions in terms of the unknown coefficients, we obtain,

A1 + C1 = B2 +D2, (3.24)

kA1 +
sC1

CA1

= −kB2 −
sD2

CA2

, (3.25)

k2A1 +
s2C1

C2
A1

= k2B2 +
s2D2

C2
A2

. (3.26)

The continuity of pressure across the contact is referred to as the dynamic condi-

tion. We derive the dynamic condition appropriate here as follows: Consider the fluid

in a thin region between the contact and z = 0, where x is such that h(x, t) > 0. Such

a region is shown in Fig. 3.2. From Eq. 3.7, the linearized z-momentum equation in

this region is

ρ1
∂w′

∂t
= −∂p

′

∂z
+ (ρ2 − ρ1)∆V δ(t) .

Integrating this equation with regard to z from 0 to h(x, t) and rearranging yields

p′(x, h, t) − p′(x, 0, t) = (ρ2 − ρ1)∆V δ(t)h− ρ1

∫ h

0

∂w′

∂t
dz. (3.27)

The integral on the right is a higher order term and hence can be neglected. As p′ is
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continuous across the contact, p′(x, h, t) = p′2(x, h, t), which to leading order is given

by p′2(x, 0, t). Using this and p′(x, 0, t) = p′1(x, 0, t), to leading order Eq. 3.27 becomes

p′2(x, 0, t) − p′1(x, 0, t) = (ρ2 − ρ1)∆V δ(t)η(t)e
ikx.

Taking the Laplace transform of this equation and using Eq. 3.11, Eq. 3.12, Eq. 3.15,

and Eq. 3.16 to express Pi in terms of Wi, we obtain

B2

sk2

(

D3W2 −DW2 −D3W1 +DW1

)

+
s

k2
(ρ1DW1 − ρ2DW2) = (ρ2 − ρ1) ∆V η(0).

Using the forms for W1 and W2 given in Eq. 3.19 and Eq. 3.20, respectively, the

dynamic condition can be expressed as

ρ1

(

sA1

k
+
BC1√
ρ1

)

+ ρ2

(

sB2

k
+
BD2√
ρ2

)

= (ρ2 − ρ1) ∆V η0. (3.28)

The result is the same if we consider a region where h(x, t) < 0.

3.3 Solution

Eqs. 3.24-3.26 and Eq. 3.28 are solved for the four unknown coefficients; A1(s), B2(s),

C1(s), and D2(s). After considerable algebra, the resulting coefficients can be ex-

pressed as,

A1(s) = KA
s(s+ α1)

(s− α1)(s− σ − iτ)(s− σ + iτ)
, (3.29)

B2(s) = KA
s(s+ α2)

(s− α2)(s− σ − iτ)(s− σ + iτ)
, (3.30)

C1(s) = KC
s+ α2

(s− α1)(s− σ − iτ)(s− σ + iτ)
, (3.31)

D2(s) = KD
s+ α1

(s− α2)(s− σ − iτ)(s− σ + iτ)
, (3.32)
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where,

α1 =
Bk√
ρ1

, (3.33)

α2 =
Bk√
ρ2

, (3.34)

σ = −Bk
(√

ρ1 +
√
ρ2

)

ρ1 + ρ2

, (3.35)

τ =

[

B2k2
(

ρ1 + ρ2 − 2
√
ρ1ρ2

)]1/2

ρ1 + ρ2

, (3.36)

and

KA = k∆V η0A, (3.37)

KC = −2Bk2∆V η0Aρ2√
ρ1ρ2 +

√
ρ2ρ1

, (3.38)

KD =
ρ1

ρ2

KC . (3.39)

The Atwood number A ≡ (ρ2 − ρ1)/(ρ2 + ρ1). The inverse Laplace transforms of

A1(s), B2(s), C1(s), and D2(s), respectively, can be expressed as

a1(t) = KA

[

2α2
1e

α1t

(α1 − σ)2 + τ 2
+ ℜ

(

(σ + iτ)(α1 + σ + iτ)e(σ+iτ)t

iτ(σ + iτ − α1)

)]

, (3.40)

b2(t) = KA

[

2α2
2e

α2t

(α2 − σ)2 + τ 2
+ ℜ

(

(σ + iτ)(α2 + σ + iτ)e(σ+iτ)t

iτ(σ + iτ − α2)

)]

, (3.41)

c1(t) = KC

[

(α1 + α2)e
α1t

(α1 − σ)2 + τ 2
+ ℜ

(

(α2 + σ + iτ)e(σ+iτ)t

iτ(σ + iτ − α1)

)]

, (3.42)

d2(t) = KD

[

(α1 + α2)e
α2t

(α2 − σ)2 + τ 2
+ ℜ

(

(α1 + σ + iτ)e(σ+iτ)t

iτ(σ + iτ − α2)

)]

. (3.43)

The above expressions are not valid if τ = 0, but this requires that either B = 0,

k = 0, or ρ1 = ρ2, which correspond to cases that are not of interest here. In the

general case, from Eq. 3.19 and Eq. 3.20, the complete solutions for w in each fluid
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are

w1 =
[

a1(t)e
kz +H(t+ z/CA1)c1(t+ z/CA1)

]

eikx, (3.44)

w2 =
[

b2(t)e
−kz +H(t− z/CA2)d2(t− z/CA2)

]

eikx. (3.45)

3.4 Solution features

3.4.1 Boundedness of velocity

In our solution for w, the exponents α1t and α2t are positive, admitting the possibility

that the maximum velocity grows exponentially in time. This does not occur for the

following reasons: First consider fluid 2. For 0 < z < CA2t, the terms in w′
2 involving

the exponent α2t are

[

2KBα
2
2

(α2 − σ)2 + τ 2
eα2t−kz +

KD(α1 + α2)

(α2 − σ)2 + τ 2
eα2(t−z/CA2)

]

eikx.

Now, because α2/CA2 = k these are equal to

1

(α2 − σ)2 + τ 2

[

2KBα
2
2 +KD(α1 + α2)

]

eα2t−kz+ikx = 0.

The equality holds because 2KBα
2
2 + KD(α1 + α2) = 0. Thus w′

2 does not grow

exponentially in time for 0 < z < CA2t. For z > CA2t, the term in w′
2 involving the

exponent α2t has the form

Keα2t−kzeikx = Ke−k(z−CA2t)eikx. (3.46)

This term decays exponentially in the moving co-ordinate z−CA2t, which is positive

for z > CA2t. Thus the maximum of w′
2 does not grow exponentially in time. Similar

arguments hold in fluid 1.
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Figure 3.3: Profiles of ŵ(z, t)
√

ρ∗/p0 at t/t∗ = 0, t/t∗ = 1, and t/t∗ = 4, for ρ1/ρ
∗ =

1.48372, ρ2/ρ
∗ = 4.43159, ∆V

√

ρ∗/p0 = 0.319125, η0/λ = 0.00799276, and β = 16. Here

t∗ ≡ λ
√

ρ∗/p0. The maxima of ŵ(z, t) coincide with the Alfvén fronts.

3.4.2 Initial solution and growth rate

Profiles of ŵ(z, t) at various times are shown in Fig. 3.3 for one set of parameters.

The initial (t = 0+) velocity distribution,

w(x, z, 0+) = η0k∆VAe−k|z|+ikx,

is identical to the steady velocity distribution that arises from the hydrodynamic

(B = 0) case. This implies that the initial growth rate of the interface, which to

leading order is given by ŵi(0, 0), is unaffected by the presence of a magnetic field.

Indeed, from Eq. 3.44 or Eq. 3.45 it can be shown that this initial growth rate is,

∂η

∂t

∣

∣

∣

∣

t=0

= η0k∆VA, (3.47)

as in the hydrodynamic case (Richtmyer, 1960). This is consistent with the fact that

the baroclinic generation of vorticity ω is unaffected by the presence of the magnetic
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field.

3.4.3 Circulation distribution

On any interface with unit tangent t̂, the circulation per unit length ∆u is given by,

∆u =
[

u · t̂
]

.

For the interfaces in our problem, u · t̂ = u to leading order. Using the fact that

u = iDw/k,

∆u = [u] =
i

k
[Dw] =

i

k
[Dŵ] eikx.

Thus the gradient discontinuities in ŵ seen in Fig. 3.3 indicate the presence of inter-

faces that carry circulation on a half period. At t = 0+, Fig. 3.3 shows that circulation

is present on the density interface at z = 0. This was baroclinically generated during

the impulsive acceleration of the interface. Away from the interface the flow is irro-

tational at t = 0+, thus the total circulation in a half period of the domain must be

equal to,

Γ1/2 =
i

k
[Dŵ]z=0, t=0

∫ λ/2

0

eikxdx = 4η0∆VA. (3.48)

In MHD, the incompressible vorticity equation,

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u +

∇ρ×∇p
ρ2

+
∇× [(∇× B) × B]

ρ
, (3.49)

has an additional term involving the magnetic field. The additional term implies that

even in the absence of baroclinic generation, vortex lines are not necessarily material

lines as they are in hydrodynamics. For t > 0+, ŵ is smooth around z = 0, indicating

that the circulation has been removed from the density interface. Instead, circulation

is carried by two fronts that propagate at the local Alfvén speed in each fluid. These

fronts correspond to the locations where the Heaviside functions change magnitude.
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Figure 3.4: Vorticity field at t/t∗ = 4 for ρ1/ρ
∗ = 1.48372, ρ2/ρ

∗ = 4.43159, ∆V
√

ρ∗/p0 =

0.319125, η0/λ = 0.00799276, and β = 16. Here t∗ ≡ λ
√

ρ∗/p0.

At their locations, the solution satisfies the following set of jump conditions:

[w′] = 0 , (3.50)

[B′
z] = 0 , (3.51)

[p′] = 0 , (3.52)

[u′] = −sign(z)
1√
ρ0

[B′
x] . (3.53)

These correspond to the MHD Rankine-Hugoniot relations (in the shock stationary

reference frame) for a discontinuity with a small amplitude corrugation, linearized

about a uniform flow propagating at the Alfvén speed either parallel or anti-parallel

to the magnetic field.

In the smooth regions of the flow, the vorticity is given by,

ω =
∂w

∂x
− ∂u

∂z
=
i

k

(

k2w −D2w
)

. (3.54)

By substituting our solution for w into the above equation, we find that the flow is

irrotational upstream of the Alfvén fronts in each fluid. Downstream of the Alfvén

fronts, however, we find that the vorticity is non-zero. This is illustrated in Fig. 3.4,

which shows the vorticity field for one particular case. Note that the vorticity decays

exponentially downstream of each Alfvén front.
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3.4.4 Interface behavior

The value of ŵ(z, t) at z = 0 is the growth rate of the interface. From Fig. 3.3, it can

be seen that as t increases and the Alfvén fronts propagate away from the interface,

carrying away the majority of the vorticity produced by the impulsive acceleration,

the growth rate of the interface decays to zero. Thus the instability of the interface

is suppressed and its amplitude asymptotes to a constant value. For t → ∞, the

interface amplitude tends to

η∞ = η0 +

∫ ∞

0

ŵ(0, t)dt = η0

[

1 +
∆V

B
(
√
ρ2 −

√
ρ1)

]

. (3.55)

This shows that the change in interface amplitude is inversely proportional to B. Thus

for B → 0, η∞ → ∞, which is in agreement with the result from hydrodynamic linear

stability analysis (Richtmyer, 1960). Interestingly, η∞ is independent of wavenumber.

For finite times the interface amplitude is given by,

η(t) = η0 +

∫ t

0

ŵ(0, T )dT = η∞ − (η∞ − η0)e
σt cos τt, (3.56)

where σ and τ are as defined in Eq. 3.35 and Eq. 3.36, respectively.

3.5 Summary

In conclusion, we have examined the behavior of an impulsively accelerated per-

turbed interface separating incompressible conducting fluids of different densities, in

the presence of a magnetic field that is parallel to the acceleration. This was done

by analytically solving the appropriate linearized initial value problem. We find that

the initial growth rate of the interface is unaffected by the presence of a magnetic

field, hence the perturbations still grow in this case. The growth rate then decays

due to the transport of vorticity via Alfvén fronts, resulting in the interface ampli-

tude asymptoting to a constant value. The difference between the initial and final

interface amplitudes is inversely proportional to the magnetic field magnitude. Thus
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the instability of the interface is suppressed by the presence of the magnetic field, but

there is still growth of the interface perturbations at early times.
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Chapter 4

Comparison with Simulation

4.1 Introduction

In Chapter 3 a linear model was developed for the MHD Richtmyer-Meshkov insta-

bility. The model differs from the full MHD Richtmyer-Meshkov instability in that it

is incompressible, linear, and is driven by an impulse rather than by the impact of a

shock wave. In this chapter, the performance of the model is assessed for a variety

of cases by comparing it to the results of compressible numerical simulations. In

each case, an impulse driven linearized (IDL) simulation, a shock driven linearized

(SDL) simulation, and a non-linear (NL) simulation were carried out. This allows

the effects on the flow of compressibility, shock acceleration, and non-linearity to be

assessed systematically: differences between the linear model and an IDL simulation

are mainly due to the effects of compressibility, differences between IDL and SDL

simulations are due to the effects of shock rather than impulsive acceleration, and

differences between SDL and NL simulations are due to non-linear effects.

It is expected that the effects of compressibility increase with shock Mach number

M , while non-linear effects increase with the initial amplitude of the interface η0.

From the linear model, the propagation speeds of the fronts that carry circulation

away from the interface scale like CA. This must be small compared to the sound

speed, which corresponds to β ≡ 2a2/γC2
A being large, if these fronts are not to

interact with the shocks present in the compressible case. Thus it is anticipated that
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the model will be most accurate for a flow characterized by small M , small η0, and

large β. The performance of the model for such a set of parameters is analyzed as

baseline case. We then examine how the performance of the model is affected as M ,

η0, and β−1 are increased.

4.2 Simulation techniques

4.2.1 Numerical method for linearized simulations

The linearized simulations presented in this chapter were carried out using a method

developed by Samtaney (2004) for obtaining numerical solutions to the linearized

ideal MHD equations when the base flow is temporally evolving. In this method, the

equations of compressible ideal MHD presented in Section 2.2 are specialized to two

dimensions; x and z. The solution is then assumed to have the form,

U(x, z, t) = U o(z, t) + ǫ Û(z, t) exp(ikx),

where ǫ≪ 1, U o(z, t) is an unsteady one-dimensional base flow, and ǫÛ(z, t) exp(ikx)

is the perturbation to the base flow. A finite volume upwind approach is adopted

to solve for both the base flow and the perturbations. The equations are integrated

in time using a third order TVD Runge-Kutta scheme and the fluxes are evaluated

using Roe’s method. The details of the method are described in Appendix B.

4.2.2 Setup for shock driven linearized simulations

Let us first consider the initial conditions for the base flow of an SDL simulation.

Prior to the interaction of the incident shock with the density interface, which is

unperturbed in the base flow, we designate the quiescent conditions to the left (z <

zif ) and right (z > zif ) of the interface as states 1 and 2, respectively. The conditions

downstream of the incident shock are referred to as state 3. For given values of γ

and the incident shock Mach number M , state 3 is obtained from the normal shock
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Figure 4.1: Illustration of the base flow for SDL simulations in the z − t plane. The

lines shown are the paths of the discontinuities in the flow. I, T , and R designate the

incident, transmitted, and reflected shocks, respectively, while CD designates the contact

discontinuity.

relations for an ideal gas. For the range of parameters considered in this thesis, the

interaction of the incident shock with the interface generates a reflected shock and

a transmitted shock. The conditions downstream of the reflected and transmitted

shocks are referred to as states 4 and 5, respectively. These states are shown in

Fig. 4.1, which shows the paths of the discontinuities in the base flow in the z − t

plane.

In the initial condition for the base flow, the incident shock is represented by a

sharp discontinuity located at zshock = zif − λ/5. The flow is initialized to state 3 for

z < zshock and state 1 for z > zshock. For z > zshock, the base flow density is set to,

ρo(x, 0) =
1

2
{(ρ2 + ρ1) + (ρ2 − ρ1) tanh[α(z − zif )]} ,

to represent the density interface. With this initial condition, the base flow for an

SDL simulation is the numerical solution to the Riemann problem that arises from

the interaction of a shock with an unperturbed density interface. The only non-zero
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perturbation at t = 0 is that in density, which approximates a delta function as

follows;

ρ̂(z, 0) = −2α(ρR − ρL)
exp[2α(z − zif )]

{1 + exp[2α(z − zif )]}2
. (4.1)

For all simulations we chose α = 80. Note that the initial perturbation amplitude of

the interface, η0, has been scaled out of the problem. For comparison with the results

of NL simulations and the incompressible linear model, the scaled perturbations from

the linearized simulations must be multiplied by η0.

4.2.3 Setup for impulse driven linearized simulations

For IDL simulations, the base flow is initialized to state 4 for z < zif and state 5

for z > zif . These are the post-shock states from the Riemann problem described

in the previous section. The sharp interface between these two uniform states is

approximated by hyperbolic tangent profile, with all quantities having the form:

q(z, t) =
1

2
{qL + qR + (qR − qL) tanh[α(z − zif )]} ,

where the subscripts L and R indicate values to the left and right of the interface,

respectively. The perturbations are initialized as described in Section 4.2.2. When

scaling the perturbations from IDL simulations for comparison with other results, the

initial perturbation amplitude of the interface is taken from the corresponding NL

simulation immediately after the interface has been compressed by the passage of the

shock wave. These same post-shock initial conditions are used in the incompressible

linear model.

4.2.4 Setup for non-linear simulations

The non-linear simulations were carried out with a non-linear compressible MHD

solver developed by Ravi Samtaney. It uses the 8-wave upwinding formulation of

Powell et al. (1999a) within an unsplit upwinding method (Colella, 1990a). The

solenoidal property of the magnetic field is enforced at each time step using a pro-
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jection method. A constrained transport step is then used remove divergence modes

with a centered finite difference representation. This uses the formulation prescribed

by Toth (2000). A detailed description of the solver is presented in Appendix A. The

setup for the NL simulations is the same as for the initial simulations presented in

Chapter 2, except with different parameter values. The setup for these simulations is

detailed in Section 2.3.

4.2.5 Characterization of interface behavior

In the linearized simulations, the interface corresponds to the location where the

density perturbation is maximum. The interfacial growth rate η̇ is approximated by

the magnitude of the z-velocity perturbation at this location. The interface amplitude

ηlin is then computed by numerically integrating η̇. At time-step N , ηlin is given by,

ηlin = η0 +
n=N
∑

n=1

η̇n∆tn,

where the subscript n denotes a quantity is evaluated at the nth time-step. In the

NL simulations, the amplitude of the interface perturbations is computed using the

procedure defined in Section 2.4.

For simulations where the interface is shock accelerated, the time origin of the

interface amplitude histories is shifted to the point where the amplitude is minimum.

This is done to allow direct comparison to the results arising from an impulsive

acceleration at t = 0. The interface amplitude histories obtained from the simula-

tions must be quantitatively compared to the behavior from the incompressible linear

model, which is given by Eq. 3.56;

η(t) = η∞ − (η∞ − η0)e
σt cos τt.

Here, η∞ is the saturation value of the interface amplitude, while σ governs the

saturation timescale. As |τ | < |σ| for ρ1 6= ρ2, the oscillations due to the sinusoidal

factor are not highly visible. For the simulations, values of these parameters can be
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estimated by fitting the following function to the amplitude histories;

ηfit(t) = η∞ − (η∞ − η0)e
σ(t−t0) cos τ(t− t0). (4.2)

This is done using a non-linear least squares fitting routine that determines the values

of η∞, σ, and t0 that minimize the L2 norm of the residuals between the data from

the simulations and the fitted function. The result of this procedure for a typical

interface amplitude history from a NL simulation (ηNL) is shown in Fig. 4.2(a). To

understand why a value of τ is not also computed, consider Fig. 4.2(b), which shows

the fitted function that results if τ is also determined by the routine. In this case

the values of σ and τ have been determined such that the fitted function accurately

captures the first of the long period oscillations that occur in ηNL. It is shown in

Section 4.3, however, that these oscillations are due to the pressure field induced

by the interaction of transverse waves downstream of the transmitted and reflected

shocks and/or the reflection of outgoing waves from the shocks. These shocks are not

present in the incompressible linear model, hence the oscillations should not appear

in a fitted function that has the same form as the model η history. Adjusting the

values of σ and τ to capture the first of these oscillations results an overestimate of

σ (note that σ < 0), which is evident in the fitted function asymptoting to η∞ slower

than the phase average of ηNL. To avoid this problem, τ is set to the appropriate

value from the incompressible linear model. The virtual origin t0 is included in the

fitted function to avoid an underestimate of σ due to the positive curvature of ηNL

near t = 0. An example of such an underestimate is shown in Fig. 4.2(c).

4.3 Results

4.3.1 Baseline case

As a baseline case, we will study a shock accelerated interface with M = 1.1, β = 16,

ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3. In the following sections, we will investigate

the effects of M , β, and η0/λ on the performance of the linear model by individually
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Figure 4.2: Interface amplitude history from a NL simulation with M = 2, β = 1, ρ2/ρ1 =

3, η0/λ = 0.1 and γ = 5/3 along with fitted functions of the form shown in Eq. 4.2. For the

function shown in (a) η̂∞, σ̂, and t0 were calculated by the fitting routine. For the function

shown in (b) τ was also calculated. For the function shown in (c) t0 = 0.
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varying them from their baseline values and comparing the results to those presented

in this section. The linearized simulations of the baseline case were carried out in

the domain −10λ ≤ z ≤ 10λ, which was discretized into Nz = 3200 control volumes.

The simulations were run for Nt = 6000 time-steps with a CFL number of 0.5. All

linearized simulations discussed in this chapter were carried out with the same domain,

discretization, and CFL number, unless otherwise noted. For the NL simulation of

the baseline case, Lx = λ/2, Lz = 12λ, zif = 7.06λ, Nx = 128, and Nz = 3072,

where these variables are as defined in Section 2.3. The simulation was run with a

CFL number of 0.7 for the duration Tsim/t
∗ = 5.6, which is approximately double the

time the linear model predicts for the interface to reach 99% of its final amplitude,

t99. All NL simulations discussed in this chapter were run with this CFL number

for a duration that is approximately 2t99, unless otherwise noted. An NL simulation

was also run with half the resolution in each direction. The η histories from the

two different resolution simulations are shown in Fig. 4.3. Both histories contain

spurious, time-step scale oscillations. As the amplitude of these oscillations does not

grow with time, they do not appear to indicate the presence of a numerical instability.

Fig. 4.3 shows that the two histories are very similar, with the main difference being

a reduction in the amplitude of the spurious oscillations in the results of the higher

resolution simulation. Thus the behavior of interest, specifically the growth of the

interface, is not very sensitive to the resolution. It is important to note that as we are

solving a set of equations with no physical dissipation to set a minimum length scale,

numerical solutions to these equations will not formally converge with increasing

resolution. This is because each increase in resolution will decrease the numerical

dissipation in the simulation, and hence alter the solution. The higher resolution

results are used for comparison to the linear model and the linearized simulations

because of the smaller amplitude oscillations. In the remainder of this chapter, the

η histories from the NL simulations are filtered to remove these oscillations before

plotting.
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Figure 4.3: Interface amplitude histories from non-linear compressible simulations of a

shock accelerated interface with M = 1.1, β = 16, ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3.

Results are shown from simulations with 64×1536 and 128×3072 mesh points.

Time evolution comparison

Fig. 4.4 shows the η histories from the linear model developed in Chapter 3 and the

three simulations for the baseline case. The model η history is given by Eq. 3.56.

The values of η∞ and σ computed from these are shown in Table 4.1. The histories

from the linearized simulations deviate from both the linear model and the NL sim-

ulation for a brief period just after the interface is accelerated. This may be due to

the approximate initial density perturbation used in the linearized simulations, which

is given by Eq. 4.1. There is close agreement between the behavior of the interface

predicted by the linear model and the IDL simulation, with the final interface ampli-

tudes being within approximately 0.2% of each other. The values of σ, which governs

the time to saturation, agree to within 7.2%. The main difference between the two

histories is the presence of small amplitude oscillations in the simulation result, the

source of which will be discussed in the next subsection. The amplitude of these

oscillations appears to decay with time and they are also seen in the histories from

the SDL and NL simulations. Comparing the histories from the IDL and SDL simu-

lations gives an indication of the effect of the interface being shock accelerated rather

than impulsively accelerated. The qualitative behavior of the interface is similar in
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Figure 4.4: Interface amplitude histories from the current linear model and a com-

pressible linearized simulation with an approximate impulsive acceleration, both with

ρ1/ρ
∗ = 1.19223, ρ2/ρ

∗ = 3.57529, ∆V
√

ρ∗/p0 = 0.135324, η0/λ = 0.00904708, and β = 16,

and both linearized and non-linear compressible simulations of a shock accelerated interface

with M = 1.1, β = 16, ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3.

both cases, but the shock acceleration appears to result in a slight reduction in the

growth of the interface amplitude, with η∞ being reduced by approximately 0.9%. In

addition, the amplitudes from both the shock driven simulations is decreasing slightly

near the end of the simulations. This is part of a long period oscillation. In the hy-

drodynamic case, oscillations in growth rate are known to be caused by the pressure

field induced by the interactions of transverse waves downstream of the transmitted

and reflected shocks (Brouillette, 2002). In addition, the oscillations may also be due

to the reflection of outgoing waves from the shocks, which will be discussed in the

next subsection. Comparing the histories from the IDL and NL simulations indicates

that the main effect of non-linearity on the evolution of the interface is a significant

decrease in its growth, with η∞ being approximately 1.5% less in the NL simulation.

The cause of the lower interface amplitudes in the NL simulation appears to be the

low growth rates that occur immediately after the acceleration of the interface, which

are significantly lower than those predicted by the linear model. Low growth rates

at early times also occur in the absence of a magnetic field, as can be seen from the

results of the initial simulation shown in Fig. 2.4. In that simulation, the growth
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Model IDL Simulation SDL Simulation NL Simulation

η∞/λ 0.0117237 0.0117465 0.0116413 0.0114644

σt∗ -1.38982 -1.28969 -1.42071 -1.31402

Table 4.1: Interface perturbation parameters from the linear model and simulations

corresponding to a shock accelerated interface with M = 1.1, β = 16, ρ2/ρ1 = 3,

η0/λ = 0.01 and γ = 5/3.

rate is initially mitigated, then increases to close to the constant value predicted by

the hydrodynamic impulse model, Eq. 1.1. The results of compressible linear models

indicate that this behavior is typical of the RMI (Brouillette, 2002), and is expected

as the impulse model predicts the asymptotic growth rate after the shocks are suffi-

ciently far from the interface (Richtmyer, 1960). The low growth rates at early times

do not significantly affect the extent to which the interface develops in the hydro-

dynamic case as the growth rate is then approximately constant until the interface

enters the non-linear phase of its development. When a magnetic field is present,

however, mitigation of the growth rate at early times significantly reduces the final

amplitude of the interface as this is when the growth rate is predicted to be at its

maximum.

Profile comparison

Profiles of u′ and w′ from the linear model developed in Chapter 3 and the IDL

simulation of the baseline case are shown in Fig. 4.5 for t/t∗ = 4. The w′ profiles

from the linear model are given by Eqs. 3.44 and 3.45 in fluids 1 and 2, respectively.

The model u′ profiles are computed from the w′ profiles using Eq. 3.5 and the form

of the perturbations given in Eq. 3.10 as follows:

u′ = − 1

ik

∂w′

∂z
.
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Figure 4.5: Profiles of (a) w′ at x = 0 and (b) u′ at x = λ/4 at t/t∗ = 4 from the linear

model and the IDL simulation corresponding to a shock accelerated interface with M = 1.1,

β = 16, ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3.
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Figure 4.6: Profiles of (a) ρ′ at x = 0 and (b) ω at x = λ/4 at t/t∗ = 4 from the IDL

simulation corresponding to a shock accelerated interface with M = 1.1, β = 16, ρ2/ρ1 = 3,

η0/λ = 0.01 and γ = 5/3.



50

The profiles of u′ and w′ are plotted at locations where the perturbation amplitudes

are maximum, at x = λ/4 and x = 0, respectively. Additional waves can clearly

be seen in the profiles from the IDL simulation. The leading edges of these waves

propagate outward from the interface at the fast characteristic speed in each fluid.

In this case, where the waves are propagating parallel to the base flow magnetic

field, the fast characteristic speed corresponds to the sound speed ai =
√

γp0/ρi,

while both the slow and intermediate characteristic speeds are equal to the Alfvén

speed CAi = B/
√
ρi. It can be seen from Fig. 4.6(a) that the additional waves are

compressible as the density perturbations associated with them are non-zero, hence

they cannot be represented in the incompressible linear model. The amplitudes of

the velocity perturbations associated with the compressible waves are comparable

those associated with the model. Despite this, Fig. 4.4 shows the linear model is

able to predict the evolution of the interface in the IDL simulation quite accurately.

The reason for this is that the behavior of the interface is governed by the vorticity

distribution and the compressible waves do not have any vorticity associated with

them, as can be seen from Fig. 4.6(b). The vorticity field from the simulation is

dominated by the two peaks that approximately coincide with the locations of the

Alfvén fronts in the linear model. Fig. 4.5 shows that the flow in this region and

around interface, particularly w′, is well represented by the Alfvén fronts and the

incompressible flow field from the linear model, although it does not capture the small

amplitude waves that appear near the interface. The reason a direct comparison of the

vorticity fields has not been made is that the vorticity associated with the tangential

velocity jumps across the Alfvén fronts in the linear model is infinite, while in the

simulation the discontinuities have been smeared out over a few cells so that the

vorticity is finite.

Now, the value of w′ at z = 0 in the plotted profiles corresponds to the growth

rate of the interface as the perturbations have a sinusoidal variation in x. Thus, when

a wave with a w perturbation associated with it crosses the interface, it will cause

a small oscillation in the interface amplitude. This is the cause of the oscillations

that were noted earlier in the η histories from the compressible simulations. In the
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IDL simulation, these oscillations decay with time as the high amplitude compressible

waves propagate away from the interface at the beginning of the simulation and do

not return.

Profiles of u′ and w′ from the linear model and the SDL simulation of the baseline

case are shown in Fig. 4.7 at t/t∗ = 4 in the simulation. The profiles from the linear

model are shown at t/t∗ = 4 − (zif − zshock)/(M
√
γ), the approximate time after

the acceleration of the interface in the simulation, because the acceleration occurs at

t = 0 in the model. This adjustment is made whenever the linear model is compared

to the results of a shock driven simulation. In the SDL simulation, the perturbations

are restricted to the region between the two shocks in the base flow. The base flow

downstream of the shocks is subsonic with respect to the fast characteristic speed,

thus the compressible waves in the solution can catch up to the shocks and interact

with them. This process can be seen occurring on the right side of Fig. 4.7, while

Fig. 4.8 shows a close up picture of a wave intersecting the location transmitted shock

at three different times, in the reference frame of the shock. The interaction of the

waves with the shock can only produce reflected waves are the flow upstream of the

shocks is supersonic with regard to the fast characteristic speed. Such reflected waves

are not clearly visible in Fig. 4.8. Fig. 4.7 shows that the linear model reproduces

the flow field around the interface from the SDL simulation with approximately the

same accuracy as for the IDL simulation.

Profiles of u = u′ and w in the reference frame of the interface from the linear

model and the NL simulation of the baseline case are shown in Fig. 4.9 for t/t∗ = 4.

As the full z-velocity is plotted, the transmitted and reflected fast shocks are visible

in the profile from the NL simulation. By comparing Fig. 4.9 with Fig. 4.5 and

Fig. 4.7, it can be seen that the flow around Alfvén fronts from the linear model

does not predict the flow in that region from the NL simulation as accurately as it

did for the linearized simulations. This is most likely because in the NL simulation

the discontinuities downstream of the fast shocks are not Alfvén fronts, but include

non-linear discontinuous waves. It will be shown in Chapter 5 that the inner-most

discontinuous waves produced by the shock refraction process at the interface may
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Figure 4.7: Profiles of (a) w′ at x = 0 and (b) u′ at x = λ/4 at t/t∗ = 4 from the linear

model and the SDL simulation of a shock accelerated interface with M = 1.1, β = 16,

ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3.
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Figure 4.8: Profiles of w′ at x = 0 in the reference frame of the transmitted base flow

shock at t/t∗ = 4 from the SDL simulation of a shock accelerated interface with M = 1.1,

β = 16, ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3.

be slow or intermediate shocks, 1800 rotational discontinuities, slow-mode expansion

fans, compound waves, or combinations of these. The performance of linear model

depends on how well the Alfvén fronts approximate the non-linear discontinuous waves

that are present in the NL simulation. However, the type of waves present vary with

position along the interface, as the shock refraction process varies with the incidence

angle, and with time as they propagate outward and evolve, making difficult to assess

the performance of the linear model in this fashion. For this reason we assess the

performance of the linear model based on how well it predicts the overall evolution

of the interface, as shown in Fig. 4.4

4.3.2 Effect of increased shock strength

In this section the effect of increasing the incident shock Mach number M on the

performance of the linear model is examined. This is done by studying two additional

cases withM = 1.25 andM = 2. The other parameters are the same as in the baseline

case. The linearized simulations of these cases were run for Nt = 4000 time-steps on

the same domain as for the baseline case. For the NL simulation of the M = 1.25

case, Lx = λ/2, Lz = 13λ, zif = 6.8λ, Nx = 128, Nz = 3328, and Tsim/t
∗ = 6.5, while
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Figure 4.9: Profiles of (a) w in the reference frame of the interface at x = 0 and (b) u at

x = λ/4 at t/t∗ = 4 from the linear model and the NL simulation of a shock accelerated

interface with M = 1.1, β = 16, ρ2/ρ1 = 3, η0/λ = 0.01 and γ = 5/3.
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M Model IDL Simulation SDL Simulation NL Simulation

η∞/λ

1.1 0.0117237 0.0117465 0.0116413 0.0114644

1.25 0.0144258 0.0145142 0.0133635 0.0135617

2.0 0.0265009 0.0257331 0.0154361 0.0206051

σt∗

1.1 -1.38982 -1.28969 -1.42071 -1.31402

1.25 -1.248 -1.17046 -1.44987 -1.46507

2.0 -0.938511 -0.90709 -1.76315 -1.73981

Table 4.2: Interface perturbation parameters from the linear model and simulations

corresponding to a shock accelerated interface with varying M and β = 16, ρ2/ρ1 = 3,

η0/λ = 0.01 and γ = 5/3.

for the M = 2 case, Lx = λ/2, Lz = 20.5λ, zif = 5.75λ, Nx = 128, Nz = 5248, and

Tsim/t
∗ = 8.5. Fig. 4.10 shows the η histories from the linear model and the three

simulations for the M = 1.1, M = 1.25, and M = 2 cases. The values of η∞ and σ

computed from these are shown in Table 4.2.

From Fig. 4.10, it can be seen that the agreement between the η histories from lin-

ear model and the IDL simulation does not degrade as the magnitude of the impulse,

∆V , is increased with M . Thus the linear dependence of η∞−η0 on ∆V predicted by

the linear model also appears to hold in the compressible case. The η histories from

the IDL and SDL simulations diverge as M increases, indicating that approximat-

ing the result of the shock interaction process as an impulsive acceleration becomes

less accurate as the shock strength increases. The η histories from the SDL and NL

simulations also diverge as M increases, indicating that non-linearities become more

dominant as the shock strength increases. It is apparent from Fig. 4.10 that in the

shock driven η histories, the amplitude of the long period oscillations, relative to

η∞ − η0, increases with M . As discussed earlier, these oscillations appear to be due
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Figure 4.10: Interface amplitude histories from the incompressible linear model, IDL,

SDL, and NL compressible simulations corresponding to a shock accelerated interface with

β = 16, ρ2/ρ1 = 3, η0/λ = 0.01, γ = 5/3 and (a) M = 1.1, (b) M = 1.25, or (c) M = 2.
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Figure 4.11: Profiles of w at x = 0 in the reference frame of the interface from the NL

simulation of a shock accelerated interface with M = 2, β = 16, ρ2/ρ1 = 3, η0/λ = 0.01

and γ = 5/3.

to disturbances caused by the interaction of transverse waves downstream of the re-

flected and transmitted shocks, and/or outgoing waves that have been reflected from

the shocks. An example of such a disturbance crossing the interface can be seen in

Fig. 4.11, which shows profiles of w from the M = 2 NL simulation at three different

times. At t/t∗ = 6.4, the disturbance appears as the small peak in w between the two

large peaks that bracket the interface, which is located at z = 0. The disturbance

approaches z = 0 from the right and increases the growth rate of the interface as

it crosses it. This event corresponds to the change from negative to positive growth

seen in the η history near t/t∗ ≈ 6.2. The increase in amplitude of the oscillations in

η with M therefore indicates an increase in the effect of transverse and/or reflected

waves, which is consistent with compressibility effects becoming more dominant.

Fig. 4.12 shows profiles of w in the reference frame of the interface from the

linear model and the NL simulations of the three different M cases. These show

that as M is increased, the linear model is less able to accurately represent the

primary features of the flow, resulting in the increasing disagreement between the

interface statistics from the model and the shock driven simulations seen in Table

4.2. For M = 1.25, the linear model over-predicts η∞ from the IDL, SNL, and NL
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Figure 4.12: Profiles of w at x = 0 in the reference frame of the interface at t/t∗ = 4 from

the linear model and NL simulations corresponding to shock accelerated interfaces with

β = 16, ρ2/ρ1 = 3, η0/λ = 0.01, γ = 5/3 and (a) M = 1.1, (b) M = 1.25, or (c) M = 2.
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simulations by -0.61%, 0.74%, and 0.60%, respectively, while σ is underestimated by

-6.2%, 16.2%, and 17.4%, respectively. For M = 2, the linear model over predicts η∞

from the IDL, SNL, and NL simulations by -0.55%, 39.7%, and 19.5%, respectively,

while σ is underestimated by -3.3%, 87.9%, and 85.4%, respectively.

4.3.3 Effect of increased magnetic field

In this section the effect of increasing the magnetic field magnitude B on the per-

formance of the linear model is examined. This is done by studying two additional

cases with β = 4 and β = 1. The other parameters are the same as in the baseline

case. The linearized simulations of these cases were run for Nt = 4000 time-steps

on the same domain as for the baseline case. For the NL simulation of the β = 4

case, Lx = λ/2, Lz = 6λ, zif = 3.53λ, Nx = 256, Nz = 3072, and Tsim/t
∗ = 3.

For the β = 1 case, Lx = λ/2, Lz = 9.5λ, zif = 5.59λ, Nx = 128, Nz = 2432, and

Tsim/t
∗ = 4.8. This simulation was run for longer than 2t99 ≈ 1.4 because the value

of η∞ was not apparent at that time. Fig. 4.13 shows the η histories from the linear

model and the three simulations for the β = 1, β = 4, and β = 16 cases. The values

of η∞ and σ computed from these are shown in Table 4.3.

For β = 4, the agreement between the linear model and the linearized simulations

remains reasonable, with η∞ deviating from the predicted value by 0.56% and 0.40%

in the IDL and SDL simulations, respectively. The deviations in σ are 14.5% and

17.9%, respectively. The differences between the linear model and the NL simulation

increase more substantially, with η∞ and σ deviating by 3.6% and 25.4% from their

predicted values, respectively. As β ≡ 2p0/B
2 = 2(a/CA)2/γ is decreased further, the

Alfvén speed CA in the undisturbed flow approaches the acoustic sound speed a and

they become equal at β = 2/γ = 6/5. Thus for the β = 1 case, in the undisturbed

flow CA is greater than a and is therefore the fast and intermediate characteristic

speed, while a is the slow characteristic speed. This situation if different from all the

cases examined so far, and has serious consequences for the performance of the linear

model. Fig. 4.14 shows profiles of w or w′, as appropriate, in the reference frame of



60

0 1 2 3 4 5
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

t/t*

η
/η

0

non−linear simulation

linearized simulation with shock acceleration

linearized simulation with impulsive acceleration

incompressible analytical model

(a)

0 0.5 1 1.5 2 2.5 3
1

1.05

1.1

1.15

1.2

t/t*

η
/η

0

non−linear simulation

linearized simulation with shock acceleration

linearized simulation with impulsive acceleration

incompressible analytical model

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

1.02

1.04

1.06

1.08

1.1

1.12

t/t*

η
/η

0

non−linear simulation

linearized simulation with shock acceleration

linearized simulation with impulsive acceleration

incompressible analytical model

(c)

Figure 4.13: Interface amplitude histories from the incompressible linear model, IDL,

SDL, and NL compressible simulations corresponding a shock accelerated interface with

M = 1.1, ρ2/ρ1 = 3, η0/λ = 0.01, γ = 5/3 and (a) β = 16, (b) β = 4, or (c) β = 1.
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β Model IDL Simulation SDL Simulation NL Simulation

η∞/λ

16 0.0117237 0.0117465 0.0116413 0.0114644

4 0.0103975 0.0104561 0.0103559 0.0100219

1 0.00975063 0.00994364 0.0102021 0.00949106

σt∗

16 -1.38982 -1.28969 -1.42071 -1.31402

4 -2.77963 -2.3755 -2.28134 -2.07366

1 -5.55927 -2.89482 -2.84995 -2.40185

Table 4.3: Interface perturbation parameters from the linear model and simulations

corresponding to a shock accelerated interface with varying β andM = 1.1, ρ2/ρ1 = 3,

η0/λ = 0.01 and γ = 5/3.

the interface from the linear model and the three different simulations of the β = 1

case. The initial pressure in the IDL simulation is set to the post-shock interaction

pressure, p4, as stated in Section 4.2.3. At this pressure β = 1.34143 > 6/5, thus a is

still slightly greater than CA. They are close enough, however, that during the period

when the interface is growing, information cannot propagate far enough upstream of

the locations of the Alfvén fronts for a structure similar to that seen in the linear

model to form upstream of the front locations. This in turn significantly alters the

downstream flow, as is evident in Fig. 4.14(a). In the shock driven simulations, the

propagation speed of the outermost shocks is approximately the same as that of

the Alfvén fronts in the linear model. This results in constant interaction between

the outermost shocks and the flow features that govern the overall evolution of the

interface (which were reasonably well represented by the linear model in the other

cases) rather than the separation that was present in the cases examined previously.

In all three simulations, it can be seen from Fig. 4.14 that these factors cause the

flow in the vicinity of the interface to deviate significantly from the linear model,
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which results in the large differences in η histories shown in Fig. 4.13. Fitted values

of η∞ and σ from the β = 1 simulations are shown in Table 4.3, but in the shock

driven cases the estimates are highly unreliable as η is still increasing at the end of

the simulations. In summary, the performance of the linear model is reasonable for

weak magnetic fields, but is compromised once the magnetic field becomes sufficiently

strong that the Alfvén speed approaches the acoustic sound speed.

4.3.4 Effect of increased perturbation amplitude

In this section the effect of increasing the initial perturbation amplitude η0 on the

performance of the linear model is examined. This is done by studying two additional

cases with η0/λ = 0.025 and η0/λ = 0.1. The other parameters are the same as in

the baseline case. Additional linearized simulations are not required for these cases

as η0 is scaled out of the linear problem. η/η0 histories for these cases are identical

to the baseline case. For the NL simulations of the η0/λ = 0.025 and η0/λ = 0.1

cases, Lx = λ/2, Lz = 20λ, zif = 11.76λ, Nx = 64, Nz = 2560, and Tsim/t
∗ = 5.6.

Fig. 4.15 shows the η histories from the linear model and the three simulations for

the η0/λ = 0.01, η0/λ = 0.025, and η0/λ = 0.1 cases. The values of η∞ and σ

computed from these are shown in Table 4.4. From Fig. 4.15, it can be seen that

the primary effect of increasing η0 is to increase percent by which the impulsive

linear model under-predicts the growth rate of the interface in the NL simulation.

This effect has also been documented by Cook et al. (2004) for the hydrodynamic

Rayleigh-Taylor instability. The increasing under-prediction of the growth rate by

the linear model results in the over-prediction of the value of η∞ observed in the NL

simulation increasing from 2.2% to 2.9% to 3.4% as η0/λ is increased from 0.01 to

0.025 to 0.1. The over-prediction of σ, however, does not increase monotonically; it

changes from 7.8% to 5.5% then 13.4% as η0 is increased. Overall, the performance

of the model slowly degrades as the initial perturbation amplitude is increased, as is

expected for a linear model. Comparing the results presented in this section to those

in Section 4.3.2 and Section 4.3.3, it appears that the performance of the linear model
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Figure 4.14: Profiles of w at x = 0 in the reference frame of the interface at t/t∗ = 2 from

the incompressible linear model and (a) IDL, (b) SNL, and (c) NL simulations corresponding

to a shock accelerated interface with M = 1.1, ρ2/ρ1 = 3, η0/λ = 0.01, γ = 5/3 and β = 1.
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Figure 4.15: Interface amplitude histories from the incompressible linear model, IDL, SDL,

and NL compressible simulations corresponding a shock accelerated interface with M = 1.1,

β = 16, ρ2/ρ1 = 3, γ = 5/3 and (a) η0/λ = 0.01, (b) η0/λ = 0.025, or (c) η0/λ = 0.1.
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η0/λ Model IDL Simulation SDL Simulation NL Simulation

η∞/λ

0.01 0.0117237 0.0117465 0.0116413 0.0114644

0.025 0.0293214 0.0293784 0.0291154 0.0284653

0.1 0.119314 0.119546 0.118476 0.115273

σt∗

0.01 -1.38982 -1.28969 -1.42071 -1.31402

0.025 -1.38982 -1.28969 -1.42071 -1.31294

0.1 -1.38982 -1.28969 -1.42071 -1.20338

Table 4.4: Interface perturbation parameters from the linear model and simulations

corresponding to a shock accelerated interface with varying η0/λ andM = 1.1, β = 16,

ρ2/ρ1 = 3 and γ = 5/3.

is less sensitive to increases in η0 than it is to increases in either M or B; the of error

in η∞ increases by only 1.2% as η0 is increased by an order of magnitude.

4.3.5 Chapter 2 case

In this section, the performance of the linear model is assessed for the case that was

presented in Chapter 2; M = 2, β = 1, η0/λ = 0.1, ρ2/ρ1 = 3, and γ = 5/3. This

case represents what would appear to be the worst combination of the parameter

values investigated in the previous three sections, from the perspective of model

accuracy. The linearized simulations of this case were carried out in the domain

−20λ ≤ z ≤ 20λ, which was discretized into Nz = 6400 control volumes. The

simulations were run for Nt = 8000 time-steps with a CFL number of 0.5. These

simulations were run for a longer duration that for the other cases in order to examine

the long period oscillations for more than one cycle. For the NL simulation of this

case, Lx = λ/2, Lz = 12λ, zif = 3.4λ, Nx = 128, and Nz = 3072. The simulation was

run for the duration Tsim/t
∗ = 5, which is approximately 5t99. Fig. 4.16 shows the η
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Figure 4.16: Interface amplitude histories from the linear model and simulations corre-

sponding to a shock accelerated interface with M = 12, β = 1, ρ2/ρ1 = 3, η0/λ = 0.1 and

γ = 5/3.

Model IDL Simulation SDL Simulation NL Simulation

η∞/λ 0.109167 0.11532 0.0928587 0.0868428

σt∗ -3.75405 -2.86994 -4.1807 -5.06429

Table 4.5: Interface perturbation parameters from the linear model and simulations

corresponding to a shock accelerated interface with M = 2, β = 1, ρ2/ρ1 = 3,

η0/λ = 0.1 and γ = 5/3.

histories from the linear model and the three simulations for the current case. The

values of η∞ and σ computed from these are shown in Table 4.5.

Comparing Fig. 4.16 and Fig. 4.13(c), it appears that there is better agreement

between the linear model and the simulations of the present case than for theM = 1.1,

η0/λ = 0.01, β = 1 case. This is confirmed by the smaller fractional deviations in

σ from the predicted value in the simulations of the present case. The improved

agreement is due to the higher incident shock Mach number in the present case. In the

IDL simulation, this increases the initial pressure so that a is significantly greater than

CA, allowing information to propagate further upstream of the Alfvén front locations.

In the shock driven simulations, stronger outermost transmitted and reflected shocks
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are generated, which propagate significantly faster than the Alfvén fronts in the linear

model, reducing the interaction that limited the accuracy of the linear model in the

M = 1.1 case. This allows the linear model to better predict the flow in the vicinity

of the interface, as can be seen by comparing Fig. 4.14 with Fig. 4.17, which shows

profiles of w in the reference frame of the interface from the model and the three

simulations. The results for this case indicate that for strong shocks, large initial

perturbations, and strong magnetic fields, the linear model may still give a rough

estimate of the interface behavior, but it is not quantitatively accurate.

4.4 Summary

To assess the performance of the incompressible linear model of the MHD RMI de-

veloped in Chapter 3, predictions from the model were compared to the results of

impulse driven linearized (IDL), shock driven linearized (SDL), and non-linear (NL)

compressible MHD simulations for a variety of cases. The performance of the linear

model was first assessed for a baseline case with M = 1.1, η0/λ = 0.01, β = 16,

ρ2/ρ1 = 3, and γ = 5/3. For this case, the agreement between the linear model and

the interface behavior from the IDL simulation is excellent, with the model predicting

the final amplitude of the interface to within 0.2%. Compressible waves present in

the simulation caused small amplitude, short period oscillations in the amplitude of

the interface that are not present in the linear model. These waves do not effect

the overall evolution of the interface as they have no vorticity associated with them.

The agreement between the linear model and the SDL simulation is also excellent,

while the final interface amplitude from the NL simulation is over-predicted by 2.2%.

For all simulations of this case, the linear model represents the flow structures that

dominate the evolution of the interface with reasonable accuracy. In the shock driven

simulations, the interface amplitude also exhibits a long period oscillation caused by

the interaction of transverse waves behind the shocks and/or outgoing waves reflected

from the shocks. When the incident shock Mach number M is increased, the linear

model still accurately predicts the behavior of the interface in the IDL simulation,
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Figure 4.17: Profiles of w at x = 0 in the reference frame of the interface at t/t∗ = 2 from

the incompressible linear model and (a) IDL, (b) SDL, and (c) NL simulations corresponding

to a shock accelerated interface with M = 2, ρ2/ρ1 = 3, η0/λ = 0.1, γ = 5/3 and β = 1.
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but it increasingly overestimates the amplitude of the interface η in the shock driven

cases. The amplitude of the long period oscillations in the shock driven simulations

increases with M . As the non-dimensional strength of the magnetic field β−1 is in-

creased, the linear model less accurately predicts the results of all simulations. The

accuracy of the linear model was found to be severely compromised once the magnetic

field is sufficiently strong that the Alfvén wave speed approaches the acoustic sound

speed, particularly if the incident shock is weak. When this occurs, the features of

the flow that dominate the evolution of the interface deviate significantly from the

linear model. One such case with β = 1 and M = 1.1 was investigated. When initial

perturbation amplitude of the interface η0 is increased, the agreement between the

linear model and the linearized simulations is unchanged. The degree to which the

linear model over-predicts η from NL simulations gradually increases with η0. The

performance of the linear model for all cases investigated, other than the case with

β = 1 and M = 1.1 where reliable statistics could not be calculated, is summarized

in Fig. 4.18. This shows the values of the final interface amplitude η∞ and the time

constant for the saturation of the interface σ that were calculated from the simula-

tions plotted against the values predicted by the linear model. It can be seen that

the linear model collapses the data from the simulations well. In conclusion, the

interface behavior given by the incompressible linear model developed in Chapter 3

well approximates that seen in compressible linearized simulations when M−1, η0/λ,

and β−1 are small. For such cases, the agreement with interface behavior that occurs

non-linear simulations is also reasonable. When M − 1, η0/λ, and β−1 are increased,

the linear model becomes less accurate. For strong shocks, large initial perturbation

amplitudes, and strong magnetic fields, the linear model may give a rough estimate

of the interface behavior, but it is not quantitatively accurate.
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Figure 4.18: Interface perturbation parameters η∞ and σ from all NL, SDL, and IDL

simulations versus the values predicted by the incompressible linear model.
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Chapter 5

Regular Shock Refraction at an Oblique

Planar Density Interface in

Magnetohydrodynamics

5.1 Introduction

As discussed in Chapter 1, Samtaney (2003) has demonstrated, via numerical sim-

ulations, that the growth of the Richtmyer-Meshkov instability is suppressed in the

presence of a magnetic field. The particular flow studied was that of a shock in-

teracting with an oblique planar contact discontinuity (CD) separating conducting

fluids of different densities within the framework of strongly planar ideal magneto-

hydrodynamics (MHD). Here, we define a flow to be planar if there are no derivatives

in the out of plane (z) direction, and strongly planar if there is also a reference frame

in which there are no vector components in the z-direction. The physical setup for

this shock interaction problem is depicted in Figure 5.1. The applied magnetic field

is aligned with the motion of the incident shock. Other than the symmetry bound-

ary conditions in the vertical direction, this is identical to the physical setup for the

shock refraction problem that is investigated in this chapter. This flow is character-

ized by five dimensionless parameters: the incident shock sonic Mach number (M),

the density ratio across the interface (η), the angle between the incident shock nor-

mal and the interface (α), the non-dimensional strength of the applied magnetic field
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Figure 5.1: Physical setup for the Richtmyer-Meshkov simulations of Samtaney (2003)

and the MHD shock refraction problem studied in this chapter. The initial pressure in the

unshocked regions is p0 = 1. In the simulations, symmetry boundary conditions are applied

in the vertical direction.

(β−1 = B2/2µ0p0), and the ratio of specific heats γ. Here, the magnitude of the ap-

plied magnetic field (B) is made dimensionless against the square root of the product

of the permeability (µ0) and the pressure (p0) of the gas. Samtaney presented detailed

numerical results for cases with M = 2, η = 3, α = π/4, β−1 = 0 (no magnetic field)

or 0.5 (magnetic field present), and γ = 1.4.

In Chapter 1, it was stated the suppression of the RMI in MHD can be understood

by examining how the shock refraction process at the interface changes with the

application of a magnetic field. We will now consider this change in more detail,

both to introduce necessary notation and clearly define the mathematical problem

that is studied in this chapter. For the case with no applied magnetic field, β−1 = 0,

the details of the shock refraction process are shown in Figure 5.2(a). The velocity

vectors shown are in the reference frame where the point of intersection between

the shocks and the interface is stationary. For Samtaney’s choice of parameters, the

incident shock (I) is transformed into a reflected shock (R) and a transmitted shock

(T ). This is the case for all sets of parameters considered here, although other wave

configurations involving expansion fans are possible for other parameter sets. The

angles of R and T to the flow are such that the flow angles and pressures (p) on

either side of the interface are matched. The doubly shocked flow downstream of R

has a lower velocity than the flow on the other side of the interface, which has been
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decelerated only by T , resulting in a shear across the interface. Thus, in the absence

of an applied magnetic field, the shock refraction process deposits vorticity on the

interface, causing it to roll-up due to local Kelvin-Helmholtz instability.

In general, this wave configuration is not a valid solution of the equations of

ideal MHD if a magnetic field is present. The reason for this is that a MHD CD

cannot support a jump in either tangential velocity (ut) or magnetic field (Bt) if

the magnetic field has a component normal to the discontinuity (see e.g., Sutton

and Sherman (1965)). Thus, there are four constraints that must be satisfied at the

interface: continuous total pressure, flow angle, tangential velocity, and tangential

magnetic field (the normal magnetic field must also be continuous, but this is not

independent of the other constraints for this flow). There are only two degrees of

freedom in the system, the angles of R and T , so that, in general, there is no solution.

An exception occurs when the incident shock velocity and the applied magnetic field

(B) are aligned in the reference frame of the intersection point (B is parallel to the

density interface). In this case, the MHD Rankine-Hugoniot relations ensure that the

magnetic field and velocity vectors will be aligned in all regions of the flow, which

allows jumps in ut and Bt across the CD. Hence, there are two fewer constraints

to be satisfied, admitting three-shock solutions to the aligned field shock interaction

problem (Ogawa and Fujiwara, 1996). Such solutions have been studied in detail by

Bestman (1975) and Ogawa and Fujiwara (1996).

In cases where the normal magnetic field (Bn) at the interface is non-zero, such

as the problem under consideration here, a different system of waves must arise from

the shock refraction process. From his numerical results, Samtaney (2003) observed

that, in the presence of a magnetic field, R and T are replaced by fast magneto-sonic

shocks, denoted RF and TF respectively. In addition, the vortex layer bifurcates

into a structure that we will call the inner layer, which consists of two sub-fast

magneto-sonic shocks, called RS and TS respectively, bracketing a MHD CD. This

wave configuration is shown in Figure 5.2(b) and will henceforth be referred to as a

quintuple-point. Note that the presence of shocks RS and TS provides the additional

two degrees of freedom necessary to satisfy the two additional constraints at the
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Figure 5.2: (a) Triple-point wave structure and streamlines resulting from a shock re-

fraction process with M = 2, α = π/4, and η = 3 in the absence of an applied magnetic

field (β−1 = 0). (b) Quintuple-point wave structure resulting from a MHD shock refraction

process with M = 2, α = π/4, η = 3, and β = 2.

interface identified by Ogawa and Fujiwara (1996). It is well known that magneto-

sonic shocks support tangential velocity jumps (see e.g., Sutton and Sherman (1965)).

This allows shocks RS and TS to eliminate the velocity discrepancy between the flow

downstream of shock RF and that downstream of shock TF , leaving the MHD CD

vorticity free. Thus, we see that the application of a magnetic field can suppress the

Kelvin-Helmholtz instability because, in most cases, the shock refraction process does

not deposit vorticity on the density interface.

In this chapter, we develop a solution technique for the MHD shock refraction

problem, then use this to demonstrate that the quintuple-point and other similar

structures are entropy-satisfying weak solutions of the equations of ideal MHD. In

Section 5.2, we formulate the equations required to solve the problem. The solution

technique is then outlined in Section 5.3. Section 5.4 contains a detailed account of

the quintuple-point solution for Samtaney’s set of parameters, along with a compar-

ison to his numerical results. A second solution that is not realized in the numerical

simulation is also described. As B is decreased, we find that the types of waves arising
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from the shock refraction process undergo a number of transitions. These transitions

in solution type are discussed in Section 5.5. How the solutions approach the hydro-

dynamic triple-point in the limit of vanishing applied magnetic field is addressed in

Chapter 6. Finally, the work presented in this chapter is summarized in Section 5.6.

5.2 Formulation

5.2.1 The governing equations of ideal MHD

In this investigation, we will consider solutions to the equations of ideal MHD. These

equations govern the motion of a quasi-neutral conducting fluid if viscosity, ther-

mal conductivity, the Hall effect, and electrical resistivity are neglected (Sutton and

Sherman, 1965). The steady state forms of these equations are

∇ · (ρu) = 0 , (5.1)

ρ (u · ∇)u = −∇p+
1

µ0

(∇× B) × B , (5.2)

ρ (u · ∇)hT =
1

µ0

(∇× B) × B · u , (5.3)

∇ · B = 0 , (5.4)

∇× (u × B) = 0 . (5.5)

Here, ρ is the density, p is the pressure, u is the velocity, B is the magnetic field, µ0

is the magnetic permeability, and hT = h + 1/2 (u · u), where h is the enthalpy. In

addition, the plasma is assumed to be a perfect gas with constant specific heats Cp

and Cv. In this case

p = ρRT ,

h = CpT ,

hT =
γ

γ − 1

p

ρ
+

1

2
u · u ,
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where T is temperature, R = Cp − Cv, and γ = Cp/Cv. Note that in this system of

equations, B has different units than in the earlier chapters, where it was normalized

by
√
µ0 to make the equations more compact. In the sequel, we consider discontinuous

solutions to these equations, solutions for expansion fans, solutions for compound

waves, and matching conditions at contact discontinuities. These are then combined

to construct multiple-wave solutions corresponding to the interaction of a shock with

an oblique density discontinuity.

5.2.2 The MHD Rankine-Hugoniot relations

The MHD Rankine-Hugoniot (RH) relations govern weak solutions to the equations

of ideal MHD corresponding to discontinuous changes from one state to another.

It is assumed that all dependent variables vary only in the direction normal to the

shock front, which is denoted with the subscript n. Under this assumption, Eq. 5.4

implies that Bn is continuous across the shock. We also assume that all velocities and

magnetic fields are coplanar, as we are seeking strongly planar ideal solutions. Under

these assumptions, the set of jump relations for a stationary discontinuity separating

two uniform states are (see e.g., Sutton and Sherman (1965)),

[ρun] = 0 , (5.6)
[

ρu2
n + p+

B2
t

2µ0

]

= 0 , (5.7)

[

ρunut −
1

µ0

BnBt

]

= 0 , (5.8)

[

ρun

2

(

u2
n + u2

t

)

+
γunp

γ − 1
+

1

µ0

unB
2
t −

1

µ0

utBnBt

]

= 0 , (5.9)

[unBt − utBn] = 0 . (5.10)

Here, the subscript t denotes the component of a vector tangential to the shock, and

[A] ≡ A2 − A1 denotes the difference in the quantity A between the states upstream

(subscript 1) and downstream (subscript 2) of the shock.

We utilize the method of Kennel et al. (1989) for obtaining solutions to the copla-
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nar RH relations for propagating discontinuities (un1 6= 0). First, the following con-

venient set of normalized variables is introduced:

r =
un2

un1

, b =
Bt2

B1

, Ut =
ut2

un1

, sin θ1 =
Bt1

B1

,

where θ1 is the angle between the upstream magnetic field and the shock normal.

Also, reference upstream Alfvén, intermediate, and sonic Mach numbers are defined

as

M2
A1 =

u2
n1

C2
A1

=
µ0ρ1u

2
n1

B2
1

, M2
I1 =

u2
n1

C2
I1

=
M2

A1

cos(θ1)2
=
µ0ρ1u

2
n1

B2
n

, M2
S1 =

u2
n1

C2
S1

=
ρ1u

2
n1

γp1

.

It can then be shown that Eqs. 5.6-5.9 reduce to the following algebraic equation in

r and b obtained by Liberman and Velikhovich (1986):

F (r, b) = Ar2 +B(b)r + C(b) = 0 ,

where A, B, and C are defined in Eq. C.3 in Appendix C. The relation F (r, b) = 0

defines a curve in (r, b) space on which the fluxes of mass, momentum, and energy

are equal to those upstream of the shock. The final jump condition can be expressed

as

Z(r, b) = bX − Y sin θ1 = 0 ,

where X and Y are defined in Eqs. C.3 and C.5 in Appendix C. The intersections

of the curves defined by F = 0 and Z = 0 are the locations in (r, b) space where

all jump conditions are satisfied. The two equations, F = 0 and Z = 0, can be

combined into a quartic equation in r, which we know has at least one real solution

(r = 1). Thus the quartic must have either two or four real solutions, implying

that there are either two or four intersections between the two curves. We refer

to the three non-unity solutions of the quartic as roots A, B, and C. Expressions

for these roots are included in Appendix C. Figure 5.3 shows the curves F = 0

and Z = 0 for a choice of parameters where there are four intersections, labeled
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Figure 5.3: Graphical solution to the MHD Rankine-Hugoniot relations for sin2 θ1 = 1
32 ,

M2
A1 = 2, MS1 → ∞, and γ = 5

3 (choice of parameters from Kennel et al. (1989))

1-4 in order of decreasing r. The velocities at each of these points bear a definite

relationship to the fast (CF ), intermediate (CI), and slow (CSL) MHD characteristic

speeds: un(1) ≥ CF ≥ CI ≥ CSL, CF ≥ un(2) ≥ CI ≥ CSL, CF ≥ CI ≥ un(3) ≥ CSL,

and CF ≥ CI ≥ CSL ≥ un(4). The entropies of the four states are ordered S(1) ≤
S(2) ≤ S(3) ≤ S(4), indicating that only six of the transitions between these states

coincide with entropy-increasing shocks. Of these, transitions 1 → 2 are fast shocks,

3 → 4 are slow shocks, while 1 → 3, 1 → 4, 2 → 3, and 2 → 4 are intermediate

shocks. Further details of how we solve the MHD RH relations for the flow state

downstream of a shock are contained in Appendix C.

5.2.3 Admissibility of MHD discontinuities

To this point, we have discussed weak solutions to the ideal MHD equations. We

now discuss their admissibility. This topic is an active research field and open ques-

tions remain. In the three-dimensional MHD system of equations, the evolutionary

condition (see e.g. Akhiezer et al. (1959); Polovin and Demutskii (1990); Jeffrey

and Taniuti (1964)) restricts physically admissible discontinuities to fast shocks, slow

shocks, contact discontinuities, and rotational discontinuities (RDs). In a series of nu-

merical experiments Wu (1987, 1990, 1995), however, identified intermediate shocks
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within numerical solutions to the full (here, full implies non-zero dissipation) MHD

equations, which was interpreted as a failure of the evolutionary condition by My-

ong and Roe (1997) amongst others. Subsequently, Myong and Roe (1997) applied

their viscosity admissibility condition to show that in the strongly planar system

1 → 3, 1 → 4, and 2 → 4 intermediate shocks are physical, while 2 → 3 intermediate

shocks are not. They also found that 180o RDs, which are a special case of 2 → 3

intermediate shocks, have no role in strongly planar problems. These results are in

agreement with many numerical simulations by Wu (1987, 1990, 1995). In the full

three-dimensional system, Wu (1990, 1995) observes 2 → 3 intermediate shocks to be

possible, along with the other shock types, while RDs are regarded as unphysical. Wu

(1990) also finds that the particular choice of dissipation coefficients can effect the

admissibility of MHD shocks in the full system; see Wu (1990) and cited references

therein for details.

Falle and Komissarov (2001) (hereafter referred to as FK) argue that the viscosity

admissibility condition and the evolutionary condition are complementary; a shock

is physical only if it satisfies both. Hence, the subsets of discontinuities admissible

in planar and strongly planar flows are not identical because only the former admit

Alfvén waves. In this framework, 1 → 3 and 2 → 4 intermediate shocks along with

slow (C1) and fast (C2) compound waves (using the notation in Myong and Roe

(1997)) are shown to be evolutionary (satisfy the evolutionary condition) and have

unique dissipative structures in the strongly planar case. Both 2 → 3 intermediate

shocks and 180o RDs are found to be non-evolutionary in the strongly planar system.

These results are in agreement with those of Myong and Roe (1997). This is not the

case for 1 → 4 intermediate shocks as these are shown to be non-evolutionary and

hence inadmissible, although they do have a non-unique steady dissipative structure

in the strongly planar case.

For the full three-dimensional MHD system, of which the planar (uz, Bz may be

non-zero) system is a subset, FK reiterate the following results: fast and slow shocks

are evolutionary and have unique structurally stable dissipative structures, while all

intermediate shocks are non-evolutionary and can be destroyed by interactions with
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Alfvén waves. Thus, in contrast to Wu (1987, 1990, 1995), FK argue that intermediate

shocks are always inadmissible in the three-dimensional system. FK also state that, in

the three-dimensional system, 1 → 3, 1 → 4, and 2 → 4 intermediate shocks possess

non-unique steady dissipative structures, while 2 → 3 intermediate shocks possess

a unique steady dissipative structure. CDs and RDs are found to be evolutionary

but do not possess a steady dissipative structure as they are linear and hence have

no non-linear steepening to balance spreading due to dissipation. They nevertheless

consider RDs to be admissible in the three-dimensional system, in contrast to Wu

(1990, 1995). FK also analyze the admissibility of discontinuities that travel at the

same speed as certain characteristics, such as switch-on and switch-off shocks.

To interpret our results, we have adopted the framework of FK because of its

completeness, but we acknowledge that the physical relevance of intermediate shocks

and RDs is not yet completely clarified. Following Torrilhon (2003a), we divide our

solutions to the ideal MHD system into two categories: regular (r) and irregular (c)

solutions. r-solutions include only fast and slow waves (shocks or expansion fans),

RDs, and CDs. According to FK, all discontinuities in r−solutions are evolutionary

in the planar system. Here, c-solutions are those that include discontinuities that are

non-evolutionary in the planar system but are evolutionary in the strongly planar

system according to FK.

5.2.4 Governing equations for MHD expansion fans and slow

compound waves

The basic equations governing the flow through a centered, steady MHD expansion fan

can be obtained by writing Eqs. 5.1-5.2 and Eqs. 5.4-5.5 in cylindrical co-ordinates,

then assuming variations only occur with the polar angle ϕ (Yang and Sonnerup,

1976, Krisko and Hill, 1991). Further, the flow is assumed to be isentropic; hence,

the energy equation is replaced by an entropy equation. These equations can then be

manipulated into a system of non-linear coupled ODEs for a set of non-dimensional

variables within the expansion fan. The system of ODEs and an outline of their
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derivation is contained in Appendix D. In the equations, the magnetic field is repre-

sented by the non-dimensional vector

K ≡ B√
2µ0p

.

Note that K ≡ |K| = β−1/2, Kn = K cos θ, and Kt = K sin θ, so K can be used

interchangeably with (β, θ). Appendix D also includes the relation required to deter-

mine the location of the leading wavelet of an expansion fan. The complete solution

throughout an expansion fan can be found by numerically integrating the system of

ODEs with respect to ϕ from the leading wavelet.

In the strongly planar system, Myong and Roe (1997) recommend the use of com-

pound waves as a substitute for 2 → 3 intermediate shocks, which are inadmissible

under their viscosity admissibility condition and the evolutionary condition. Com-

pound waves are discussed in more detail in Appendix E. The compound wave rele-

vant to this study consists of a 2 → 3 = 4 intermediate shock, for which un2 = CSL2,

followed immediately downstream by a slow-mode expansion fan. This is the steady

two-dimensional analogue of the unsteady one-dimensional slow compound wave re-

ferred to as C1 by Myong and Roe (1997). We will use the same designation for

the two-dimensional compound wave. A relation for determining the location of a

2 → 3 = 4 intermediate shock is included in Appendix E, along with a procedure for

determining the flow state downstream of a C1 compound wave.
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5.2.5 Matching conditions at the contact discontinuity

For the proposed wave configuration to be a valid solution of the equations of ideal

MHD, the following matching conditions must hold across the shocked contact (SC):

p3 = p5 , (5.11)

u3x = u5x , (5.12)

u3y = u5y , (5.13)

|K3| = |K5| , (5.14)

K3/ |K3| = K5/ |K5| . (5.15)

Here, states 3 and 5 are the conditions to the left and right of the SC, respectively.

This is indicated in Figure 5.4, which shows how the various angles and regions of

uniform flow in a solution are defined. In Appendix F, we outline our procedure for

determining the conditions on either side of the SC from the problem parameters and

guessed values of the unknown wave angles.

5.3 Solution technique

We seek solutions to the strongly planar ideal MHD equations. In the equivalent

dissipative solutions, the out of plane components of B and u may be non-zero within

the internal structures of certain waves. This implies that some of our solutions

are planar, not strongly planar, in the presence of dissipation. For a given set of

problem parameters, (M, β, η, α, γ), a solution to the MHD shock refraction problem

is obtained by first postulating a wave configuration. We restrict our attention to

wave configurations in which the number of unknown wave angles equals the number

of independent matching conditions at the SC (four). Families of solutions may

be possible if additional waves are introduced, for example, by replacing a 2 → 4

intermediate shock or a C1 compound wave by a 2 → 3 intermediate shock followed by

a slow wave (shock or expansion fan). Wu (1995) found this for certain coplanar MHD
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Riemann problems, which are analogous to the flows considered here. We remark

that the families of solutions identified by Wu (1995) appear to always include 2 → 3

intermediate shocks; we have not considered structures involving this shock type in

depth as they are inadmissible according to FK. For the range of parameters under

consideration here, for which RF and TF are always fast shocks, a wave configuration

is postulated by specifying whether the RS and/or the TS wave-group consists of a

shock, a C1 compound wave, a RD, a RD followed by a slow shock, or a RD followed

by a slow-mode expansion fan. Next, the types of all shocks in the system must be

specified by selecting which root of Eq. C.6 is used to compute r for each shock. Once

the wave configuration has been specified in this manner, guesses are made for each

of the four unknown angles in the system: φ1, φ2, φ3, and φ4. As indicated in Figure

5.4, φ1 specifies the location of shock RF , φ2 specifies either the location of shock RS

or the last expansion fan wavelet in wave-group RS, φ3 specifies the location of shock

TF , and finally, φ4 specifies either the location of shock TS or the last expansion

fan wavelet in wave-group TS, depending on the wave configuration postulated. The

procedure outlined in Appendix F is then used to compute the conditions on either

side of the SC for the guessed wave angles. An approximate solution to the MHD

shock refraction problem is then obtained by iterating on the wave angles using a

secant method until matching conditions Eqs. 5.11-5.14 are satisfied to six significant

figures. To check the consistency of this procedure, the wave angles obtained from

the iterative process are then substituted into matching condition Eq. 5.15 to ensure

that it is also satisfied.

5.4 A detailed local solution; case S1

In subsequent sections, we will explore several branches corresponding to the solution

of Eqs. 5.11-5.14 in the parameter space of M , η, α, β, and γ. For the purposes

of discussion, we define a branch to be a set of solutions along a line in parameter

space that all satisfy the same admissibility condition. The lines in parameter space

considered here have fixed M , η, α, and γ with β in the range βmin ≤ β ≤ βmax. We
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Figure 5.5: Graphical solutions of the MHD Rankine-Hugoniot relations for conditions

upstream of (a) shock I, (b) shock RF , (c) shock RS, (d) shock TF , (e) shock TS in case

S1.

will study in detail solutions along four such lines that we denote as Lines I-IV. The

parameters defining these are summarized in Table 5.1. To illustrate the application

of our solution technique for a particular case, we choose Line I (M = 2, η = 3,

α = π/4, and γ = 1.4) with β = βmin = 2. This parameter set corresponds to that

used by Samtaney (2003). In the following discussion, for convenience, we denote this

as case S1.

5.4.1 Irregular solution

First, we examine the solution suggested by Samtaney’s numerical results, in which

four shocks arise from the shock refraction process for case S1. We demonstrate

that this is a c-solution. Including the incident shock, there are five shocks in the

system, hence the solution is referred to as a quintuple-point. The incident shock is
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hydrodynamic and has no effect on the magnetic field, as can be seen from Figure

5.5(a), which shows the graphical solution of the RH relations for the conditions

upstream of this shock. The value of r for this shock is given by root A of the RH

relations. In this instance root A is the only real root, disregarding r = 1, and

gives r0 = 0.375 while b0 = 0. Note that hydrodynamic shocks are non-evolutionary

if the upstream un is super-Alfvénic and the downstream un is sub-Alfvénic in the

reference frame of the shock. This criteria is not met for case S1 so the incident

shock is evolutionary, as is the case for all other sets of parameters considered here.

With reference to Figure 5.4, RF was found to lie at φ1 = 0.405693 and is a fast

shock. Root A gives r1 = 0.844 resulting in b1 = −1.09. Figure 5.5(b) shows that

this is the only real root other than 1. RS is a slow shock and was found to lie

at φ2 = 0.917018. Figure 5.5(c) shows that all three roots are real for RS, but as

intersection 3 corresponds to the upstream state, only a transition to intersection 4 will

result in r2 < 1 and thus satisfy the entropy condition. This transition corresponds

to a slow shock for which root B gives the value of r. r2 and b2 were found to be 0.963

and -0.0547, respectively. TF was found to lie at φ3 = 1.27673 and is a fast shock for

which root A gives rb = 0.352, while bb = −1.11. Finally, TS is a 2 → 4 intermediate

shock and was found to lie at φ4 = 1.19426. The presence of this intermediate shock

implies that this quintuple-point is a c-solution, which we denote solution S1c. Figure

5.5(e) shows that all three roots are real for TS and intersection 2 corresponds to

the upstream state. A transition to intersection 1, corresponding to root A, would

violate the entropy condition. A transition to intersection 3, corresponding to root

C, satisfies the entropy condition but it was found that, for case S1, the matching

conditions Eqs. 5.11-5.15 could not be satisfied if TS was assumed to be a 2 → 3

intermediate shock. Thus, r4 is given by root B and was found to be 0.911 while

b4 = 0.122.

The shock and CD angles from solution S1c are overlaid on the numerical results of

Samtaney (2003) in Figures 5.6(a) and (b). Figure 5.6(a) shows contours of density

which clearly display the location of the CD. Streamlines are also plotted in this

figure to show how the various shocks in the system deflect the flow. In region 2, the
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Figure 5.6: Computed shock and CD angles for case S1 (c-solution) overlaid on (a) density

contours and (b) By contours from the numerical results of Samtaney (2003). Sample

streamlines and field lines are shown in (a) and (b), respectively.

streamlines are angled toward the SC. Shock RS then deflects them away from the

shock normal, aligning them with the SC in region 3. Conversely, in region 4, the

streamlines are angled away from the SC and shock TS brings them into alignment

by deflecting them toward the shock normal. This type of deflection is not possible

for hydrodynamic shocks as they do not support a tangential velocity jump. Figure

5.6(b) shows contours of By to clearly display the locations of the weaker shocks that

have small density jumps across them. A typical magnetic field line is also plotted

in this figure to show how the various shocks in the system deflect the field. Figure

5.7 shows normalized ρ and By profiles along a horizontal line that passes though

RS, the SC, TS, and TF . Profiles from solution S1c are compared to those from the

numerical results of Samtaney (2003). From Figures 5.6 and 5.7, it can be seen that

there appears to be close agreement between solution S1c and the numerical results.
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diffuse. The profiles have been aligned such that the center of the SC lies at the same

location in each profile. They could not be aligned exactly due to the uncertainty in the

location of the intersection point in the numerical results.
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5.4.2 Regular solution

In general, two-dimensional c-solutions are not unique because a corresponding r-

solution exists (see e.g., Torrilhon (2003b)). This is so for solution S1c. The cor-

responding r-solution, which we denote solution S1r, has the same structure except

that the TS wave-group consists of a RD followed downstream by a slow shock. As

this structure involves six shocks/RDs, it is referred to as a sextuple-point solution.

The combined properties of the transmitted RD and slow shock are similar to those of

the 2 → 4 intermediate shock in the c-solution; the sign of Bt is reversed and the flow

is compressed. This allows the locations of the other shocks in the r-solution to re-

main relatively unchanged from solution S1c, as can be seen from examination of the

shock angles. For solution S1r, these were found to be φ1 = 0.405694, φ2 = 0.917019,

φ3 = 1.27678, and φ4 = 1.19283. With the exception of the angle of the transmit-

ted slow shock, φ4, these angles differ from those in solution S1c only in the sixth

significant figure.

5.5 Transitions in solution type with decreasing

magnetic field magnitude

We will now examine how solutions to the shock refraction problem vary with certain

parameters. Our main focus will be on how the solutions change as β is increased.

To study this, we have computed solutions along four lines in parameter space, which

are defined in Table 5.1. Regular and irregular solution branches exist for each line.

We begin our examination by identifying transitions in solution type that occur along

the irregular branch associated with Line I (Branch Ic), for which solution S1c is the

minimum β solution. The examination is repeated for the regular branch associated

with Line I (Branch Ir). We then examine a number of mathematical solutions

to the shock refraction problem that are non-evolutionary in both the planar and

strongly planar MHD systems, according to FK. The branches associated with Lines

II-IV indicate how the transition points vary for certain changes in M , η, and γ.
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Line I II III IV

M 2 2 2 1.4

α π/4 π/4 π/4 π/4

η 3 3 1.5 3

γ 1.4 5/3 5/3 5/3

βmin 2 2 2 2

β
(c)
max 61.6 9.28 34.0 49.5

β
(r)
max 2.39 × 107 102968 104385 103339

Table 5.1: Parameters defining Lines I-IV. β
(c)
max and β

(r)
max are the maximum values

of β for the c- and r-branches associated with each line.

In Chapter 6, we extend this investigation to the limit of large β and examine how

the limiting solutions are related to the hydrodynamic triple-point, which occurs for

β−1 = 0.

5.5.1 Branch Ic

We begin to follow Branch Ic by computing a solution for a value of β 0.001% greater

than βmin, using the shock angles from solution S1c as the initial guesses in the

iterative solution procedure. Two more solutions along the branch are then computed

by successively incrementing β by 0.001% and using the previously computed shock

angles as the initial guesses. Once these first four solutions have been obtained, the

initial guesses for the shock angles are computed using third order extrapolation in β.

This allows β to be increased by larger increments of 2% to 5% while still providing

sufficiently accurate initial guesses for the iterative solution procedure to converge

rapidly.

For the initial part of the solution branch beginning at βmin = 2, Figure 5.8(a)

shows how the angles of fast shocks RF and TF deviate from their corresponding

triple-point values; the angles of shocks R and T in hydrodynamic triple-point solution

to the shock refraction problem with M = 2, η = 3, α = π/4, γ = 1.4, and β−1 = 0.
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Figure 5.8: (a) Deviation of the fast shock angles from their corresponding values in the

hydrodynamic triple-point, (b) angular deflection of the flow through RS and TS, and (c)

roots B and C for the conditions upstream of RS for the initial part of solution Branch

Ic (values of roots B and C for β > 4.68 are not associated with Branch Ic) with M = 2,

η = 3, α = π/4, and γ = 1.4. (d) Roots B and C for the conditions upstream of the slow

shock in the RS wave-group for the initial part of solution Branch Ir.
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Figure 5.9: Graphical solutions of the MHD Rankine-Hugoniot relations for conditions

upstream of shock RS along Branch Ic at (a) β = 2, (b) β = 3, and (c) β = 4.68.

This reveals that as β is increased, the fast shock angles tend toward their triple-

point values. As this occurs, the misalignment between the flow in region 2 and

that in region 4 decreases. Thus, the magnitudes of the angles through which shocks

RS and TS must deflect the flow (δ2 and δ4 respectively) decrease, as can be seen

from Figure 5.8(b). Figure 5.8(c) shows how the values of roots B and C vary for

the conditions upstream of shock RS. At the beginning of Branch Ic, r2 is given

by root B, corresponding to a slow shock. As β is increased, the required decrease

in the magnitude of δ2 is achieved by the shock becoming weaker, as indicated by

the value of r2 increasing toward unity. At β ≈ 2.32, the value of root C drops to

1 and RS is a switch-off shock. Beyond this, the value of root C drops below 1 so

that the state upstream of RS now corresponds to intersection 2 of the F = 0 and

Z = 0 curves. This implies that RS has transitioned from a slow shock to a 2 → 4

intermediate shock, as can be seen from Figures 5.9(a) and 5.9(b), which show the

graphical solution to the RH relations for shock RS for values of β bracketing the

transition point. We denote this a Slow-I24 transition.

Figure 5.8(c) shows that as β is increased further, roots B and C converge and

become equal at β ≈ 4.68, where RS is a 2 → 3 = 4 intermediate shock. At this value

of β, the lower branch of the Z = 0 curve is tangent to the F = 0 curve, as shown
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in Figure 5.9(c). For the solution branch to continue beyond this point, shock RS

must continue to weaken as β increases. This may be achieved by RS transitioning

from a 2 → 4 to a 2 → 3 intermediate shock, for which r2 is given by root C

instead of root B. We denote this a I24-I23 transition. Figure 5.8(c) shows that this

transition allows r2 to continue to increase smoothly for β > 4.68. According to FK,

the 2 → 3 intermediate shock present in the solutions beyond the I24-I23 transition

is non-evolutionary in both the planar and strongly planar MHD systems. For this

reason, we do not consider these solutions as belonging to Branch Ic. Alternatively,

Branch Ic may be continued via a slow-mode expansion fan appearing immediately

downstream of the 2 → 3 = 4 intermediate shock, forming a C1 compound wave

that is evolutionary in the strongly planar system according to FK. We denote this

a I24-C1 transition. It was found that RS does not undergo any further transitions

with increasing β after the I24-C1 transition occurs. For Branch Ic, TS undergoes

the Slow-I24 transition at β ≈ 0.964, which is beyond where we have defined the

end of Line I. For values of β just below this transition point, the c- and r-solutions

are identical, but the solution branch terminates at β ≈ 0.952 where the incident

shock becomes non-evolutionary. TS was found to undergo the I24-C1 transition at

a slightly higher value of β than RS. All identified transition points are specified in

Table 5.2.

5.5.2 Branch Ir

Solution S1r is the starting point for Branch Ir. As for Branch Ic, both RS and TS

weaken (r and |δ| decrease) as β is increased along Branch Ir. RS is initially a slow

shock with r2 given by root B. It weakens to a switch-off shock at β ≈ 2.32, where

root C is equal to 1. This can be seen from Figure 5.8(d), which shows roots B and C

for the conditions upstream of the slow shock in the RS wave-group along the initial

portion of Branch Ir. Rather than undergoing a Slow-I24 transition at this point, a

RD appears upstream of the shock. This event allows the sign of Bt to be reversed

across the RS wave-group without the trailing shock becoming intermediate and is
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denoted a Slow-RdSlow transition. Figure 5.8(d) shows that root C increases above

unity after the Slow-RdSlow transition, confirming that the trailing shock remains

slow. As β is increased beyond this transition point, the trailing slow shock continues

to weaken. It becomes a slow magneto-acoustic wave that has no effect on the flow at

β ≈ 7.71, where r2 reaches unity. In order for Branch Ir to continue for β > 7.71, the

magnitude of δ2 must be decreased further. This is achieved by the slow magneto-

acoustic wave transitioning to a slow-mode expansion fan. We denote this process a

RdSlow-RdExp transition. It was found that the RS wave-group does not undergo

any further transitions with increasing β. The TS wave-group also undergoes the

Slow-RdSlow and RdSlow-RdExp transitions, the locations of which are specified in

Table 5.2.

Each possible combination of RS and TS wave-groups is referred to as a solution

type. The ranges of β for which each solution type is valid are shown in Figure

5.10 for Branches Ic and Ir, along with the angular width of the inner layer. The

angular width of the inner layer is defined as the angle from the leading wave in the

RS wave-group to the leading wave in the TS wave-group. Also shown in Figure

5.10 are values of β for which we compare our results to the numerical simulations of

Samtaney (2003) and present simulations of the same type.

5.5.3 Non-evolutionary solutions on Line I

For completeness, we will now briefly examine a number of mathematical solutions

to the shock refraction problem that are non-evolutionary in both the planar and

strongly planar MHD systems according to FK. Perhaps the most significant of these

solutions are those involving 2 → 3 intermediate shocks. Such solutions can arise

from RS and TS undergoing the I24-I23 transition identified in Section 5.5.1. As

discussed in Section 5.3, other solutions involving 2 → 3 intermediate shocks may

exist, but we have not investigated this. Computing the solutions in which RS and

TS undergo the I24-I23 transition for increasing β along Line I, we find that r2 reaches

unity at β ≈ 7.71, as can be seen from Figure 5.8(c). At this value of β, the reflected
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96

2 4 6 8 10 12
−4

−3

−2

−1

0

1
x 10

−3

β

A
n
g
le

 f
ro

m
 s

ta
rt

 o
f 
R

S
 w

a
v
e
−

g
ro

u
p
 t
o
 R

D
 (

ra
d
)

RS=Slow

RS=I2−4

RS=I2−3

RS=C
1

RS=RD+Slow RS=RD+Fan

Branch Ir
Branch Ic
Non−evolutionary sub−branch

Figure 5.11: Angular separation between the leading wave in the RS wave-group and

the location where a reflected RD would appear in solutions along the various branches

associated with Line I. Note that, in many solutions, the RD is non-existent. � indicates

the Slow-RdSlow/Slow-I24 transition point. ⋄ indicates the I24-C1/I24-I23 transition point.

◦ indicates the RdSlow-RdExp/I23-RdExp transition point. Note also that the pairs of

transition points (e.g., the Slow-RdSlow and Slow-I24 transition points) may not coincide

exactly, although they appear to do so on the scale of this plot. I2-3 and I2-4 designate

2 → 3 and 2 → 4 intermediate shocks, respectively.



97

2 → 3 intermediate shock has weakened to the point where it has become a RD.

For the non-evolutionary sub-branch (set of solutions valid along a portion of Line

I) to continue for β > 7.71, the magnitude of δ2 must decrease further. This can be

achieved computationally via an expansion shock, for which r > 1. Expansion shocks,

however, are entropy decreasing and thus non-physical. Alternatively, a slow-mode

expansion fan may be introduced downstream of the RD to turn the flow toward the

SC and bring it into alignment with that in region 5. We denote this a I23-RdExp

transition. After both RS and TS undergo the I23-RdExp transition, the solutions

lie on Branch Ir and are evolutionary in the planar system according to FK. Figure

5.11 illustrates the relationships between the various branches associated with Line I.

It shows the angle between the leading wave in the RS wave-group and the location

where a reflected RD would occur in solutions along Line I. This angle is zero when

the RS wave-group contains a RD. Note that the transitions of TS must also be

considered to gain a complete understanding of the branch structure.

It is possible to find solutions that satisfy Eqs. 5.11-5.15 where the RS and TS

wave-groups consist of a RD followed by an expansion fan for values of β below

their RdSlow-RdExp transition points. These solutions require the final expansion

fan wavelets to be positioned upstream of the leading wavelets, hence they are non-

physical.

Additional non-evolutionary solutions are possible if RS and TS undergo different

transitions. For example, if RS undergoes Slow-RdSlow and RdSlow-RdExp transi-

tions while TS undergoes Slow-I24 and I24-C1 transitions, or vice-versa. After RS

and TS have each undergone at least one transition, these solutions are not evolu-

tionary in either the planar or strongly planar systems, hence we have not studied

them in detail.

5.5.4 Lines II-IV

We will now investigate whether the same set of transitions occurs along Lines II-

IV, which are defined in Table 5.1. The minimum β end-points of these branches
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Line

Shock Transition Pair I II III IV

Slow-RdSlow/Slow-I24 2.32 2.48 10.2 13.8

RS I24-C1/I24-I23 4.68 4.96 20.3 28.2

RdSlow-RdExp/I23-RdExp 7.71 8.17 34.0 47.3

Slow-RdSlow/Slow-I24 0.964 1.11 5.12 9.13

TS I24-C1/I24-I23 4.79 4.50 16.3 25.2

RdSlow-RdExp/I23-RdExp 10.2 9.28 32.6 48.5

Table 5.2: Values of β where transitions in solution type occur for Lines I-IV. The

values of β given are accurate to the displayed number of significant figures. Pairs of

transitions, such as the I24-C1 and I24-I23 transitions, occur at the same β value up

to accuracy displayed here. Not all pairs of transitions necessarily coincide.

are denoted as cases S2, S3, and S4, respectively. The parameters for case S2 are

the same as those for case S1 with the exception of γ, which is increased to 5/3,

a value more typically associated with plasma. The c- and r-solutions to case S2

were found by following the solution branches corresponding to increasing γ from the

case S1 solutions. No transitions in solution type occur along these branches. For

case S3, η is set to 1.5 to investigate the effects of reducing the density ratio. The

other parameters are identical to those for case S2. Along the regular and irregular

solution branches between the case S2 and case S3 solutions, the RS wave-group

undergoes I24-Slow and RdSlow-Slow transitions, respectively. For case S4, M is set

to 1.4 to investigate the effects of reducing the Mach number. The other parameters

are identical to those for case S2. Along the regular and irregular solution branches

between the case S2 and case S4 solutions, the RS wave-group undergoes I24-Slow

and RdSlow-Slow transitions, respectively.

The branches associated with Lines II-IV emanate from the solutions to cases

S2-S4, respectively, and are computed for increasing β in the same manner as Branch

Ic. The sets of transitions in solution type that occur along Lines II-IV were found to
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be the same as those along Line I, but the order in which the transitions occur was

found to vary. Along Lines II and IV, TS undergoes the I24-C1/I24-I23 transition

before RS, but RS is the first to undergo the RdSlow-RdExp/I23-RdExp transition.

Along Line III, TS undergoes all transitions at lower values of β than RS. The

values of β at which the transitions occur along all solution branches investigated are

listed in Table 5.2. Note that while the pairs of transitions, such as the I24-C1 and

I24-I23 transitions, occur at the same β value up to accuracy displayed in the table,

not all pairs of transitions necessarily coincide exactly. From this table, we see that

the increase in γ from Line I to Line II causes all transitions of TS except for the

Slow-RdSlow to occur earlier, while it delays the transitions of RS. Both the decrease

in M from Line II to Line III and the decrease in η from Line II to Line IV cause all

transitions to occur at significantly larger β values.

5.6 Summary

We have developed an iterative procedure for determining the flow structure produced

by the regular refraction of a MHD shock at an oblique planar density interface

with a density ratio larger than unity. This procedure was used to reproduce the

quintuple-point structure observed in the numerical simulations of Samtaney (2003).

The quintuple-point structure is similar to the hydrodynamic triple-point, but with

the SC replaced with two sub-fast shocks bracketing a MHD CD. The features of

this structure were described in detail and there was found to be excellent agreement

between our results and those of Samtaney (2003). For Samtaney’s conditions, one of

the sub-fast shocks is a 2 → 4 intermediate shock. A second solution was computed in

which the intermediate shock was replaced by a 180o rotational discontinuity followed

downstream by a slow shock. This is referred to as a regular solution while the

quintuple-point structure involving the intermediate shock is referred to as being

irregular. For the three-dimensional ideal MHD equations, all waves that appear in

regular solutions are admissible under the evolutionary condition according to Falle

and Komissarov (2001). While for the strongly planar ideal MHD equations, in which
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gradients and vectors are restricted to a plane (in some reference frame), all waves

that appear in irregular solutions are admissible under the evolutionary condition.

For four sets of parameters, regular and irregular solution branches corresponding

to increasing β were traced. It was found that as β is increased, the two shocks

bracketing the SC undergo a number of transitions. Along each regular branch, the

initial transitions are from slow shocks to 180o rotational discontinuities followed

downstream by slow shocks. As β is increased further, these transition to 180o rota-

tional discontinuities followed downstream by slow-mode expansion fans. Along each

irregular solution branch, the transitions are from slow shocks to 2 → 4 intermediate

shocks and finally to C1 compound waves with increasing β.

Once all transitions are complete, we identified two possible flow structures that

may arise from the shock refraction process: an irregular quintuple-point solution

consisting of a hydrodynamic shock, two fast shocks, and two C1 compound waves,

and a seven wave regular solution consisting of a hydrodynamic shock, two fast shocks,

two 180o rotational discontinuities, and two slow-mode expansion fans, along with

the contact discontinuity. The seven wave structure is denoted the septuple-point

solution. The quintuple-point and septuple-point solutions remain valid up to the

largest β values investigated using the iterative procedure.
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Chapter 6

MHD Shock Refraction Problem for

Vanishing Magnetic Field

6.1 Introduction

In this chapter, we address how the solutions to the MHD shock refraction prob-

lem identified in Chapter 5 approach the hydrodynamic triple-point in the limit of

vanishing applied magnetic field. At values of β higher than the transition points

listed in Table 5.2, we have identified two flow structures that may be produced by

the shock refraction process for each of the four parameter sets considered. These

two structures are the septuple-point r-solution, which consists of a combination of

seven shocks, RDs, and expansion fans, and a quintuple-point c-solution consisting of

a combination of five shocks and compound waves. The behavior of these solutions

at large β is the topic of the following subsections. We present the behavior of the

septuple-point first because it is more geometrically complex and efficient to compute

for reasons that will be discussed in Section 6.2.2. In Section 6.3, the equations gov-

erning the leading order asymptotic solution of the shock refraction problem in the

limit of large β are derived. The section concludes with a comparison between the

asymptotic and full solutions. Finally, the work presented this chapter is summarized

in Section 6.4.
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6.2 Behavior of solutions at large β

6.2.1 Behavior of septuple-point solutions at large β

The structure of the septuple-point r-solution is illustrated in Figure 6.1(a). In the

septuple-point solution, RF and TF are fast shocks, the RS wave-group consists of

a RD, labeled RRD, followed downstream by a slow-mode expansion fan, labeled

RFan, and finally, the TS wave-group consists of a RD, labeled TRD, followed

downstream by a slow-mode expansion fan, labeled TFan. Following Branch Ir

revealed that the septuple-point flow structure is maintained for β values up to 2.39×
107. Solutions for β values greater than this were not computed.

Figure 6.1(b) reveals that as the magnetic field weakens, the angular width of the

inner layer Ψ diminishes, while Figure 6.1(c) shows that the shock locations converge

to their corresponding triple-point values for large β. The slope of the Ψ versus β−1

curve, when plotted on a logarithmic scale, reveals thatΨ scales like β−1/2, which is

proportional to the applied magnetic field magnitude B. Figure 6.1(d) shows the

jump in velocity tangential to the SC across the inner layer, ∆ut inner, normalized by

the jump in tangential velocity across the SC in the corresponding triple-point solu-

tion, ∆ut hydro. This reveals that as β becomes large, ∆ut inner converges to ∆ut hydro.

These observations suggest that, in the limit as β → ∞, the septuple-point solution

is identical to the hydrodynamic triple-point solution, with the exception that the

hydrodynamic CD is replaced by the inner layer. The density and tangential velocity

jumps across the inner layer, which are equal to those across the hydrodynamic CD

in the limit, are supported by different elements within the layer. The density jump

is principally supported by the MHD CD, but as this cannot support a shear, the

tangential velocity jump must be supported by the RDs and expansion fans. Profiles

of the tangential velocity within the inner layer for β ≈ 10.56 and β ≈ 255, 306 are

shown in Figure 6.2. These demonstrate that for moderate β, the tangential velocity

jump is principally supported by the RDs, while for large β, it is almost entirely

supported by the expansion fans. This is due to the fact that the tangential velocity

jump across a RD scales like (
√

γ ρ/p β MSn)−1, which can be derived from Eq. C.12.
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Figure 6.1: (a) Illustration of the septuple-point flow structure. The angular separations

of the RDs and fans along with the angular extent of the fans have been exaggerated for

clarity. (b) Variation of the angular width of the inner layer Ψ with β−1. (c) Deviation

of the angles of shocks RF and TF from their hydrodynamic triple-point values, φhydro,

versus β−1. (d) β−1 dependence of the tangential velocity jump across the inner layer,

∆ut inner, normalized by the tangential velocity jump across the CD in the corresponding

hydrodynamic triple-point solution, ∆ut hydro. Logarithmic axes are used for (b)-(d) to

illustrate the power law dependence of the plotted quantities on β−1. Sample power law

curves are included for comparison.
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Figure 6.2: Velocity profiles within the inner layer of the septuple-point solution for two

values of β along Branch Ir. The plotted velocity component is tangential to the SC and

has been normalized such that it is zero at ψ = 0 and unity at ψ = Ψ. The top profile is for

β ≈ 10.56 and the bottom profile is for β ≈ 255606. The angle ψ is defined counter-clockwise

from RRD.

From our results, we also observe that for large β, each expansion fan supports finite

jumps in ρ, p, and Bt to balance the tangential velocity jump. This implies that

while Bt tends to zero outside of the inner layer, it remains finite downstream of the

expansion fans. Further, Figure 6.2 shows that for large β, the angular extents of

fans RFan and TFan still consume a finite fraction of the width of the inner layer.

These findings indicate that in the limit of β tending to infinity, the inner layer is a

singular structure.

6.2.2 Behavior of quintuple-point solutions at large β

The structure of the quintuple-point c-solution is illustrated in Figure 6.3(a). In the

quintuple-point solution, RF and TF are fast shocks while RS and TS are C1 com-

pound waves labeled RC1 and TC1, respectively. We will refer to the expansion fan
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portions of RC1 and TC1 as RFan and TFan, respectively. Following Branch Ic re-

vealed that the quintuple-point flow structure is maintained up to the highest β values

for which solutions were computed. We discontinued following Branch Ic after estab-

lishing that its behavior is practically identical to that of Branch Ir. The reason that

Branch Ic was not followed to the same βmax as Branch Ir is that solutions along this

sub-branch are much more computationally expensive to calculate for large β. The

additional expense arises from computing the angles of the 2 → 3 = 4 intermediate

shocks. Computing these angles requires Eq. E.1 to be solved iteratively. For large

β, we observe that the coefficients B, C, and D in this equation approximately scale

like β. Thus, the terms in Eq. E.1 approximately scale like β3 as they involve triple

products of these coefficients. Satisfying Eq. E.1 to the same absolute tolerance for

all β therefore requires the working precision of the iterative scheme to be increased

like β3, as the terms become large, greatly increasing the computational expense.

Figures 6.3(b) and 6.3(c) show comparisons of Ψ and the fast shock angles from

Branches Ic and Ir. These demonstrate that the behavior of the quintuple-point

and septuple-point solutions is practically identical, despite the structural differences

between the two solutions. Figure 6.3(d) shows how the values of r for the reflected

and transmitted 2 → 3 = 4 intermediate shocks vary with increasing β. It suggests

that for large β, r tends toward unity for both shocks while they continue to reverse

the sign of Bt as they are of an intermediate shock-type. This indicates that the

2 → 3 = 4 intermediate shocks reproduce the behavior of the RDs in the septuple-

point for large β, implying that in the limit of β tending to infinity, the tangential

velocity jump across the inner layer is supported by RFan and TFan. Additionally,

Figure 6.3(b) shows that the angular width of the inner layer scales like β−1/2; hence

the angular extents of RFan and TFan tend to zero for large β, as in the septuple-

point solution. These results show that in the limit of β tending to infinity, the inner

layer of the quintuple-point solution is also a singular structure as the expansion fans

support finite jumps in ut, Bt, ρ, and p while their angular extents tend to zero. We

will now investigate this singular structure in more detail.
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Figure 6.3: (a) Illustration of the quintuple-point flow structure. (b) Variation of the

angular width of the inner layer Ψ with β−1 for Branches Ic and Ir. (c) Deviation of the

angles of shocks RF and TF from their hydrodynamic triple-point values, φhydro, versus β−1

for Branches Ic and Ir. (d) β−1 dependence r for the transmitted and reflected 2 → 3 = 4

intermediate shocks, denoted RI and TI, respectively, along Branch Ic.
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Figure 6.4: Variation of the sector widths within the inner layer along Branches Ic and Ir.

6.3 Structure of the singular wedge

6.3.1 Rescaling within the singular wedge

In the septuple-point solution, we denote the angle between RRD and the leading

wavelet of RFan as ∆ψ1, the angular extent of RFan as ∆ψ2, the angle between

the last wavelet of RFan and the SC as ∆ψ3, the angle between the SC and the last

wavelet of TFan as ∆ψ4, the angular extent of TFan as ∆ψ5, and the angle between

the leading wavelet of TFan and TRD as ∆ψ6. In the quintuple-point solution,

∆ψ2-∆ψ5 are defined in the same way while ∆ψ1 and ∆ψ6 are both zero. Figure 6.4

shows how these sector widths vary with β−1 along Branches Ic and Ir. For both
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branches, each of ∆ψ2/Ψ, ∆ψ3/Ψ, ∆ψ4/Ψ, and ∆ψ5/Ψ asymptote to constant values

for large β, indicating that these sector widths have the same β−1/2 scaling as Ψ.

Note that each of these scaled sector widths appear to asymptote to the same value

for both branches. For the septuple-point solution, both ∆ψ1 and ∆ψ6 scale like β−1;

hence, they are small when compared to the other sector widths in the limit of large

β. Further interrogation of the solutions along Line I revealed that within the inner

layer (i.e. downstream of RFan and TFan), MSn and Kn scale like β−1/2 for large β.

Conversely, ρ, p, MSt, and Kt remain finite. This implies that even as β → ∞, the

magnetic field within the inner layer is finite and scales like
√
µ0p3. In addition, the

SC cannot support a tangential velocity jump as the magnetic field is not parallel to

it.

The observed dependence of the inner layer flow states on β suggests the follow

expansions in terms of the small parameter ε ≡ β−1/2:

MSn(ζ; ε) = εM
(1)
Sn (ζ) + ε2M

(2)
Sn (ζ) +O(ε3) , (6.1)

MSt(ζ; ε) = M
(0)
St (ζ) + εM

(1)
St (ζ) +O(ε2) , (6.2)

Kn(ζ; ε) = εK(1)
n (ζ) + ε2K(2)

n (ζ) +O(ε3) , (6.3)

Kt(ζ; ε) = K
(0)
t (ζ) + εK

(1)
t (ζ) +O(ε2) , (6.4)

ρ(ζ; ε) = ρ(0)(ζ) + ερ(1)(ζ) +O(ε2) , (6.5)

where ζ ≡ ψ/ε. For each expansion fan, ζ originates from the leading wavelet and

increases in the downstream direction. Substituting these expansions into Eqs. D.9-

D.13, we obtain the following set of coupled differential equations in ζ for the leading
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order terms within RFan and TFan:

dρ(0)

dζ
= ρ(0)fρ , (6.6)

dM
(1)
Sn

dζ
= −

(

γ + 1

2
M

(1)
Sn fρ +M

(0)
St

)

, (6.7)

dM
(0)
St

dζ
= −

(

γ

2

M
(1)
Sn

K
(1)
n K

(0)
t

+
K

(0)
t

K
(1)
n

M
(1)
Sn +

γ − 1

2
M

(0)
St

)

fρ , (6.8)

dK
(1)
n

dζ
= −

(γ

2
K(1)

n fρ +K
(0)
t

)

, (6.9)

dK
(0)
t

dζ
= −γ

2

(

1

K
(0)
t

+K
(0)
t

)

fρ , (6.10)

where,

fρ =
−2M

(1)
SnM

(0)
St

(

1 + 2
γ
K

(0)
t

2
)

+ 4
γ
K

(1)
n K

(0)
t

[

γ + 3 +
(

4 + 2
γ

)

K
(0)
t

2
]

M
(1)
Sn

2 − 2K
(1)
n

2 .

The source of the observed singular change in the tangential magnetic field across

each expansion fan is the term involving 1/K
(0)
t in Eq. 6.10. At the leading wavelet of

an expansion fan, where K
(0)
t = 0, this causes the ζ-derivative of K

(0)
t to be infinite.

Within the expansion fans, we find that to leading order in ζ, K
(0)
t behaves like

√
ζ

near ζ = 0.

Computing the leading order asymptotic approximation to the inner layer struc-

ture in the limit of large β requires Eqs. 6.6-6.10 to be solved. To achieve this,

boundary conditions for each of these equations are necessary. The boundary con-

ditions for the O(1) quantities ρ(0), M
(0)
St , and K

(0)
t are the values on either side of

the SC in the corresponding hydrodynamic triple-point solution (zero in the case of

K
(0)
t ). Obtaining boundary conditions for M

(1)
Sn and K

(1)
n requires the O(ε) quanti-

ties outside of the inner layer to be computed. In Appendix G, we show that the

2 → 3 = 4 intermediate shocks in the quintuple-point solution and the RDs in the

septuple-point solution do not affect the boundary conditions for Eqs. 6.6-6.10 and

hence are omitted from the leading order solution. Combined with other arguments,

this implies that the leading order asymptotic solution is the large β limit of both the



110

quintuple-point and septuple-point solutions.

6.3.2 Equations for O(ε) quantities outside the singular wedge

In each region outside of the inner layer, ρ, p, and u can be expanded about their

values in the triple-point solution, which are denoted with the superscript (0). For

example,

ρ(φ; ε) = ρ(0)(φ) + ερ(1)(φ) +O(ε2) .

From the definition of ε, the appropriate expansion for the magnetic field is

B(φ; ε) = εB(1)(φ) +O(ε2) .

As I is a hydrodynamic shock, the presence of B does not perturb the hydro-

dynamic variables in region 1. Thus, ρ1 = ρ
(0)
1 , p1 = p

(0)
1 , and B1 = εB

(1)
1nuêx =

−ε√2µ0p0 êx. Here, êx is a unit vector oriented in the x−direction. From our exam-

ination of Branch Ir, we observe that the fast shock angles are perturbed about their

triple-point values as follows:

φ = φ(0) + εφ(1) +O(ε2) .

This perturbs the velocity components upstream of RF and TF about their triple-

point values. We will denote vector components defined relative to plane waves form-

ing the upstream and downstream boundaries of a region with the subscripts u and

d respectively. The perturbed velocity components immediately upstream of RF are

given by

u1nd = u
(0)
1nd + εu

(1)
1nd +O(ε2)

= −u(0)
1tu cosφ

(0)
1 − u

(0)
1nu sinφ

(0)
1 + εφ

(1)
1

(

u
(0)
1tu sinφ

(0)
1 − u

(0)
1nu cosφ

(0)
1

)

+O(ε2) ,

u1td = u
(0)
1td + εu

(1)
1td +O(ε2)

= −u(0)
1tu sinφ

(0)
1 + u

(0)
1nu cosφ

(0)
1 − εφ

(1)
1

(

u
(0)
1tu cosφ

(0)
1 + u

(0)
1nu sinφ

(0)
1

)

+O(ε2) ,
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while the O(ε) magnetic field components are given by

B1nd = εB
(1)
1nd = −εB(1)

1nu sinφ
(0)
1 ,

B1td = εB
(1)
1td = εB

(1)
1nu cosφ

(0)
1 .

The O(ε) vector components upstream of TF are calculated in a similar manner.

The magnetic field just downstream of the fast shocks will also be O(ε) because

the shocks are not close to the switch-on limit. To compute the perturbed flow-states

downstream of RF and TF (2u and 4u, respectively), shock jump conditions for

the O(ε) quantities are required. These are obtained by substituting our expansions

for ρ, p, u, and B into Eqs. 5.6-5.10 in the reference frame where u
(0)
t = 0. By

setting the O(1) terms of the resulting expressions equal to zero, we obtain the usual

hydrodynamic shock jump conditions. Setting the O(ε) terms equal to zero yields

[

ρ(0)u(1)
n + ρ(1)u(0)

n

]

= 0 , (6.11)
[

2ρ(0)u(0)
n u(1)

n + ρ(1)u(0)
n

2
+ p(1)

]

= 0 , (6.12)
[

u
(1)
t

]

= 0 , (6.13)




(

ρ(1)u
(0)
n + 3ρ(0)u

(1)
n

)

u
(0)
n

2

2
+
γ
(

u
(1)
n p(0) + u

(0)
n p(1)

)

γ − 1



 = 0 , (6.14)

[

u(0)
n B

(1)
t

]

= 0 . (6.15)

These equations are not valid for shocks that are almost switch-on shocks. The values

of ρ(1), p(1), and u
(1)
n downstream of each fast shock are obtained by the simultaneous

solution of Eq. 6.11, Eq. 6.12, and Eq. 6.14. Once u
(1)
n is known on both sides of each

shock, the downstream values of B
(1)
t can be computed from Eq. 6.15. Eq. 6.13 shows

that u
(1)
t is continuous across each shock, as is B

(1)
n .

To compute the O(ε) components of flow-states 2d and 4d, which are defined

relative to the leading wavelets of RFan and TFan, respectively, we must first com-

pute the O(1) and O(ε) terms in the expansions for ∆φd (the angle between RF
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and RFan) and ∆φa (the angle between TF and TFan). This can be accomplished

by substituting our expansions for the primitive variables into Eq. F.2 because we

determined that the location of each leading wavelet is the same as that of a RD up

to O(ε). For ∆φd, this gives

∆φd = ∆φ
(0)
d + ε∆φ

(1)
d +O(ε2)

= arctan
M

(0)
Sn

M
(0)
St

+
εM

(0)
SnM

(0)
St

M
(0)
Sn

2
+M

(0)
St

2

[

M
(1)
Sn

M
(0)
Sn

− M
(1)
St

M
(0)
St

−
√

2

γ

(

K
(1)
n

M
(0)
Sn

− K
(1)
t

M
(0)
St

)]

+O(ε2) ,

where the subscript 2u has been dropped from all quantities for clarity and

K
(1)
n/t =

B
(1)
n/t

√

2µ0p(0)
, (6.16)

M
(1)
Sn/t = M

(0)
Sn/t

(

u
(1)
n/t

u
(0)
n/t

+
ρ(1)

2ρ(0)
− p(1)

2p(0)

)

. (6.17)

Note that ∆φ
(0)
d is equal to the angle between the reflected shock and the SC in the

corresponding triple-point solution, a prerequisite for theO(1) terms in our expansions

corresponding to a triple-point solution. ∆φ
(1)
a is computed by inserting flow-state

4u into the above relation for ∆φ
(1)
d and inverting the direction of K

(1)
4u . We can now

compute u
(1)
2nd using

u
(1)
2nd = −∆φ

(1)
d u

(0)
2td + u

(1)
2nu cos ∆φ

(0)
d − u

(1)
2tu sin ∆φ

(0)
d .

A similar relation is used to compute u
(1)
4nd. From the hydrodynamic triple-point

solution, both u
(0)
2nd and u

(0)
4nd are zero. This results in the inner layer boundary con-

ditions for MSn being O(ε), as required by Eq. 6.7. The leading order magnetic field

components upstream of RFan are given by

B
(1)
2nd = B

(1)
2nu cos ∆φ

(0)
d −B

(1)
2tu sin ∆φ

(0)
d ,

B
(1)
2td = B

(1)
2nu sin ∆φ

(0)
d +B

(1)
2tu cos ∆φ

(0)
d .
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The components upstream of TFan are computed in the same manner.

The boundary conditions for Eqs. 6.6-6.10 can now be computed from states 2d

and 4d upstream of the fans; the boundary conditions for ρ(0), p(0), and M
(0)
St are

taken directly from the triple-point solution on either side of the shocked interface.

Eq. 6.16 is used to calculate the boundary conditions for K
(1)
n from states 2d and 4d

while the boundary conditions for M
(1)
Sn are computed using

M
(1)
S2nd =

u
(1)
2nd

√

γp
(0)
2 /ρ

(0)
2

, M
(1)
S4nd =

u
(1)
4nd

√

γp
(0)
4 /ρ

(0)
4

.

Finally, the appropriate boundary conditions for K
(0)
t are zero.

6.3.3 Leading order matching conditions at the interface

The leading order terms of flow-state 3u immediately downstream of the trailing

wavelet of RFan are computed by numerically integrating Eqs. 6.6-6.10 from ζ = 0 to

ζ = ∆ζ2 ≡ ∆ψ2/ε using the boundary conditions derived in Section 6.3.2. Similarly,

flow-state 5u is computed by numerically integrating Eqs. 6.6-6.10 from ζ = 0 to

ζ = ∆ζ5 ≡ ∆ψ5/ε. To leading order, the angular separations between the trailing

wavelets of the expansion fans and the SC, ε∆ζ3 and ε∆ζ4, are given by

∆ζ3 =
u

(1)
3nu

u
(0)
3tu

, ∆ζ4 =
u

(1)
5nu

u
(0)
5tu

.

Using this, it can be shown that the leading order matching conditions for pressure,

velocity magnitude, velocity direction, tangential magnetic field, and normal magnetic
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field can be expressed as

p
(0)
3 = p

(0)
5 , (6.18)

u
(0)
3tu = u

(0)
5tu , (6.19)

φ
(1)
1 + ∆φ

(1)
d + ∆ζ2 + ∆ζ3 + ∆ζ4 + ∆ζ5 − φ

(1)
3 + ∆φ(1)

a = 0 , (6.20)

K
(0)
3tu = K

(0)
5tu , (6.21)

K
(1)
3nu − ∆ζ3K

(0)
3tu +K

(1)
5nu − ∆ζ4K

(0)
5tu = 0 . (6.22)

6.3.4 Leading order asymptotic solution technique

The leading order asymptotic solution is computed in the same manner as the solution

to the full problem. The solution can be completely specified by four scaled angles,

φ
(1)
1 , φ

(1)
3 , ∆ζ2, and ∆ζ5. An approximate solution is found by iterating on these four

angles using a secant method until Eqs. 6.18-6.21 are satisfied to eight significant

figures. To check the consistency of this procedure, the final angles are substituted

into Eq. 6.22 to ensure that it is satisfied to the same precision. It was found that the

radius of convergence for this set of equations is very small, necessitating extremely

accurate initial guesses for the four angles to achieve a converged solution. One

difficulty that arises in this problem is that the derivatives in Eqs. 6.8 and 6.10

are infinite at the leading wavelet of each expansion fan (ζ = 0) as they contain

terms involving 1/K
(0)
t . Thus, they cannot be integrated numerically if the physical

boundary condition K
(0)
t = 0 is used. This is handled by setting the boundary

conditions on K
(0)
t to be the small values −ǫK(1)

2dt and −ǫK(1)
4dt at the leading wavelets

of RFan and TFan, respectively. The value of ǫ used was 10−10. This procedure

is acceptable because in the immediate vicinity of the leading wavelet (ζ ≪ 1), the

growth of K
(0)
t is decoupled to leading order (in ζ) from changes in the other variables.

For ζ ≪ 1, K
(0)
t behaves like

√
ζ to leading order while the other variables are constant

to leading order.
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Figure 6.5: K
(0)
3t and K

(1)
3n values from the leading order asymptotic solution (×) and

approximated from Branch Ir (−) versus ε.

6.3.5 Comparing the full and asymptotic solutions

We have computed the leading order asymptotic solution to the shock refraction

problem specified by the parameters defining Line I, which are listed in Table 5.1.

For this set of parameters, we found that φ
(1)
1 = 0.01981083, φ

(1)
3 = −0.01205304,

∆ζ2 = 0.01814016, and ∆ζ5 = 0.00646063. The residual of Eq. 6.22 is less than 10−9

for this set of scaled angles.

Approximate values for O(ε) terms can be recovered from the full solutions along

Branches Ic and Ir. For example, an approximate value for φ
(1)
1 can be computed

using

φ
(1)
1 approx =

φ1 − φ
(0)
1

ε
,

where φ1 and ε are taken from a full solution along either Branch Ic or Branch Ir.

Note that these approximations have an error proportional to the value of ε for the full

solution used. The approximate values of φ
(1)
1 , φ

(1)
3 , ∆ζ2, and ∆ζ5 from Branch Ir were

extrapolated to ε = 0 and compared to the values from the leading order asymptotic
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solution. The relative errors were found to be at most 7.7 × 10−6, which is an order

of magnitude less than the smallest value of ε from Branch Ir. Figure 6.5 shows a

comparison between the values of representative O(1) and O(ε) inner layer quantities

from the asymptotic solution and approximated from Branch Ir. In general, there

was found to be excellent agreement between the leading order asymptotic solution

and the full solutions at the end of Branch Ir in the limit of small ε.

6.4 Summary

Our results suggest that in the limit of infinite β, both the quintuple-point and

septuple-point solutions identified in Chapter 5 become identical to the hydrodynamic

triple-point solution, with the exception that the shocked hydrodynamic contact is

replaced by a singular structure we call the inner layer. The inner layer is a wedge

bounded by either the two compound waves or the two rotational discontinuities

followed by the two slow-mode expansion fans. These bracket the MHD contact. In

both cases, the angle of this wedge scales like β−1/2, which is proportional to the

applied magnetic field magnitude. A scaling for each of the variables within the inner

layer is suggested from the results of our computations. Significantly, this scaling

implies that the magnetic field within the inner layer is finite in the limit of β tending

to infinity. In addition, the magnetic field is not parallel to the MHD contact, hence

it cannot support a jump in tangential velocity. This necessitates the presence of the

expansion fans (that are part of the compound waves in the quintuple-point solution),

which support the tangential velocity discrepancy across the inner layer even though

their angular extents tend to zero. To verify these findings, the equations governing

the leading order asymptotic solution of the shock refraction problem in the limit

of large β were derived. These equations were then solved iteratively. We argue

that the leading order asymptotic solution is the large β limit of both the quintuple-

point and septuple-point solutions, in part because neither the shock portions of the

compound waves nor the rotational discontinuities participate in it. The asymptotic

and full solutions were compared quantitatively and there was found to be excellent
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agreement between the two. Although we have only examined the limit of infinite β

in detail for one set of parameters, we anticipate that for all sets of parameters where

the shock refraction is regular, a singular layer will be present in which the leading

order behavior is also governed by slow-mode expansion fans.
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Chapter 7

Conclusions

The Richtmyer-Meshkov instability (RMI) is important in a wide variety of appli-

cations including inertial confinement fusion (Lindl et al., 1992), astrophysical phe-

nomena (Arnett, 2000), supersonic and hypersonic air breathing engines (Yang et al.,

1993), deflagration-to-detonation transition (Khokhlov et al., 1999), and reflected

shock tunnels (Stalker and Crane, 1978, Brouillette and Bonazza, 1999). In some of

these applications, the fluids involved may be plasmas and hence be affected by mag-

netic fields. For one configuration, Samtaney (2003) has demonstrated, via numerical

simulations, that the growth of the RMI in magnetohydrodynamics (MHD) is sup-

pressed in the presence of a magnetic field. The extent and cause of this suppression

were theoretically and numerically investigated in this thesis.

As a first step, ideal MHD simulations of the RMI of a sinusoidally perturbed

interface were carried out, both in the presence and absence of a magnetic field.

The results of these simulations, which are presented in Chapter 2, are in qualitative

agreement with the simulations of Samtaney (2003), in which the interface was planar

and oblique: When a magnetic field is present, additional MHD shocks are generated

during the shock refraction process that transport vorticity away from the density

interface, suppressing the growth of the RMI. The most significant result to arise

from the simulations presented in Chapter 2 is that the interface amplitude still

exhibits some growth in the presence of a magnetic field. The behavior of the interface

amplitude in this case, a short period of growth followed by oscillations about a
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constant mean, was not reported by Samtaney and was deemed to warrant further

investigation.

To understand the behavior of the interface seen in Chapter 2, and the effect of

a magnetic field on the MHD RMI in general, a linearized model problem is stud-

ied in Chapter 3. The model problem consists of a sinusoidally perturbed interface

separating incompressible conducting fluids of different densities that is impulsively

accelerated at t = 0. There is a magnetic field aligned with the impulsive accelera-

tion. This flow was studied by analytically solving the appropriate linearized initial

value problem. The solution indicates that the initial growth rate of the interface

is unaffected by the presence of a magnetic field. The growth rate then decays due

to the transport of vorticity via Alfvén fronts. This results in interface amplitude

asymptoting to a constant value, such that the difference between the initial and

final interface amplitudes is inversely proportional to the magnetic field magnitude.

Thus the instability of the interface is suppressed by the presence of the magnetic

field.

The model developed in Chapter 3 differs from the full MHD Richtmyer-Meshkov

instability in that it is incompressible, linear, and is driven by an impulse rather than

by the impact of a shock wave. To assess the performance of this linear model, predic-

tions from the model were compared to the results of impulse driven linearized (IDL),

shock driven linearized (SDL), and non-linear (NL) compressible MHD simulations

for a variety of cases. The performance of the linear model was first assessed for a

baseline case for which the incident shock Mach number M , initial interface ampli-

tude η0, and non-dimensional strength of the applied magnetic field β−1 are small.

For this case, the agreement between the linear model and the interface behavior from

the IDL simulation is excellent, with the model predicting the final amplitude of the

interface to within 0.2%. Compressible waves present are in the simulation that cause

small amplitude, short period oscillations in the amplitude of the interface. These

waves are not present in the linear model but do not effect the overall evolution of the

interface as they have no vorticity associated with them. The agreement between the

linear model and the SDL simulation is also good, while the final interface amplitude
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from the NL simulation is over-predicted by 2.2%. For all simulations of this case,

the linear model represents the flow structures that dominate the evolution of the

interface with reasonable accuracy. In the shock driven simulations, the interface am-

plitude also exhibits a long period oscillation caused by the interaction of transverse

waves downstream of the shocks and/or outgoing waves reflected from the shocks.

When M is increased, the linear model still accurately predicts the behavior of the

interface in the IDL simulation, but it increasingly overestimates the amplitude of

the interface η in the shock driven cases. The amplitude of the long period oscil-

lations in the shock driven simulations increases with M . As β−1 is increased, the

linear model less accurately predicts the results of all simulations. The accuracy of

the linear model was found to be severely compromised once the magnetic field is

sufficiently strong that the Alfvén wave speed approaches the acoustic sound speed,

particularly if the incident shock is weak. When this occurs, the features of the

flow that dominate the evolution of the interface deviate significantly from the linear

model. When η0 is increased, the agreement between the model and the linearized

simulations is unchanged. The degree to which the linear model over-predicts η from

NL simulations gradually increases with η0. Generally, the interface behavior given

by the incompressible linear model developed in Chapter 3 well approximates that

seen compressible linearized simulations when M − 1, η0/λ, and β−1 are small. For

such cases, the agreement with interface behavior observed in non-linear simulations

is also reasonable. When M − 1, η0/λ, and β−1 are increased, the linear model be-

comes less accurate. For strong shocks, large initial perturbation amplitudes, and

strong magnetic fields, it appears that the linear model may give a rough estimate of

the interface behavior, but it is not quantitatively accurate.

Samtaney (2003) has identified the change in the MHD shock refraction process

with the application of a magnetic field as the mechanism by which the MHD RMI

is suppressed. In hydrodynamics, a solution to the shock refraction problem was

required in order for the analysis of the compressible RMI to be carried out (Richt-

myer, 1960). A solution technique for the MHD shock refraction problem therefore

seems essential to the analysis of the MHD RMI. In Chapter 5, an iterative procedure
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was developed for determining the flow structure produced by the regular refraction

of a MHD shock at an oblique planar density interface with a density ratio larger

than unity. This solution technique was used to reproduce the quintuple-point struc-

ture observed in the numerical simulations of Samtaney (2003). The quintuple-point

structure is similar to the hydrodynamic triple-point, but with the shocked contact

replaced by two sub-fast shocks that bracket a MHD contact discontinuity, which is

vorticity free. The features of this structure were studied in detail and there was

shown to be excellent agreement between the results of the iterative procedure and

the numerical results of Samtaney (2003). For Samtaney’s conditions, one of the

sub-fast shocks is a 2 → 4 intermediate shock. A second solution was computed

in which the intermediate shock was replaced by a 180o rotational discontinuity fol-

lowed downstream by a slow shock. This is referred to as a regular solution while

the quintuple-point structure involving the intermediate shock is referred to as being

irregular. For the three-dimensional ideal MHD equations, all waves that appear in

regular solutions are admissible under the evolutionary condition according to Falle

and Komissarov (2001). While for the strongly planar ideal MHD equations, in which

gradients and vectors are restricted to a plane (in some reference frame), all waves

that appear in irregular solutions are admissible under the evolutionary condition.

Regular and irregular solution branches corresponding to increasing β were traced for

four sets of parameters. As β is increased, it was found that the two shocks bracket-

ing the shocked contact undergo a number of transitions. Along each regular branch,

the initial transitions are from slow shocks to 180o rotational discontinuities followed

downstream by slow shocks. As β is increased further, these transition to 180o rota-

tional discontinuities followed downstream by slow-mode expansion fans. Along each

irregular solution branch, the transitions are from slow shocks to 2 → 4 intermediate

shocks and finally to C1 compound waves with increasing β. Once all transitions

are complete, two possible flow structures that may arise from the shock refraction

process were identified. These are an irregular quintuple-point solution consisting of

a hydrodynamic shock, two fast shocks, and two C1 compound waves, and a seven

wave regular solution consisting of a hydrodynamic shock, two fast shocks, two 180o
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rotational discontinuities, and two slow-mode expansion fans, along with the contact

discontinuity. The seven wave structure is denoted the septuple-point solution. The

quintuple-point and septuple-point solutions remain valid up to the largest β values

investigated using the iterative procedure.

In the hydrodynamic triple-point solution to a shock refraction problem, which

occurs in MHD in the absence of a magnetic field, the shocked contact discontinuity is

a vortex sheet. If, however, a magnetic field is present, even if it is vanishingly small

in magnitude, the contact discontinuity cannot support a tangential velocity jump.

This apparent paradox is addressed in Chapter 6, initially by applying the solution

technique developed in Chapter 5 to cases in which the applied magnetic field is

small. The results presented suggest that in the limit of infinite β, which corresponds

to a vanishing applied magnetic field, both the quintuple-point and septuple-point

solutions identified in Chapter 5 become identical to the hydrodynamic triple-point

solution, with the exception that the shocked hydrodynamic contact is replaced by

a singular structure we call the inner layer. The inner layer is a wedge bounded by

either the two compound waves or the two rotational discontinuities followed by the

two slow-mode expansion fans. These bracket an MHD contact discontinuity. In both

cases, the angle of this wedge scales like β−1/2, which is proportional to the applied

magnetic field magnitude. A scaling for each of the variables within the inner layer

is also suggested by the results of the calculations. Significantly, this scaling implies

that the magnetic field within the inner layer is finite in the limit of β tending to

infinity. In addition, the magnetic field is not parallel to the MHD contact, hence it

cannot support a jump in tangential velocity. This necessitates the presence of the

expansion fans (that are part of the compound waves in the quintuple-point solution),

which support the tangential velocity discrepancy across the inner layer even though

their angular extents tend to zero. To verify these findings, the equations governing

the leading order asymptotic solution of the shock refraction problem, which is the

large β limit of both the quintuple-point and septuple-point solutions, were derived

and then solved iteratively. Finally. the asymptotic and full solutions were compared

quantitatively and were found to be in excellent agreement.
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Appendix A

Numerical method for ideal MHD

equations

The non-linear simulations presented in this thesis were carried out using a method de-

veloped by Ravi Samtaney (Computational Plasma Physics Group, Princeton Plasma

Physics Laboratory, Princeton University, NJ) for obtaining numerical solutions to the

ideal MHD equations. For completeness, this numerical method is briefly described

here.

A.1 Modified ideal MHD equations

The governing equations for the numerical method are the ideal MHD equations,

which are presented in Section 2.2. These equations were simplified by assuming that

the solenoidal property of the magnetic field holds. Following the arguments of Falle

et al. (1998), if the solenoidal property of the magnetic field is violated numerically

then an additional term, proportional to ∇ ·B, should be included on the right-hand

side of the conservation form of the equations. The resulting set of equations is

∂U

∂t
+
∂Fj(U)

∂xj

= S∇·B, (A.1)

where

S∇·B = −∂Bk

∂xk

{0 , Bi , ui, Bkuk}T . (A.2)
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Powell et al. (1999b) have used these equations in their eight-wave approach, in which

magnetic monopoles are advected along streamlines. Samtaney’s approach is based

on that of Powell, except that in his approach the source term makes no contribution

to the final update of the conserved variables. Thus, Samtaney’s approach leads

to a conservative, solenoidal B method. The source term is, however, used in the

predictor steps of the algorithm, which is described in the next section, as its inclusion

is necessary to obtain second-order accuracy.

A.2 Multidimensional second-order Godunov method

for MHD

In describing Samtaney’s method, the following notation is adopted from the Chombo

documentation. The underlying discretization of space is given as points (i0, ..., iD−1) =

i ∈ Z
D, where D is the number of spatial dimensions. The problem domain is dis-

cretized using a grid Γ ⊂ Z
D. Γ is used to represent a cell-centered discretization

of the continuous spatial domain into a collection of control volumes, which are de-

fined as follows: i ∈ Γ represents a region of space [x0 + (i − 1
2
u)h,x0 + (i + 1

2
u)h],

where x0 ∈ R
D is some fixed origin of coordinates, h is the mesh spacing, and

u ∈ Z
D is the vector whose components are all equal to one. Various face-centered

and node-centered discretizations of space can also be defined based on those control

volumes. For example, Γv denotes the set of points in physical space of the form

x0 + (i ± 1
2
v)h, i ∈ Γ, where v is any vector whose components are equal to either

zero or one.

Samtaney’s approach is a spatially unsplit method of the type developed by Colella

(1990b) and Saltzman (1994). The unsplit method was recently extended to MHD

by Crockett et al. (2005). To describe this method, Eq. A.1 is first rewritten without

the summation convention as,

∂U

∂t
+

D−1
∑

d=0

∂F d

∂xd
= S∇·B.
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Here, F d is equivalent to Fd+1 in the previous notation. Next, a vector of primitive

variables W ≡ W (U) is defined as,

W = {ρ, ui, Bi, p ( or pt )}T ,

where pt = p+BkBk/2 is the total pressure. The choice of total pressure is convenient

for certain problems. The equations are then rewritten in quasilinear form in terms

of W as,

∂W

∂t
+

D−1
∑

d=0

Ād(W )
∂W d

∂xd
= S ′

∇·B,

where,

Ād = ∇UW · ∇UF
d · ∇WU,

and,

S ′
∇·B = ∇UW · S∇·B.

For MHD, Ād is a singular matrix with an eigenvector degeneracy. Taking the source

term S ′
∇·B to the left hand side of the above equation gives the quasilinear equation,

∂W

∂t
+

D−1
∑

d=0

Ad(W )
∂W d

∂xd
= 0.

For example, Ā0 (the superscript 0 indicates the x direction) is given by,

Ā0 =









































ux ρ 0 0 0 0 0 0

0 ux 0 0 −Bx/ρ By/ρ Bz/ρ 1/ρ

0 0 ux 0 −By/ρ −Bx/ρ 0 0

0 0 0 ux −Bz/ρ 0 −Bx/ρ 0

0 0 0 0 0 0 0 0

0 By −Bx 0 −uz ux 0 0

0 Bx 0 −Bx −uφ 0 ux 0

0 γp 0 0 (γ − 1)B · u 0 0 ux









































, (A.3)
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while A0 is given by

A0 =









































ux ρ 0 0 0 0 0 0

0 ux 0 0 0 By/ρ Bz/ρ 1/ρ

0 0 ux 0 0 −Bx/ρ 0 0

0 0 0 ux 0 0 −Bx/ρ 0

0 0 0 0 ux 0 0 0

0 By −Bx 0 0 ux 0 0

0 Bz 0 −Bx 0 0 ux 0

0 γp 0 0 0 0 0 ux









































. (A.4)

Now, given the discrete solution at time-step n, Un
i
, second-order accurate esti-

mates of the fluxes at the cell faces, i+ 1
2
ed, at time level n+ 1

2
must be computed in or-

der to advance the solution. These are denoted F
n+ 1

2

i+ 1

2
ed

≈ F d(x0+(i+ 1
2
ed)h, tn+ 1

2
∆t).

Here, ed is the unit vector spanning spatial dimension d. Note that the transforma-

tions ∇UW and ∇WU are functions of both space and time. Samtaney’s method for

advancing the solution with second order accuracy in time and space, while main-

taining the solenoidal property of the magnetic field, consists of the following nine

steps:

1. Transform Un
i

to primitive variables,

W n
i

= W (Un
i
),

then compute the slopes ∆dWi for 0 ≤ d < D.

2. Compute the effect of the normal derivative terms and the source term on the

extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wi,±,d = W n
i

+
1

2
(±I − ∆t

h
Ad

i
)P±(∆dWi), (A.5)

where,

Ad
i

= Ad(Wi)
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and

P±(W ) =
∑

±λk>0

(lk ·W )rk. (A.6)

Here, λk are eigenvalues of Ad
i
, and lk and rk are the corresponding left and

right eigenvectors (see Powell et al. (1999b) for expressions).

3. Compute estimates of F d at the cell interfaces suitable for computing the one-

dimensional flux derivatives ∂F d

∂xd . The previous normal predictor step yields the

left and right states at each cell interface. These are input to the eight-wave

linearized Riemann solver of Powell et al. (1999b), which computes the primitive

variables at the cell interface. The entire solution vector at i + 1
2
ed is termed

the solution of the Riemann problem. The flux estimates are then computed

from the primitive variables,

F 1D
i+ 1

2
ed ≡ F (W 1D

i+ 1

2
ed) (A.7)

where,

W 1D
i+ 1

2
ed ≡ R(Wi,+,d,Wi+ed,−,d).

Here, R represents the Riemann solver.

4. In 3D, compute corrections to Wi,±,d corresponding to one set of transverse

derivatives appropriate to obtain (1, 1, 1) diagonal coupling. This step is not

carried out in 2D. The corrections are computed as follows:

Wi,±,d1,d2
= Wi,±,d1

− ∆t

3h
∇UW · (F 1D

i+ 1

2
ed2

− F 1D
i− 1

2
ed2

). (A.8)

In addition, the magnetic field arising from the solution of the Riemann problem

is generally not solenoidal. Thus the following nonconservative source term is

also added to Wi,±,d1,d2
:

−∆t

3h
∇UW · (Bd2

i+ 1

2
ed2

−Bd2

i− 1

2
ed2

)ai,d2
. (A.9)
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Here, ai,d2
= {0, Bk, uk, ukBk}T where each entry is computed as the average of

the values at i + 1
2
ed2 and i − 1

2
ed2 .

5. In 3D, compute the fluxes corresponding to the corrected Wi,±,d1,d2
calculated

in the previous step. This is done using,

F
i+ 1

2
ed1 ,d2

= R(Wi,+,d1,d2
,Wi+ed1 ,−,d1,d2

, d1), (A.10)

d1 6= d2, 0 ≤ d1, d2 < D.

6. Compute the final corrections to Wi,±,d due to the remaining transverse deriva-

tives using,

2D: W
n+ 1

2

i,±,d = Wi,±,d − ∆t

2h
∇UW · (F 1D

i+ 1

2
ed1

− F 1D
i− 1

2
ed1

) (A.11)

d 6= d1, 0 ≤ d, d1 < D

3D: W
n+ 1

2

i,±,d = Wi,±,d − ∆t

2h
∇UW · (F

i+ 1

2
ed1 ,d2

− F
i− 1

2
ed1 ,d2

) (A.12)

− ∆t

2h
∇UW · (F

i+ 1

2
ed2 ,d1

− F
i− 1

2
ed2 ,d1

)

d 6= d1 6= d2, 0 ≤ d, d1, d2 < D.

The corresponding nonconservative source terms are then added to the corrected

values as follows:

2D: W
n+ 1

2

i,±,d = W
n+ 1

2

i,±,d − ∆t

2h
∇UW · (Bd1

i+ 1

2
ed1

−Bd1

i− 1

2
ed1

)ai,d1
(A.13)

d 6= d1, 0 ≤ d, d1 < D

3D: W
n+ 1

2

i,±,d = Wi,±,d − ∆t

2h
∇UW · (Bd1

i+ 1

2
ed1 ,d2

−Bd1

i− 1

2
ed1 ,d2

)ai,d1
(A.14)

− ∆t

2h
∇UW · (Bd2

i+ 1

2
ed2 ,d1

−Bd2

i− 1

2
ed2 ,d1

)ai,d2

d 6= d1 6= d2, 0 ≤ d, d1, d2 < D.

Note that convergence tests on linear wave propagation indicate that second-
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order accuracy is not obtained unless the terms corresponding to contributions

of S∇·B are included in the transverse predictors above.

7. Compute the final estimate of fluxes by first re-evaluating the primitive variables

at the cell faces using,

W
n+ 1

2

i+ 1

2
ed

= R(W
n+ 1

2

i,+,d,W
n+ 1

2

i+ed,−,d
, d). (A.15)

The normal component of the magnetic field at i + 1
2
ed is then used to compute

a cell centered divergence. The following Poisson equation,

∇2φ =
D−1
∑

d=0

∂Bd

∂xd
i

, (A.16)

is then solved using a multi-grid technique with a Gauss-Seidel Red-Black or-

dering smoother. The normal component of the magnetic field at the faces is

then corrected as follows:

Bd
i
1

2
ed = Bd

i
1

2
ed −

(φi+ed − φi)

h
. (A.17)

The corrected magnetic field is then substituted into W
n+ 1

2

i+ 1

2
ed

, which is used to

compute the final estimate of the fluxes, F
n+ 1

2

i+ 1

2
ed

= F (W
n+ 1

2

i+ 1

2
ed

).

8. Update the conserved variables using the divergence of the fluxes as follows:

Un+1
i

= Un
i
− ∆t

h

D−1
∑

d=0

(F
n+ 1

2

i+ 1

2
ed

− F
n+ 1

2

i− 1

2
ed

). (A.18)

9. Perform a centered constrained transport step. The formulation used for this

step is the one prescribed by Toth (2000). This step removes divergence modes

with the following finite difference representation:

∇ · Bi =
1

2h

D−1
∑

d=0

(Bd
i+ed −Bd

i−ed) +O(h2). (A.19)
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The electric field is evaluated using a centered approximation in time,

Ei =
1

2

(

(u × B)n+1

i
+ (u × B)n

i

)

, (A.20)

and then each component of the magnetic field is corrected as follows:

Bd,n+1
i

= Bd,n
i

− εd,d1,d2

∆t

2h

(

Ed2

i+ed1
− Ed2

i−ed1
+ Ed1

i+ed2
− Ed1

i−ed1

)

. (A.21)
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Appendix B

Numerical method for linearized

simulations

The linearized simulations presented in this thesis were carried out using a method

developed by Samtaney (2004) for obtaining numerical solutions to the linearized

MHD equations when the base flow is temporally evolving. For completeness, this

method is briefly described here. First, the equations of compressible ideal MHD are

written in conservative form in two dimensions as follows;

∂U

∂t
+
∂F (U)

∂x
+
∂H(U)

∂z
= 0, (B.1)

where the solution vector U ≡ U(x, z, t) is,

U = {ρ, ρu, ρv, ρw,Bx, By, Bz, ρeT}T , (B.2)

and the vectors F (U) and H(U) are given by,

F (U) =
{

ρu, ρu2 + pt −B2
x, ρuv, ρuw −BxBz, 0, uBy − vBx, uBz − wBx,

(ρeT + pt)u−Bx(Bxu+Byv +Bzw)}T ,

H(U) =
{

ρw, ρuw −BxBz, ρvw −ByBz, ρw
2 + pt −B2

z , wBx − uBz, wBy − vBz, 0,

(ρeT + pt)w −Bz(Bxu+Byv +Bzw)}T . (B.3)
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These are the fluxes of mass, momentum, magnetic field, and total energy in the x

and z directions, respectively. In the above equations, ρ is the density, u, v and w are

the velocity components, Bx, By and Bz are the components of the magnetic field,

ρeT is the total energy per unit volume, and pt ≡ p + B2/2 is the sum of the gas

pressure and the magnetic pressure. Next, the solution is written as,

U(x, z, t) = U o(z, t) + ǫ Û(z, t) exp(ikx),

where ǫ≪ 1, U o(z, t) is a one-dimensional temporally evolving base flow, and ǫÛ(z, t) exp(ikx)

is the perturbation to the base flow. Substituting this form for U(x, z, t) into (B.1)

then collecting terms of O(1) and O(ǫ), respectively, we obtain,

∂U o

∂t
+
∂H(U o)

∂z
= 0, (B.4)

∂Û

∂t
+
∂A(U o)Û

∂z
= ikB(U o)Û , (B.5)

where B(U o) is the Jacobian of F (U o) with respect to U o. Equation (B.4) governs

the evolution of the base flow, while the evolution of the perturbations is governed

by (B.5). This is a system of coupled linear wave equations in which the wave speeds

are given by the eigenvalues of A(U o), the Jacobian of the H(U o) with respect to U o.

A finite volume upwind approach is adopted to solve for both the base flow and

the perturbations. The domain is discretized into finite volumes of uniform size ∆z,

whose centers have index j and faces have indices j ± 1
2
. Equations (B.4) and (B.5)

are written in a semi-discrete fashion as,

∂U o
j

∂t
= −

Hj+ 1

2

−Hj− 1

2

∆z
, (B.6)

∂Ûj

∂t
= −

H ′
j+ 1

2

−H ′
j− 1

2

∆z
+ ikB(U o

j )Ûj, (B.7)

and integrated in time using a third-order TVD Runge-Kutta scheme. The fluxes
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Hj+ 1

2

and H ′
j+ 1

2

are evaluated using Roe’s method as follows;

Hj+ 1

2

=
1

2

{

H(U o
j ) +H(U o

j+1) −
∑

k

Rk|λk|Lk(U
o
j+1 − U o

j )

}

, (B.8)

H ′
j+ 1

2

=
1

2

{

A(U o
j )Ûj + A(U o

j+1)Ûj+1 − [A+(U o
j+ 1

2

) − A−(U o
j+ 1

2

)](Ûj+1 − Ûj)
}

, (B.9)

where λk and Lk (Rk) are the eigenvalues and left (right) eigenvectors of A(U o
j ),

respectively. The matrices A±(U o) are defined as A±(U o) = RΩ±L, where Ω± is a

diagonal matrix whose entries are ±1
2
(|λk|+λk). These are evaluated at the cell faces

using the state U o
j+ 1

2

, which is the algebraic mean of U o
j and U o

j+1.
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Appendix C

The MHD Rankine-Hugoniot relations

Solutions to the MHD RH relations can be found as follows. It can then be shown

that Eqs. 5.6-5.9 reduce to the following algebraic equation in r and b obtained by

Liberman and Velikhovich (1986):

F (r, b) = Ar2 +Br + C = 0 , (C.1)

where

A = −1

2

γ + 1

γ − 1
, B =

1

(γ − 1)M2
S1

+
γ

(γ − 1)

(

1 − b2 − sin2 θ1

2M2
A1

)

, (C.2)

C = −1

2
− 1

(γ − 1)M2
S1

+
b2 − sin2 θ1 − Y (b− sin θ1)

2

2M2
A1

, Y = 1 − 1

M2
I1

. (C.3)

The relation F (r, b) = 0 defines a curve in (r, b) space on which the fluxes of mass,

momentum, and energy are equal to those upstream of the shock. The final jump

condition can be expressed as

Z(r, b) = bX − Y sin θ1 = 0 , (C.4)

where

X = r − 1

M2
I1

. (C.5)
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The intersections of the curves defined by F = 0 and Z = 0 are the locations in (r, b)

space where all jump conditions are satisfied. The two equations F = 0 and Z = 0

are combined into a quartic equation in r, which is then divided by the known factor

(r − 1) to yield the cubic

R(r) = Ar3 + Br2 + Cr + D = 0 , (C.6)

where

A =
γ + 1

γ − 1
,

B = −1 − 2

(γ − 1)MS1
2 − 2 (γ + 1) cos2(θ1) + γ sin2(θ1)

(γ − 1)MA1
2 ,

C =
(γ + 1)MS1

2 +
[

4 +MS1
2 (3γ − 4)

]

MA1
2 +

[

(γ + 1)MS1
2 +

(

4 +MS1
2γ
)

MA1
2
]

cos(2θ1)

2 (γ − 1)MA1
4MS1

2 ,

D = −
[

1 + (γ − 1)MS1
2 + cos(2θ1)

]

cos2(θ1)

(γ − 1)MA1
4MS1

2 .

In terms of these coefficients, the roots of the cubic, referred to hereafter as roots A,

B and C, can be expressed as

rA =
1

6 A [−2 B + J +H] , (C.7)

rB =
1

12 A
[

−4 B − (H + J) +
√

3 i (H − J)
]

, (C.8)

rC =
1

12 A
[

−4 B − (H + J) −
√

3 i (H − J)
]

, (C.9)

where

H = 22/3

(

−N +

√

−4 (B2 − 3 A C)3 +N2

)1/3

,

J = 4
(

B2 − 3 A C
)

/H ,

N = 2 B3 − 9 A B C + 27 A2 D .
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Once r has been computed from the upstream state using Eq. C.7, Eq. C.8,

or Eq. C.9, the complete downstream state (ρ2, p2, MS2, β2, θ2) can be readily

computed. First b is computed using Eq. C.4. An expression for the downstream

pressure in terms of r and b can be found by manipulating Eq. 5.7 into

fp(r, b) ≡
p2

p1

= 1 + γM2
S1

(

1 − r − b2 − sin2(θ1)

2M2
A1

)

. (C.10)

The normal component of the downstream Mach number is then simply obtained

using

MS2n =

√

r

fp(r, b)
MS1n , (C.11)

while the tangential component is obtained by manipulating Eq. 5.8 into

MS2t =

√

1

r fp(r, b)

(

MS1t +MS1n
(b− sin θ1) cos θ1

M2
A1

)

. (C.12)

Finally, β2 and θ2 are readily obtained using the definition of b and the fact that Bn

is continuous across a shock;

β2 =
1

b2 + cos2(θ1)
fp(r, b) β1 , (C.13)

sin θ2 =
b

√

b2 + cos2(θ1)
. (C.14)
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Appendix D

Governing equations for a MHD

expansion fan

The basic equations governing the flow through a centered, steady MHD expansion fan

can be obtained by writing Eqs. 5.1-5.2 and Eqs. 5.4-5.5 in cylindrical co-ordinates,

then assuming variations occur only with the polar angle ϕ (Yang and Sonnerup,

1976, Krisko and Hill, 1991). Further, the flow is assumed to be isentropic; hence the

energy equation is replaced by an entropy equation. Under these assumptions the

governing equations become

ρ ut + ρ ∂ϕun + un ∂ϕρ = 0 , (D.1)

ut un + un ∂ϕun + ∂ϕp/ρ−Bt Bn/µ0ρ+Bt ∂ϕBt/µ0ρ = 0 , (D.2)

u2
n − un ∂ϕut −B2

n/µ0ρ+Bn ∂ϕBt/µ0ρ = 0 , (D.3)

∂ϕp/p− γ ∂ϕρ/ρ = 0 , (D.4)

Bt + ∂ϕBn = 0 , (D.5)

Bt ∂ϕun + un ∂ϕBt −Bn ∂ϕut − ut ∂ϕBn = 0 , (D.6)

where ∂ϕ ≡ ∂/∂ϕ, and the subscripts n and t denote vector components in the ϕ and

r directions respectively. Eqs. D.1-D.6 form a system for ∂ϕρ, ∂ϕp, ∂ϕut, ∂ϕun, ∂ϕBt,

and ∂ϕBn. It can be shown that if the determinant of the system is non-zero, only

the trivial solution of uniform flow is admissible. Thus, for a MHD expansion fan to
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be a valid solution, the system must be singular, which requires

u4
n

p
− u2

n

ρ

(

γ +
B2

n

µ0p
+
B2

t

µ0p

)

+
γB2

n

µ0ρ2
= 0 . (D.7)

We introduce the following non-dimensional vector to represent the magnetic field:

K ≡ B√
2µ0p

. (D.8)

After non-dimensionalization, Eqs. D.1-D.6 can be combined to form the following set

of differential equations from which pressure has been eliminated (Yang and Sonnerup,

1976):

∂ϕMn = −(γ + 1)

2
Mn

∂ϕρ

ρ
−Mt , (D.9)

∂ϕMt =

(

−Kt Mn

Kn Mt

+
1 − γ

2
+
γ Mn

(

Mn
2 − 1

)

2 Kn Kt Mt

)

Mt
∂ϕρ

ρ
+Mn , (D.10)

∂ϕKn = −γ Kn

2

∂ϕρ

ρ
−Kt , (D.11)

∂ϕKt =
γ

2

(

Mn
2

Kt
2 − 1 −Kt

−2

)

Kt
∂ϕρ

ρ
+Kn . (D.12)

Here, M denotes the sonic Mach number. By combining the derivative of Eq. D.7,

∂ϕ

(

M4
n −M2

n

[

1 +
2

γ
(K2

n +K2
t )

]

+
2

γ
K2

n

)

= 0 ,

with Eqs. D.9)-D.12, we obtain

∂ϕρ

ρ
=

4 Mn
3 Mt − 2 Mn Mt

[

1 + 2
γ

(

Kn
2 +Kt

2
)

]

+ 4
γ
Kn Kt

−2 Kn
2 − 2 (2 + γ)Mn

4 +Mn
2
[

3 +
(

4 + 2
γ

)

(

Kn
2 +Kt

2
)

+ γ
] . (D.13)

The complete solution throughout the expansion fan can be found by numerically

integrating Eqs. D.9-D.13 with respect to ϕ, then using the isentropic relation to

recover the pressure. The domain of integration begins at the leading wavelet of the

expansion fan. This wavelet propagates at either the fast or slow MHD characteristic
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speed with respect to the upstream flow, depending on whether we are considering

a fast- or a slow-mode expansion fan. Thus, the angle of the leading wavelet to the

upstream velocity vector, ϕ, must satisfy

MFn/SLn

(

ϕF/SL

)

= 0 . (D.14)
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Appendix E

Governing equations for a slow compound

wave

For certain shock solutions to the MHD RH relations, it is possible for rarefaction

waves to move with the shocks. This can occur for shocks that propagate at the

fast characteristic speed and for shocks where the downstream normal flow speed

relative to the shock is the slow characteristic speed. When a rarefaction travels

immediately upstream or downstream of one of these shocks, the combination is

referred to as a compound wave. In the context of MHD, these waves were first

identified in numerical solutions to the full MHD equations by Wu (1987). In the

strongly planar MHD system, Myong and Roe (1997) recommend the use of compound

waves as a substitute for 2 → 3 intermediate shocks, which are inadmissible under

their viscosity admissibility condition and the evolutionary condition.

The compound wave relevant to this study consists of a 2 → 3 = 4 intermediate

shock, for which un2 = CSL2, followed immediately downstream by a slow-mode

expansion fan. This is the steady two-dimensional analogue of the unsteady one-

dimensional slow compound wave referred to as C1 by Myong and Roe (1997). We

will use the same designation for the two-dimensional compound wave.

For a 2 → 3 = 4 intermediate shock to occur, roots B and C of the RH relations

must be equal. Comparing Eq. C.8 and Eq. C.9, it is apparent that this implies
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H = J . In terms of the coefficients of Eq. C.6, this can be expressed as

D =
−2B3 + 9AB C − 2B2

√
B2 − 3AC + 6AC

√
B2 − 3AC

27A2
. (E.1)

This relationship must be satisfied by the upstream flow state in order for a C1

compound wave to be possible. The flow state downstream of a compound wave is

computed as follows: As H = J for a 2 → 3 = 4 intermediate shock, the following

simplified relationship can be used to compute r:

rB/C = − 1

6 A (2 B + H) . (E.2)

After b is computed using Eq. C.4, the remainder of the flow state downstream of the

shock may be computed using Eqs. C.10-C.14. Using this flow state as initial data,

the conditions downstream of the compound wave are then found by integrating

Eqs. D.9-D.13 across the expansion fan portion of the wave.
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Appendix F

Matching conditions at the contact

discontinuity

The conditions on either side of the shocked contact discontinuity (SC) are computed

as follows. First, the conditions upstream of shocks I (denoted with a subscript 0)

and TF (denoted with a subscript b) in the reference frame where the intersection

point is stationary are computed from the problem parameters using

U0 = (1, 1, M, −M tanα, β, π) ,

Ub =

(

η, 1,
√
η
cos(π

2
− φ3 + α)

cosα
M,

√
η
sin(π

2
− φ3 + α)

cosα
M, β, − π

2
− φ3

)

,

where U ≡ (ρ, p, MSn, MSt, β, θ) and φ3 is the angle between shock TF and the

negative x-axis, as indicated in Figure 5.4, which shows how the various angles and

regions of uniform flow in the problem are designated. θ and the normal and tangential

vector components in U are defined with respect to the wave at the downstream

boundary of a region.

Next, the conditions downstream of shock I (state 1) are computed. This is done

by first computing the normal velocity ratio r0 across shock I using the appropriate

root of the RH relations, root A, B, or C. The specifics of which root is appropriate for

each of the shocks for a given set of problem parameters will be discussed in Sections

5.4 and 5.5. Once r0 = ρ−1
1 is determined, the remainder of state 1 is computed using

Eqs. C.4 and C.10-C.14.
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In order to compute the conditions across shock RF , the components of MS1

normal and tangential to it are computed using

M ′
Sn = MSn cos ∆φ−MSt sin ∆φ , (F.1)

M ′
St = MSn sin ∆φ+MSt cos ∆φ ,

where the unprimed and primed quantities are defined with respect to upstream

and downstream waves, respectively, and ∆φ is the angle between the two waves.

The vector representing the magnetic field is redefined in the same manner. State 2

downstream of shock RF can then be computed using the RH relations, as for state

1.

If RS is a shock, the procedure used to compute state 2 is repeated to compute

state 3 downstream of shock RS. It will be shown in Sections 5.4 and 5.5 that, in

some instances, shock RS and/or shock TS is replaced by either a C1 compound wave,

a 180o rotational discontinuity (RD) followed by a slow shock, or a RD followed by

a slow-mode expansion fan. Assuming that RS is a C1 compound wave, the angle

between its leading edge and shock RF (∆φc) must be calculated. This is done by

expressing the coefficients in Eq. E.1 in terms of state 2 and ∆φc, then solving this

relation numerically. Once ∆φc is known, Eqs. F.1 are used to compute the vector

components normal and tangential to the leading edge of the compound wave. The

procedure outlined in Appendix E is then used to compute the flow state downstream

of the compound wave. These are the conditions to the left of the SC and are referred

to as state 3. If, instead, we assume that the RS wave-group begins with a RD, an

intermediate state denoted with a subscript d must be calculated downstream of

the RD. This is done by first calculating the angle between the RD and shock RF ,

∆φd. Utilizing the fact that the rotational discontinuity propagates at the upstream

intermediate characteristic speed with respect to the flow, it can be shown that

∆φd = arctan

(

√

2/γK2n −MS2n
√

2/γK2t −MS2t

)

, (F.2)
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where the subscripts n and t refer to vector components normal and tangential to

shock RF . Once ∆φd is known, Eqs. F.1 are used to compute the vector components

normal and tangential to the RD. State d is then determined from the RH relations,

making use of the fact that for a 180o RD, r = 1 and b = − sin θ1. If the remainder of

the RS wave-group is a slow shock, the procedure used to compute state 2 is repeated

to compute state 3. Alternatively, if the RS wave-group concludes with a slow-mode

expansion fan, the next step is to compute the location of the leading wavelet of the

fan φf1 by solving Eq. D.14. Eqs. D.9)-D.13 are then integrated numerically from φf1

to the angle of the last wavelet using state d as the initial conditions. This yields the

conditions to the left of the SC.

The conditions to the right of the SC (state 5) are determined using an analogous

procedure. For the proposed wave configuration to be a valid solution of the equations

of ideal MHD, states 3 and 5 must satisfy matching conditions Eqs. 5.11-5.15.
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Appendix G

Equivalence of leading order asymptotic

quintuple and septuple-point solutions

We present the following argument that the leading order asymptotic solution to the

shock refraction problem is the large β limit of both the quintuple-point and septuple-

point solutions; upstream of the 2 → 3 = 4 intermediate shocks in the quintuple-point

solution and the RDs in the septuple-point solution, our results indicate that the

primitive variables can be expressed as

ρ(φ; ε) = ρ(0)(φ) + ερ(1)(φ) +O(ε2) ,

p(φ; ε) = p(0)(φ) + εp(1)(φ) +O(ε2) ,

un(φ; ε) = εu(1)
n (φ) +O(ε2) ,

ut(φ; ε) = u
(0)
t (φ) + εu

(1)
t (φ) +O(ε2) ,

B(φ; ε) = εB(1)(φ) +O(ε2) .

Substituting these expansions into the RH relations and collecting terms of the same

order, it can be shown that ρ(0), p(0), u
(1)
n , u

(0)
t , and B

(1)
n are constant across both the

2 → 3 = 4 intermediate shocks and RDs in our solutions for small ε. Thus, these

discontinuities do not affect the boundary conditions for Eqs. 6.6-6.10 and are omitted

from the leading order solution. From Figure G.1, it can be seen that the difference

between the locations of the leading expansion fan wavelets in the two solutions is
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Figure G.1: Difference between the locations of the leading expansion fan wavelets of

RFan and TFan in the two solutions along Branches Ic (subscript quin) and Ir (subscript

sep).

less than O(ε2), which also has no effect on the boundary conditions for Eqs. 6.6-

6.10. These two facts, combined with the observation that outside of the inner layer,

both solutions converge to the hydrodynamic triple-point like β−1/2, imply that the

leading order asymptotic solution is the large β limit of both the quintuple-point and

septuple-point solutions.
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