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Abstract. A riemannian metric is introduced in the manifold representing the
states of a generic physical system, under suitable assumptions of regularity on
the "generalized transition probability" defined in [1]. From the mean values of
the observables it is then possible to construct gradients and brackets, and in the
special case of a system admitting a quantum-mechanical description the latter
are shown to be related to the familiar commutators via a skew-symmetric
tensor field which is part of the intrinsic geometry of the project! ve Hubert space
of physical states.

1. Riemannian Structure of the Space of Physical States

As shown in [1], whenever a physical system is described by a set S of states, a set 0
of observables, and a function p(A, α, E) representing the probability that the
measurement of the observable A on the state α give a result in the Borel set E of the
real line (Mackey, [2] axioms I and II), one can construct a function T(α, β\ (α, βe S\
which generalizes the quantum-mechanical transition probability between pure
states, and use it to introduce a distance in S.

If the preparation of a physical state involves the choice of a finite number of
continuous control-parameters, S can reasonably be regarded as an n-dimensional
manifold in which the control-parameters constitute (or are directly related to) a set
of admissible coordinates. This point of view can be extended to systems in which a
preparation involves the choice of arbitrary functions by regarding S as an infinite-
dimensional manifold, which we shall assume to be of class C3 and modelled on a
real hilbertable vector space ([3], p. 151).

Consider the generic point α of S, in the domain U of some chart (17, φ\ and a
neighbouring point βeU. Setting φ(α) = P, φ(β) = Q, the generalized transition
probability T(α, β) can be represented by the function Tφ(P, Q) = T(φ ~ \P\ φ ~ l(Q))
defined in E x E. Keeping P fixed, Tφ(P, Q) becomes a function oΐQ which will be
denoted by TP(Q\ Recalling the properties of T(α,β) established in [1], we have
TP(P) = 1 and TP(Q) < 1 whenever Q Φ P, so that TP(Q) has a maximum at P. If TP(Q)
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is assumed to be twice differentiable ([3], p. 6), then the first derivative DTP(Q)
vanishes at P, i.e. DTP(P) = 0; consequently the second derivative D2TP(Q\
evaluated at P, can be identified with a bounded bilinear form on E x E which
determines a symmetric tensor at α. If the bilinear form D2TP(P) is non-singular, the
associated quadratic form is negative-definite and its opposite determines a metric
tensor at α, which will be denoted by #(α). Thus under appropriate assumptions of
regularity, the function T(α, β) determines a riemannian structure on S ([3], p. 152).
The tensor field #(α) will be assumed to be of class C1.

To get further insight on the preceding construction, let us turn our attention to
the finite-dimensional case and consider the distance function d(a,β)
= [2(1 - T1/2(α, β)]1/2 defined in [1]. Let x = (x\ x2, ..., XΛ) be the local coordinates
defined by the chart (U,φ), and set φ(a) = xp, φ(β) = xQ = xp + dx. One has d2(a,β)

= 2(l-r1/2(α,β)) = 2(l- yτp(x)l and since Tp(xp) = l and dTp/dxft)XP = 09

(/ι =1,2,..., n\ the first and second terms in the Taylor expansion of d2(u,β) at xp

vanish, so that the squared distance between the neighbouring points α and β is
expressed, up to terms of higher order, by the quadratic form

x«. (i)
h,k h,k \VX VX χp

The tensorial character of 0 is then easily checked by preforming a change of local
coordinates and taking the vanishing of the first derivatives of Tp at xp into
account.

2. Observables, Vector Fields and Brackets

Let us denote by Ά(<x) and £(α) the mean values of two observables A and B on the
state α. Like all the entities previously introduced, Ά(α) and B(α) can be derived from
the probability function p(A, α, E), which is itself operationally determinable.

If Ά((x) and B(oc) are of class C2 as functions of α on the riemannian manifold S,
their gradients grad^ and grad£ ([3], p. 163) are well-defined, together with the
bracket [grad^, grad£] ([3], p. 104). With our present assumptions there is no
warrantee that [gradl, gradΰ] will be related to the gradient of a function C(α)
representing the mean value of some observable C; but if this is the case, the
structure determined by the bracket operation can be transported back from the
vector fields to the observables.

Though derived from the mean values of A and B, the bracket is implicitly
related to the actual probability distributions of the observables via the riemannian
metric.

In the next section we shall show that in the case of a quantum-mechanical
system the structure just considered is related to the familiar one determined by the
commutators of the hermitian operators representing the observables in Hubert
space.

3. Connection with Quantum Mechanics

Let us denote by H the complex Hubert space of a quantum-mechanical system.
The manifold S of our general scheme now coincides with the projective space H
associated with H, regarded as a real manifold. Let ωeH represent a generic



Riemannian Structure on States 191

physical state. We shall introduce in H an orthonormal basis {ε0,εH}
= {ε0,81,83,...} whose elements are labeled, for future convenience, with the
index 0 and with odd positive integers, and such that ε0 coincides with one
of the unit vectors of H representing the state ω. Thus the index H (and
all capital indices) runs over a finite set of positive odd integers if H is finite-
dimensional, and over the set of all positive odd integers if H is infinite-
dimensional. Let Uω be the neighbourhood of ω constituted by the states
α such that T(ω, α)>0, so that each element of Uω is represented in H
by vectors with a nonvanishing component of index 0. Disposing of the
arbitrary complex factor in the Hubert representation of the physical states, we
associate with each element αeC/ω the uniquely determined unit representative
vector αΞα°80 + ΣαHδH whose component α° is positive. Setting a° = x°,

H

oί = x -f ίx (x y x real), one has |oc| =(cx ) -h/^oc oc ={x ) ~\~^j(x ) ==1?
H h

(where /ι, like all the lower-case indices, runs over the set of all positive indices from 1
to n or from 1 to oo, according to the dimension of H). The correspondence
α->{xh} = {x1,x2,...} defines a local coordinate system in C7ω, while

x° = Γl-Σ(xΛ) 2 j 1 / 2 is a dependent quantity.
L h \

The generalized transition probability, which now coincides, as shown in [1],
with the usual squared modulus of the scalar product, is given by T(α, β) = \ α°/?°

+ Σ%HβH 2, and can be regarded as a function of the independent coordinates {of1}
H

and {βh} of the states α and β in Uω. In the finite-dimensional case the components
ghk of the metric tensor at α can readily be computed by means of Equation (1), and
have the form

xhxk

i-Σtf)2

i

and it is easy to verify that the quadratic form Σ Qhkdxhdxk makes sense even in the
hk

infinite-dimensional case and represents the squared modulus of the vector

εo + Σ (d*H + idxH + I

which is orthogonal to α in H and can therefore be regarded as tangent to S at α, if
Uω is identified with the appropriate portion of the surface of the unit Hubert
sphere.

The matrix ghk has the inverse ghk = δhk - xhxk, from which the gradients and the
brackets can be explicitly constructed. If φ is a co variant vector field in H with
components φh, we shall denote by g*φ the contravariant vector field v with
components ghkφk. Conversely we shall write φ = g[v.

Besides the riemannian metric, the manifold H possesses a skew-symmetric
tensor field which is also determined by the complex scalar product of H. In fact, if
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H is regarded as a real vector space with basis {e0, eh} = {ε0, ε1? /ε1? ε2, z'ε2, . . .}, then
the imaginary part of the original scalar product is a bilinear form associated with

the skew-symmetric tensor Yl(eH®eH+1 — eH+1®eH), which induces in the
H

manifold H at ω the skew tensor η(ω) with components ηhk equal to 1 if h is odd and
k = h+l,to — 1 if his even and k = h — 1, to zero otherwise. It is easily checked by
passing to a new basis {ε0,, %,} in H (and keeping ω fixed, so that ε0, = exp(ί#)ε0),
and by performing the associated coordinate transformation in H, that our
construction of the tensor η(ω) is basis-independent, so that the skew-field η
obtained by repeating the construction at each point is an intrinsic geometric
element of H. If φ is a co variant vector field in H, with components φh, we shall
denote by η^φ the contravariant vector field with components ηhkφk, where (ηhk) is
the matrix inverse to (ηhk).

Consider now the observables A and J3, represented in H, according to the
quantum-mechanical description, by two hermitian operators A and B. Set
C = — 2ί(AB — BA). The mean value A(oc) is given by

i), (2)
Hk

where {A009 AOH, AHO, AHk} are the matrix elements of A in the basis {ε0, εH}. jB(α)
and C(α) have analogous expressions.

It is now possible to verify the equation

[gradi, grad£] = - y V grad C (3)

This is most easily done, in our coordinate system, by computing the h-th
components at the point ω (which had been chosen arbitrarily in S). It must be
remembered that x° is not an independent coordinate in I7ω.

Equation (3) establishes the relation between the bracket operation considered
in the more general context of the previous sections and the quantum-mechanical
commutators.

4. Remarks

If S is the phase space of a classical system our construction fails, because T(α, β\
regarded as a function of its second argument, is then equal to zero everywhere
except at the point α where, therefore, it is not differentiable. Notice however the
analogy between the symplectic structure of classical phase space and the skew-
symmetric tensor field of H. The latter can be used alone (i.e. independently of g) to
define a Poisson-bracket operation \_A, B~\ from the mean values of the observables,
exactly in the same way as the former is used to form Poisson-brackets from the
mean (but then also exact) values of the observables in classical phase-space. It is
possible to verify ([4]) that {A, B~] = C in H, where, as above, C is the observable
described by the hermitian operator —2i(AB — BA) in H.
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The explicitation of the skew tensor field η in H should be of some help towards
a better understanding of the connection between classical and quantum me-
chanics : in particular it suggests that it should in some sense be possible to regard
the classical phase space as the limit of a project! ve Hubert space in which the metric
g (but not the skew-field η) becomes degenerate, the degeneracy being related, on
account of the definition of T(α, /?), to the existence, for every pair of states α and β,
of at least one observable with non-overlapping ranges of values on α and β.
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