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Abstract. The moduli space .# of self-dual connections over a Riemannian
4-manifold has a natural Riemannian metric, inherited from the L? metric on
the space of connections. We give a formula for the curvature of this metric in
terms of the relevant Green operators. We then examine in great detail the
moduli space .#, of k=1 instantons on the 4-sphere, and obtain an explicit
formula for the metric in this case. In particular, we prove that .#, is
rotationally symmetric and has “finite geometry:” it is an incomplete
5-manifold with finite diameter and finite volume.

Introduction

The moduli spaces of self-dual connections on vector bundles over a Riemannian
4-manifold have been studied from two different viewpoints. Mathematicians have
sought to understand the topology of these moduli spaces. Most notable here is the
work of S. Donaldson showing that even a rudimentary knowledge of this
topology can lead to important results about smooth 4-manifolds. Physicists, on
the other hand, study these spaces because the semiclassical — or “instanton” —
approximation to the Green functions of {(Fuclidean) quantum Yang-Mills theory
is expressed in terms of integrals over the moduli spaces. The evaluation of such
integrals requires a detailed description of the metric and the volume form of the
moduli spaces. In this paper we investigate moduli spaces with the goal of
describing them as concrete Riemannian manifolds.

The relevant Riemannian metric on the moduli space .# is the “L* metric”,
defined as follows. First, the space of connections on a principal bundle P is an
affine space o/ whose tangent space is the space of 1-forms with values in an
associated vector bundle AdP. The L? inner product of such forms defines a
Riemannian metric on /. This metric is invariant under the action of the gauge
group %, and splits the tangent bundle T/ into %-invariant “vertical” and
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“horizontal” subbundles. The metric on the horizontal subbundle passes to «//%.
We then obtain a metric on the moduli space .# — a submanifold of «7/% — by
restriction,

We have tried to make this paper as self-contained as possible. Thus the first
section is a review of the construction of the moduli space; it contains many of the
definitions, notations, and analytic facts which are used later. In Sect. 2 we derive a
formula for the curvature of the moduli space in terms of Green operators. (This
has been doneindependently by M. Itoh [I].) This formula is simple and general, but
would seem to be of limited utility unless one can obtain specific information about
the Green operators.

The remainder of the paper is devoted to a detailed analysis of the most
fundamental example: the moduli space .#, of sclf-dual connections on the SU(2)-
bundle with instanton number 1 over the standard four-sphere S*. The topology of
this space is well-known; Atiyah et al. [AHS, Sect. 9] proved that .#, is
diffeomorphic to IR°. More specifically, they showed that the group SO(S5, 1) of
conformal diffeomorphisms of S acts transitively on .#,; with isotropy subgroup
S0(5), so #, is difftomorphic to hyperbolic 5-space SO(5,1)/SO(5).

The problem of describing the metric on .#, is more difficult. The first problem
is that the approach taken in [AHS, Theorem 9.17 — using the Weitzenbock
formula and a vanishing theorem to characterize .4 —is not constructive. Sections
3 and 4 are devoted to obtaining a concrete construction of .#,. We begin in Sect. 3
by giving a very careful description of the action of the conformal group on .#,.
Again, our purpose is to introduce the notation and derive the explicit formulas
which are required (frequently) in subsequent sections. Using these formulas we
define, at the beginning of Sect. 4, a map, Q : IR’ — .7, into the space of connections.
We then show that the image of Q projects onto the moduli space .#, and gives a
diffeomorphism

O=n-Q:R°’>A > M CAY.

This provides the coordinate system that later helps us describe the metric on ..

The remaining two sections are independent of one another. In Sect. 5, we use
the machinery developed in the first four sections to compute the geometry of .4,
at its “origin,” the SO(5)-invariant connection A,. We find that .#, has positive
sectional curvature at A,; in fact the sectional curvatures at 4, are the same as

those of the 5-sphere of radius RO=47c/]ﬁ. (This can also be derived from the
results of Sect. 6.) In particular, this shows that .#, is not isometric to hyperbolic
space.

While the methods of Sect. 5 work nicely for the invariant connection A,, it is
difficult to similarly analyze the geometry of .#, at a non-symmetric connection.
Therefore in Sect. 6 we take the more direct approach of explicitly computing the
pullback 0*g of the metric 4 on .#, to R>. The computations are complicated, but
the result is strikingly simple.

Theorem A. There exists a coordinate diffeomorphism ¢:R>—.#, for which the
pullback of the natural metric 4 on M, is given by

(¢*y)ij:w2(g)5ij

for some smooth function y of ¢=|x|.
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The precise formula for this function v is messy; it is given in Sect. 6. Theorem
A, together with the equation of v, allows us to compute the basic geometric
properties of .#,.

Corollary B. The Riemannian manifold (/,, ) has the following properties:

(a) It is conformally flat.

(b) It is radially symmetric. More precisely, the action of SO(5) on S* induces an
isometry of .M, whose pullback, via ¢, is the usual SO(5)-action on R3.

(¢) It has finite radius, and hence is incomplete.

(d) It has finite volume.

Properties (b) and (c) suggest that .#, can be given a boundary consisting of a
(round) sphere at infinity of finite radius. The precise statement is:

Corollary C. .#,; can be isometrically included as the interior of a compact
Riemannian manifold-with-boundary .4, whose boundary 0, is isometric to the
4-sphere of radius 2n. Furthermore, the embedding 3.4, < M, is totally geodesic.

Note that this sphere at infinity 0.4, is conformally equivalent to the original
manifold (S%, g) with constant conformal factor 472, Intuitively, points of 0.7,
correspond to instantons which are concentrated at a single point xeS* Of
course, these idealized instantons cannot be represented as smooth, or even
continuous, self-dual connections. Thus while .#, lies in «//%, the boundary 0.4,
does not.

Corollary C is related to the “collar theorem™ [D, FU]| which states that for
any 1-connected 4-manifold M with positive-definite intersection form, the moduli
space of k=1 instantons has an end diffeomorphic to M x (1, o), so can be given a
boundary diffeomorphic to M. Corollary C shows that, at least for M = S§*, this
topological construction is naturally implemented by the L?> metric.

Further geometric properties of (.#,, ¢) are more difficult to obtain because the
function (@) is so complicated. However, computer calculations show that the
radius of .#, (Lin the diagram below) is approximately 3.37x. Also, a calculation of
the scalar curvature s= —4p "3 [p" + 8¢~ 'y’ + 1y~ 1()*] shows that .#, does not
have constant curvature.

These data yield a good picture of the moduli space with its L*-induced
geometry, sketched below. It is closely approximated by half the ellipsoid of
revolution in R® whose semiminor axis is R, =2, and whose semimajor axis
(obtained by matching the radius of curvature of .#, at 4, with the corresponding

T
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radius of curvature of an ellipsoid) is Rﬁo/Rozl/gn, or about 1.12 times the
semiminor axis. However, this is only an approximation: computer calculations
show that the ratios L: R : R, for .#, cannot be realized by an ellipsoid. (The
numerical values of L, R, and R, depend on a choice of scale discussed later in this
paper, but the ratios of these radii are invariant).

An important feature of the geometry of .#, is that the diameter and volume
are finite. This suggests that the integrals over .# which appear in the semiclassical
approximation to quantum Yang-Mills theory may be finite. It also indicates that
one can expect other self-dual-moduli spaces to have finite diameter and volume.
We will consider these subjects in subsequent papers.

1. The Moduli Space

We begin by briefly reviewing the construction of the Yang-Mills moduli spaces.
Most of this material is standard, and detailed expositions can be found in [AHS,
FU, L].

Let (M,g) be a compact, oriented, Riemannian 4-manifold and P—-M a
principal bundle whose structure group is a compact semi-simple Lie group G with
Licalgebra g. We can then form the adjoint bundle Ad P= P x , g and consider the
spaces

QUAAP)=T(A*T*M®AAP)

of Ad P-valued g-forms. The bundles A*T*M & AdP have natural metrics (-, -)
(induced by the Riemannian metric and a constant negative multiple of the Killing
form on g), and hence Q4Ad P) has an L? inner product

(@ wr2= 1 ($:9).
(Integration is with respect to the Riemannian measure determined by g.)
A connection A on P determines a covariant derivative
v4: Q%AdP)—»> Q' (AdP)
with the property that for any vector field X on M and any ¢,y € Q%AdP),
X(d,w)=(V5d, )+ (8, Viw).
This operator extends to
VA T (A T*MRAAP)->T(T*MQAT*MRAAP)

by VA=V'®1+1Q®V*, where V¢ is the Levi-Civita connection of the metric on M.
By composing V4 with exterior multiplication we obtain the covariant exterior
derivative

d: QUAdP)» Q" {(AdP),
and by composing with contraction (the adjoint of exterior multiplication) we
obtain the L* adjoint d%. In a local orthonormal frame {e;} of TM with dual
coframe {6},

dp=Y0AVEip, dip=—Y e V2
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for ¢ € Q*(Ad P). The curvature of the connection 4 is
dyod,:Q%AdP)>QKAdP).

This is a zeroth-order operator given by bracketing with an element F , € Q*(Ad P).
Locally,

dads=LF 0 $1=1/2 2. 0" A OTT(F )iy 8]

—1/2 Y O AQ(TAVA —VAVA VA ).

fei, el
i+ .

There are several other important algebraic operators on the spaces £2*(Ad P).
First, the Hodge star operator * acts on all such forms, and decomposes 2*(Ad P)
into its +1-eigenspaces Q3 (AdP). The orthogonal projections onto these
eigenspaces are

p+=1/2(1£%).
Also, each X =¥ »,® B;€ Q'(Ad P) defines an operator
Py: QYAdP)-»Q* (AdP)
by
Py’ ®B)=Y w; Ao’ ®[B, B].
The adjoint of Py is
Pi= —#Pyx:QIAdP)-Q? " (AdP).

If X, Y are in Q'(Ad P) and we use a local orthonormal coframe to write X = X 6",
Y=Y, then

PiY=—PiX=—-3[X, Y]. (1.1)

The curvature form decomposes as the sum F ,=F} +F,, where Ff=p.F .
The connection 4 is called self-dual if F; =0. For a self-dual connection, or
“instanton”, 4, the sequence

0-Q%AdP)—25 QYA P)— 0% (Ad P)—0, (1.2)

where d =p_d,, is an elliptic complex. We can make it into a complex of Hilbert
spaces as follows. Fix a smooth connection A4, and an integer /=0. For
¢ € QYA P) write

(VAo)qu):(VAo o...0 VAO)ngF <é T*M@Aq(T*M)®AdP>.

The Sobolev space QY Ad P)is defined as the completion of Q4Ad P) with respect to
the norm

3 1/2
el = <,~§0 AJ"JKVA”WIZ) :

This completion is a Hilbert space under the associated bilinear form.
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We can similarly complete the space of connections. Let 7 denote the set of
smooth connections on P. The covariant derivatives of two connections 4, 4 € o/
are related by

d =d 4+ Py (1.3)

for some X € Q*(Ad P). Hence .7 is an affine space, and at each A €./ there is a
natural identification of the tangent space T,/ with Q'(Ad P). The space 7, of
Sobolev connections is defined by fixing A, e ./, identifying ./ with Q'(AdP) via
(1.3), and completing in the Sobolev /-norm. The space o7, obtained this way is
independent of the choice of A,,. The curvature map 4+ F, extends to a smooth
map from o/, , to Q*(AdP) provided #=1 [U].

Each Ae.s/, determines Laplacians AS=d%d,, AY=d,d%+(d;)*d;, and
A3=d;(d])*, on QYAdP) for g=0,1,2 respectively. By the spectral theorem for
self-adjoint elliptic operators each space Q4Ad P) decomposes as the direct sum of
the finite-dimensional eigenspaces of 4%, where the eigenvalues {4;} are real, non-
negative, and discrete. Thus there are L*-orthogonal decompositions

QYAdP)=K'®Bj,

where K%=ker(4%)C C®(AdP) is the finite-dimensional space of 4%-harmonic
forms. Furthermore 4% : B%,,— B%is a bounded map with a bounded inverse, or

Green operator,
G4:B}—=Bj.,.

The connection A4 is called irreducible if K°={0}, or, equivalently, if
ker(d,: Q°—Q"Y={0}; 49 is then invertible on Q2(AdP). It is not hard to show
that the set of irreducible connections is an open dense set .7, C #,.

The set of all smooth automorphisms of P is called the gauge group ¥. This
group can be naturally identified with the space of sections of the associated bundle
AutP =P x ,4G. For /=3 the Sobolev completion ¥, is defined by choosing a
faithful representation ¢ : G—End (V). This gives an inclusion ¥ CI'(P x ,End(V)),
and %, is the closure of ¢ in the Sobolev /-completion of I'(P x ,End(}V')). Thus
defined, %, is a smooth Hilbert Lie group whose Lie algebra is Q%(Ad Pj (cf. [MV]).
If we replace ¢ by Ad: G—End(g) we obtain a similar group &,. Since the kernel of
Ad is the center Z of G, we have 9, =9,/%, where % = I'(P x 44Z), is the center of
4. (% is isomorphic to the finite group Z.)

A gauge transformation ge % acts on connections by d +>god,cg~ !, and
hence sends F , to (Adg) F,. This action extends to a smooth action of ¢, ; on
A,(£ =2) whose differential at A€ .o/, is

—dy: Tg% 41 =4 ((AdP)> Tyst, = Q}(Ad P).

Consequently, the tangent space at an irreducible connection A € &7, is the direct
sum of “vertical” and “horizontal” subspaces

TA"Q?/:VA®HA> (1~4)

where V, =1md , is the tangent space to the gauge-orbit through 4 and H , =kerd?
is the L*-orthogonal complement. (V,nH ,={0} since A is irreducible, and the
spectral theorem implies that the splitting is an isomorphism.) For A e .<Z,, the
stabilizer of the action of %, , ; is precisely the center &. Moreover, a standard slice



Riemannian Geometry of Yang-Mills Moduli Space 669

theorem asserts that the orbit through A4 has a tubular neighborhood which is
equivariantly diffeomorphic to %, ; x U, where U is an open neighborhood of 4
in H ,. It follows that the orbit space ¢, is a Hausdorff Hilbert manifold, and that

"Q?f_')@f:&?f/gt+l

is a principal 4,,,-bundle. We will denote the gauge-equivalence class of a
connection 4 by [A]e 0, and will frequently identify T; ¢, with the horizontal
subspace H ,C T, o, of (1.4).

The L*-orthogonal splitting (1.4) determines vertical and horizontal projection
operators v, h at each AeZ,. To identify these, write any X € Q'(AdP) as

X =d,Gd%X +(X —d ,GId%X).
Since the first term is in the image of d 4 and the second is in the kernel of d%, we

have v, =d,God%,  h,=1d—d G5%%. (1.5)

The Yang-Mills action of a connection A4,

YM(A)=1)2 [ |F 4> vol,,
M

is a smooth gauge-invariant function on <7, £ = 1. Of course, the value of % .#(A)
depends on which multiple of the Killing form of g is used to define the metric on
AdP. When G=SU(N) it is common to use minus the trace form of the standard
representation of G on €V; this is equal to —1/2N times the Killing form. We will
adhere to this convention when we consider SU(2)-bundles in Sects. 3-6. In
general, if we take the metric on AdP induced by — A times the Killing form, then
we have 1
¥ AM(A)= 3 j —tr{adF4AnadF )+ [ [Fz|*vol,.
M M

The first integral is a (positive) multiple of the characteristic number p,(Ad P) [M],
where p,{Ad P) is the first pontryagin class of the real orthogonal bundle AdP .
This integral depends only on P, not on A. Thus self-dual connections can exist
only if p(AdP)[M]=0, and, when they exist, they absolutely minimize the
Yang-Mills functional.

Remark. When G=SU(N) there is a vector bundle E associated to the standard
representation, and we have 2N -¢,(E)=c¢,(AdPR®C)= —p,(AdP). 1t is then
traditional to express the characteristic number of P in terms of the “instanton
number” k= —c¢,(E)[M].

The existence theorems of Taubes [ T] show that self-dual connections exist on
all bundles with p,(AdP)[M]=0 over many 4-manifolds, including those with
positive-definite intersection form.

Let 8,C.of, be the (gauge-invariant) set of all self-dual SU(2) connections.
The image of 4, in the orbit space is called the self~-dual moduli space

M ={[A]/A is self-dual} CO,.

YIn [AHS], 2p,(Ad P)=p,(AdPRQ) is denoted by p,(a)
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It contains, as an open dense subset, the moduli space
M ={[A]/A is self-dual and ker 49 ={0}}

of irreducible self-dual connections.
A theorem of Atiyah et al. [AHS] shows that, when nonempty, the subset

M ={[A] e M|Ker A% ={0}}

is a manifold of dimension 2p,(AdP)[M]—(dimG)(1—b,+b;), where
b, =dim(H'(M;R)) and b, is the dimension of the space of anti-self-dual
harmonic 2-forms on M. The difficulties caused by the presence of connections A
with ker A% = {0} can be avoided in at least two ways. First, a vanishing theorem
based on the Weitzenbdck formula (5.2) shows that, under a certain curvature
condition on M, the kernel of 42 is zero for all 4 e .#. The specific condition is that

=2 _ 4+ % -1d e End (A2 T*M) be positive-definite, where s is the scalar curvature

and #_ is the Weyl curvature endomorphism defined by 2% _(6° A 0)_
= W3 A0F A 0°)_. Second, Freed and Uhlenbeck [FU] have shown that when
G=S8U(2)itis always possible to perturb the metric on M to ensure that #' = .4.
We will henceforth assume that we are in one of these situations, so . is a
manifold.

There is a simple description of the tangent space of #.If 4,= A, + tB+ O(t?) is
a one-parameter family of connections, then F, =F , +td, B+O0(t*), and if 4, is
self-dual (so F 4, =0) for all ¢, then d; B=0. Thus when we identify 7; ,,0, with the
horizontal subspace H, in (1.4) we have

T, g4 ={Be Q}(AdP)/d%B=0,d,; B=0}. (1.6)

Elliptic regularity arguments show that any A'€ B,1s %, ;-equivalent to a smooth
connection A, and that for such A4 the right-hand side of (1.6) consists of smooth
forms B.

The simplest examples of moduli spaces occur when M is 1-connected with
positive-definite intersection form, and P is the principal SU(2)-bundle with
instanton number k=1. The moduli space .# is then a S-dimensional manifold
whose topological structure has been described by Donaldson [D]. The space .7 is
orientable, .# — .4 consists of finitely many reducible connections {4;} 2 around
each of which ./ is locally diffeomorphic to an open cone on €P?, and there is a
compact set in .4 whose complement is a “collar” diffeomorphic to M x (1, ).

In the next section we begin to study the Riemannian geometry of a general
moduli space .#.

2. Curvature of the Moduli Space

In this and subsequent sections we fix a Sobolev index £ =2 and denote <7, %, . ;,
and 0, by @7, %, and O respectively.

The affine space .«7 inherits a weak Riemannian metric, via the identification
T, =Q}(AdP), from the L? inner product on Q¥*AdP). This metric is

2 For simplicity we sometimes refer to a connection A as lying in .# when we mean [A]e.#
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translation-invariant and flat. The group ¢ acts isometrically on «f and, at cach
Ae o, preserves the splitting (1.4) of T,/ into horizontal and vertical subspaces.
We can therefore give the orbit space ¢ =.7/% a weak Riemannian metric by
identifying T 4O with the horizontal subspace H ,C T,/. (This definition is
independent of the representative 4 of [A].) Finally, the moduli space .# is a
smoothly embedded submanifold of @, so there is an induced smooth Riemannian
metric on ..

Equivalently, we can observe that 7j,.# is naturally isomorphic to the
cohomology kerd7 /imd , of the elliptic complex (1.2), and that this cohomology
embeds in 2;(AdP) as the A}-harmonic forms [as in (1.6)]. The metric on T} .4 is
then simply the restriction of the L* metric on Q}(AdP).

In this section we will compute the curvature of this L2-induced metric on .#.
This is done in two steps, using the diagram

-~

ol

M——0=s1/9 .

We first observe that 7 is a Riemannian submersion (cf. [CE]). After describing the
Levi-Civita connection of the metrics on .« and @, we apply O’Neill’s formula to
compute the curvature of O (this has previously been computed by other methods
[BV, S]). We then calculate the second fundamental form of the embedding of .#
into @. The curvature .# is then obtained from the Gauss equation.

Before beginning the curvature calculations we must describe the Levi-Civita
connections on the infinite-dimensional manifolds .&# and ¢. On a finite-
dimensional Riemannian manifold M, the Levi-Civita connection ¥ is the unique
connection on TM that is torsion-free and compatible with the metric. These
conditions are equivalent to the formula

2V 2y =X 2+ YLX, Z) ~ Z{X, Yy — (X, [X.Z])
—YIX,ZD+LZ.[X, YD (2.1)

for all smooth vector fields X, Y, Z. The right-hand side of (2.1) is C®(M)-linear in
Z, so the metric isomorphism TM ~ T*M yields the existence and uniqueness of
the connection. This argument is valid in infinite dimensions provided each
tangent space is a Hilbert space with respect to the Riemannian metric. However,
in our case T,/ and T,0 are not complete under the L? metric. For such weak
Riemannian metrics (2.1) still guarantees the uniqueness of the Levi-Civita
connection, but not its existence. One generally handles the existence problem by
exhibiting an explicit formula for ¥, as we do below.

The connection on o/ is easily described because the tangent bundle T/ is
canonically trivial. Using the natural identification T,/ =}(Ad P), we regard a
vector field on an open set UC.o/ as a map Y: U—Q}(AdP) and set

VEY), = % Y(A+tX(A),_ o QLA P). 2.2)

This defines a connection that is clearly torsion-free and compatible with the
(translation-invariant) L* metric.
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We now apply the standard formula giving the covariant derivative in the
image of a Riemannian submersion. Given X € T; ;¢ and a vector field Y defined in
a neighborhood of [4], we choose X € H, and a horizontal vector field ¥ with
n,X=X and n, Y=Y, and sct

(44 Y)y= ”*(V)i(d Y),. (2.3)
It is not hard to verify (2.1) for this connection V¢,

The Curvature of 0. For any Riemannian submersion, the curvatures upstairs and
downstairs are related by O’Neill’s formula (cf. [CE]),

(RaownlX p Y)Y X0 =(RplXr Y ¥ X >+ 3/4 ] vert [X, Y], %, (24)

where X, Y, are tangent to the base at p, X,, Y, are their horizontal lifts to an
arbitrary point q over p, [X,Y], is the Lie bracket of arbitrary horizontal
extensions X, Y of X,, ¥, at ¢, and “vert” denotes projection onto the vertical
subspace. In our situation R,,=0, so we need only compute the final term.

Fix A € o/ and vectors X, Y, € H ;.. To apply (2.4) we must choose horizontal
extensions X, Yof X, and Y,. This is conveniently done by regarding X, Y, as
constant vector fields on .« and taking their horizontal projections:

X, =h,X,, Y,=h,Y,. 2.5
By (2.2) and the formula (1.5) for A, we have
d

(Vg() Y)A = ;i? [_ dAo + thGgo +tX0di0 +tXg Yo] |z= 0-

But d% Y, =0 and, using (1.3), d% . ,x,=d%,+ P%, so
(VEY), =—d, G P% Yo {2.6)
Applying (1.1) we find
[X, Y], =(VEY-V{X),, =—2d,,Gl.P% Yo
Observe that this is already vertical. Hence
04 [X, Y12 =41d 4, G P%, Yol * =4<{d%,d 4,G% %, Yo G2 P, Yo?

=4(P}, Yo, GS P%, Yo
Putting this into (2.4) yields

(RJ(X, Y)Y, X>=3{(P}Y, G4P}Y), 2.7)

where X, Ye T} ,,0 and X, Ye H , project to X, Y. The full curvature tensor is then
obtained by polarization.

Proposition 2.1. The curvature of the L* metric on O=.<4/% at [A] is given by
(R X, Y)Z, W) =< P{W,GuP}Z) —{PYW,GIP3Z) +2{ PHZ,GIPY) (2.8)
where X, Y, Z, W are the horizontal lifts to Ae s of X, Y, Z, We Thq0. O

As pointed out by Singer [S], (2.7) shows that ¢ has non-negative sectional
curvature (for each A, the Laplacian d*d, and its inverse G4 are non-negative
operators).
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The Curvature of .. The second fundamental form of the embedding i: .# — @ isa
section b of Sym?(T*.#)®v, where v is the normal bundle. The form b is defined, as
in the finite-dimensional setting, by

(X, Y)=(V{ xi, Y)*, (2.9)

where X, Ye T.# and | denotes the L*- -orthogonal projection from i*T¢ onto v;
this projection is well-defined since each T; A],/% is finite-dimensional. [In (2.9), an
extension of i, ¥ must be chosen along .#, but h(X,Y) is independent of this
choice. ]

Fix [Ao]e,/% and consider the “slice” SO-A0+kerd C.«/. The manifold
N=n"YnS, passes through A4, and m:N—.Z is a local diffeomorphism.
Furthermore, T, N is the subspace T,=Kerd¥ nKerd}, of Q;(AdP) [cf. (1.6)],
and the normal bundle v pulls back to a bundle over N whose fiber at A, is

vo = {Zekerd | Z LTy} C Tyof

Now given X, Y, € Tp,, we can construct their horizontal extensions as in (2.5). If we
project further, setting

it =01—d)*Gi )X 4,

we obtain horizontal vector fields X", Y*" whose prOJectlons 7, X", m, Y™ are
tangent to .# along .%. Computing as we did to arrive at (2.6), now notmg that
d;,Yo=0 and that d,,x=d; + Py (where Py =p_o Py), we find

(VXO Ylan)Ao —(dg,)* G124()P xoYo— dAoGAoP Yo Yo € Ty .

The last term is vertical, so it drops out upon projection to ¢. The remaining pieces
are already in the normal space v, Dim(d,)*, so by (2.9) and (2.3) we have

b(X,Y),=—(d;1)*GiPy Y, (2.10)

where X, Y are horizontal lifts of the vector fields X, Y on ..
The curvature of .# is now given by the Gauss equation:

RUX, Y)Z, WH=R (X, Y)Z, W) +<b(Y, Z),b(X, W)y — {b(X, Z), b(Y, W),
where X, Y, Z, W are vector ﬁeids on .. By (2.10), @11)
<b(Y,2),b(X, W)>=<{(d)*GiPy Z,(d1)* GiPs W) ={P; Z,GiPx W)
From (2.8), (2.11), and (2.12), we obtain (212

Theorem 2.2. The curvature of the self-dual-moduli space 4 at [A] is given by
CRX, Y)Z, W= (PEW,GOPFZ> — < P5W, GOPEZ> + 2(P%Z, GIPEY>
+{P; Z,GiPi W) — (P35 Z,G P; W>,
where X, Y, Z, W are the horizontal lifts to Ac A of X, Y, Z, WeT A]ﬂ In
particular, the sectional curvatures are given by
RudX, V)Y, X5=3(PEY,GIP§Y)+(Py L,GiP5 X)— (P V,GiP;Y)>. I
(2.13)
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In contrast to the formula of Proposition 2.1, this formula does not immedi-
ately yield information on the sign of the sectional curvatures of .#. In fact, any
application of (2.13) would seem to require some concrete information about the
Green operators beyond crude spectral estimates. Rather than try to analyze the
general moduli space from this perspective we will, in subsequent sections, focus
our attention on the model case of the k=1 instantons on §%.

3. The Conformal Group Action on k=1 Instantons over S*

The best-known Yang-Mills moduli space is the space .#; of 't Hooft instantons.
This is the moduli space of self-dual connections on the principal SU(2)-bundle P
with k= —c¢,(P)=1 over the 4-sphere with the standard metric. Since
H?*(S*;Z)=0, .#, contains no reducible connections [D], and the vanishing
theorem mentioned in Sect. 1 shows that ker(43)={0} for any Ae.#,. Thus
My =, =" is a 5S-dimensional manifold with a natural Riemannian metric.
The conformal diffeomorphisms of the 4-sphere form a Lie group isomorphic
to SO(5,1). Atiyah et al. [AHS, Sect. 9] have shown that there is a natural,
transitive action of the group on the moduli space .#,. The isotropy subgroup of
this action at each instanton is isomorphic to SO(5), so .#, is diffeomorphic to
hyperbolic S-space:
M, =S0(5,1)/SO(5)=R">. (3.1)

In the next several sections we will use this description to help compute the
geometry of .#,. We will need a much more explicit description of the conformal
group action than that given by Atiyah, Hitchin, and Singer. This section provides
these details.

We begin with some linear algebra. Let V be a vector space with inner product
(-, -)- There is an induced inner product on A2V defined by

(v AW, 0" AW)= (0,0} {w, w)—(v, W), w); (3.2)

in particular, o A w2 = (0] W2 — (0, w)>. (3.3)

There is also an isomorphism of A2V with the Lie algebra so()V) of skew-adjoint
endomorphisms of ¥ given by letting v A w=v®w —w®uv act according to the rule

(vAw) - u=(w,u)v—(v,u)w. (3.4)
This makes 4%V a Lie algebra with brackets given by
[vAaw, ! AW]= —(0,)WAW @, W)W AV +(W, Yo AW —(w,w)v A
={(vAw) VIAW VU A (vAw)-w). (3.5)

When V=IR* the star operator determines projection operators p. =1/2(1 + %)
from A2V onto its self-dual subspace 42V and anti-self-dual subspace 4%V, We
will usually write p. (v Aw) as (v Aw),. With the above bracket operation, the
decomposition A*V ~ A2 V@ A%V corresponds to the Lie algebra isomorphism
50(4)=s0(3)@s0(3) and the metric (3.2) corresponds to —1/4 times the Killing
form on each factor 4%V =so(3). Since p, are Lie algebra projections, we have

[ A W), AW)_]=0, (3.6)

[oAaw, 0 AW) =AW ., (0 Aaw) ]=lvaw, v Aw].. (3.7
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On a Riemannian 4-manifold M, the metric provides isomorphisms
TM=~T*M and A>TM = A>T*M, and induces a metric and Lie algebra structure
on A2T*M by (3.2) and (3.5). When M is oriented, the star operator determines
subbundles A% (TM). Let P’ denote the SO(3)-bundle of orthonormal frames of
A% TM, and let P be the unique lift of P’ to a (connected) principal SU(2)-bundle.
Since su(2)=so0(3)=A4%R* there is a natural identification A2 TM=AdP of
bundles of Lie algebras with metric.

When M is the 4-sphere S = S*, this bundle Pis the k=1 SU(2)-bundle on S (see
[FU]). We can then explicitly describe the action of the conformal group on o/ as
follows. Any diffeomorphism ¢ of S induces bundle maps @, :TS—TS and
A*®,: A*TS—ATS. When @ is conformal and orientation-preserving A*®,
commutes with the star operator, and hence preserves the subbundle A2 TS. If
P*g=yg, then 4@, is not norm-preserving (unless y=1). However, y ?4*®,
does preserve norms and therefore induces a bundle automorphism of P’ [taking
the frame {(¢; A e)); (x)} to {y 7 2(x) (D e; A Do) 1]

In this way, SO(5, 1) acts on P', and hence on the space of connections on P".
But connections on P’ are in 1 —1 correspondence with those on the covering
bundle P, so this determines an SO(5,1) action on <.

Remark. Alternatively, one can lift the SO(5, 1) action to an action of Spin(3, 1) on
P, and hence on «/. But then the center Z ~Z, of Spin{(5, 1) acts trivially on &/, so
we recover the action of Spin(S, 1)/Z=S80(5,1) on .«f described above. We will
henceforth avoid taking this lift by considering 7 as the space of connections on
P

We next assemble some facts about conformal vector fields on S. We will use
the following notation in our computations. Throughout, x will represent a point
of S (sometimes viewed as a unit vector in IR?), {¢;} a local orthonormal frame of
TS, and {0’} the dual coframe. A frame is special at x if the covariant derivatives of
the {¢;} vanish at x (such frames always exist). Repeated indices are summed over.
The Levi-Civita connection V' on T'S induces connections on all associated vector
bundles (e.g. 42 TS); we will also denote these connections by V or will more
explicitly indicate the associating representation (e.g. A% V). The L? adjoint of ¥ is
denoted by V*,

Each vector ve R® determines a linear function f,=(v, -) on S. The negative
gradient V(x)= —grad f,{x)=(v, x)x — v has covariant derivative

V) ()=0y V) (x)= £ Y, (3.8)

where ¢ is the usual directional derivative in IR and T:IRR°—T.S denotes
orthogonal projection. Hence for tangent vectors Y, Z,

(L)Y, Z2)=g(VyV, Z)+ g(Y,V V) =2f8(Y, Z);
ie. #pg=2fg Therefore each V is a conformal vector field on S.
Lemma 3.1. The following equations are true pointwise:
(@) V> =lgrad f,|*=o]* — f>-
(b) Vdf,=—f.g,

() V¥V [,=4f,,
@ V*rv=Vv.
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Furthermore, under the flow @} of V, the metric pulls back to

() *g=7Dg, (3.9)
where 1 -1
()= [cosh(\vlt)— <|_l7v|> sinh(lvit))} . (3.10)

Proof. (a) Immediate from the definition of V.
(b) For Y,Ze TS, we have

Vaf) (Y, 2)=Vydf, Z)=g(—=VyV.Z)= — f,g(Y, 7).
(C) V*Vfu: —(Vdfv)(ei’ei):fvg(ein ei):4fv'

(d) Computing in a special frame at an arbitrary x,
(V*VV) (x) = - Vei Veile = - Vei(ﬁia ei)!x
=—Ldf,eel,=V,e)el,=V(x).

11
Finally, set y(t)=exp ( [ (@D* f,)ds) and h(t)=y %(t)(9")*g. Then
0

dhjdt =y~ (= 2(@)* ) (P g +y (D)  Lrg
=y e[ —2(P)* f,+2(2)*f,]=0.

Hence # is constant, and since 4(0) = g we obtain (3.9). Since V commutes with its
own flow @7, the function p(t)=(P?)* f, satisfies

pPO=(@)*(V (L) =(®)*(Kdf,, V).
But {df,, V)= —|V|*=f,2—|v|* by part (a), so p’'=p*—|v|]>. Consequently 7~ (1)

satisfies
O™ O=[-py ' T=y P ~p1=y" %,
with initial conditions y ~}(0)=1 and (y ~ 'Y (0) = — p(0) = — f,. The unique solution
of this ODE gives (3.9). [J
Notation. Henceforth we write
r=1|
a,=cosh(r)
b,=r"!sinh(r) (and by=1)
y,=(a,—b,f)~!  [this is (3.9) with t=1].

Next we observe that for any oriented Riemannian 4-manifold there is a
natural conformally invariant injection

0: TM—T*M® A2 TM

(3.11)

iven b .
glven by (Y)=0®(e; A Y), .

Because the projection p . is covariant constant, Vy(x(Z))=o(V'yZ), where V is the
Levi-Civita connection.
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The Levi-Civita connection V=V° on S* is the unique SO(5)-invariant
connection on TS. The corresponding homogeneous connection 4,=4%V° on
A% TS is self-dual; we refer to it as the “standard instanton” and view it as the base
point or origin of .#;. We can obtain additional self-dual connections using
conformal diffeomorphisms. For each v € R let I7” be the connection on TS given
by

VY =y, (@¥V)y, 'Y, YeI(TS),

where )
((p;k V)XY’—@U* (V<1>v*xqju* Y)'

P is the pulliback of ¥° under the norm-preserving automorphism y '@, of T'S,
and hence defines a connection on P'. The corresponding connection on A2TS is

APV =y (AL OFV )y

Lemma 3.2. For each veR?, the connection A*V* on A%(TS) is compatible with the
standard metric on A%(TS), is self-dual, and satisfies

(@) A2V°=A2V°~b,y,ad((V)),

(b) F'=®*F°=y2F°, where F’ is the curvature A*V".

v

Proof. These connections are associated to P, so are compatible with the standard
metric. Conjugating a covariant derivative by a function does not affect curvature,
so F'=@*F°, But F°= A% R is obtained from the Riemann curvature tensor R of
S*, which is given by

R(X,V)Z=g(Y,Z)X —g(X,Z)Y. (3.12)

It follows that ®*F°=92F° This implies self-duality, and establishes (b).
To prove (a), observe that ®*V is compatible with ®¥*g=1y2g, while AZ®*V is
compatible with the standard metric on T'S. An easy calculation shows that

(P*V)Z=VyZ+ YW Z+Z(y)Y —g(Y, Z) grady,
where p=1logy,. Hence
YZ2=VyZ+Z(p)Y—g(Y,Z)grady=V,Z+(Y angrady)-Z; (3.13)

equivalently, V"=V + 0'®(e; A grady). Part (a) follows by applying the represen-
tation 42, using (3.7), and noting that

grady = —y, grad(a,—b, f,)= —v,b,V. [
It will be useful later to have an explicit formula for F°.
Lemma 3.3. The curvature F° satisfies
(@) FOX,Y)=ad(X A Y),,
(b) FO=1/2(0' A 0)®(e; ne), =1/2(0' A 0), ®(e;ne)) ..
Proof. From (3.12) and (3.5) we have
(PRYX, VVZAW)=(XAY)- ZDIAWHZA(XAY)- W=[XAY,ZAW],
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so (A*R)(X, Y)=ad(X A Y). Restricting to A% TS then gives part (a) [in view of
(3.7)]. Writing (a) in terms of a local frame gives the first part of (b). Finally, observe
that

@A) _®(e;nep), =0; (3.14)

this is true because the left-hand side is a scalar in the irreducible representation
A2 @ A% of SO(4). The last part of (b) follows. []

4. A Coordinate System on .#,

Each ve R’ determines a conformal vector field V on S and an Ad P-valued 1-form
X, defined by
X, =a(V)eQ'AdP)

[o was defined after (3.11).] It also determines a self-dual connection on P’ by the
formula of Lemma 3.2a. To simplify notation we will henceforth omit the 4? and
the ad from that formula, and will write V’° as V. Thus the lemma defines an affine
map
O0:R3—.of,
by
Q(U):VU:V_I)UVUXU’ (41)

into the subspace of self-dual connections which arise by applying conformal
transformations of the form ¢°=exp(V) to the standard instanton. Since every
conformal diffcomorphism of S can be written as g - exp(V) for some V and some
g€ S0(5), the Atiyah-Hitchin-Singer result [AHS, Sect. 9] shows that the image of
Q projects onto the moduli space .#, in «//%. Furthermore, since |F*|* = y2|F°| (see
Lemma 3.2b) is gauge-invariant and the functions yZ, y2 are distinct for v+ w, the
composition 0 .
R of —— M CHA|Y

is injective, and hence a homeomorphism. This section will be devoted primarily to
the proof of the following sharper statement.

Proposition 4.1. Q induces a diffeomorphism Q=mnoQ :R>~.#,, and therefore
provides coordinates on M.

Remark. We will later derive a formula [Eq. (4.11) evaluated at A,] that shows that
d3(b,y,X,)=0.

Thus the image of Q lies in the horizontal slice of the gauge group action at the
standard instanton A4,

The first step in the proof of Proposition 4.1 is to calculate the derivative of Q.
Asapreliminary, we derive an alternative expression for X . Lemmas 3.2b and 3.3b
show that the contraction iy F¥ of Ye T'S with F* [defined by (i, F*) (Z)=F(Y, Z)] is

iyF'=1/2y2(Y'0— Y/0)®(e; ne),  (where YI=(0,Y))
= —7,0®(e A Y), = —ypa(Y).
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Taking v=0 and specializing to a conformal vector field V]
X,=oV)=—i,F°. 4.3)
Lemma 4.2. The derivative of Q at veR®

" _4
i given by Y =(DQ),(w) = - Qo+ W,

Y=

v

{ 2X—~-y2<>c(V)—z'F" if w=v (44)

bivs X o= by X =albiv; £,V + by, W) if wlv.
Proof. Setv,=v+tw,a,=aq,,etc. (see the definitions in Sect. 3) and let prime denote

t-differentiation at t=0. Simple computations show that a' =(v,w)b,,
b =(a,—b)v|” *(v,w), f'=f,, and hence

Y =—(by)X,—by,X,=—al(by)V+by,W]. (4.5)
Using the identity aZ—bZ|v|* =1, we obtain
(bey) =72 L1 —a,b,)lo| v, w)+ b3 £,]. (4.6)

When vLlw this simplifies to (by) =72b*f. When v=w the identity bf =a—7 !
shows that (by) +by=y> The lemma follows by combining these formulas and
using (4.3). [

We now give an explicit description of T..#, and show that 0 is a local
diffeomorphism. Since we have already observed that Q is a homeomorphism, this
will complete the proof of Proposition 4.1.

Proposition 4.3. At A=V"e o,
Tty ={iy F'/W=—Vf, for some weR>}.
Moreover, Q =nQ is a local diffeomorphism.

Proof. Each such conformal vector field W determines a flow ¢,=®}’ on M. As
described in Sect. 3, &, lifts to a flow &, on the principal bundle P'. Let W be the
infinitesimal generator of @, let G = SU(2) denote the structure group of Pand let g
denote its Lie algebra. Since &, is a bundle map covering &,, W is a G-invariant
vector field covering W.

Now let w, e Q*(P; g) be the connection form of A. Then

at (DFw = 0=ZL w0 =ipdo,+digw,
=igldo,+12[0 40 ])+ o, iyo ] +digo )

= lWFA + dﬁ + [CUA7 ﬁ] 3 (4.7)

where ii=i3w ,, and F , is the curvature, regarded as a g-valued 2-form on P. Note
that u satisfies R}l =(Adh™ ') (@) for he G, and hence represents a section u of Ad P.
Therefore, as a statement about Ad P-valued 1-forms on §%, (4.7) reads

d .
a(ét*A)lt=0=lWFA+dAu' (4.8)
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Note also that @A =(P))* A =(D})*(D4)* A° = (&, DV)* VO,

Now SO(5) is the maximal compact subgroup of SO(5,1), and there is a
(smooth) decomposition SO(5,1)=S0(5)-R?>, where R® is the submanifold
{@?lveR5} of SO(5,1). Therefore there exists elements g, e SO(5) and z,eR?,
depending smoothly on t, such that ®¢7"=gd%. Since gfV°=V° and

(P3)*V,=0(2), it follows that &4 =Q(z,). Thus if we set z'= % z)i= 0, Eq. (4.8)

EIves ipF =0,)—du. (4.9)
But d; od =0 and, as remarked earlier, d; - 0, =0, so we have
d;(,F)=0. (4.10)

Next fix xe S* and a frame {e;} special at x. At x,
(i F')=d5(—y* (W) =V (y* (e A W))
=(grad(y*) A W4y2Voe, AW +y2e; AV'W), . (4.11)
But grad(y?)= —2by*V, and by (3.13) and (3.4) we have
VW =V2W —by(e, A V)- W= fe;— by V,We,+byle, W)V, (4.12)
and similarly V7e,=3byV at x. Substituting into (4.11) shows that

di(iwF )=0 (4.13)
at x and hence everywhere.

We have now established that iy, F, e Ker(d%)nker(d;) for each W. Since
{iwF 4} ={y*«(W)} is a 5-dimensional subspace of Q'(AdP), it follows that the
iwF 4 span T,.4,. But (4.9) implies that h,(Q,(2)=iwkE;, so h:{Y)'} >T M, is
surjective. Moreover, it is clear from (4.4) that dim { Y,"} = 5. Therefore hj;,,, is an
isomorphism, and hence so is (n-Q). We conclude that n-Q is a local
difftomorphism, as claimed. [

5. Curvature of .#, at the Standard Instanton

Proposition 4.3 and Eq. (4.3) show that the tangent space to .#, at the base

connection A, is spanned by {a(V)|V=—Vf}={X,}. We will next compute the

sectional curvature XX CROX, X)X XD 1)
X IX P (X X2 '

of the 2-plane spanned by X, X, e T, .#,.

Theorem 5.1. The sectional curvatures of .4, at Ay are all equal to 5/(1672).

Thus .#, has constant positive sectional curvature at A,. In particular, this
means that the Atiyah-Hitchin-Singer diffeomorphism (3.1) between .#, and
hyperbolic 5-space is not an isometry.

Remark. The number 5/167* in Theorem 5.1 depends on a choice of scale for the
metric on Ad P. We could have chosen the metric to be induced by any G-invariant
inner product on g. Any such inner product is a multiple of the Killing form; in
Sect. 3, we fixed the multiple to be —1/4. Had we used — u?/4 instead, we would
have obtained 5/16u*n? in the theorem.
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We will prove this theorem by applying the curvature formula (2.13). (In Sect. 6
we will obtain an explicit formula for the metric on .#,, which can also be used to
compute the sectional curvature.) For this we need explicit information about
P¥ X, and Py X .

Lemma 5.2. Writing D for d,, we have, for all v, weR>,
(@) P§X,=2(V A W),
(b) Py, X,=200"AV*)_®e,AW),,
(c) D*D(P% X )=V*V(P% X, )=2P% X,,,
(d) D™(D™)*(Px X,)=3Py X,,.
Proof. (@) P} X, =—[e;A V), (eAW) = —[e,aV,e, AW, =2[V AW], by
(3.7} and (3.5). _ .
(b) Py X, =p_[0'®(e;A V), 00 ®(e;n W), ]
=O'AV)_®Le;AVie,a W],
= AV*H_®(e; A W), +F AW _®e;A V)4,
where in the last step we have used (3.5) and (3.14) and have written V* for the

metric dual of V. It remains to show that these last two terms are equal, and it
suffices to verify this when V=e¢, and W=e¢,. But then

(V¥ 0)_®(Wre),
=(0"A0°)-®(e;ne3) +(0' A0 _®(e; nea)s
=027 0%)-®le; ey +(0° A 0°)_Ble; ney),
=(W*A0)_ @V rey)s,

as desired.

(c) By (a), it suffices to show that V*V[(V A W), ]=2(V A W), for conformal
vector fields V, W (D*D =F*F on O-forms). But

VEPL(V A W) 1=(V*P(V A W), =(V*VV) AW =27,V AV W+ V ATV W),

The middle term vanishes by (3.8) and the other two terms simplify by

Lemma 3.1d. We are left with V*P (VA W), =2(V A W)..
(d) On Q% (AdP) we have D™ (D~)*=1/2p_ o (D*D+ DD*). The Weitzenbdck
formula on Q2 (E), where E— M is any vector bundle with connection 4, states that
AAd  +d dE=VEV  +(s/3) =20 _ —F_. (5.2)

Here s is the scalar curvature of M, #_ is the Weyl endomorphism defined in
Sect. 1,and #_ is proportional to (F ,) _.Inourcase,d,=D,V,=V (F,)_ =0, and,
since M=S* s=12 and #_ =0. Hence D~ (D™)*=1/2V*V +2. Using part (b),
1274V (P X, ) =" AV*VV*)_®(e; A W),
2 AV V) _Qe; AV W)
+(FAVH)_Qe, AVVW), .
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Again, V¥*VW =W and V¥V (V*)=(V*V'V)*=1"*. The cross-term is proportional
to (0' A 0%)_®(e; A e)) . =0 [see (3.14)], so by (b) the right-hand side above is simply
P X,. Combining these formulas yields (d). O

Proof of Theorem 5.1. From parts (c) and (d) of Lemma 5.2 we conclude that
GaP¥X.)=3P{X,. Gi(PxX,)=3PxX,, (5.3)
so the basic curvature formula (2.13) becomes
(R(X,, X)X, X,> =33 P3, X, 1° = 5[ Px, X II> = {Py, X, Px X ))1(54)

Hence we need only compute the L* inner products of objects of the form X,
P% X, and Py X . First we make some pointwise calculations.
Observe that

(e A V)i, (e;AaW))=1/2{(e; A V,e; A W x(e; A W))
=12V, W)S— VIWI L (e, Vs (e;A W)
=12V, W)o,;—VIW'F(VAW,x(e;nep)).  (5.5)

(The last step is verified by checking it for V=¢,, W=e¢,.) From this and the
definition of «, it follows that {(a(V), x(V))=3/2(V, V), and, polarizing,

@), (W) =(X,, X,,)=3/2(V, W). (5.6)
Next, Lemma 5.2a implies that
[P X, > =4[V AW)P=2|V AW (5.7)
Finally, using Lemma 5.2b and (5.5), we have

(Px, X0 Px, X,) =40 A VF)_, () AVH) ), A W)y, (e, A W) )=2V]P W]
+V, W),

Polarizing (in this case computing the st term in [Py X, . |%, one finds that

(Px, X, Px, X,)=4(V, W)* —|V]*|W|*.
Combining the last two equations we obtain
(Px, X Py, X)) —(Px, X, Px X,)=3(VP WP —(V,WP)=3|V AW[*. (58)

The L? inner products corresponding to these pointwise expressions are given by
the following lemma, which is proved in the appendix.

Lemma 5.3. (a) <V, W).=3%n%(v,w),
b) IVAW|E=872vAw.

By (5.7), (5.8) and Lemma 5.3b, the right-hand side of the curvature formula
(5.4) reduces to 167%/5|V A W|2 On the other hand, (5.6) and Lemma 5.2a imply
that

X IX 02— <X, X 2 =27 o A w]?.

The sectional curvature (5.1) is therefore o(X,, X,,)= 7%, as claimed. []
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6. The Shape of %,

In this section we exhibit an explicit formula for the metric ¢ on .#, and show how
it leads to the results stated in the introduction.

Our method is to directly calculate the expression Q*4 for the metric in the
coordinate system Q0 =nQ:R%-—.#, which was introduced in Sect. 4. At veR5,
this metric is given by

(Q_*y)v(ws W) = g(ﬂ* Yy, Ty )= {hY"| 2 p

where the Y,)” =(DQ),(w) are given by (4.4). Thus we must determine the horizontal
projections hY," at Q(v). Our first step is to check whether the Y are already
horizontal.

Lemma 6.1. d2,Y" =202V AW). .

Proof. From the proof of Lemma 4.1 we have Y = —a(Z), where Z =(by) V + byW.
Fix xe$ and a frame {e,} special at x. Then at x,

dEY"=e, V0, AZ), J=(Vie,AZ+e; AVIZ),
=(Vie, A Z+grad(by) AV +grad(by) A W
+(bY)e, AVIV +bye, AVIW), . (6.1)

But grad(by)= —b*y*V and, from (4.6), grad(by) = —b*y?W. Furthermore, in
(4.12) we calculated V;W, and also saw that Fle;=3byV at x. The lemma then
follows from (6.1). []

Lemma 6.1 shows that Y, is horizontal, so we need only compute 2 Y, for w Lo,
This is accomplished by projecting Y,” onto the subspace spanned by i, F”, where Z
is conformal {cf. Proposition 4.2). For this, we must calculate the lengths of the i, F*
and the inner products of Y, with the i,F”; this is done in the next three lemmas.

Notation. We introduce two functions which will arise naturally in the calculations
below. For veR?, let r=[v| and define [using the notation (3.11)]

A(r)=b, *[v|"*+3(b,—a,)b, >Jv|*
=sinh ™ (r) + 3 sinh " *(r)— 3r cosh(r) sinh " 3(¥)
and
B(r):(Z—A(r))' ! [3b;2|l7|ﬁ2(avbv_ 1)_avbuA(r)]2
=r"%2~ A(r)) " *[3 coth(r)— 3rsinh ~ ?(r) — cosh(r) sinh(r) A(r)]?.

We will compute the L? norms of the Y,* and i,F by expressing them as
integrals of the functions y,, £, on S*. The specific integrals we will need are given in
the following lemma, which is proved in the appendix.

Lemma 6.2. Let y, a, b, A denote y,, a,, b,, A(|v]) respectively. Then
(@) [y*=5n? (independently of v),
(b) [7* (o>~ £y ="n* ] 4,
() 7’ =4nb"2p| 2a—b"") (i v£0),
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and
(d) For wlo, [y*fZ=%r*|w*4,
where all integrals are over S*.
Lemma 6.3. (a) | Y;lI?=||i,F"||>=8n*[uf* A(v]).
(b) If wlu, then ||iyyF"|*=2n%|w|*(2— A(jv])).
Proof. Computing the norm of iy F”= —y2a(W) by (5.6) and Lemma 3.1a, we have
liwF?12 =3 y*(w* ~ £2).

Part (a) now follows by taking w=v and applying Lemma 6.2b, and (b) follows by
taking wlv and applying Lemma 6.2a,d. [

Lemma 6.4. Suppose wLlv. Then
(@) <Y, iyF"y=2n*\w]*(3b" *|v| %(ab—1)—abA)
(b) For each zLw, <Y i, F*>=0.
Proof. Using Lemma 4.2 and Eq. (5.6),
YR igF =30 L,V + by Wy’ Z)
=3 { W, )~ £, L+ [w, )~ £, L1} (6.2)
Taking z=w and using the identity byf=ay—1, the integrand simplifies to

[w|?y® —ay* f2. We then obtain part (a) by integrating this using Lemma 6.2¢, d. On
the other hand, when z Lw, (6.2) becomes

<Yuws lZFU>=%£ {bv4[(v, Z)_f;:fw]—y?’f;:}fw

Choose coordinates {x'} on R® with w along the x°-axis. Then the part of the
integrand in brackets is independent of x° (since f, and f, are). Since f,, — and
therefore the entire integrand - is an odd function of x° the integral must
vanish. [

Proposition 6.5. (a) ||hY?|*=||Y7||> =8n%|v|*> A(jv]).
(b) For wiv, |hY,"||? =2n%\w|® B(v]) and {hY), hY?>=0.

Proof. (a) Lemma 6.1 shows that Y is horizontal, so this follows from
Lemma 6.3a.

(b) The horizontal projection of Y,” is obtained by projecting onto the space
spanned by {i,F}. In light of Lemma 6.4b this is simply

hYy =i F"| 2 <Y ig F iy FY. (6.3)

We then obtain ||hY")|?=2x?|w|?> B(jv|) using Lemma 6.3b, Lemma 6.4a, and the
definition of B. Finally, (6.3) also shows that <hYY,hY)> is a multiple of

G F? i, F*) = yta(W), p3a(V)) = — 3 [ v f

[using (5.6) and Lemma 3.1a]. This integral vanishes as in the proof of
Lemma 6.4b, so <hY)",hY'>=0. [
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Remark. The formulas in Proposition 6.5 show that A(r) and B(r) are non-negative.
In fact they are positive, since Aly, o, is an isomorphism and the metric on .#,
cannot be degenerate.

Proposition 6.5 enables us to write the pullback metric Q*¢ in terms of the
standard coordinates {x'} on R°. Let u; = d/0x; be the unit basis vectors and write

r=|x|. The vector ficlds _
wi(x)=u;—(x'/r?)x

satisfy w; L x Vi. Hence
Q= (x'/r*) Q,x + Qo w; = (X'/r!) X3+ hX Y,
so by Proposition 6.5
Qi Q> =2m*(Ax'XIr "2 A(r)+ {wy, w;» B(r)..
This leads immediately to the following formula for the metric.

Proposition 6.6. Let 4 be the metric on .#,. Under the diffeomorphism Q :IR%— .4,
¢ pulls back to the metric O*g =h;,dx'@dx’, where

hy;=2n"B(r) [6;;+ (4A() B~ 1(r)— 1) (x'xi/r?)] .
This formula can be simplified by changing coordinates. First we have
Q*g=2n"B(r) {Y. (dx")* + C(r) (dr)’},
where C(r)=4A(r)B~*(r)— 1. Define new coordinates by
V=E(n)x',

E(r)=exp [f sTH/ +C(s)—1)ds:l
0
[the integral converges since C(s)=0(s?) as s—0]. The function ¢ =rE(r) then

fies o2 = 3 (V)2 and
satisfies ¢*= Y .(y')" an o =EM)/1+C(r)>0,

$0 g is a monotonically increasing function of r. It follows that x+—>y=FE(r)x is a
diffeomorphism and that the equation ¢ =rE(r) defines r implicitly as a smooth
function of ¢. In particular, we can define a smooth positive function p(g) by

[w(e)]*>=2n"B(r) [E(r)] 2.

Now, rewriting the metric (6.4) in these new coordinates {y'}, we find that

Q*g=[w()]* T (dy)*. (6.5)

This is the formula stated as Theorem A in the introduction. Using it, it is now easy
to verify the four basic geometric properties of .#, listed in Corollary B.
(a) #, is conformally flat.
This is immediate from (6.5).
(b) 4, is radially symmetric.
The metric (6.5) is clearly invariant under the usual action of SO(5) on IR>,
By the construction of Q, this corresponds to the SO(5) action on .#, induced by
the rotations of S*.
(c) #, is incomplete.

where
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Given a metric of the form (6.5), it is easy to check that the radial lines
through the origin are geodesics (not necessarily parametrized by arclength); we
will show that these geodesics have finite length. Fix veR® with |v]=1 and
consider the ray {tv}, 0=t<co. The tangent vector T to this ray at tv satisfies
Q*T=1t"1Y?, so by Lemma 6.3a

Q. T =t72 || ¥)]* =87 A(r).
The length of this ray is therefore

L=2n)/2 { A@)"2dr. 6.6)
0

But as r—o0, A*(r)~2e", so the integral is finite (since A(0)=%, there are no
problems at r=0). Hence .#, is incomplete.
{(d) . has finite volume.
The volume of .#, is

Vol = | J@)dx" A ... ndx>, (6.7)
R5

where J(v) is the Jacobian determinant J(v) of § : R® —.#,, which can be calculated
at any non-zero v € R as follows. Choose an orthonormal basis {w, =v/|v], w,, w3,
Wa, Ws}. By Proposition 6.5, {Q,w;} is an orthogonal basis of Ty,.#,, and hence

5

Joy= 11 10wl -

Using Proposition 6.5 and the fact that Q,w, =v|™' Y/, we obtain
J(@©)=8]/2n° A *(r) B*(r),

where r=v|. This is continuous at r=0, and for large r we have AV*(r)~2e7",
B(r)~2r7?, and so J(U)~64ﬂn5r'4e”'. It follows that the integral (6.7)
converges. Thus .#, has finite volume.

Next, we examine the hypersurfaces in .#, of constant distance from A,. These
are the spheres {r=const}, or, equivalently, {¢ =const}. Formula (6.5) shows that
the metric on the sphere S, of fixed ¢ is () times the metric on the standard
sphere of radius g. Hence S, is isometric to the standard sphere of radius

R(g)=ovw(@)=mr)/2B(r). (6.8)

Now the geodesic rays from A, have finite length L, given by (6.6). As the arclength
parameter ranges from 0 to L, r ranges from 0 to oo, and g, one checks, ranges from
0 to some limiting value g,. Then as r—oo, B(r)~2r~2, and hence by (6.8)
R(g)—R(g,)=2n. Thus the closure of .#, in the metric topology is compact, and
its boundary is isometric to the sphere of radius 2z.

Finally, we compute the second fundamental form of these spheres S, as r— co.
Using formula (6.5) for the metric, one sees that the unit normal to S is
N =1y~ Yo(r))0/dg. A straightforward calculation shows that, for any two vectors
X, Y tangent to S, the second fundamental form b(X,Y)={VyN,Y> is

d
(X, Y)=p! % [log(ow)]1 (X, Y>.
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We can then use the definitions of ¢ and y(g) to express this in terms of r:
d
b(X, Y)=(8n%r?AB)~ /2 I (rB'*)(X,Y>.
¥

Computing the asymptotics of this using the definitions of A(r) and B(r), we find
that

3d
evr<Xa Y>~ m<Xa Y>7

b(X, Y)~ -

3
2)/2n
where d=2n)/2 | AY?~2m}/2 | 2¢7" ~4n)/2¢ " is the distance to the boundary

of #,. Thus b=0 on 0.#,, and hence the embedding 8.4, <, .#, is totally geodesic.
This proves Corollary C of the introduction.

Remark. These results depend on two scale choices, as follows. For general M, if we
replace the metric g by a constant multiple ¢?g and the fiber metric on Ad P by the
one induced by a constant — u?/4 times the Killing form (instead of just —1/4),
then the differentiable manifold .# does not change, but its metric ¢ changes to
¢ y. (The metric on o scales by ¢?p* and the horizontal distribution on 7 does
not change.) This has the effect of multiplying distances in .# by cu and sectional
curvatures by (cu)~ % In particular, when M = S* the numbers R,, R, and L scale
according to these rules. However, the ratio Ry: R, : L and the ratio 472 of the
metric on 0.#, to that on $* remain unchanged.

Appendix

In this appendix we prove several of the computational lemmas used in the paper.
We will repeatedly use the facts that Vol(S®)=2n? and Vol(S*)=8r?/3. Through-
out, § denotes S*.

Lemma A.1. gfvfwz%nz(u, w).

Proof. We have f,=(v, x)=|v] cos8, where 0 is the angle between v and x. Hence
112 =lof (j) c0s20- Vol (S%) sin®0df = £ n2|u]2.

The desired formula follows by polarization. [

Proof of Lemma 5.3. (a) We have (V, W)=(v, w)— f, f., pointwise, so
VW5 =(v,w) Vol(S)— gfvfw: (v, w),
using Lemma A.1.
(b) Pointwise, [V A W2 =|V2|W]>—(V, W)? is
VAWE=(VI2LS+ WP 2 =20,w) [, 1)
The expression in parentheses integrates to $2n%|v A w|? by Lemma A.1, so

VAW [ Z=[Vol(SY)—&n? o awf*=En?pAw]?. OO
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Lemma A.2. Suppose o, 3>0 and o> —p*=1. Then

(a) }t((x-ﬂcosﬁ)"“sin50d9=§ﬁ*2+8[3*4+4aﬁ“5 log [a;ﬁ‘}
i o+ f

) E(“—ﬁCOSG)'3sin30d8=2/3“2+[3-3+1og [%].

Proof. In each case let u=cosf and integrate by parts. We omit the details. [J

Proof of Lemma 6.2. (a) The flow {®}} of the conformal vector V satisfies Eq. (3.9),
so the volume element of (@})*g is y; times the volume element dv, of g. Since
integrals are invariant under oriented diffeomorphisms,

[7*dvy= [ (@)*dvy= [ dv,=Vol($)=4n’.

(b) For each non-zero vector v€lR5, set a=cosh|v|, f=sinh|v], and write
fo=Ivlcosf as in the proof of Lemma A.1. Then y,=(x— fcosf)™* and

[ yeol* = £ =10 }I {(o—Bcos®)™* Vol(S3)sin®0d0.
S 0

By Lemma A.2a this is equal to |v]? - 2n2 -§ A(j)).
{c) Similarly, Lemma A.2b shows that

[ 73 =Vol(s?) | (a— fcos0)~* sin*0d0
S 4]

is 4n*b~ Yo — B~ v]), where a=a and f=b|v|.

(d) Again, let 6 be the angle between v and x € S, and let ¢ be the angle between
w and the orthogonal projection of x onto the subspace HCR?® of vectors
perpendicular to v. Then we H and f,,=<{x, w)=|w|cos¢ sinf. Hence

K4

[vifi2=[(2—Pcosh) *w? [j sinZGCoszﬂ do,
S 0 Zo

where X, is the 3-sphere of radius sin in H. The inner integral is sin®0 - I, where I is

the integral

[ cos?p= | x*=1/4 [ X2+ x5+ x5 +x3=1/4Vol(S3)=n?/2.
s3 S3 S

The result follows from the last two equations, Lemma A.2a, and the definition of
Ar). O
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