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In patients with congenital heart disease the right ventricle
(RV) may support the pulmonary (subpulmonary RV) or the
systemic circulation (systemic RV). During the last 50 years
evidence is accumulating that RV dysfunction develops in
many of these patients and leads to considerable morbidity
and mortality. Therefore RV function in certain groups of
congenital heart disease patients needs close surveillance
and timely and appropriate intervention to optimise out-
comes. Despite major progress being made, assessing the RV
either in the subpulmonary or the systemic circulation
remains challenging, often requiring a multi-imaging
approach and expertise (echocardiography, magnetic reso-
nance imaging, nuclear and occasionally invasive assess-
ment with angiography). This review discusses the
implications of volume and pressure loading of the RV in
the context of congenital heart disease and describes the
most relevant imaging modalities for monitoring RV function.

T
he exploration and understanding of the heart’s mor-

phology, physiology, and function both in health and

disease remains a challenging and still evolving field.

Modern imaging modalities, mainly echocardiography, but

also radionuclide imaging and lately computed tomography

(CT) and cardiac magnetic resonance (CMR), have revolu-

tionised clinical research on biventricular anatomy and

function.1–6 However, there are still numerous questions to

be answered regarding left and right ventricular function and

their contributions to cardiovascular disease prognosis.

Although LV function and dysfunction and its relationship

to prognosis have been studied extensively, the role of RV

morphology, function, and dysfunction in cardiovascular

disease has not attracted the interest of scientists until

recently. This was largely due to the fact that most acquired

cardiovascular diseases affect primarily the left ventricle.

Additionally, the RV has a very complex shape, which makes

precise in vivo imaging and assessment challenging for most

imaging modalities.

RV morphology and function is, however, of paramount

importance in the rapidly growing field of congenital heart

disease (CHD). Many CHD patients have become adolescents

and adults thanks to major advances of paediatric cardiology

and cardiac surgery in the latter half of the last century. This

has created a patient population (adult CHD patients) in

which the RV is often the centre of attention.7–11 Such

patients are unique models for the study of RV physiology

and function. Accurate assessment of RV anatomy, volume,

and ejection fraction in CHD, both before and after reparative

surgery, requires one or more of the following imaging

modalities: echocardiography, contrast angiography, radio-

nuclide studies, CT, and or CMR.12

RIGHT VENTRICULAR MORPHOLOGY AND
IMAGING
Echocardiography is the imaging modality of choice for the

assessment of left ventricular function. However, most

quantitative two dimensional echocardiographic measure-

ments of ventricular performance are based on geometric

assumptions that do not apply to the RV. The left ventricle is

more conical in shape and has a wall thickness 3–4 times

greater than the RV free wall.13 RV trabeculations are coarse

compared to the finely trabeculated left ventricle and the RV

outflow tract is muscular and elongated, ending up in the

pulmonary valve which does not have a real valvar annulus.14

These differences in ventricular morphology reflect the

genetically determined different role the two ventricles are

called to play in the circulation.15 Sir Magdi Yacoub described

the left ventricle as a ‘‘flask’’ shape with the inlet and outlet

sharing one orifice, enabling it to deliver a bolus of blood

against high resistance, and the RV as a flattened tube

wrapped around the left ventricle with separate inlet and

outlet orifices and a presumed contraction pattern simulating

peristalsis, an arrangement suited for pumping blood against

low resistance.16

Having these important differences in mind we will briefly

refer to imaging methods for the evaluation of RV anatomy

and function and then examine the RV and the applicability

of these methods in two broad contexts: the volume loaded

RV, and the pressure loaded RV.

Angiographic assessment of the RV is invasive, involves

ionising radiation and use of contrast agents, and is not as

accurate as CMR12 (fig 1). It used to be the gold standard for

RV evaluation in the early era of imaging, but has largely

been replaced by newer ‘‘non-geometric’’ techniques like

three dimensional (3D) echocardiography, CMR, and multi-

slice CT (MSCT), which permit accurate assessment of RV

volume, mass and function.2–4 17–20

Indirect insights into RV systolic and diastolic function are

given by conventional Doppler indices such as the duration of

systolic time intervals derived by interrogation of the RV

outflow1 and Doppler recordings of the tricuspid inflow and

hepatic venous flow.1 21 M mode and tissue Doppler imaging

examine myocardial velocities and time intervals, detectable

at the level of the tricuspid annulus, as markers of RV systolic

and diastolic longitudinal motion1 (fig 2). Diastolic tricuspid

annular velocities, in contrast to inflow velocities, correlate

with invasively determined RV pressures.22 23 Nongeometric

and load independent, Doppler derived quantitative indices

of global ventricular function, like the myocardial perfor-

mance index (Tei index),24 25 or tricuspid annular isovolumic

acceleration,26–28 may prove useful for evaluation of RV

function. However, they correlate weakly with echocardio-

graphic RV ejection fraction29 and they have not been

validated against quantitative methods of evaluation of RV

function like CMR.22 25 30 Transoesophageal echocardiography

(TOE) has better sensitivity and specificity for evaluation of

CHD compared to transthoracic echocardiography, but it is

Abbreviations: ASD, atrial septal defect; ccTGA, congenitally corrected
transposition of the great arteries; CHD, congenital heart disease; CMR,
cardiac magnetic resonance; CT, computed tomography; MRI, magnetic
resonance imaging; MSCT, multislice computed tomography; PR,
pulmonary valve regurgitation; RNA, radionuclide angiography; RV,
right ventricle; TOE, transoesophageal echocardiography; TR, tricuspid
regurgitation
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semi-invasive, not well suited for evaluation of an anteriorly

positioned RV, and requires special skills.31

Radionuclide angiography provides a reliable quantitative

measurement of ventricular function that is not based upon

assumptions of ventricular geometry, and its value in the

routine clinical measurement of ventricular function is well

established.12 32 However, it requires the acquisition of views

of the ventricles that exclude counts from other chambers,

which can usually be achieved for the left ventricle, but often

not satisfactorily for the RV.33 Radionuclide imaging uses

ionising radiation, although the radiation dose is low

compared to cineangiography.33 Additionally this modality

requires an adequate bolus injection for first pass studies, and

a regular rhythm with minimal R-R variability.12 Its resolu-

tion is poor compared to more modern imaging methods.

Finally, investigation of CHD has focused more on structural

rather than functional abnormalities, although this is

changing. Radionuclide imaging has, thus, been of limited

use to date.33

Rapid advancements in the field of CMR have established

this technique as the gold standard for quantitative assess-

ment of RV volume, mass, and function regardless of its

position in the thorax (subpulmonary v systemic RV).4 18 20 34

Spin echo (black blood) sequences are used for exploration of

anatomy and gradient echo (white blood) sequences for

assessment of RV function.35 Flow velocity mapping allows

for accurate assessment of valvar regurgitation (regurgitant

fraction) and magnetic angiography for assessment of great

vessel anatomy.36 CMR with late gadolinium enhancement

can detect myocardial fibrosis in both ischaemic and non-

ischaemic cardiomyopathies.37 38 This technique has now

been applied to CHD and is likely to make an important

contribution to our understanding of the pathophysiology of

RV dysfunction.39 However, CMR has also limitations. It

usually requires breath-holding, a regular heart rhythm,

exclusion of patients with implantable metallic devices, and

it has high cost with low availability at present.39 MSCT is

emerging as an alternative modality, especially for patients

with implantable devices (contraindication for CMR); how-

ever, MSCT uses ionising radiation and requires a low heart

rate for image acquisition.2 3

THE VOLUME LOADED RV
Three of the most common lesions associated with RV

volume loading will be examined: atrial septal defect,

significant pulmonary valve regurgitation, and significant

tricuspid regurgitation.

Atrial septal defect (ASD)
There are three major types of ASDs: ostium secundum,

ostium primum, and superior sinus venosus defect.40 An

isolated ASD results in left-to-right shunting, which when

significant, leads to right atrial/ventricular and pulmonary

arterial dilatation. These features are often evident on chest x

ray (postero-anterior and lateral). Transthoracic echocardio-

graphy is invaluable for diagnosing an ASD and assessing its

impact on RV size and function40 41 (figs 3–5). TOE may be

needed to diagnose a sinus venosus defect and assist in

assessment of pulmonary venous drainage.40–42 Paradoxical

septal motion as a result of RV volume loading is evident both

in M mode and 2D echocardiograms in most patients41 43 44

(fig 6).

The RV tolerates volume loading well for a long time.40

Although delayed RV contraction has been detected with

radionuclide studies (in the absence of conduction defects),45

echocardiographic assessment has shown RV systolic and

diastolic function to be normal or exaggerated.46 47 In older

Figure 1 Right ventricular angiography, right anterior oblique (RAO)
projection, end systole. Severe pulmonary valve stenosis. There is
thickening and doming of the pulmonary valve (white arrow), secondary
narrowing of the right ventricular outflow tract due to muscle
hypertrophy, and poststenotic dilatation of the pulmonary artery. PA,
pulmonary artery; RV, right ventricle; RVOT, right ventricular outflow
tract.

Figure 2 M mode echocardiogram of the lateral (free wall) tricuspid
valve annulus. The height of the annular movement (white double arrow)
is a surrogate marker of RV systolic function.

Figure 3 Two dimensional echocardiogram, apical four chamber view.
There is dilatation and hypertrophy of the right ventricle, which is larger
than the left ventricle. The right ventricular inflow diameter (dotted line),
measures 5.27 cm (normal adult diameter, 4 cm). A large atrial septal
defect (ASD) is present (white arrow). LA, left atrium; LV, left ventricle;
RA, right atrium; RV, right ventricle.
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patients with long standing volume overload, regional RV

tissue Doppler imaging may disclose early relaxation

abnormalities even with normal traditional tricuspid inflow

velocities.47

It is now accepted that long standing right heart,

pulmonary arterial and venous volume overload and dilata-

tion in the setting of an ASD is detrimental and leads to

morbidity (heart failure, arrhythmia, and thromboembolic

events) and increased mortality.42 48 These can all be reversed

to variable degrees with catheter or surgical closure of the

defect.48 49 However, atrial arrhythmias may persist or develop

in adults repaired after the age of 40 years.48 50–53 Indeed, RV/

RA remodelling is incomplete in the older patient undergoing

transcatheter closure.54 Therefore early defect closure is

warranted if a significant shunt (with right heart dilatation)

is present.10 40 48

Transcatheter ASD device occlusion has become the

treatment of choice for most secundum ASDs. While many

devices are being used for this purpose, the Amplatzer ASD

occluder (AGA Corporation, Golden Valley, Minnesota, USA)

is most widely used at present55 56 (fig 7, 8). With appropriate

patient selection, device closure in adults leads to sympto-

matic improvement and increased exercise capacity even in

asymptomatic patients and is associated with fewer compli-

cations and shorter hospitalisation times compared to

surgery.57 58 However, very long term results are lacking at

present.

Dilatation of the RV may not subside after ASD closure,59 in

some patients up to five years after repair.60 Others have

reported progressive normalisation of RV size during 1–24

months after surgical or device closure.54 61 62 Atrial ‘‘shrink-

age’’ is inversely proportional to age at repair and is related to

the potential for atrial arrhythmias after late defect

closure.53 61 In patients with normal diastolic function,

increased RV myocardial diastolic and systolic velocities

(tissue Doppler) return to normal within one month after

device closure.47 In older patients, however, with abnormal

relaxation myocardial velocities seem to be volume indepen-

dent and do not change after device closure, suggesting

altered myocardial structure and function.47 CMR and MSCT

are seldom needed in post-repair follow up (fig 8).

Pulmonary regurgitation (PR)
Isolated clinical PR is a rare problem, but not an innocent

one.63 Severe PR is very common after tetralogy of Fallot

repair and is associated with RV dysfunction, diminished

Figure 4 Two dimensional echocardiogram. Left panel: Subcostal four chamber view. There is a large (23 mm) ostium secundum ASD (dotted line).
Right panel: Same patient in the left panel. Subcostal short axis view at the level of the great vessels. The relation of the ASD with the aortic root can be
assessed. Ao, aortic root; IVC, inferior vena cava; LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle, RVOT, RV outflow tract.

Figure 5 Two dimensional transthoracic echocardiogram, left
parasternal short axis view. There is RV dilatation and hypertrophy in a
young adult patient with an ostium secundum ASD and a Qp/Qs of 3.2.
The left ventricle is ‘‘squashed’’ by the dilated RV. LV, left ventricle; RV,
right ventricle.

Figure 6 M mode echocardiogram of the same patient shown in fig 5.
There is paradoxical septal motion, a sign of RV volume overload. RV
enlargement relative to the left ventricle is evident. LV, left ventricle; RV,
right ventricle.

The right ventricle in congenital heart disease i29

www.heartjnl.com



exercise capacity, atrial and ventricular arrhythmias, and

sudden death. Timely pulmonary valve replacement may

protect patients from PR related complications.34 64–69

Therefore, serial quantitative assessment of PR and RV

function are key to management. Echocardiography remains

the most widely employed imaging modality (fig 9).

However, CMR is considered the gold standard for both PR

quantification (flow velocity mapping) and RV volumetric

analysis (gradient echo)18 34 70 (figs 9 and 10). Doppler

echocardiography is a useful alternative for semiquantitive

PR assessment as a new Doppler index (PR index: ratio of PR

duration to diastolic duration) correlates well with the MRI

derived pulmonary regurgitant fraction.71 A PRi less than 0.77

yields 100% sensitivity and 85% specificity for identifying

patients with a PR fraction . 24.5%—that is, patients with

significant PR.71 A PR pressure half time , 100 ms has also

been found to be a reliable indicator of haemodynamically

significant regurgitation.72

Doppler detection of forward and laminar late diastolic

pulmonary blood flow, coinciding with atrial systole, present

throughout respiration, and associated with a prominent

retrograde superior vena caval flow, defines the so called

‘‘restrictive RV physiology’’.73 A non-compliant, usually

hypertrophied RV, along with low pulmonary arterial

diastolic pressures, results in partial presystolic opening of

the pulmonary valve during right atrial contraction, which

contributes to forward flow (fig 11). This physiology is

commonly present early after tetralogy of Fallot repair, where

it is associated with a low cardiac output (despite normal

biventricular systolic function), leading to longer intensive

care stay.74 75 In contrast, restrictive RV physiology late after

repair of tetralogy counteracts the effects of chronic

pulmonary regurgitation and is associated with smaller RV

size, shorter QRS duration, and better exercise capacity.73 76–80

Pronounced RV dilatation, especially if serial imaging

demonstrates progression, may prompt referral for pulmon-

ary valve replacement before RV dysfunction ensues. Thus,

serial follow up of RV volumes—ideally with CMR—is

recommended.67–69 81 82 Following pulmonary valve replace-

ment, RV volume usually decreases as evidenced by

echocardiography,83 radionuclide angiography (RNA),84 or

CMR.68 85 However, there are contradictory reports on RV

function68 81 85 after pulmonary valve replacement, largely due

to different timing of reoperation,81 86 different imaging

modalities employed and different parameters being mea-

sured,68 81 86 presence of RV outflow aneurysms or akinesia34 86

(fig 12), and variable re-evaluation intervals post-pulmonary

valve replacement.85 87

Tricuspid regurgitation (TR)
Congenital TR may be primary, due to a malformed tricuspid

valve, as exemplified by isolated tricuspid valve dysplasia or

prolapse and Ebstein’s anomaly or Ebstein’s-like anomaly in

patients with congenitally corrected transposition (in which

case the tricuspid valve represents the systemic atrioventri-

cular valve).88 However, it is more frequently secondary, due

to severe RV enlargement with resultant tricuspid annular

dilatation as happens in patients with RV dysplasia, or free

pulmonary regurgitation usually in the context of repaired

tetralogy of Fallot.88

Ebstein’s anomaly is a complex congenital heart mal-

formation, characterised by an apical displacement of both

the septal and the posterior tricuspid leaflets, exceeding

20 mm or 8 mm/m2 in adults.89 As a consequence, the right

heart is divided in three components: the true right atrium,

the functional RV, and an intervening zone that is

anatomically ventricular but functionally right atrial (atria-

Figure 7 Intracardiac echocardiogram of a patient with an ostium
secundum ASD just after apposition of an Amplatzer septal occluder
umbrella device. The intravascular echocardiographic probe is located
in the right atrium. Both sides of the umbrella and its main axis traversing
the ASD are clearly visualised. RA, right atrium.

Figure 8 Gradient echo (white blood), magnetic resonance sequence. Four chamber transaxial (short axis of the thorax) view of a patient with an
ostium secundum ASD. The defect is clearly seen on the left panel, along with right atrial/ventricular dilatation. On the right panel an Amplatzer septal
occluder sealing the defect is seen, along with significant reduction of RV and atrial size six months after defect closure. RA, right atrium; RV, right
ventricle.
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lised RV). The malformation results in moderate to severe TR

and may be accompanied by pulmonary stenosis and an ASD

with bidirectional shunting, which have a great impact on RV

haemodynamics. All these features are adequately assessed

with 2D and Doppler echocardiography. When other cardiac

lesions are absent (for example, severe pulmonary stenosis),

Ebstein’s anomaly may be diagnosed in adolescence or

adulthood, due to innocent murmurs or arrhythmias, with

good long term outcome.90 When severe, TR leads to RV

volume loading and in the long term RV or biventricular

dysfunction. Echocardiography may provide some informa-

tion regarding the size, shape, and function of the functional

RV, however CMR is best suited for a detailed study of the

above features.91 92

Surgery should be performed for symptomatic adults.93–95

Classical repair of Ebstein’s anomaly is usually per-

formed with transverse plication of the atrialised chamber

and tricuspid valvoplasty if feasible, or tricuspid valve

replacement.93 However, with severely compromised RV or

biventricular function, or in the presence of a relatively

hypoplastic and/or malfunctioning RV chamber inadequate

to sustain the entire systemic venous return but capable of

managing part of the systemic venous return, a one and a

half ventricular repair (superior cavopulmonary anastomosis)

may provide good functional results.96 Therefore a detailed

preoperative assessment of RV size and function, but also of

the valve leaflet attachments, commissures, and surface is

mandatory. The latter cannot be achieved easily with 2D

echocardiography; however, newer 3D echocardiographic

techniques provide excellent intracardiac views of the valve

commissures and leaflets’ surface.97 We would submit that

for a complete evaluation of the right heart anatomy and

function, combining echocardiography (2D, 3D, and transoe-

sophageal) with CMR would be the best option in such cases.

In patients with repaired tetralogy of Fallot, TR is related to

RV dilatation due to severe PR and possibly valvar trauma

Figure 9 Left panel: Echocardiographic colour flow mapping (short axis left parasternal view), showing a pulmonary valve regurgitation jet. Right
panel: gradient echo (white blood) cardiac magnetic resonance (CMR) sequence of the same patient, four chamber transaxial (short axis of the thorax)
view. There is severe right atrioventricular dilatation and RV hypertrophy. Tricuspid regurgitation is depicted as signal void (black coloured jet of blood)
at the level of the tricuspid valve towards the right atrium (white arrow). RA, right atrium; RV, right ventricle.

Figure 10 CMR flow velocity mapping of the pulmonary valve. Upper left panel: Forward flow through the valve (traced area) is encoded in white
colour. Lower left panel: Backward flow through the pulmonary valve (pulmonary regurgitation) is encoded in black colour. Right panel: Pulmonary
flow curve. The area under the curve represents flow. Forward flow is represented by the curve above the reference (zero) line. Backward flow is
represented by the curve below the reference line. The last part of the curve above the reference line represents diastolic forward flow through the
pulmonary valve, which suggests a restrictive RV. The pulmonary regurgitant fraction (PRF) is calculated as systolic forward flow–diastolic reversal/total
flow. In this case the PRF is approximately 50%.
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during reparative surgery.98 When severe it contributes to

further RV dilatation.98 The existence of significant TR in such

patients is considered an indication for pulmonary valve

replacement.99 100 However, when TR is severe, reoperation is

associated with high surgical mortality and poor long term

results due to postoperative RV dysfunction.100 101 This

supports the view that timely pulmonary valve replacement

is mandatory before severe TR and RV dysfunction ensue.102

THE PRESSURE LOADED RV
Two major models exemplifying pressure loading of the RV

will be discussed: RV outflow tract (RVOT) obstruction and

the RV supporting the systemic circulation (systemic RV).

Right ventricular outflow tract obstruction–pulmonary
stenosis
Isolated stenosis at the valvar level represents 80–90% of

pulmonary stenosis cases.14 103 However, obstruction may also

occur at the subvalvar or supravalvar level. Regardless of the

level of obstruction, the RV exerts a hypertrophic response

the degree of which varies with the magnitude of obstruc-

tion.104 Echocardiography is the diagnostic method of

choice.103 Continuous wave Doppler is used for estimation

of the pressure gradient across the RVOT14 (fig 13). In

contrast to left sided stenoses, the RVOT instantaneous

gradient correlates well with catheter based peak-to-peak

gradient, obviating the need for cardiac catheterisation.105 The

latter is saved for patients with long RVOT stenoses at the

infundibular level where Doppler may be inaccurate. More

sophisticated methods, mainly CMR, may be needed for

detailed imaging of the RVOT and for assessment of RV size

and function103 (fig 14). This need is exemplified by more

complex anomalies like the ‘‘double chambered RV’’.106 The

latter is a term used for anomalous muscle bundles that

divide the RV into a high pressure apical chamber and a low

pressure outlet/infundibular chamber14 106 (fig 15).

The systemic right ventricle
In terms of physiology the RV is teleologically well suited for

the changes in preload that normally occur with changes in

intrathoracic pressure and systemic venous return and poorly

tolerant of acute changes in afterload.13 Fundamental

anatomic and physiologic principles pose obvious disadvan-

tages to the RV supporting the systemic circulation.

Figure 12 Gradient echo (white blood) CMR sequence, sagittal plane
(RVOT view), end systole. The RV is severely dilated and hypertrophied.
The upper part of the RV chamber, almost of same size with the main RV
chamber below, represents a huge RVOT aneurysm. An, aneurysm; RV,
right ventricle.

Figure 13 Continuous wave Doppler tracing of the RVOT in a patient
with combined pulmonary valve stenosis and regurgitation. Note that the
signal of pulmonary regurgitation (above the zero line) ends well before
the next systolic Doppler wave (below the line). This may be either due to
severe pulmonary regurgitation, or to elevated RV diastolic pressure.

Figure 14 Spin echo (black blood) CMR sequence, sagittal plane
(RVOT view), end systole. There is severe RV hypertrophy. The
pulmonary valve is thickened and domed. The main pulmonary artery is
severely dilated. PA, pulmonary artery; RV, right ventricle.

Figure 11 Continuous wave Doppler tracing of the RVOT of a patient
with repaired tetralogy of Fallot and severe pulmonary regurgitation.
There is residual pulmonary valve stenosis. The pulmonary regurgitation
signal ends well before the next systolic signal, which suggests severe
pulmonary regurgitation or the existence of a restrictive RV with high RV
diastolic pressures, or both. There is a late diastolic signal of forward
flow through the pulmonary valve (white arrows), suggesting the
existence of a restrictive RV.
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Figure 15 Left panel: Gradient echo (white blood) CMR sequence, oblique sagittal plane (short axis of the ventricles), end systole. The RV is divided
into two chambers by a thick ring of ventricular myocardium. This anomaly is called ‘‘double chambered RV’’. Right panel: Echocardiographic colour
flow mapping (short axis left parasternal view) of the same patient shown on the left. There is blood turbulence (aliasing) within the RV at the level of the
hypertrophic muscle bands. LV, left ventricle; RV, right ventricle.

Figure 16 Gradient echo (white blood) CMR sequences. (A) Sagittal plane, normal cardiac anatomy. The left atrium is draining into the left ventricle,
which is connected to the aorta. (B–D) Various CMR views of a patient with complete transposition of the great arteries and Mustard repair (atrial
switch). (B) Sagittal plane. The left ventricle is connected to the pulmonary artery (subpulmonary left ventricle). The RV is connected to the aorta (systemic
RV). The systemic RV is dilated and severely hypertrophied. (C) Four chamber view. The pulmonary venous pathway of the atrial switch is shown. The
pulmonary veins (left lower pulmonary vein is clearly seen in this level) are draining into the right atrium through the baffle (arrow). The systemic RV is
dilated and severely hypertrophied. (D) Coronal view. The systemic venous pathway of the atrial switch is shown. The inferior and superior vena cavae
(arrows) are directed underneath the baffle to the left atrium. Ao, aorta; LA, left atrium; LV, left ventricle; PA, pulmonary artery; RV, right ventricle.

Figure 17 Gradient echo (white blood) CMR sequence, oblique sagittal
(short axis of the ventricles view) of a patient with complete transposition
of the great arteries and Senning (atrial switch) repair. The RV is severely
hypertrophied and dilated. The interventricular septum is bowing
towards the left ventricle. LV, left ventricle; RV, right ventricle.

Figure 18 Magnetic resonance angiography (MRA) with gadolinium
injection through a peripheral vein. Ventriculography, frontal projection.
The chamber opacified demonstrates left ventricular characteristics
(conical shape, smooth walls); however, it is connected to the pulmonary
arteries, which are also opacified by gadolinium. This represents a
subpulmonary left ventricle in a patient with complete transposition of the
great arteries and Mustard repair (atrial switch). MRA allows for a
detailed non-invasive assessment of the ventriculo-arterial connections
and of the anatomy of the great vessels.
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Atrial switch operations (Mustard and Senning)
Complete transposition of the great arteries is incompatible

with life without a surgical switch of the circulation either at

atrial or great arterial level (physiologic or anatomic repair

respectively). The former procedures are the Mustard and

Senning operations, which have been performed for over 40

years now and have transformed the outlook for these

patients107 (figs 16–19). However, the atrial switch procedures

result in the RV supporting the systemic circulation. Long

term concerns remain: the prospect of RV failure, arrhyth-

mias (atrial flutter variants and sick sinus syndrome), and

accordingly compromised long term quality of life and

survival for many of these patients. Assessment of RV

function is paramount but also challenging, because of the

inherent problems in assessing RV function (discussed

above) and the absence of criteria for ‘‘normal’’ values.108

Volumetric methods (echocardiography, RNA, CMR) have

been the mainstay of RV assessment.108 Cumulative survival

25–30 years after the Mustard repair is as high as 80%.

However, it seems that there is progressive deterioration of

RV function with time in most patients after the Mustard

repair and this is often accompanied by significant systemic

atrioventricular valve (tricuspid) regurgitation109 (fig 19).

This decline in RV function along with residual lesions (baffle

obstruction or leakage, residual ventricular septal defect, and

pulmonary valve stenosis), contribute to late morbidity and

mortality manifested as reduced exercise capacity, heart

failure, endocarditis, supraventricular arrhythmia, reopera-

tion, and cardiac death.109

The cause of RV dysfunction is unclear, however.

Myocardial perfusion defects110 and impaired myocardial

flow reserve in the systemic RV have been demonstrated in

survivors of the Mustard operation, suggesting inadequate

coronary blood supply.111 The cause of these perfusion

defects, however, is not classic coronary artery disease. It is

more likely that they represent a supply/demand ischaemia in

the context of severe RV hypertrophic response to systemic

pressure loading.112 Post-ejection RV longitudinal shortening

(longitudinal excursion following the ejection phase), during

stress echocardiography was shown in a significant number

of patients,113 suggesting incoordinated myocardial contrac-

tion, highly sensitive to myocardial ischemia.113 Regions of

abnormal RV myocardium can be visualised late after atrial

switch with the use of CMR with late gadolinium enhance-

ment and are likely to represent focal fibrosis39 (fig 19). The

presence and extent of such regions correlate with RV mass,

RV dilatation, and impaired systolic function, suggesting that

hypertrophy is associated with fibrosis in some patients, and

correlates inversely with RV systolic performance.39

Furthermore, gadolinium enhancement was associated with

markers of adverse outcome like QRS duration and arrhyth-

mia itself, underlining the prognostic significance of these

findings.39

Although accurate assessment of RV ejection fraction is

important, the definition of ‘‘normal’’ systemic RV ejection

fraction remains problematic and depends on the method of

determination. However, most authorities agree that a

systemic RV ejection fraction . 50% can be considered

normal (in the absence of significant valve regurgita-

tion).114 115 For the reasons discussed, CMR is considered

the gold standard for the study of RV size and function in

these patients.115 Radionuclide angiography is a useful

alternative for serial follow up when CMR or CT are not

available.114 116 Although transthoracic echo assessment of

adult patients is limited in quantitative volumetric data, it

provides invaluable information on baffle patency, leaks

(with contrast studies), valvar regurgitation or stenosis and,

in experienced hands, semiquantitative information on RV

function.117 MRI derived RV volumes correlate positively with

echo derived RV inlet dimensions and negatively with the dP/

dT of the tricuspid regurgitant jet (indirect measure of RV

contractile function).117 Furthermore, RV longitudinal func-

tion (M mode: wall excursion measured from the apex)

correlates with CMR derived RV ejection fraction.117

Echocardiographic indices of systemic RV function during

dobutamine stress (such as RV long axis excursion) predict

exercise capacity, establishing stress echocardiography as an

important semi-invasive, physiologic imaging modality.113

Sinus node dysfunction is a relatively frequent finding in

these patients, necessitating permanent pacing.118 Pacing, in

turn, constitutes a contraindication for CMR at present.

Other emerging imaging modalities, namely MSCT, may

prove to be useful alternatives for volumetric analysis of the

RV.119

Figure 19 Left panel: Gradient echo sequence (white blood), short axis view of the RV and the pulmonary venous pathway in a patient with complete
transposition of the great arteries and Mustard repair (atrial switch). The RV is dilated and hypertrophied. There is a signal void (black coloured jet) at
the level of the tricuspid valve caused by tricuspid regurgitation. The pulmonary venous return finds its way back to the RV through a baffle (black
arrow), which redirects blood from the pulmonary veins (white arrow) to the left atrium (LA). The RV is connected to the aorta (not shown) and supports
the systemic circulation. The left ventricle is elongated and thin walled, and supports the pulmonary circulation. Right panel: The same patient imaged
with a late gadolinium enhancement CMR sequence. Gadolinium is washed out from normal myocardium, which appears grey-black. Areas of
necrosis and scarring demonstrate late gadolinium enhancement (white colour). There is gadolinium enhancement of an area of the RV free wall (black
arrow), suggesting myocardial scarring. LA, left atrium; LV, left ventricle; RV, right ventricle.
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Congenital ly corrected transposition of the great
arteries (ccTGA)
The RV supports the systemic circulation in patients with

ccTGA. Associated lesions (ventricular septal defect, pulmon-

ary stenosis, and Ebstein’s anomaly of the systemic tricuspid

valve) are common.120 Diagnosis may be made in adult life in

non-cyanotic patients, usually by identifying a systemic

ventricle with RV morphologic characteristics121 (coarse

trabeculations, moderator band, and the insertion of the

septal leaflet of a morphologically tricuspid valve to the

ventricular septum in conjunction with a morphologically

mitral valve on the right side).121 The relation of the two

ventricles (and the two great arteries) is more side by side

than the usual anteroposterior, rendering the apical and

subxiphoid four chamber the most useful echocardiographic

views for diagnosis. Transoesophageal echocardiography may

be required and, as with complete TGA, additional imaging

such as CMR is preferable for assessing systemic RV

function122 (fig 20).

Long term outcome is not normal even in patients without

associated lesions due to a propensity to complete heart

block,123 tricuspid valve regurgitation (TR),124 and the devel-

opment of RV systolic dysfunction.125–130 Not surprisingly,

more than moderate TR and RV dysfunction are significantly

related to increased mortality,129 with TR being the most

significant independent predictor of outcome.130 However, TR

strongly relates to RV dysfunction, raising the question

whether TR leads to RV dysfunction or vice versa.128 130

Despite difficulties in assessing the systemic RV in ccTGA,

usually a semiquantitive evaluation of ventricular function

and TR by echo is feasible. In contrast to patients with

atrioventricular concordance, who often tolerate a significant

degree of mitral insufficiency for decades before left

ventricular failure ensues, RV dysfunction usually starts

within five years from onset of TR in ccTGA patients (without

associated lesions or surgery).130–132 RV failure with ventri-

cular enlargement results in worsening of TR due to annular

dilatation. The factors responsible for accelerated failure of

the systemic RV are not quite clear. It seems that ventricular

geometry and the design of the respective atrioventricular

valve is important.133 Also perfusion defects at rest have been

reported in patients with ccTGA without associated

lesions.134 135 Coronary flow reserve assessed with positron

emission tomography is decreased, indicating altered vasor-

eactivity and quantitative changes in microcirculation.136

The adverse interplay between TR and RV dysfunction in

these patients calls for timely tricuspid valve replacement

(repair does not work), otherwise patients should be

considered for transplantation.130 137 In this regard, serial

assessment of TR and RV function is mandatory, under-

scoring the benefits of a combined imaging approach with

echo and CMR.4 20 138 139 Gated equilibrium radionuclide

angiocardiography may also be used for assessment of RV

function at rest and during exercise.126 Coronary artery origin

and distribution are reversed and frequently anomalous in

these patients and non-invasive coronary angiography (with

CT or CMR) can delineate it.2 3 140

CONCLUSION
The RV, with its complex geometry and unique adaptive

mechanisms in CHD, remains a challenge to the cardiologist.

The RV is a pivotal chamber and its dysfunction—both

systolic and diastolic—has clear implications to short and

long term outcome. Recent advances in imaging, particularly

in CMR, have revolutionised the exploration of RV anatomy

and function and have shed light on late pathophysiology of

many CHD defects. Transthoracic echocardiography remains

the workhorse of non-invasive assessment of the RV in

patients with CHD, however. Combined with other imaging,

appropriately selected and timed for the individual patient

with CHD, echocardiography remains key to assessing

disease progression and timing of late re-intervention.
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