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Abstract. In this paper the author investigates the angular position and vibration control of a nonlinear rigid-flexible two link
robotic manipulator considering fast angular maneuvers. The nonlinear control technique named State-Dependent Riccati Equa-
tion (SDRE) is used here to achieve these aims. In a more realistic approach, it is considered that some states can be measured
and some states cannot be measured. The states not measured are estimated in order to be used for the SDRE control. These states
are all the angular velocities and the velocity of deformation of the flexible link. A SDRE-based estimator is used here. Not only
different initial conditions between the system to be controlled (here named “real” system) and the estimator but also a different
mathematical model is considered as the estimation model in order to verify the limitations of the proposed state estimation and
control techniques. The mathematical model that emulates the real system to be controlled considers two modes expansion and
the estimation model considers only one mode expansion. The results for the different approaches are compared and discussed.
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1. Introduction

With the increasing demand for precise high-speed operation and lightweight mechanisms for space missions,
it was no longer adequate to treat certain links in a manipulator as rigid [17]. Expanding this idea, a rigid-flexible
two-link manipulator can be lighter and faster than a rigid-rigid one and can cover a wider workspace using less
energy. Lightweight mechanical structures are expected to improve the performance of robotic manipulators, which
also often have low payload-to-arm mass ratios. However, such manipulators with flexible parts exhibit undesirable
vibrations which might limit their performance [13]. The investigation of these systems can also be considered as
a starting point for more complicated multi-link flexible or rigid-flexible manipulators. This kind of system finds
many applications in industry and mainly in aerospace engineering.

Several methods have been developed for handling with the design of state observers and control algorithms for
the kind of nonlinear system investigated in this work. The State-Dependent Riccati Equation (or simply SDRE)
method, developed over the past several years, is one such method.

The SDRE control technique for nonlinear regulator problems has become well-known within the control com-
munity [5]. This method has been successfully employed in a considerable number of mathematical and real appli-
cations [3,8,9,11,12,16].

A good survey of the SDRE design technique can be found in [4]. The SDRE based estimator is derived by
constructing the dual of the well-known SDRE nonlinear regulator control design technique [5].
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Fig. 1. The slewing flexible beam system.

2. The geometric model and governing equations of motion

Figure 1 presents the geometric model of the dynamic system investigated in this work. This system comprises
a rigid link connected to a flexible link, each one of them driven by a DC motor. In this figure, the inertial axis is
represented by XY, the moving axis (attached to the flexible link and rotating with it) is represented by xy, the beam
deflection (as a space-time variable) is represented by v(x, t) and the angular displacement angles are given by θ1
and θ2.

The governing equations of motion are obtained through the lagrangian formalism. To apply the Lagrange’s
equations one needs to know the kinetic energy stored in the rigid link and the kinetic and potential (strain) energies
stored in the beam-like flexible link during its time evolution.

The total kinetic energy, T , of the system depicted in Fig. 1 is given by:

T =
1

2
(I1 +m1L

2

c1)θ̇
2

1
+

1

2

L2
∫

0

ρA2{[ν̇ + x(θ̇1 + θ̇2)]
2 + [ν(θ̇1 + θ̇2)]

2

+ 2L1θ̇1(θ̇1 + θ̇2)(x cos θ2 − ν sin θ2) + 2L1ν̇θ̇1 cos θ2 + L2

1
θ̇2
1
}dx

(1)

where I1 represents the moment of inertia of the cross-section area of the rigid link, m1 represents the mass of the
rigid link, Lc1 represents the location of the center of mass of the rigid link, ρ represents the density of the material
of the rigid link, A2 represents the cross-section area of the flexible link and L1 represents the length of the rigid
link.

The strain energy of the system depicted in Fig. 1 is given by:

V =
1

2

L2
∫

0

EI2ν
′′2dx (2)

In Eq. (2), E represents the Young’s modulus of the material of the flexible link, I2 represents the moment of
inertia of the cross-section area of the flexible link and L2 represents the length of the flexible link.

The Lagrangian is given by:

L = T − V (3)

One assumes here linear curvature for the flexible link [6,7,15]. The Lagrangian is discretized considering the
expansion given by:

v(x, t) =

n
∑

i=1

Φi(x)qi(t) (4)
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where n represents the number of normal modes, Φi(x) represents each one of the normal modes of the flexible
structure and qi(t) represents time dependant elastic coordinates.

Inertia-free normal modes [1,10] are considered. The discretized Lagrangian considering n = 2 is given by:

L =
1

2

(

I1 +m1L
2

c1 +
ρA2L

2

1
L2

2
+

ρA2L
3

2

6

)

θ̇2
1
+

ρA2

2

2
∑

i=1

2
∑

j=1

⎛

⎝

L2
∫

0

ΦiΦjdx

⎞

⎠ q̇iq̇j + ρA2(θ̇1 + θ̇2)

2
∑

i=1

⎛

⎝

L2
∫

0

xΦidx

⎞

⎠ q̇i +
ρA2L

3

2

3
θ̇1θ̇2 +

ρA2L
3

2

6
θ̇22 +

ρA2

2
(θ̇1 + θ̇2)

2

2
∑

i=1

2
∑

j=1

⎛

⎝

L2
∫

0

ΦiΦjdx

⎞

⎠ qiqj

+
ρA2L1L

2
2

2
θ̇2
1
cos θ2 +

ρA2L1L
2
2

2
θ̇1θ̇2 cos θ2 − ρA2L1θ̇

2

1
sin θ2

2
∑

i=1

⎛

⎝

L2
∫

0

Φidx

⎞

⎠ qi

−ρA2L1θ̇1θ̇2 sin θ2

2
∑

i=1

⎛

⎝

L2
∫

0

Φidx

⎞

⎠ qi + ρA2L1θ̇1 cos θ2

2
∑

i=1

⎛

⎝

L2
∫

0

Φidx

⎞

⎠ q̇i

−
EI2

2

2
∑

i=1

2
∑

j=1

⎛

⎝

L2
∫

0

Φ′′

i Φ
′′

j dx

⎞

⎠ qiqj

Expanding the summations, this Lagrangian can be rewriten as:

L =
1

2

(

I1 +m1L
2

c1 +
ρA2L

2

1
L2

2
+

ρA2L
3

2

6

)

θ̇21 +
ρA2

2

⎡

⎣

⎛

⎝

L2
∫

0

Φ2

1dx

⎞

⎠ q̇21 + 2

⎛

⎝

L2
∫

0

Φ1Φ2dx

⎞

⎠ q̇1q̇2

+

⎛

⎝

L2
∫

0

Φ2

2
dx

⎞

⎠ q̇2
2

⎤

⎦+ ρA2(θ̇1 + θ̇2)

⎛

⎝

L2
∫

0

xΦ1dx

⎞

⎠ q̇1 + ρA2(θ̇1 + θ̇2)

⎛

⎝

L2
∫

0

xΦ2dx

⎞

⎠ q̇2 +
ρA2L

3
2

3
θ̇1θ̇2

+
ρA2L

3

2

6
θ̇2
2
+

ρA2

2
(θ̇1 + θ̇2)

2

⎡

⎣

⎛

⎝

L2
∫

0

Φ2

1
dx

⎞

⎠ q2
1
+ 2

⎛

⎝

L2
∫

0

Φ1Φ2dx

⎞

⎠ q1q2 +

⎛

⎝

L2
∫

0

Φ2

2
dx

⎞

⎠ q2
2

⎤

⎦

+
ρA2L1L

2
2

2
θ̇21 cos θ2 +

ρA2L1L
2
2

2
θ̇1θ̇2 cos θ2 − ρA2L1θ̇

2

1 sin θ2

⎛

⎝

L2
∫

0

Φ1dx

⎞

⎠ q1 − ρA2L1θ̇
2

1 sin θ2

⎛

⎝

L2
∫

0

Φ2dx

⎞

⎠ q2 − ρA2L1θ̇1θ̇2 sin θ2

⎛

⎝

L2
∫

0

Φ1dx

⎞

⎠ q1 − ρA2L1θ̇1θ̇2 sin θ2

⎛

⎝

L2
∫

0

Φ2dx

⎞

⎠ q2

+ρA2L1θ̇1 cos θ2

⎛

⎝

L2
∫

0

Φ1dx

⎞

⎠ q̇1 + ρA2L1θ̇1 cos θ2

⎛

⎝

L2
∫

0

Φ2dx

⎞

⎠ q̇2

−
EI2

2

⎡

⎣

⎛

⎝

L2
∫

0

Φ′′

1
Φ′′

1
dx

⎞

⎠ q2
1
+ 2

⎛

⎝

L2
∫

0

Φ′′

1
Φ′′

2
dx

⎞

⎠ q1q2 +

⎛

⎝

L2
∫

0

Φ′′

2
Φ′′

2
dx

⎞

⎠ q2
2

⎤

⎦ (5)

In Eq. (5), q1 represents time dependant elastic coordinates of the first flexural mode and q2 represents time
dependant elastic coordinates of the second flexural mode.
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The free vibration mode shapes of continuous systems satisfy the orthogonality conditions:

L
∫

0

Φ1Φ2dx = 0

and

L
∫

0

Φ′′

1Φ
′′

2dx = 0

Therefore, Eq. (5) can be rewriten as:

L =
IT

2
θ̇2
1
+

η1

2
θ̇2
1
q2
1
+

η2

2
θ̇2
1
q2
2
+ η1q̇

2

1
+ η2q̇

2

2
+ η3θ̇1q̇1 + η3θ̇2q̇1 + η4θ̇1q̇2 + η4θ̇2q̇2

+η5θ̇1θ̇2 +
η5

2
θ̇22 + 2η1θ̇1θ̇2q

2

1 + η1θ̇
2

2q
2

1 + 2η2θ̇1θ̇2q
2

2 + η2θ̇
2

2q
2

2 + η6θ̇
2

1 cos θ2 + η6θ̇1θ̇2 cos θ2

−η7θ̇
2

1
q1 sin θ2 − η8θ̇

2

1
q2 sin θ2 − η7θ̇1θ̇2q1 sin θ2 − η8θ̇1θ̇2q2 sin θ2 + η7θ̇1q̇1 cos θ2 + η8θ̇1q̇2 cos θ2

−η9ω
2

1
q2
1
− η10ω

2

2
q2
2

(6)

where ω1 is the natural frequency of the first flexural mode and ω2 is the natural frequency of the second flexural
mode and:

α1 =

L2
∫

0

Φ1dx α2 =

L2
∫

0

Φ2dx α3 =

L2
∫

0

xΦ1dx α4 =

L2
∫

0

xΦ2dx γ1 =

L2
∫

0

Φ2

1
dx γ2 =

L2
∫

0

Φ2

2
dx

IT = I1 +m1L
2

c1 +
ρA2L

2
1L2

2
+

ρA2L
3
2

6
η1 =

ρA2γ1

2
η2 =

ρA2γ2

2
η3 = ρA2α3 η4 = ρA2α4

η5 =
ρA2L

3
2

3
η6 =

ρA2L1L
2
2

2
η7 = ρA2L1α1 η8 = ρA2L1α2 η9 =

ρA2γ1

2
η10 =

ρA2γ2

2

Φ′′

1
Φ′′

1
= Φiv

1
Φ1 =

(

ρA2ω
2
1

EI2
Φ1

)

Φ1 Φ′′

2
Φ′′

2
= Φiv

2
Φ2 =

(

ρA2ω
2
2

EI2
Φ2

)

Φ2

Substituting Eq. (6) into the Lagrange’s equations [2,14] results:

(IT + η1q
2

1 + η2q
2

2 + 2η6 cos θ2 − 2η7q1 sin θ2 − 2η8q2 sin θ2)θ̈1 + (η5 + 2η1q
2

1 + 2η2q
2

2 + η6 cos θ2

− η7q1 sin θ2 − η8q2 sin θ2)θ̈2 + (η3 + η7 cos θ2)q̈1 + (η4 + η8 cos θ2)q̈2 − (2η6 sin θ2 + 2η7q1 cos θ2

+ 2η8q2 cos θ2)θ̇1θ̇2 + (2η1q1 − 2η7 sin θ2)θ̇1q̇1 + (2η2q2 − 2η8 sin θ2)θ̇1q̇2 + (4η1q1 − 2η7 sin θ2)

θ̇2q̇1 + (4η2q2 − 2η8 sin θ2)θ̇2q̇2 − (η6 sin θ2 + η7q1 cos θ2 + η8q2 cos θ2)θ̇
2

2
= Qθ1

(7a)

(η5 + 2η1q
2

1
+ 2η2q

2

2
)θ̈2 + (η5 + 2η1q

2

1
+ 2η2q

2

2
+ η6 cos θ2 − η7q1 sin θ2 − η8q2 sin θ2)θ̈1 + (η3)q̈1

+ (η4)q̈2 + (4η1q1)θ̇1q̇1 + (4η2q2)θ̇1q̇2 + (4η1q1)θ̇2q̇1 + (4η2q2)θ̇2q̇2 + (η6 sin θ2 + η7q1 cos θ2

+ η8q2 cos θ2)θ̇
2

1
= Qθ2

(7b)

(2η1)q̈1 + (η3 + η7 cos θ2)θ̈1 + (η3)θ̈2 + (2η9ω
2

1
)q1 − (4η1q1)θ̇1θ̇2 − (η1q1 + η7 sin θ2)θ̇

2

1

− (2η1q1)θ̇
2

2
= Qq1

(7c)

(2η2)q̈2 + (η4 + η8 cos θ2)θ̈1 + (η4)θ̈2 + (2η10ω
2

2
)q2 + (4η2q2)θ̇1θ̇2 + (η2q2 + η8 sin θ2)θ̇

2

1

+ (2η2q2)θ̇
2

2
= Qq2

(7d)
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Equation (7) are the governing equations of motion for the system depicted in Fig. 1. The quantities Qθ1 and Qθ2

are generalized torques and the quantities Qq1 and Qq2 are generalized forces.
These equations in matrix form are written as:

⎡

⎢

⎢

⎣

m1 m5 m6 m7

m5 m2 m8 m9

m6 m8 m3 0
m7 m9 0 m4

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

θ̈1
θ̈2
q̈1
q̈2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 2η9ω

2

1 0
0 0 0 2η10ω

2

2

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

θ1
θ2
q1
q2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2n1θ̇1θ̇2 + n2θ̇1q̇1 + n3θ̇1q̇2 + n4θ̇2q̇1 + n5θ̇2q̇2 − n1θ̇
2

2

2n8θ̇1q̇1 + 2n9θ̇1q̇2 + 2n8θ̇2q̇1 + 2n9θ̇2q̇2 + n1θ̇
2
1

−2n8θ̇1θ̇2 − n6θ̇
2

1
− n8θ̇

2

2

2n9θ̇1θ̇2 + n7θ̇
2

1
+ n9θ̇

2

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Qθ1

Qθ2

Qq1

Qq2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(8)

where:

m1 = IT + η1q
2

1 + η2q
2

2 + 2η6 cos θ2 − 2η7q1 sin θ2 − 2η8q2 sin θ2 m2 = η5 + 2η1q
2

1 + 2η2q
2

2

m3 = 2η1 m4 = 2η2 m5 = η5 + 2η1q
2

1
+ 2η2q

2

2
+ η6 cos θ2 − η7q1 sin θ2 − η8q2 sin θ2

m6 = η3 + η7 cos θ2 m7 = η4 + η8 cos θ2 m8 = η3 m9 = η4

n1 = η6 sin θ2 + η7q1 cos θ2 + η8q2 cos θ2 n2 = 2η1q1 − 2η7 sin θ2, n3 = 2η2q2 − 2η8 sin θ2

n4 = 4η1q1 − 2η7 sin θ2 n5 = 4η2q2 − 2η8 sin θ2 n6 = η1q1 + η7 sin θ2 n7 = η2q2 + η8 sin θ2

n8 = 2η1q1 n9 = 2η2q2

Let the mass matrix, M , be given by:

M =

⎡

⎢

⎢

⎣

m1 m5 m6 m7

m5 m2 m8 m9

m6 m8 m3 0
m7 m9 0 m4

⎤

⎥

⎥

⎦

The inverse of M is given by:

M−1 =

⎡

⎢

⎢

⎣

z1 z5 z6 z7
z5 z2 z8 z9
z6 z8 z3 z10
z7 z9 z10 z4

⎤

⎥

⎥

⎦

where:

z1 =
m2m3m4 −m4m

2

8
−m3m

2

9

denZ
z2 =

m1m3m4 −m4m
2

6
−m3m

2

7

denZ

z3 =
m1m2m4 −m4m

2
5 −m2m

2
7+2m5m7m9 −m1m

2
9

denZ

z4 =
m1m2m3 −m3m

2

5
−m2m

2

6
+2m5m6m8 −m1m

2

8

denZ

z5 =
−m3m4m5+m4m6m8+m3m7m9

denZ

z6 =
−m2m4m6+m4m5m8 −m7m8m9+m6m

2

9

denZ
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z7 =
−m2m3m7+m7m

2

8
+m3m5m9 −m6m8m9

denZ

z8 =
m4m5m6 −m1m4m8+m2

7
m8 −m6m7m9

denZ

z9 =
m3m5m7 −m6m7m8 −m1m3m9+m2

6
m9

denZ

z10 =
m2m6m7 −m5m7m8 −m5m6m9+m1m8m9

denZ

denZ = m1m2m3m4 −m3m4m
2

5
−m2m4m

2

6
−m2m3m

2

7
+2m4m5m6m8 −m1m4m

2

8
+m2

7
m2

8

+2m3m5m7m9 − 2m6m7m8m9 −m1m3m
2

9
+m2

6
m2

9

Multiplying Eq. (8) to the left by M−1 and rearranging results:

θ̈1 + 2z6η9ω
2

1
q1 + 2z7η10ω

2

2
q2 + z1(−2n1θ̇1θ̇2 + n2θ̇1q̇1 + n3θ̇1q̇2 + n4θ̇2q̇1 + n5θ̇2q̇2 − n1θ̇

2

2
)

+ z5(2n8θ̇1q̇1 + 2n9θ̇1q̇2 + 2n8θ̇2q̇1 + 2n9θ̇2q̇2 + n1θ̇
2

1)− z6(2n8θ̇1θ̇2 + n6θ̇
2

1 + n8θ̇
2

2)

+ z7(2n9θ̇1θ̇2 + n7θ̇
2

1 + n9θ̇
2

2) = z1Qθ1 + z5Qθ2 + z6Qq1 + z7Qq2

(9a)

θ̈2 + 2z8η9ω
2

1q1 + 2z9η10ω
2

2q2 + z5(−2n1θ̇1θ̇2 + n2θ̇1q̇1 + n3θ̇1q̇2 + n4θ̇2q̇1 + n5θ̇2q̇2 − n1θ̇
2

2)

+ z2(2n8θ̇1q̇1 + 2n9θ̇1q̇2 + 2n8θ̇2q̇1 + 2n9θ̇2q̇2 + n1θ̇
2

1)− z8(2n8θ̇1θ̇2 + n6θ̇
2

1 + n8θ̇
2

2)

+ z9(2n9θ̇1θ̇2 + n7θ̇
2

1 + n9θ̇
2

2) = z5Qθ1 + z2Qθ2 + z8Qq1 + z9Qq2

(9b)

q̈1 + 2z3η9ω
2

1q1 + 2z10η10ω
2

2q2 + z6(−2n1θ̇1θ̇2 + n2θ̇1q̇1 + n3θ̇1q̇2 + n4θ̇2q̇1 + n5θ̇2q̇2 − n1θ̇
2

2)

+ z8(2n8θ̇1q̇1 + 2n9θ̇1q̇2 + 2n8θ̇2q̇1 + 2n9θ̇2q̇2 + n1θ̇
2

1)− z3(2n8θ̇1θ̇2 + n6θ̇
2

1 + n8θ̇
2

2)

+ z10(2n9θ̇1θ̇2 + n7θ̇
2

1 + n9θ̇
2

2) = z6Qθ1 + z8Qθ2 + z3Qq1 + z10Qq2

(9c)

q̈2 + 2z10η9ω
2

1
q1 + 2z4η10ω

2

2
q2 + z7(−2n1θ̇1θ̇2 + n2θ̇1q̇1 + n3θ̇1q̇2 + n4θ̇2q̇1 + n5θ̇2q̇2 − n1θ̇

2

2
)

+ z9(2n8θ̇1q̇1 + 2n9θ̇1q̇2 + 2n8θ̇2q̇1 + 2n9θ̇2q̇2 + n1θ̇
2

1
)− z10(2n8θ̇1θ̇2 + n6θ̇

2

1
+ n8θ̇

2

2
)

+ z4(2n9θ̇1θ̇2 + n7θ̇
2

1
+ n9θ̇

2

2
) = z7Qθ1 + z9Qθ2 + z10Qq1 + z4Qq2

(9d)

Equation (9) are decoupled in the acelerations and ready to be written in state space form to be numerically
integrated. In state space form, Eq. (9) can be writen as:

ẋ1 = x2

ẋ2 = z1xQθ1 + z5xQθ2 + z6xQq1 + z7xQq2 − 2z6xη9ω
2

1x5 + 2z7xη10ω
2

2x7 − z1x (−2n1xx2x4 + n2xx2x6

+ n3xx2x8 + n4xx4x6 + n5xx4x8 − n1xx
2

4

)

− z5x (2n8xx2x6 + 2n9xx2x8 + 2n8xx4x6

+2n9xx4x8 + nx1x
2

2

)

+ z6x
(

2n8xx2x4 + n6xx
2

2 + n8xx
2

4

)

− z7x
(

2n9xx2x4 + n7xx
2

2 + n9xx
2

4

)

ẋ3 = x4

ẋ4 = z5xQθ1 + z2xQθ2 + z8xQq1 + z9xQq2 − 2z8xη9ω
2

1x5 + 2z9xη10ω
2

2x7 − z5x (−2n1xx2x4 + n2xx2x6

+ n3xx2x8 + n4xx4x6 + n5xx4x8 − n1xx
2

4

)

− z2x (2n8xx2x6 + 2n9xx2x8 + 2n8xx4x6

+2n9xx4x8 + nx1x
2

2

)

+ z8x
(

2n8xx2x4 + n6xx
2

2
+ n8xx

2

4

)

− z9x
(

2n9xx2x4 + n7xx
2

2
+ n9xx

2

4

)

ẋ5 = x6

ẋ6 = z6xQθ1+z8xQθ2 + z3xQq1+z10xQq2−2z3xη9ω
2

1
x5 + 2z10xη10ω

2

2
x7 − z6x (−2n1xx2x4 + n2xx2x6
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+ n3xx2x8 + n4xx4x6 + n5xx4x8 − n1xx
2

4

)

− z8x (2n8xx2x6 + 2n9xx2x8 + 2n8xx4x6

+2n9xx4x8 + nx1x
2

2

)

+ z3x
(

2n8xx2x4 + n6xx
2

2 + n8xx
2

4

)

− z10x
(

2n9xx2x4 + n7xx
2

2 + n9xx
2

4

)

ẋ7 = x8

ẋ8 = z7xQθ1+z9xQθ2 + z10xQq1+z4xQq2−2z10xη9ω
2

1x5 + 2z4xη10ω
2

2x7 − z7x (−2n1xx2x4 + n2xx2x6

+ n3xx2x8 + n4xx4x6 + n5xx4x8 − n1xx
2

4

)

− z9x (2n8xx2x6 + 2n9xx2x8 + 2n8xx4x6

+2n9xx4x8 + nx1x
2

2

)

+ z10x
(

2n8xx2x4 + n6xx
2

2 + n8xx
2

4

)

− z4x
(

2n9xx2x4 + n7xx
2

2 + n9xx
2

4

)

(10)

In Eq. (10), the states considered are: x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2, x5 = q1, x6 = q̇1, x7 = q2 and
x8 = q̇2. In this same equation, zix and nix are zi and ni expressed as functions of the states x1 to x8.

The state dependent matrices A(x) and B(x) used in this work are:

A(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0 0
0 A1 0 A2 A3 A4 A5 A6

0 0 0 1 0 0 0 0
0 A7 0 A8 A9 A10 A11 A12

0 0 0 0 0 1 0 0
0 A13 0 A14 A15 A16 A17 A18

0 0 0 0 0 0 0 1
0 A19 0 A20 A21 A22 A23 A24

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and B(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
z1x z5x z6x z7x
0 0 0 0
z5x z2x z8x z9x
0 0 0 0
z6x z8x z3x z10x
0 0 0 0
z7x z9x z10x z4x

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where:

A1 = (z6xn6x − z5xn1x − z7xn7x)x2 + (2z1xn1x + 2z6xn8x − 2z7xn9x)x4

A2 = (z1xn1x + z6xn8x − z7xn9x)x4

A3 = −2z6xη9ω
2

1

A4 = (−z1xn2x − 2z5xn8x)x2 + (−2z5xn8x − z1xn4x)x4

A5 = 2z7xη10ω
2

2

A6 = (−z1xn3x − 2z5xn9x)x2 + (−z1xn5x − 2z5xn9x)x4

A7 = (z8xn6x − z2xn1x − z9xn7x)x2 + (2z5xn1x + 2z8xn8x − 2z9xn9x)x4

A8 = (z5xn1x + z8xn8x − z9xn9x)x4

A9 = −2z8xη9ω
2

1

A10 = (−z5xn2x − 2z2xn8x)x2 + (−z5xn4x − 2z2xn8x)x4

A11 = 2z9xη10ω
2

2

A12 = (−z5xn3x − 2z2xn9x)x2 + (−z5xn5x − 2z2xn9x)x4

A13 = (z3xn6x − z8xn1x − z10xn7x)x2 + (2z6xn1x + 2z3xn8x − 2z10xn9x)x4

A14 = (z6xn1x + z3xn8x − z10xn9x)x4

A15 = −2z3xη9ω
2

1

A16 = (−z6xn2x − 2z8xn8x)x2 + (−z6xn4x − 2z8xn8x)x4

A17 = 2z10xη10ω
2

2

A18 = (−z6xn3x − 2z8xn9x)x2 + (−z6xn5x − 2z8xn9x)x4
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A19 = (z10xn6x − z9xn1x − z4xn7x)x2 + (2z7xn1x + 2z10xn8x − 2z4xn9x)x4

A20 = (z7xn1x + z10xn8x − z4xn9x)x4

A21 = −2z10xη9ω
2

1

A22 = (−z7xn2x − 2z9xn8x)x2 + (−z7xn4x − 2z9xn8x)x4

A23 = 2z4xη10ω
2

2

A24 = (−z7xn3x − 2z9xn9x)x2 + (−z7xn5x − 2z9xn9x)x4

3. The State-Dependent Riccati Equation (SDRE) control

The State-Dependent Riccati Equation (SDRE) approach to nonlinear system control relies on representing a
nonlinear system’s dynamics with state-dependent coefficient matrices that can be inserted into state-dependent
Riccati equations to generate a feedback law [16].

The main idea of this method is to represent the nonlinear system:

ẋ = f(x) +B(x)u

in the form:

ẋ = A(x)x +B(x)u (11)

The feedback law is given by:

u = −R−1(x)BT (x)P (x)x (12)

where P (x) is obtained from the SDRE:

P (x)A(x) +AT (x)P (x) +Q(x)− P (x)B(x)R
−1

(x)B
T
(x)P (x) = 0 (13)

In Eqs (12) and (13), Q(x) and R(x) are design parameters that satisfy the positive definiteness condition:

Q(x) > 0 R(x) > 0

Equation (10), in state space form, can be written in the form given by Eq. (11) with both A and B matrices state
dependent.

4. The control torques

Using Eq. (12), the control torques are given by:

u = −

⎡

⎢

⎢

⎣

1

R1

0 0 0

0 1

R2

0 0

0 0 1

R3

0

0 0 0 1

R4

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0 z1x 0 z5x 0 z6x 0 z7x
0 z5x 0 z2x 0 z8x 0 z9x
0 z6x 0 z8x 0 z3x 0 z10x
0 z7x 0 z9x 0 z10x 0 z4x

⎤

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P1 P2 P3 P4 P5 P6 P7 P8

P9 P10 P11 P12 P13 P14 P15 P16

P17 P18 P19 P20 P21 P22 P23 P24

P25 P26 P27 P28 P29 P30 P31 P32

P33 P34 P35 P36 P37 P38 P39 P40

P41 P42 P43 P44 P45 P46 P47 P48

P49 P50 P51 P52 P53 P54 P55 P56

P57 P58 P59 P60 P61 P62 P63 P64

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1

x2

x3

x4

x5

x6

x7

x8

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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or:

u = −

⎡

⎢

⎢

⎣

K1 K2 K3 K4 K5 K6 K7 K8

K9 K10 K11 K12 K13 K14 K15 K16

K17 K18 K19 K20 K21 K22 K23 K24

K25 K26 K27 K28 K29 K30 K31 K32

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1

x2

x3

x4

x5

x6

x7

x8

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

5. State estimation using SDRE

The basic idea of estimating the state vector, x, from the output vector, y, is to build a new system with essentially
the same structure as the original system:

ẋ = A(x)x +B(x)u

and to drive this new system with an input which is proportional to the error between the actual plant output (known
or measured quantities) and the estimated output.

In mathematical terms, let x̂ denote the vector of state estimate and let the corresponding approximation to the
estimated output be given by:

ŷ = Cx̂ (14)

The estimated states are generated by a system of the form:

˙̂x = A(x̂)x̂+B(x̂)û+ L(y − ŷ) (15)

In Eq. (15), the term L(y− ŷ) correct the estimation equation with a feedback from the estimation error. If matrix
L is chosen carefully, it seems reasonable that one can make x̂ in the last equation track x closely.

Suppose the estimation error given by:

e = x− x̂ (16)

is nonzero at some time t. Then, the difference:

y − ŷ = Ce

is also likely to be nonzero.
For certain choices of L, the resulting forcing term L(y− ŷ) should drive x in a direction that decreases the error

given by Eq. (16). L is the unknown observer gain.
The general idea is given in the Fig. 2.
The performance indicator is given by:

Ĵ =
1

2

∞
∫

0

(

x̂TQM x̂+ ûTRN û
)

dt

and the optimal (suboptimal) control û given by:

û = −L(x̂)x̂ (17)

The optimal (suboptimal) feedback gain is given by:

L(x̂) = R−1

N BT (x̂)P (x̂)

with P (x̂) obtained by solving the state-dependent Riccati equation:

P (x̂)A(x̂) +AT (x̂)P (x̂)− P (x̂)B(x̂)R−1

N BT (x̂)P (x̂) +QM = 0
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Table 1
Initial condition assumed in the numerical simulations

Initial Conditions (IC) θ1 θ̇1 θ2 θ̇2 q1 q̇1 q2 q̇2

Same IC “real” 200◦ 0 rad/s 50◦ 0 rad/s 0 m 0 m/s 0 m 0 m/s
estimated 200◦ 0 rad/s 50◦ 0 rad/s 0 m 0 m/s – –

Different IC “real” 200◦ 0 rad/s 50◦ 0 rad/s 0 m 0 m/s 0 m 0 m/s
estimated 0◦ 0 rad/s 0◦ 0 rad/s 0 m 0 m/s – –

Fig. 2. The general idea for nonlinear control and nonlinear estimation using SDRE.

6. Numerical results

The numerical integrator used in this work is the fourth order Runge-Kutta with time step of 0.001 s. Since matri-
ces A(x) and B(x) are state dependant, it is necessary to solve the Riccati equation each time step (the suboptimal
gains are time varying). This procedure makes calculations very slow for large simulation times.

In the numerical simulations different initial values are considered for the angles θ1 and θ2 and the SDRE control
law is used to bring both variables to zero. This deviation from zero is considered as a position error that must be
corrected. At the same time that the controller is correcting the angles it is also used to eliminate the vibration on the
flexible link. The different initial conditions chosen for θ1 and θ2 intend to simulate the system in conditions into
which the influence of the nonlinear terms in Eqs (9) or (10) is important.

The cases considered are presented in Table 1.
In this table and in the figures, “real” represents the mathematical model that emulates the real system and con-

siders two modes expansion for the beam deflection and estimated represents the mathematical model with only one
mode expansion. The one mode expansion model is used to estimate the velocities in the more complete two modes
expansion model. All the gains used for estimation and control are calculated using the one mode mathematical
model for A(x) and B(x) since in real systems this data is unknown.

The one mode expansion mathematical model used for estimation can be obtained from Eq. (9) by eliminating
Eq. (9d) and all the references to variable q2 and its time derivative in Eqs (9a) to (9c).

Table 2 presents the parameters values used in the numerical simulations.
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Table 2
Parameters values used in the numerical simulations

Parameters Value

Aluminum beams E 0.7 1011 N/m2

ρ 2700 Kg/m3

Rigid beam Height (beam cross section) 0.0300 m
Width (beam cross section) 0.0300 m

L1 0.3000 m
Flexible beam Height (beam cross section) 0.0300 m

Width (beam cross section) 0.0015 m
L2 2.0000 m

Fig. 3. Estimated (- - -) and “real” (—) behavior of measured vari-
able θ1 considering same initial conditions.

Fig. 4. Estimated (- - -) and “real” (—) behavior of measured vari-
able θ1 considering different initial conditions.

The RN and QM estimator matrices used in the numerical simulations are chosen by trial and error and given by:

RN =

⎡

⎣

3 0 0
0 3 0
0 0 2

⎤

⎦ QM =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2.5 0 0 0 0 0
0 1 0 0 0 0
0 0 5 0 0 0
0 0 0 1 0 0
0 0 0 0 2000 0
0 0 0 0 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

These matrices were used for all the numerical simulations. The same gains obtained using these matrices are also
used in the SDRE control. The variable q2 and its time derivative are neither measured nor estimated and therefore
not controlled.

The measurement matrix C is given by:

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where only the positions are measured (and not the velocities).
Using this matrix C, the estimated output equation is:

ŷ = Cx̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x̂1

0
x̂3

0
x̂5

0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭
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Fig. 5. Estimated (- - -) and “real” (—) behavior of measured vari-
able θ2 considering same initial conditions.

Fig. 6. Estimated (- - -) and “real” (—) behavior of measured vari-
able θ2 considering same initial conditions.

Fig. 7. Estimated (- - -) and “real” (—) behavior of measured vari-
able q1 considering same initial conditions.

Fig. 8. Estimated (- - -) and “real” (—) behavior of measured vari-
able q1 considering different initial conditions.

and the terms to be included in the estimation equations are:

L(x̂)(y − ŷ) =

⎡

⎣

L1 L2 L3 L4 L5 L6

L7 L8 L9 L10 L11 L12

L13 L14 L15 L16 L17 L18

⎤

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1 − x̂1

0
x3 − x̂3

0
x5 − x̂5

0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

or:

L(x̂)(y − ŷ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L1(x1
− x̂1) + L3(x3

− x̂3) + L5(x5
− x̂5)

0
L7(x1

− x̂1) + L9(x3
− x̂3) + L11(x5

− x̂5)
0

L13(x1
− x̂1) + L15(x3

− x̂3) + L17(x5
− x̂5)

0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

A pair of state dependent matrices A(x) and B(x) is chosen among several possibilities for this problem. In the
SDRE technique matrices A(x) and B(x) are not unique and one cannot guarantee that this or that specific choice
of these matrices will produce the best (optimal) results. In this sense, the problem investigated and discussed here
is a suboptimal problem.



A. Fenili / The rigid-flexible robotic manipulator: Nonlinear control and state estimation 1061

Fig. 9. Estimated behavior of variable θ̇1 considering same initial
conditions for the angular displacements.

Fig. 10. Estimated behavior of variable θ̇1 considering different ini-
tial conditions for the angular displacements.

Fig. 11. Estimated behavior of variable θ̇2 considering same initial
conditions for the angular displacements.

Fig. 12. Estimated behavior of variable θ̇2 considering different ini-
tial conditions for the angular displacements.

The time behavior of angle θ1 is presented in Figs 3 and 4. In Fig. 3 the same initial condition is considered for the
“real” system and for the estimator. In Fig. 4 different initial conditions are considered for the “real” system and for
the estimator. The different initial conditions are chosen in order to consider a situation in which the error between
“real” and estimated is sufficiently great and the nonlinearities are sufficiently excited.

The same idea is illustrated in Figs 5 and 6 for the angular variable θ2 and in Figs 7 and 8 for the time component
of the variable of deflection, q1.

The time behavior of estimated velocity θ̇1 is presented in Figs 9 and 10. In Fig. 8 the same initial condition
for the angular displacements is considered for the “real” system and for the estimator. In Fig. 10 different initial
conditions for the angular displacements are considered for the “real” system and for the estimator. The same idea
is presented in Figs 11 and 12 for the estimated velocity θ̇2 and in Figs 13 and 14 for the estimated velocity q̇1.

The control torque Qθ1 is presented in Fig. 15. In this figure, the curve considering same initial condition for
“real” and estimated angular displacements is compared with a curve that considers different initial conditions for
“real” and estimated angular displacements. The same idea is presented in Fig. 16 for the control torque Qθ2.

As depicted in Figs 3 to 6, the angles θ1 and θ2 are satisfactorily controlled considering both the same and different
initial conditions between “real” and estimated systems. In all the cases considered the angles reach the desired final
states. The same is true for the variable q1 in Figs 7 and 8 since the amplitudes of the beam vibration also go to zero
with time. The influence of the not controlled variable q2 is noticed in these figures as the time decaying vibration
in steady state.

All the estimated velocities presented in Figs 9 to 14 are consistent with the system dynamics and were used
without problem for control. The control torques are depicted in Figs 15 and 16.
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Fig. 13. Estimated behavior of variable q̇1 considering same initial
conditions for the angular displacements.

Fig. 14. Estimated behavior of variable q̇1 considering different ini-
tial conditions for the angular displacements.

Fig. 15. Control torque Qθ1 considering same initial conditions (—)
and different initial conditions (- - -) for the angular displacements.

Fig. 16. Control torque Qθ2 considering same initial conditions (—)
and different initial conditions (- - -) for the angular displacements.

7. Discussion and conclusions

In the models investigated in this work, no friction forces or structural damping is considered. The dissipating
effects related to these influences will be considered further on this research since all real systems presents in some
degree influences due these effects. In this sense, in all the results presented here, all the amplitudes attenuation
illustrated in the figures are due to the nonlinear control actuation only. One problem still to be solved in this
investigation is the overshoot in the initial time of the simulations.

The results obtained using the nonlinear control technique named SDRE and the nonlinear state estimation proce-
dure based on this same technique for the rigid-flexible two link robot manipulator are completely satisfactory in the
sense that the angular displacements of both slewing axes converge to the desired final values and at the same time
the vibration on the beam (first mode) is eliminated. It was considered large angular displacements and velocities
and the nonlinear terms present in the governing equations of motion are sufficiently important in the cases studied
here.

For initial estimated states near the initial “real” states the error between “real” and estimated responses are
negligible. For initial estimated states and initial “real” states sufficiently distant from each other the estimated
states converges to the “real” (measured) states in a satisfactory way.

The above conclusions are true even when considering two different mathematical models: one emulating the
“real” system (considering two modes expansion for v(x, t)) and one different model representing a simpler mathe-
matical model the “real” system and used for estimation (considering one modes expansion for v(x, t)). The second
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mode present in the “real” model is neither “measured” nor estimated and therefore not controlled. Its influence can
be slightly noted in the response of the system as a small amplitude decaying vibration.

The SDRE method proposed to tune the observer gains is used here because it utilizes the same structure of
the nonlinear control technique with the same name (SDRE) and intended to be tested in this work. In further
developments, other nonlinear state estimation techniques must be tested and compared with the results presented
here in order to provide the best method.

One major problem verified in the numerical simulations shown here is the presence of overshoot in the time
responses. The elimination of this overshoot is the next step in the improvement of this research.
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