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The Riemannian Potato Field:

a tool for online Signal Quality Index of EEG
Quentin Barthélemy, Louis Mayaud, David Ojeda and Marco Congedo

Abstract—Electroencephalographic (EEG) recordings are con-
taminated by instrumental, environmental, and biological arti-
facts, resulting in low signal-to-noise ratio. Artifact detection is
a critical task for real-time applications where the signal is used
to give a continuous feedback to the user. In these applications,
it is therefore necessary to estimate online a signal quality index
(SQI) in order to stop the feedback when the signal quality is
unacceptable.

In this article we introduce the Riemannian Potato Field (RPF)
algorithm as such SQI. It is a generalization and extension
of the Riemannian Potato, a previously published real-time
artifact detection algorithm, whose performance is degraded
as the number of channels increases. The RPF overcomes this
limitation by combining the outputs of several smaller potatoes
into a unique SQI resulting in a higher sensitivity and specificity,
regardless of the number of electrodes. We demonstrate these
results on a clinical dataset totalizing more than 2200 hours of
EEG recorded at home, that is, in a non-controlled environment.

Index Terms—EEG, signal quality index, online, Riemannian
geometry, artifact detection.

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive technol-

ogy measuring the brain electrical potentials at several elec-

trode sites. It has become a widely-used technology for the

monitoring of brain activity in applications such as brain-

computer interfaces (BCI) [1] and neurofeedback (NFB) [2].

Unfortunately, EEG recordings are contaminated by several

types of artifacts that are typically not generated by the brain

electrical functioning. These can be biological, instrumental or

environmental artifacts and often have a strong amplitude that

lowers the signal-to-noise ratio (SNR) dramatically, making

most applications unpractical. Consequently, measuring signal

quality and denoising artifacted epochs are crucial steps for

any application relying on EEG data analysis [3], [4]. This

is specially important for real-time applications, such as BCI

or NFB, where the system behavior fully depends on the

current data quality and the presence of artifacts can disturb

the feedback stream [5]–[7]. In this context, the task is signif-

icantly more complex: it cannot be done retrospectively as in

offline analysis, by a human operator or an automatic offline

algorithm; denoising can only rely on automated pre-calibrated
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approaches that should be more generalizable as compared

to an offline strategy. While some techniques have proven

efficacious and reliable to correct some types of stationary

artifacts including eye blinks [8], most types of noise affecting

EEG remain transient and non-stationary (such as muscle

activities and body movements) making correction strategies,

specifically for real-time applications, only partly reliable. In

this context, it is necessary to fall back on a detection strategy,

informing of the data quality. Detecting artifacts in real-time

allows to temporarily suspend the EEG processing, therefore

preventing the extraction of information on noisy EEG. Such

technique can also be used to send a real-time warning to

the user, possibly reinforcing behaviors leading to good data

quality.

Due to headset installation and impedance check, the be-

ginning of the EEG recordings often contains artifacts. To

not initialize a real-time detection method on noisy EEG, the

capability of detecting artifacts must be transferred from an-

other recording. One of the technical aspects of any algorithm

applied to EEG is that these recordings typically have many

sources of variabilities [9] from: i) the system (electrodes type,

amplifiers and acquisition devices), ii) the subject (personal

brain anatomy and circadian state), and iii) the session setup

(instrumental setups, impedances change [10], shifts in elec-

trodes position, montage errors and all problems related to

a non-controlled environment [11], [12]). These variabilities

hinder the generalization of a model learned on a recording to

another, even if it is the same user. Known in general under

the name of transfer learning [13], many methods have been

proposed to cope with this problem [14], [15]. In EEG, transfer

learning may be session-to-session and/or subject-to-subject.

In a nutshell, an efficient artifact detection approach needs

to: i) measure the quality of EEG, using a signal quality

index (SQI), ii) detect when this quality is not acceptable,

i.e., when EEG is too noisy, iii) be able to transfer a model

of acceptable quality from another recording. Moreover, the

SQI must be a continuous measure, e.g., a real value in [0, 1],
that characterizes the quality of the EEG along a continuum

ranging from 1 (clean) to 0 (noisy). A complete range of values

gives a measure more informative than a binary threshold.

For example, summarizing the quality of a recording by an

averaged SQI, integrating the intensity of artifacts is more

precise than the percentage of rejected data.

The Riemannian Potato (RP) [16] is a recent multivariate

approach to detect artifacts using covariance matrices pro-

cessed by Riemannian geometry [17]. It provides a measure

of dispersion (standardized z-score) using the distribution of

distances between covariance matrices and a reference of clean
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Fig. 1: 2D projection of the z-score map of a Riemannian potato, for 100
simulated 2×2 matrices Σ (in red) and their reference matrix (in black). The
colormap defines the z-score and a chosen isocontour zth defines the potato.

EEG. The RP rejects epochs whose covariance matrices lie

out of a region of acceptability defined by z-score threshold,

a region referred to as the potato because its crooked aspect

is induced by the non-linearity of the Riemannian manifold.

Even if it is not bounded, the z-score could be considered

as a SQI, as illustrated in Fig. 1. Due to its simplicity and

efficiency, the RP has been intensively used for i) online

artifact rejection for P300-based BCI spellers [18]–[20] and

games [21], ii) offline rejection before the statistical analysis

of cognitive assessments [22], [23], iii) offline rejection before

the classification of psychiatric disorders [24], [25] or motor

imagery BCI [26], iv) offline rejection in the source space after

applying a blind source separation (BSS) [27], v) rejection for

a reliable estimation of class centers of a SSVEP-based BCI,

online updated [28], or offline estimated and then used for an

offline [29], [30] or for an online [31] classification. However,

in all these cases, the SQI is used as a binary output resulting

from the z-score thresholding and its continuous range of

values is not fully exploited.

Belonging to anomaly detection [32], other approaches

exist for detecting artifacts in EEG [33]–[36]. Most of them

process block-online or offline instead of online (see [8],

[37] for details on these distinctions), or apply BSS and give

one index by source to remove artifacted ones [38]–[41]. A

supplementary advantage of the online RP is that, since it is

based on covariance matrices, it uses the same features used

for classification in the new generation of BCI paradigms

[17]: motor-imagery [42], event-related potentials [43], and

SSVEP [31]. Specifically, the use of some specific Riemannian

metrics improves transferability of learning, removing vari-

abilities modeled by spatial filtering due to their congruence

invariance [17] and reducing the risk of overfitting since spatial

filters are very specific to subjects and sessions [44].

The RP algorithm does have some limitations. First, its

sensitivity and specificity tend to drop as the number of chan-

nels increases. Second, its online initialization for real-time

applications requires an acquisition beginning of good quality.

This article introduces the Riemannian Potato Field (RPF), a

generalization of the Riemannian potato. The RPF overcomes

these problems by using several small potatoes in parallel,

each one designed to address a specific artifact, considerably

increasing its specificity. In this setting, each potato focuses on

a specific subset of channels and on a frequency band, which

are known to be affected by this specific artifact. The output

of each potato is then combined in a single SQI.

To address the initialization issues, a semi-dynamic mode is

introduced, where the algorithm is initialized with a clean

recording and updates itself with the current recording when-

ever its quality is considered sufficient. We show that even

for a small number of electrodes, RPF is more sensitive and

specific than RP.

After presenting the useful elements of Riemannian ge-

ometry in Section II, the Riemannian potato is detailed in

Section III and several improvements are listed in Section IV.

Section V introduces the Riemannian potato field, addressing

the limitations of the classic potato. EEG data used as vali-

dation is presented in Section VI. Section VIII compares the

different covariance normalizations for cross-session transfer

learning, whereas Section VII compares RP and RPF for

artifact detection. The last sections discuss the limitations of

the method and conclude the article.

II. PROCESSING OF COVARIANCE MATRICES

This section presents briefly the geometry of covariance

matrices that captures the multivariate second-order statistics

of the EEG. Readers interested in a deeper introduction may

refer to the primer [17] and references therein. We expand

this introduction by discussing the technical elements related

to the online implementation of this method.

A. Geometry of Covariance Matrices

Let X ∈ R
C×N denote an epoch of EEG signal, recorded

on C channels/electrodes and on N temporal samples. If

this signal is centered (e.g., after a band-pass filtering), its

covariance matrix Σ ∈ R
C×C is estimated as:

Σ =
1

N − 1
XXT . (1)

This estimation is computationally simple and fast. However,

N must be much greater than C to have a reliable estimator

of the true covariance (see [31] for comparison of estimators).

Covariance matrices are symmetric positive definite (SPD),

i.e., they have strictly positive eigenvalues. For this reason,

covariance matrices are confined in a subspace of the Eu-

clidean space, that is, the cone defined by the Cauchy-Schwarz

inequality, stating that the product of two variances is greater

than or equal to the square of their covariance [17]. These

matrices are therefore processed in a Riemannian manifold

MC , of dimension m = C(C + 1)/2, having a dedicated

geometry [45], [46]. Using the eigenvalue decomposition of

Σ:

Σ = U diag(λ1, . . . , λC)U
T ,



3

where λ1, . . . , λC are the eigenvalues and U the matrix of

eigenvectors of Σ, the unique symmetric square root Σ
1

2 and

symmetric inverse square root Σ− 1

2 are defined as:

Σ
1

2 = U diag(λ
1

2

1
, . . . , λ

1

2

C)U
T ,

Σ− 1

2 = U diag(λ
− 1

2

1
, . . . , λ

− 1

2

C )UT .

The affine-invariant Riemannian (AIR) distance between Σ1

and Σ2 is defined as [47]:

δR(Σ1,Σ2) = ‖Log(Σ
− 1

2

1
Σ2Σ

− 1

2

1
)‖F =

(

C
∑

c=1

log2 λc

)

1

2

,

where λc, c = 1, . . . , C, are the eigenvalues of Σ
− 1

2

1
Σ2Σ

− 1

2

1
.

The geometric mean of i = 1, . . . , I matrices Σi can be

defined as the matrix that minimizes the dispersion of Σi on

the manifold, i.e., the sum of squared distances:

Σ̄ = arg min
Σ∈MC

I
∑

i=1

δ2R(Σi,Σ) .

This mean is more robust to outliers than the Euclidean

mean [17], but is negatively affected by ill-conditioned input

matrices [48]. It has no closed form and therefore has to be

computed iteratively, for example through a gradient descent

algorithm [49] or by the more efficient fixed-point algorithm

given in [50].

The AIR distance has many properties [45, Chap 9], spe-

cially the invariance under congruent transformation:

δR(Σ1,Σ2) = δR(W
TΣ1W,WTΣ2W ) ,

for any invertible matrix W ∈ R
C×C . This is particularly

interesting for EEG analysis, since it shows that applying

a full-rank spatial filter does not change the Riemannian

distance between covariances [17]. Spatial filters are subject

and session-dependent [44], [51], [52], while AIR distance

offers cross-session and cross-subject transfer capabilities [17].

B. Online Implementation

Let us consider an EEG recording X ∈ R
C×N , in an online

setting where new data become available sample-by-sample or

block-by-block [8]. To meet the computational requirements of

an online implementation, the recording is cut in overlapping

epochs, resulting in a sliding window. Epochs have size N , and

the interval between two consecutive epochs is ∆N , with N >
∆N . At time n, we can extract the epoch X = X (1 . . . C, n−
N + 1 . . . n) ∈ R

C×N , and then the covariance matrix Σ is

computed with Eq. (1).

III. ORIGINAL RIEMANNIAN POTATO

In this section, we present the original Riemannian

potato [16] for online artifact detection.

A. Principle of the RP

The basic idea of the RP is to represent clean EEG by

estimating a reference covariance matrix Σ̄ and a measure

of dispersion (z-score), and then to reject all epochs whose

covariance matrices are too far from this reference according

to an objective statistical criterion. To do so, for epoch

number t, the Riemannian distance between the current co-

variance matrix Σt and the reference Σ̄t−1 is computed as

dt = δR(Σt, Σ̄t−1). Then, the z-score zt of this distance is

computed as:

zt =
dt − µt−1

σt−1

, (2)

where the mean µ and the standard deviation σ are computed

using the Riemannian distances between previous clean ma-

trices and the reference matrix:

µt =
1

t

t
∑

τ=1

dτ , (3)

σt =

√

√

√

√

1

t

t
∑

τ=1

(dτ − µt)2 . (4)

This z-score models the distribution of covariance matrices

considered as clean and provides a z-score threshold zth

(typically equal to 2.5, rejecting around 0.6% of data under

Gaussian assumption) defining the hull of acceptability. The

Riemannian potato then rejects epochs whose covariance ma-

trices lie out of this region of acceptability. Thus, the output

z-score of the Riemannian potato can be used as a SQI for

EEG signals.

In a typical adaptive implementation of this method, the

clean EEG model parameters (Σ̄t−1, µt−1, and σt−1) are

updated whenever the z-score zt is lower than the threshold

zth, that is, when the current EEG epoch is considered as

clean / non-artifacted. This update goes as follows.

First, the reference matrix Σ̄t−1 is updated, using the current

clean matrix Σt:

Σ̄t = Σ̄
1

2

t−1

(

Σ̄
− 1

2

t−1
ΣtΣ̄

− 1

2

t−1

)α

Σ̄
1

2

t−1
, (5)

where a coefficient α ∈ [0, 1] defines the speed of adaptation

or learning rate. Different learning strategies are possible

in online implementations: α can be constant (giving an

exponential moving average), or be a function such as 1/t
(giving a cumulative moving average). Note that this online

averaging is equivalent to Σ̄t = (1 − α)Σ̄t−1 + αΣt in the

Euclidean geometry [17].

Second, from Eq. (3) and (4), the mean and the standard

deviation of Riemannian distances are updated online as:

µt = (1− β)µt−1 + βdt , (6)

σt =
√

(1− β)σ2
t−1

+ β(dt − µt)2 , (7)

where the second learning rate β is usually chosen equal to α.

B. Online Initialization

A hyper-parameter Tinit defines the number of covariance

matrices (or equivalently, the recording duration) used for
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initialization of the region of acceptability, modeling clean

EEG. During this period, the EEG is preferably clear of any

artifacts so as to provide an accurate estimate for the mean and

the distribution of distances to it, which will greatly influence

the artifact detection performance [16]. Otherwise, the model

of clean EEG will be badly initialized and the Riemannian

potato will be inefficient to reject artifacts. The calibration

method to initialize the region of acceptability is shown in

Algorithm 1, used here with T = Tinit.

Algorithm 1 : Σ̄, µ, σ = RP Calibration ({Σt}
T
t=1

)

1: Estimation of the mean Σ̄ from the matrices {Σt}
T
t=1

2: Estimation of the T distances to the reference Σ̄
3: Estimation of the mean of distances µ with Eq. (3)

4: Estimation of the standard deviation σ with Eq. (4)

C. Summary

The Riemannian potato is summarized in Algorithm 2, and

its implementation is illustrated on the left part of Fig. 2. By

modeling clean EEG as a unimodal distribution of covariance

matrices thanks to Σ̄, µ and σ, this one-class classifier is a

simple, white-box, parameter-free, adaptive, deterministic, and

it is not specific to a particular kind of artifacts. Moreover,

it relies on simple concepts that can be illustrated graph-

ically, increasing further its wide and fast adoption by the

community. To illustrate it, Fig. 1 shows how 100 simulated

2×2 covariance matrices can be viewed as spatial coordinates

contained in a hyper-cone [17], from which a reference can

be computed (in black) and isolines of z-scores (colormap)

that can easily be translated into a likelihood of being a

clean epoch. Due to its popularity, the RP algorithm has

been implemented in different languages Python1, Matlab2,

OpenViBE3, and NeuroRT Studio4.

Algorithm 2 : zt = RP Online (Σt, Tinit)

1: initialization : zth ← 2.5, T ← ∅
2: if t < Tinit

3: T ← T ∪ {t}
4: if t = Tinit

5: Σ̄Tinit
, µTinit

, σTinit
← RP Calibration ({Σt}t∈T )

6: if t > Tinit

7: Riemannian distance dt ← δR(Σt, Σ̄t−1)
8: Distance z-score zt ← (dt − µt−1)/σt−1

9: if zt ≤ zth

10: Update of matrix mean Σ̄t with Eq. (5)

11: Update of distances mean µt with Eq. (6)

12: Update of standard deviation σt with Eq. (7)

1http://github.com/alexandrebarachant/pyRiemann
2http://github.com/alexandrebarachant/covariancetoolbox
3http://code.google.com/p/openvibe-gipsa-extensions
4http://www.mensia.com

IV. IMPROVED RIEMANNIAN POTATO

This section reviews several enhancements of the Rieman-

nian potato that have been introduced in the literature, followed

by some improvements proposed by this paper.

A. Robust Mean by Offline Outlier Removal

Even though the Riemannian mean is more robust than

the Euclidean one [17], it is still sensitive to outliers. This

limitation can easily be addressed by computing a robust mean,

where the Riemannian potato is used as an outlier removal

during an offline averaging [29], [30]. First, mean matrix and

z-scores are computed. Then, outliers above the threshold

are discarded, and finally, mean matrix is recomputed only

on the remaining matrices. This procedure is described in

Algorithm 3, returning the robust mean.

Offline outlier removal is useful to estimate reliable centers

of classes for classification, but results are better when a

potato is applied for each class [26], [29]–[31], rather than

on all matrices [24], [25] that can lead to the removal of

matrices close to the center of their class but far from the

mean of all matrices [53]. While the performance improvement

brought by outlier removal in the reference estimate has not

necessarily lead to significant improvements in controlled

environments [26], [31], it certainly contributed positively in

more adverse settings [11], [12]. A related approach is the

trimmed geometric mean [54], more robust than the geometric

median, where the outlier removal criterion is changed from a

z-score threshold to a percentage of the most distant matrices.

Algorithm 3 can be used iteratively [31]. At iteration k,

input is defined as {Σt}t∈Tk−1
, where Tk−1 is the output

indices set of the previous iteration k − 1. The number of

iterations K can be fixed [31] (typically 3-5) or could be

determined by a convergence/stopping criterion.

Algorithm 3 : {zt}
T
t=1

, Σ̄, T = RP Offline ({Σt}
T
t=1

)

1: initialization : zth ← 2.5, T ← ∅
2: Σ̄, µ, σ ← RP Calibration ({Σt}

T
t=1

)
3: for t← 1, . . . , T
4: Distance z-score zt ← (dt − µ)/σ
5: if zt ≤ zth

6: T ← T ∪ {t}
7: Estimation of the mean Σ̄ from remaining matrices

{Σt}t∈T

B. Geometric Statistics

All statistics defined in Eq. (2), (3) and (4) are arithmetic,

and are not optimal because Riemannian distances are not

normally distributed. Since distances empirically follow a

(non-negative) highly right-skewed distribution, they can be
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modeled by a log-normal or chi-squared distribution, and

geometric statistics are better descriptors [17], [45]:

µt = exp

(

1

t

t
∑

τ=1

log(dτ )

)

, (8)

σt = exp





√

√

√

√

1

t

t
∑

τ=1

(log(dτ/µt))2



 , (9)

zt =
log(dt/µt)

log(σt)
. (10)

The geometric z-scores of distances are more normally dis-

tributed than arithmetic ones5. Several offline RP have been

used with these geometric statistics [20], [31], replacing

Eq. (2), (3) and (4) respectively by Eq. (10), (8) and (9) in

Algorithms 1 and 3.

Moreover, like Eq. (6) and (7), geometric statistics can be

updated online as:

µt = exp ((1− β) log(µt−1) + β log(dt)) , (11)

σt = exp
(

√

(1− β)(log(σt−1))2 + β(log(dt/µt))2
)

. (12)

Consequently, we shall replace Eq. (6) and (7) respectively by

Eq. (11) and (12) in Algorithm 2.

C. Offline Initialization

An important limitation of the original RP was its online

calibration (see Section III-B) relying on the fact that the first

few seconds of the recording had to be clear of artifacts. This

use case is particularly problematic because the beginning of

EEG recordings are typically more prone to various sources

of contaminations from electrode adjustment to changes of

the skin electrochemical balance after the electrode setup. It

is therefore not desirable for Algorithm 2 to be initialized that

way as this would hinder its performance.

In order to be able to reject artifacts present from the

beginning of the recording, reference matrix Σ̄0, mean µ0

and standard deviation σ0 can be computed on a previously

recorded signal, using Algorithm 1, and then given as initial

parameters to the online RP. This procedure is very similar

to Algorithm 2, but steps 1 to 6 do not exist anymore since

the potato is already initialized, and output z-score can be

computed from t = 1. In this case, the value of Tinit, used

in update equations, defines the importance given to the

initialization, with a high value for a confident calibration.

Since this initialization is made offline, the outlier removal

described in Section IV-A can be used to estimate a robust

center of the potato.

In other words, the online Riemannian potato, described in

Algorithm 2, can be used online in three modes:

• dynamic: online initialization and potato update (as orig-

inally published [16] and described in Algorithm 2),

• semi-dynamic: offline initialization and potato update

(described in this paragraph),

• static: offline initialization and no potato update (steps 9

to 12 of Algorithm 2 are never executed, equivalent to

α = β = 0).

5This will be important in the following, notably in Eq. (15).

D. Covariance Normalization for Transfer Learning

In order to increase the efficiency of the artifact detection

of the semi-dynamic or static RP used with a transferred

initialization, covariance matrices can be normalized to reduce

remaining sources of variability. As previously noted, transfer

learning is a challenge in EEG and Riemannian geometry

is inherently insensitive to some session and subject vari-

abilities thanks to the congruence invariance property [17].

Other sources of variability, for instance related to electrode

impedances, can also be addressed by pre-processing steps

applied to the input covariance matrices such as normalization.

Covariance matrices can be either trace-normalized [55] as

follow:

Σ←
1

trace(Σ)
Σ =

N − 1

trace(XXT )
Σ =

N − 1

‖X‖2F
Σ , (13)

or alternatively determinant-normalized [20], [56] as:

Σ←
1

det(Σ)1/C
Σ , (14)

providing a unit hyper-volume of the feature space, with C
the number of channels. Such normalizations can be applied

for cross-session as well as for cross-subject transfer learning.

E. Generic RP on several recordings

Algorithm 1 describes how to calibrate a RP on a single

recording, but it does not well estimate the region of accept-

ability when we want to calibrate a generic RP on several

recordings, coming from different sessions and/or different

subjects. Adding a superscript s = 1, . . . , S to index the

recordings, the offline initialization of the generic RP (GRP) is

described in Algorithm 4. The reference covariance matrix is

the geometric mean of the reference covariance matrices Σ̄s of

the recordings, and the mean µ (resp. standard deviation σ) of

distances is the arithmetic mean of means µs (resp. standard

deviations σs).

Algorithm 4 : Σ̄, µ, σ = GRP Calibration ({{Σs
t}

T s

t=1
}Ss=1

)

1: for s← 1, . . . , S
2: Σ̄s, µs, σs = RP Calibration ({Σs

t}
T s

t=1
)

3: Estimation of Σ̄ as the mean of matrices {Σ̄s}Ss=1

4: Estimation of µ as the mean of {µs}Ss=1

5: Estimation of σ as the mean of {σs}Ss=1

V. FROM ONE POTATO TO A POTATO FIELD

The original Riemannian potato is usually applied on all

the C channels, which gives a feature space of dimension

m = C(C + 1)/2. When the dimension C of the covariance

matrix becomes too large, any artifact generating an important

variation in one dimension disappears in the noise of all

other dimensions. The distance between the current covariance

matrix Σt and the reference matrix Σ̄t does not increase

significantly and, consequently, such artifact is not detected.

This phenomenon, related to the curse of dimensionality,

can occur for a headset with C = 8 channels giving a

space of dimension m = 36. It is furtherly emphasized for
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Fig. 2: Illustration of the difference between implementations of the Riemannian potato (left) and the Riemannian potato field (right).

headsets with C = 16, 32, 64 and more, giving dimensions

136, 528 and 2080, respectively. To overcome this limitation,

the Riemannian potato field defines and combines several

potatoes of smaller dimensions.

A. Principle of the RPF

The RPF consists in using several potatoes of low dimension

that are placed in parallel, each one of them being designed

to capture specific artifact typically affecting specific spatial

areas (i.e., to a subset of channels) and/or specific frequency

bands. Then, the output z-scores of these small potatoes are

combined into a single SQI. Depending on the available

channels, different potatoes are defined to detect all types of

potential artifacts [4], [36], [57].

For ocular artifacts, a potato is applied to frontal electrodes

with a signal filtered in low frequencies. For muscular artifacts,

several potatoes can be defined with the signal filtered in

high frequencies: a potato applied on temporal electrodes

for each side, left and right, to detect jaw clenching and

swallowing; a potato applied on frontal electrodes to detect

forehead tension and a potato applied on occipital electrodes to

detect neck tension. For intermittent electrode disconnections

(“electrode pops”), a potato is applied on each pair of channels,

with a signal filtered in low frequencies. For other artifacts

contaminating all channels (e.g., head motion artifacts), the

classic potato can be applied in one or several frequency bands,

excluding target bands (in BCI or NFB, modulations of target

frequency bands should not be detected as artifacts). In this

lower dimensional framework, variations caused by artifacts

produce a more significant increase of potato distances and

derived z-scores leading to a greatly increased sensitivity.

After defining a set of J potatoes composing the RPF,

their output z-scores are combined in a single p-value using

the right-tail Fisher’s method [58] where for z-scores zj ,

j = 1, . . . , J , their associated p-values pj are defined as:

pj = 1− cdfN0,1
(zj) , (15)

where cdfD denotes the cumulative distribution function of

D and N0,1 the normal distribution of mean 0 and standard

deviation 1. The Fisher’s method combines the p-values pj
as [58]:

q = −2
J
∑

j=1

log(pj) , q ∼ χ2

2J , (16)

where χ2

2J is the chi-square distribution with 2J degrees of

freedom. The final p-value is thus:

p = 1− cdfχ2

2J
(q) , p ∼ U0,1 , (17)

where U0,1 is the uniform distribution between 0 and 1. In the

RPF, p ∈ [0, 1] is the SQI, combining the output z-scores of

the Riemannian potatoes.

This SQI can be applied to different use cases. For quality

assessment, it can be averaged across all epochs of a recording

so as to give an averaged SQI, which would provide a more

representative value than the percentage of clean epochs. For

artifact detection, a threshold pth (empirically set to 0.01) is

applied on p: an EEG epoch is considered as normal/clean
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when p is higher than threshold pth, and abnormal/artifacted

when p is lower than pth. Essentially, p is the probability to

reject the null hypothesis “clean EEG”.

B. Design of the Field

Since potatoes of the field are dedicated to specific spatial

areas and/or frequency bands, the Riemannian potato field

must be designed for each headset, considering its specific

channel localizations. In this work, we illustrate with a headset

with C = 8 electrodes, placed according to the international

10-20 system [59]: Fpz, F3, Fz, F4, C3, Cz, C4 and Pz.

1) Potato for muscular artifacts: Electromyographic

(EMG) activities, such as jaw clenching, swallowing, chewing,

shivering, forehead wrinkling, neck contraction, and facial

muscles typically contaminate electrodes closest to muscles

and affect high frequencies [60] with a spectral peak at around

70Hz. To detect these muscular artifacts, peripheral electrodes

are selected: Fpz, F3, F4, C3 and C4, and signals band-pass

filtered from 55 to 95Hz.

2) Potato for ocular artifacts: Electrooculographic (EOG)

activities such as eye-blinks and eyes movements (horizontal

and vertical) mostly contaminate frontal electrodes with low

frequencies (inferior to 20 Hz) [61], [62]. To detect these

ocular artifacts, frontal electrodes are selected: Fpz, F3, Fz

and F4, and band-pass filtered from 1 to 20 Hz.

3) Potato for temporary electrode contact loss (“pops”):

Electrode pops are generated by a temporary contact loss:

it can occur in each electrode and typically provokes a

discontinuity in the recording followed by a typical oscillatory

period generated by the impulse response of various analogous

and digital filtering steps, eventually converging to normal

functioning. This phenomenon results in a sudden drop in the

covariance of this channel with any other, thereby affecting the

off-diagonal term of any bivariate covariance matrix including

the disconnected channel. Consequently, any two-by-two pairs

of electrode band-pass filtered around 1 and 20 Hz would

effectively detect these events: Fpz with Fz, F3 with F4, C3

with C4, and Cz with Pz.

4) Potato for general artifacts: Many other artifacts can

contaminate EEG affecting more broadly or less specifically

channels and frequency. Movement artifacts for instance and

cardiac contaminations are such examples. To detect these

general artifacts, all the channels are filtered in the non-

target frequency bands. In fact, BCI or NFB applications

aim at the modulation specific brain oscillations, it is thus

advisable to exclude such frequencies from the general potato

so as to prevent desirable brain modulations to be detected

as artifactual. Consequently, non-target frequencies must be

chosen depending on the application. Since the data on which

we validate this techniques comes from a NFB experiment in

which subjects where asked to modulate their theta to beta

ratio (TBR) or sensorimotor rhythms (SMR), we decided to

exclude them and refrain the general potato to the following

bands: 1 to 3Hz and 32 to 45 Hz, that are then concatenated

in a spatio-frequential covariance matrix [17].

C. General Remarks

In summary, the Riemannian potato field introduced in

this section is meant to be more sensitive to the variations

of each dimension by using small potatoes dedicated to the

detection of specific artifacts. The selection of channels and

frequency bands must be adapted to each headset and each

application. Similarly to the RP, the RPF can be used for

offline averaging as well as for online detection (with three

modes of initialization: dynamic, semi-dynamic and static, see

Section IV-C).

The previous list of potatoes is not exhaustive and can be

easily extended depending on which electrodes are available.

It could also be completed to capture more artifacts. For

example, a bi-variate potato on Fp1 and Fp2 will capture

horizontal eyes movements at low frequencies.

The cost of the algorithm is dominated by the computation

of eigen decomposition required for i) the distance to the ref-

erence of each potato in the field, and ii) the update of the each

reference matrix. The complexity of an eigenvalue-eigenvector

decomposition is cubic with the number of electrodes C and

therefore is dominated by the largest potato of the RPF. This

is a fast computation even for C = 100 on modern computers,

however, in practice when C is large and large potatoes are

used, dimensions can be reduced (by PCA), in order to keep

the computational cost always very low.

The RPF, containing J = 6 potatoes, is illustrated on the

right part of Fig. 2. For research reproducibility, plugins of RP

and RPF are available in software NeuroRT Studio 3 (Mensia

Technologies, Paris, France), an extended and certified version

of the OpenViBE software [63], which was initially designed

for real-time analysis of EEG signals, BCI and virtual reality.

VI. EXPERIMENTAL MATERIALS

The dataset used to benchmark the methods introduced in

this article were collected during the NEWROFEED clinical

trial [64]. Children suffering from Attention Deficit with or

without Hyperactive Disorder (ADHD) aged 7 to 13 years old

were included in this trial after giving informed assent and

collecting consent from a legal guardian. In total 191 children

were included in the study over 12 clinical centers across Eu-

rope. Amongst them, 113 were randomized to a Mensia Koala

intervention and received approximately 46 thirty-minute-long

EEG-NFB sessions, more than 80% of which happened in a

non-controlled environment (typically at home). During such

session, patients were instructed to modulate a feedback that

was computed from their instantaneous EEG activity, namely,

TBR or SMR.

The EEG was recorded with a sampling rate of 512 Hz

using an Eego8 headset (ANT/Eemagine, Berlin, Germany)

with C = 8 electrodes placed according to the international

10-20 system [59] at Fpz, F3, Fz, F4, C3, Cz, C4 and Pz,

with reference and ground located at right and left earlobes,

respectively.

During electrode setup, users where instructed with pho-

tographs on how to set the cap right, and an interactive real-

time visualization of impedances required each of them to

not exceed 30 kΩ. After DC and powerline removal by digital



8

Fig. 3: The Receiver Operating Characteristic (ROC) curves for the RPF
showing the Sensitivity as a function of 1-Specificity for three covariance
normalization: none (green), trace-normalization (blue) and determinant-
normalization (red). For these ROC curves, transferred RPF are evaluated
using the true labels from self-calibrated RPF.

filtering, a two-step strategy was applied for real-time artifact

management: i) correction of strong and unavoidable artifacts

in eyes-open EEG, i.e. eye-blinks, and then ii) detection of

remaining artifacts by the RPF described in Fig. 2. Correction

of eye-blinks is performed by an online BSS method based

on the approximate joint diagonalization of Fourier cospectra

(AJDC) from 1 to 21 Hz [8], explaining why there is no potato

dedicated to ocular artifacts in the RPF of Fig. 2. The blink

source is monitored in real-time and a threshold allows a local

removal of blinks [65], avoiding to remove residual neural

activity when there is no blink. Detection of remaining artifacts

by the online RPF6 ensures NFB training was performed on

high SNR epochs.

The goal of the following two sections is to validate the

covariance normalization for transfer learning and then the

artifact detection introduced in the methods above.

VII. VALIDATION OF COVARIANCE NORMALIZATION

FOR CROSS-SESSION TRANSFER

To validate the cross-session transfer ability of the semi-

dynamic RPF, four subjects were randomly selected from the

database and it was manually verified that their recordings

were mostly composed of good-quality epochs. Using an

iterative offline outliers removal, the robust Riemannian mean

of each of those recordings is expected to well estimate the

6Online RPF has been used with a cross-session transfer for the ini-
tialization of the potatoes, with a semi-dynamic mode and with geometric
statistics. Covariance matrices have been computed on sliding windows of
2 s every 0.125 s, and have been trace-normalized. Parameters values were
α = β = 1/t, Tinit = 50, zth = 2.5, pth = 0.01.

Fig. 4: Distributions of Youden’s J statistics for the RP, RPF and ASR
operating at different level of transfer learning and different modes of update:
dynamic (blue), semi-dynamic calibrated on first assessment (green), static
calibrated on first assessment (red), and semi-dynamic calibrated on other
subjects (purple).

reference covariance of clean EEG, since most of the recording

was clean. In this context, we believe that a RPF applied on

the recording used for calibration is a good automated “silver-

standard” for the assessment of transfer learning efficacy

of this method, that is calibrated on a different reference

recording and therefore exposed to additional sources of

variability. To summarize, the following modes of operation

were compared in this section: i) a transferred RPF, a RPF

calibrated on a reference session and then applied to detect

artifacts on other sessions (of the same subject), and ii) a

self-calibrated RPF, a RPF calibrated on a session and then

retrospectively applied to detect artifacts on this same session;

it is our silver standard defining the “true” labels.

The validation is carried using a leave-one-session-out

cross-validation procedure, during which the comparison is

repeated for each session. At each iteration, the transferred

RPF is calibrated on the left-out session and applied pseudo-

prospectively to the others so as to be compared with the silver

standard (self-calibrated RPF). This procedure is repeated so

that each session eventually serves once as a reference and

contributes exactly S − 1 times to the assessment of the

performance, where S is the total number of sessions by

subject. The Receiver Operating Characteristic (ROC) curves

are computed by considering several operating points with

thresholds on the combined Fishers’ p-values.

The ROC curve is plotted in Fig. 3 for the three covariance

normalizations: none (green), trace-normalization (blue), and

determinant-normalization (red) with associated Areas Under

the ROC curves (AUCs) at 0.929, 0.952, and 0.948, respec-

tively. This experiment shows that covariance normalization

improves cross-session transfer learning, and that the two

normalization strategies behave similarly.
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TABLE I: Table of statistical significance for pairwise tests. A *** symbol indicates that the p-value is smaller than 0.001. The direction of the arrows
indicates which of the two methods performs best: → for the method in the row and ↑ for the method in the column.

dynamic

RP

***

→

semi-dynamic

RP

on assessment

***

↑
***

↑

static

RP

on assessment

***

→
***

→
***

→

semi-dynamic

RP

on other subjects

***

→
***

→
***

→
***

→
dynamic

RPF

***

→
***

→
***

→
***

→
***

→

semi-dynamic

RPF

on assessment

***

↑
***

↑
***

→
***

↑
***

↑
***

↑

static

RPF

on assessment

***

→
***

→
***

→
***

→
***

→
***

→
***

→

semi-dynamic

RPF

on other subjects

***

↑
***

↑
***

↑
***

↑
***

↑
***

↑
***

↑
***

↑

static

ASR

on assessment

VIII. VALIDATION OF THE RPF

In order to evaluate the performance of the RPF, one needs

to compare its performance to a reliable “truth”. Manual

annotation are often considered as “ground truth” or “gold

standard” but suffers two major limitations: i) its implementa-

tion is often unpractical for large volume of data and ii) it

is hard to capture inter- and intra-expert variability unless

asking several annotations per observation, which falls back

into the first limitation. We believe that large amount data of

relatively high quality coupled with the natural robustness of

the Riemannian methods opens an opportunity for a reliable

automated silver standard. In order not to bias the standard

towards any particular method, it will consist in a majority

voting between the two suggested methods plus a univariate

Gaussian model of normality, each technique being calibrated

on the whole data of each subject (using a generic calibration

for RP and RPF), which accounts for the larger source of

variability [9].

The univariate Gaussian model of normality is simply

comparing the instantaneous power metrics to their normal

univariate distribution computed from the whole subject’s data.

The metrics are the electromagnetic log-power of 50Hz (band-

pass filtering between 47 to 53Hz) summed across channels,

the log-power in high frequencies (high-pass filtering from

40 and notch of 50Hz and its harmonics), and the log-power in

low frequencies (band-pass filtering between 0.2 to 0.55Hz).

The model was calibrated by computing the distribution

of each feature and defining thresholds of acceptance as

[Q1 − 1.5IQR, Q3 + 1.5IQR], with Q1 and Q3 the first and

third quartile and IQR the inter-quartile range. This was done

under the hypothesis that the distributions are normal with

zero-kurtosis and potential artifacts in the calibration set would

mostly affect the right-hand side of the distribution as artifacts

often display higher energy. All these univariate features were

finally combined using a logical ‘OR’ operation requiring any

of the three indicators to trigger a bad quality for the resulting

epoch to be classified as noisy.

Nine methods are then compared to this self-calibrated

majority voting standard. Eight methods derive from the Carte-

sian product of the following two parameters: method (RP

or RPF) and update mode (dynamic, semi-dynamic initialized

on assessment (the subject’s first available recording), semi-

dynamic initialized on all other subjects (using a generic

calibration), and static initialized on assessment). These Rie-

mannian techniques are compared to another online method

called Artifact Subspace Reconstruction (ASR) [66], originally

designed for artifact correction, but which can be easily used

for artifact detection7 and can be considered as online static8.

In terms of criteria for the evaluation of the methods perfor-

mance, one has to steer away from traditional statistics. Indeed,

in order to account for both the sensitivity and the specificity

of the methods, a Youden’s J statistic [67] was preferred

and computed as J = sensitivity + specificity− 1 ∈ [−1, 1],
giving an equal contribution from false positives and false

negatives (which is crucial in our case, where classes are

unbalanced). The J statistic was finally computed for each

NFB session and the resulting distributions are plotted in

Fig. 4. Results visually suggest that the RPF (middle) outper-

forms RP (left) and ASR (right). The statistical significance of

these differences was assessed using a paired non-parametric

Wilcoxon signed-rank T test. The test was applied on each

pair of methods and multiple testing was corrected with a

T -min permutation test correcting efficiently the family-wise

error rate [68]. The significances of these 36 pairwise tests are

reported in Table I.

Before studying the results, we must mention that 75

recordings have been excluded from this experiment, because

the beginning of these recordings was excessively artifacted

and dynamic initialization failed (due to numerical errors in

7Detection uses only the right part of R operator in [66].
8The look-ahead window has been removed to be actually online. It is said

static, because matrix M̄ is initialized offline, but never updated thereafter.
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the eigen decomposition solver) whereas the semi-dynamic

and static modes simply reject these epochs. The fact that it

was necessary to remove these recordings is a first indication

of the superiority of the semi-dynamic and static modes over

the dynamic one.

Table I shows that static RP and RPF are consistently in-

ferior to their dynamic and semi-dynamic counterparts, which

can easily be explained by their lack of adaptability to local

distributions. This is also true for ASR whose inner model M̄
is never updated [66]. This result suggests that it is important

for EEG models to be adaptive possibly because the brain

electric activity is notably non-stationary but also possibly due

to unrelated technical factors such as the long-term changes in

electrode impedance. For all other initialization modes, RPF

outperforms RP. For RP and RPF, semi-dynamic modes are

better than dynamic ones. Furthermore, the results show that

the semi-dynamic mode calibrated on all other subjects is

better than when calibrated on the first assessment, which

will be discussed in the next section. To conclude, these

results validate the interest of the RPF and the semi-dynamic

initialization.

IX. DISCUSSION

The RPF presented and validated in this article, though

superior in performance, has some limitations. First, a RP

which selects all channels filtered in the same frequency band

has very few parameters, unlike RPF. In fact, RPF embeds a

priori knowledge on artifacts, defining specific channels and

frequency bands for each potato. For this reason, RPF must be

re-designed for each headset, considering the specific channels

localizations and their potential contaminations. Moreover, to

output a valid p-value (i.e., uniformly distributed between 0

and 1), Fisher’s [58] or Stouffer’s [69] p-combination pro-

cedures assume that all input p-values are independent. This

assumption does not necessarily hold when potatoes overlap.

However, the goal of this method is to provide a value for

SQI, and it is not important9 if the value of the threshold is

not equivalent to the percentage of rejected data (which is the

true meaning of a p-value). In any case, the threshold has to be

empirically found in order to separate noisy from clean EEG.

Second, the validation in Section VIII is not based on a

gold standard. Since manual validation is operator dependent,

a multi-evaluation would be required for a confident artifact

labelling, but this is not feasible on the large volume that

we used for validation. In addition to that, it is our opinion

that manual annotation would also constitute a silver standard

as the operator has a limited accuracy, a limited attention

span, and some variability. A common alternative is to use

a normality model, which is done in the experiment in an

Euclidean way using univariate statistics, and in a Riemannian

way using RP and RPF (both are used to avoid to introduce

a bias in the voting). These models are calibrated on all data

of each subject, since inter-subject variabilities are higher than

inter-session ones [9], [15], and then combined through a vote.

These models are applied on their training data however, the

9It is always possible to resample this value into a true p-value using a
labelled database.

risk of overfitting is limited by the large quantity of data

available and because models are generative classifiers (unlike

discriminative ones, more likely to overfitting).

The results given in Table I support the fact that the RPF

offers increased performance compared to the RP. However,

this result only grazes the potential of the RPF because

the EEG recordings only had C = 8 channels. With more

channels, the limitations of RP will have a stronger detrimen-

tal impact, while RPF will show even better performances.

Finally, regarding the best mode of calibration of the RP and

RPF; the RPF calibrated on other subjects was consistently

better as compared to any other calibration strategy, includ-

ing a subject-specific approach. This approach combines all

data from other recordings, which compensates for its non-

specificity (with respect to the target subject), in contrast to a

calibration based on the first assessment of the target subject,

containing significantly less data but very specific. This opens

the prospect of a calibration-free device using a cross-subject

transfer [70].

Finally, our strategy for real-time artifacts management

is in two steps, as described in Section VI: correction of

unavoidable artifacts (as blinks), and then detection of re-

maining artifacts to suspend processing and to send a warning

feedback teaching the user how to avoid artifacts. We believe

that this strategy is better than a silent online denoising like

ASR [66], which does not help the user to improve the

quality of acquired data. Moreover, RPF could be applied to

magnetoencephalographic (MEG) recordings, contaminated by

specific artifacts which could be captured by specific potatoes.

This method is implemented in a ISO-13485 [71] medical

device currently prescribed in Europe. The NEWROFEED

clinical trial that collected the data used for this work ap-

plied this method in real-time and provided the user with a

real-time feedback on its signal quality. This feature greatly

contributed to the acquisition of data, whose quality was found

comparable to that collected in a clinical environment under

the supervision of a trained expert.

X. CONCLUSION

After reviewing the Riemannian potato for the estimation

of a signal quality index (SQI), this paper has introduced the

Riemannian potato field to overcome the lack of sensitivity

when EEG recordings have many channels, combining several

small potatoes dedicated to specific artifacts. We have also

proposed a semi-dynamic calibration mode that addresses the

situation when the onset of an acquisition is too noisy, and

a covariance normalization approach to improve the transfer

learning capacities.

Online detection methods, RP, RPF and ASR, have been

compared on the largest EEG dataset collected in the home

environment. The results unequivocally support the use of the

RPF as a better artifact detection method than the RP, offering

excellent transfer learning ability. The results of this article

validate the new approach for SQI, i.e., the semi-dynamic RPF,

trace-normalized for optimized transfer learning capacities.

RPF is appropriate for recording EEG in a non-controlled

environment for out-of-the-lab applications; an open field in

NFB and BCI [11], [12].
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The limitations of the method presented in this paper can

be addressed with the following perspectives. A first extension

could be a multimodal modelization of the distribution of

covariance matrices. Currently, each potato has a unique

reference center. To capture the variabilities not encoded by the

affine-invariance property, we could estimate several centers

for each potato, using Riemannian clustering techniques like

K-means, Mean-shift [72] or mixture of Riemannian Gaussian

distributions [73]. Another perspective is the cross-system

transfer learning, to cope with the inter-system variabilities,

since current RPF must be re-designed for each headset

contrary to RP. A last prospect is to use free-access EEG

datasets [74] to build and share reference covariance centers

of clean EEG, in order to standardize the artifact detection

process across studies.
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Ferris, and P. König, “Systems, subjects, sessions: To what extent do
these factors influence EEG data?” Front Hum Neurosci, vol. 11, p.
150, 2017.

[10] E. Kappenman and S. Luck, “The effects of electrode impedance on data
quality and statistical significance in ERP recordings,” Psychophysiol-

ogy, vol. 47, pp. 888–904, 2010.

[11] R. Leeb, S. Perdikis, L. Tonin, A. Biasiucci, M. Tavella, A. Molina,
A. Al-Khodairy, T. Carlson, and J. del R. Millan, “Transferring brain-
computer interfaces beyond the laboratory: Successful application con-
trol for motor-disabled users,” Artif. Intell. Med., vol. 59, pp. 121–132,
2013.
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