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Abstract

The image intensity in magnetic resonance magnitude images in the presence of noise is shown to 

be governed by a Rician distribution. Low signal intensities (SNR < 2) are therefore biased due to 

the noise. It is shown how the underlying noise can be estimated from the images and a simple 

correction scheme is provided to reduce the bias. The noise characteristics in phase images are 

also studied and shown to be very different from those of the magnitude images. Common to both, 

however, is that the noise distributions are nearly Gaussian for SNR larger than two.
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INTRODUCTION

It is common practice to assume the noise in magnitude MRI images is described by a 

Gaussian distribution. The power of the noise is then often estimated from the standard 

deviation of the pixel signal intensity in an image region with no NMR signal. This can, 

however, lead to an approximately 60% underestimation of the true noise power. Here we 

will show that there is a simple analytical relationship between the true noise power and the 

estimated noise variance.

The characteristics of noise in magnitude MRI images has been studied before by 

Henkelman and the reader is referred to ref. 1 for the formulation of the problem. 

Henkelman analyzed the problem numerically and did not provide analytical expressions for 

the noise characteristics. The noise characteristics of quadrature detection, however, have 

been thoroughly analyzed and documented in applications to communication (2–3).

During the preparation of this manuscript, we have come across several references in the 

MRI literature that describe some of the results presented here. Edelstein et al. (4) showed 

that pure noise in magnitude images is governed by the Rayleigh distribution and later 

Bernstein et al. (5) provided the closed form solution of the more general Rician distribution 

in their study on detectability in MRI. Brummer et al. (6) have also exploited the Rayleigh 
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distribution in a histogram analysis for automatic evaluation of the “true noise” in 

application to image segmentation.

In this paper we will review the theoretical distributions for the noise in magnitude images 

and then we supplement it with the exact expression for the noise distribution in phase 

images as well. A very simple postprocessing scheme is proposed to correct for the bias due 

to the Rician distribution of the noisy magnitude data. The statistical properties of the 

correction scheme are studied and compared with a similar correction scheme for power 

images, proposed earlier independently by Miller and Joseph (7) and McGibney and Smith 

(8).

THEORY

Magnitude images are most common in MRI because they avoid the problem of phase 

artifacts by deliberately discarding the phase information. The signal is measured through a 

quadrature detector that gives the real and the imaginary signals. We will assume the noise 

in each signal to have a Gaussian distribution with zero mean and each channel will be 

assumed to be contaminated with white noise.

The real and the imaginary images are reconstructed from the acquired data by the complex 

Fourier transform. Because the Fourier transform is a linear and orthogonal transform, it will 

preserve the Gaussian characteristics of the noise. Furthermore, the variance of the noise 

will be uniform over the whole field of view and, due to the Fourier transform, the noise in 

the corresponding real and imaginary voxels can be assumed uncorrelated.

There are many factors that influence the final signal-to-noise ratio (SNR) in the real and 

imaginary images. Not only is the noise associated with the receiving coil resistance, but 

also with inductive losses in the sample (9). Which one is the dominant source will depend 

on the static magnetic field (B0) and the sample volume size. Furthermore, the final image 

noise will depend on the image voxel size, the receiver bandwidth and the number of 

averages in the image acquisition (10).

Magnitude Images

The magnitude images are formed by calculating the magnitude, pixel by pixel, from the real 

and the imaginary images. This is a nonlinear mapping and therefore the noise distribution is 

no longer Gaussian.

The image pixel intensity in the absence of noise is denoted by A and the measured pixel 

intensity by M. In the presence of noise, the probability distribution for M can be shown to 

be given by (2, 3)

[1]
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where I0 is the modified zeroth order Bessel function of the first kind and σ denotes the 

standard deviation of the Gaussian noise in the real and the imaginary images (which we 

assume to be equal). This is known as the Rice density and is plotted in Fig. 1 for different 

values of the SNR, A/σ. As can be seen the Rician distribution is far from being Gaussian 

for small SNR (A/σ≤ 1). For ratios as small as A/σ = 3, however, it starts to approximate the 

Gaussian distribution.

Note that the mean of the distributions, M̄/σ, which is shown by the vertical lines in Fig. 1, is 

not the same as A/σ. This bias is due to the nonlinear transform of the noisy data.

A special case of the Rician distribution is obtained in image regions where only noise is 

present, A = 0. This is better known as the Rayleigh distribution and Eq. [1] reduces to

[2]

This Rayleigh distribution governs the noise in image regions with no NMR signal. The 

mean and the variance for this distribution can be evaluated analytically and are given by 

(11)

[3]

These relations can be used to estimate the “true” noise power, σ2, from the magnitude 

image. Another interesting limit of Eq. [1] is when the SNR is large.

[4]

This equation shows that for image regions with large signal intensities the noise distribution 

can be considered as a Gaussian distribution with variance σ2 and mean . This 

trend is clearly seen for large ratios, A/σ, in Fig. 1.

Phase Images

Phase images, which are commonly used in flow imaging, are reconstructed from the real 

and the imaginary images by calculating pixel by pixel the arctangent of their ratio. This is a 

nonlinear function and therefore we no longer expect the noise distribution to be Gaussian. 

Indeed, the distribution of the phase noise, Δθ = θ−θ̄, is given by ref 3
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[5]

Although the general expression for the distribution of Δθ is complicated, the two limits of 

A, A = 0 and A ≫ σ, turn out to yield simple distributions.

In image regions where there is only noise, A = 0, Eq. [5] reduces to

[6]

This result is obvious since the complex data, which only consists of the noise, “points in all 

directions” with the same probability.

For large SNR, A ≫ σ, it is easy to see that the deviation in the phase angle, Δθ, due to the 

noise will be small. The integral in Eq. [5] will therefore be close to 1 and the second term in 

the brackets will therefore dominate the constant 1. Equation [5] therefore reduces to

[7]

The noise distribution in the phase angle can therefore be considered as a zero mean 

Gaussian distribution, when A ≫ σ. This result is not surprising because when the pixel 

intensity is large, all deviations parallel to the complex pixel intensity can be ignored. Also 

the phase variations, due to the noise which is orthogonal to the complex pixel intensity, can 

be linearized as σ/A, where σ represents the orthogonal part of the noise.

The standard deviations for the phase noise can in general be calculated by using Eq. [5], 

however, for the two special cases in Eqs. [6] and [7] it is given by

[8]

Figure 2 shows the distribution in the phase noise, evaluated by Eq. [5], for several signal to 

noise ratios. The Gaussian approximation is also shown by the dotted line for A/σ= 3. 

Clearly the Gaussian approximation is very good even for fairly small signal to noise ratios.
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Phase images are sometimes weighted by the magnitude data, to reduce phase variations in 

regions with no signal. The general noise distribution for such images is nontrivial. For 

regions with large SNR one can show that the distribution approaches a Gaussian 

distribution whose standard deviation is σ.

BIAS REDUCTION IN MAGNITUDE DATA

For large SNR Eq. [4] shows that the mean of M is not the true image intensity A, but 

approximately . This is a small deviation for large SNR, however, when the SNR is 

small this bias has to be considered. We will continue to approximate the mean by the 

simple expression  for all SNR, but for an exact analytical evaluation of the mean 

of Eq. [1] see refs. 2 and 5. Figure 1 shows the mean of the Rician distribution for several 

values of A/σ plotted as a straight vertical line. Henkelman suggested a look-up table 

correction scheme to correct for this bias (1). We, however, suggest a much simpler 

correction scheme.

To reduce the bias the following postprocessing correction scheme is suggested:

[9]

The probability distribution for the corrected signal, Ã, is then given by

[10]

where pM is defined by Eq. [1]. The distribution of Ã is shown in Fig. 3 for several signal to 

noise ratios. We see that the bias is greatly reduced, however, the corrected distribution is not 

Gaussian. For ratios of A/σ > 2 the corrected distribution is however very close to being a 

Gaussian. Table 1 lists the mean and the standard deviation of the corrected and uncorrected 

distributions.

A different, but somewhat similar, correction scheme has been proposed for power images, 

independently by Miller and Joseph (7) and McGibney and Smith (8), to perform 

quantitative analysis on low SNR images and as an unbiased SNR estimate, respectively. It 

is interesting to compare this with our correction scheme, described above.

Their correction scheme is based on the simple relationship between the mean of the 

measured power and the true image power, namely M̄2= A2 + 2σ2 (1, 7). Their correction 

scheme is therefore simply
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[11]

We have found that the resulting distribution for the corrected power, Ã2, is given by

[12]

The mean of Ã2 gives an unbiased estimate of A2. We have calculated the variance of Ã2 

and found it to be given by

[13]

Figure 4 shows the distribution of M2 and Ã2 as the original and the corrected image power, 

respectively. The distributions are clearly far from being Gaussian at low SNR although their 

mean is always the true mean, A2. This can lead to some ambiguities, when information is 

extracted from corrected power data, because least-squares fitting techniques, such as 

nonlinear chi-square minimization, assume Gaussian deviation that is fully characterized by 

its standard deviation. For large SNR, however, one can show that the distribution for Ã2 

becomes approximately a Gaussian distribution of  with a mean A2 and variance given 

by Eq. [13]. The variance dependence on the power strength is an issue which has to be 

taken into account, for accurate fitting. Unlike ours, their correction scheme, originally 

proposed to fit mono-exponentials (7), cannot be used when the signal has a multi-

exponential nature. Finally, analysis based on statistics from a region of interest will be 

sensitive to any variations in A, because the mean of the distribution is a function of A2.

MODEL VERIFICATION

A magnitude image was collected and reconstructed on a 1.5T GE Signa imager (General 

Electric Medical Systems, Milwaukee, WI). A large region, which contained only noise and 

was without any phase artifacts such as motion artifacts, was selected. Figure 5 shows a 

histogram of the image intensity plotted versus the theoretical Rayleigh probability 

distribution (A = 0). Note that the image intensity has been rounded by the imager to integer 

numbers. The true noise variance, σ, was estimated from the mean of the region, by using 

Eq. [3]. The mean was found from the histogram by assuming that the data had been 

rounded to its nearest integer.

The quality of the fit of the data, shown in Fig. 5, to the Rayleigh distribution was 

determined as follows. The histogram was divided into 10 bins such that for each bin the 

theoretical bin distribution could be accurately approximated by a Gaussian distribution. A 
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chi-square test (11) using 8 degrees of freedom (one degree is lost due to a finite number of 

counts and one due to the estimation of σ from the data) showed that χ2 = 29. Although the 

fit in Fig. 5 may look good, this is too large a number to statistically verify the hypothesis of 

Rayleigh distributed noise. This disagreement is interesting considering the fact that 

Henkelman (1) calculated the ratio of the average value to the standard deviation of the 

signal over a series of 10 images and found it to be given by 1.91 ± 0.01, in excellent 

agreement with Eq. [3]. The chi-square test is, however, more sensitive to the fine details in 

the noise distribution than the ratio test. As a second test we also calculated the ratio M̄/σM 

over a series of ten images and found it to equal 2.06 ± 0.01. This disagreement with Eq. [3] 

indicates that the noise characteristics of our imaging system do not fully comply with the 

simplistic noise model presented in this document. One possible source of error might be 

some correlations in the noise. The next step was therefore to calculate the auto-correlation 

of the noise, and the results are shown in Fig. 6. According to our model, Eqs. [2] and [3], 

the ratio of the correlation coefficient C(i, j) to C(0, 0), is given by

[14]

Apart from the extra correlation in the vicinity of (0, 0), resulting from the point spread 

function of the Fermi low-pass filter, the agreement with Eq. [14] is only with accuracy of 

ca. 3%.

CONCLUSION

In this note we have given the theoretical noise distributions for magnitude and phase images 

and shown how these distributions reduce to the Gaussian distribution for even fairly small 

SNR. We also introduced a simple postprocessing scheme to correct for the noise dependent 

bias in magnitude images where the SNR is poor. The statistical properties of our correction 

scheme were compared with an existing correction scheme for power images.

We were not able to verify the mathematical model for the Rayleigh distribution statistically, 

however, the analytical distributions provided here are in good agreement with earlier results 

(1). Some unknown manipulations of the data by the reconstruction program seems to 

invalidate the simplistic assumptions made in the formulation of the problem. As shown in 

Fig. 6 the disagreement is however very small.
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FIG. 1. 
The Rician distribution of M for several signal to noise ratios, A/σ, and the corresponding 

means.
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FIG. 2. 
The distribution of the phase noise for several signal to noise ratios, A/σ. The Gaussian 

approximation is shown with a dotted line for A/σ = 3.
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FIG. 3. 
The distribution of the corrected pixel intensity, Ã (bold), compared with the Rician 

distribution of M for several signal to noise ratios. The mean of the corrected distribution, A, 

is shown with a vertical line.
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FIG. 4. 
The distribution of the corrected pixel power (7), Ã2 (bold), compared with the distribution 

of the measured power, M2, for several signal to noise ratios. The mean of the corrected 

distribution,  = A2, is shown with a vertical line.
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FIG. 5. 
Histogram of the pixel intensity from a region with N = 5000 pixels. The solid line is the 

corresponding Rayleigh distribution, estimated from the mean of the histogram.
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FIG. 6. 
The normalized autocorrelation function of the image noise shows some extra correlation 

due to the Fermi lowpass filtering of the data. Otherwise the agreement with Eq. [14] is 

good.
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Table 1

Some Statistical Properties of the Rician Distribution and the Correction Scheme for Several Signal-to-Noise 

Ratios

A/σ Ā/σ σÃ/σ M̄/σ σM/σ

0 1.03 0.35 1.25 0.43

0.5 1.10 0.42 1.33 0.48

1 1.30 0.59 1.55 0.60

1.5 1.61 0.79 1.87 0.73

2 2.03 0.96 2.27 0.84

2.5 2.50 1.04 2.71 0.90

3 3.00 1.07 3.17 0.93
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