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THE RIGIDITY OF GRAPHS
BY

L. ASIMOW AND B. ROTH

Abstract. We regard a graph G as a set {1,. . . ,v) together with a
nonempty set E of two-element subsets of (1.v). Let/> =(/>„... ,/>„)
be an element of R"° representing v points in R". Consider the figure G(p)
in R" consisting of the line segments [p¡,Pj\ in R" for (i,j) 6 E. The figure
G (/>) is said to be rigid in R" if every continuous path in R"*, beginning at p
and preserving the edge lengths of G (p), terminates at a point q £ R""
which is the image (7>,,. . ., Tpv) of p under an isometry T of R".
Otherwise, G(p) is flexible in R". Our main result establishes a formula for
determining whether G (p) is rigid in R" for almost all locations p of the
vertices. Applications of the formula are made to complete graphs, planar
graphs, convex polyhedra in R3, and other related matters.

1. Introduction. Consider a triangle or a square in R2 for which the edges
are rods which are joined but rotate freely at the vertices. The square is said
to be flexible in R2 since the square can move continuously into a family of
rhombi. However, the triangle is said to be rigid in R2 since the three rods
determine the relative positions of the three vertices. Similarly, a tetrahedron
in R3 consisting of six rods connected but freely pivoting at the four vertices
is rigid while the one-skeleton of a cube in R3 is flexible. A figure consisting
of two triangles with a common edge is rigid in R2 but flexible in R3 since one
triangle can then rotate relative to the other along the common edge.

Several kinds of physical problems, including the one just described, share
the following mathematical description. Consider a finite set V of points in R"
together with a collection E of pairs of points in V, which is to be thought of
as the set of pairs of points that are connected. A continuous time dependent
transformation of the points in F is a flexing of the structure if the distances
between pairs of points in E remain fixed in time but the final configuration
is not congruent (in the Euclidean sense) to the original configuration. If no
flexing exists, the structure is said to be rigid.

When the problem is formulated in this way, the usefulness of the language
of graph theory becomes apparent. For example, a disconnected graph
embedded in R" is flexible in R" whereas a complete graph embedded in R" is
rigid in R". However, the rigidity or flexibility of a graph embedded in R"
cannot be determined simply from the abstract structure of the graph, for it is
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280 L. ASIMOW AND B. ROTH

not difficult to find a graph which when embedded in R" in one way is
flexible and in another way rigid. (See Examples 1, 2, 3 of §5.)

In this paper we present criteria for determining whether a particular graph
will be rigid or flexible in R" for almost all locations of its vertices, where
"almost all" has both a topological and a measure theoretic meaning.
Furthermore, we find that a graph in R" is either rigid for almost all locations
of its vertices or flexible for almost all locations of its vertices.

Throughout this paper, our interest focuses on a notion of rigidity that is
sometimes referred to as "continuous rigidity". The related concept of
"infinitesimal rigidity" which is not discussed in this paper will be dealt with
in a sequel. In the literature, the term "rigid" is used in both of these senses as
well as several others. In this paper, "rigid" is always meant in the continuous
sense that is discussed informally here in the introduction and defined in §2.

Much of the present paper was inspired by Herman Gluck's paper [2] on
rigidity. We are also grateful to Branko Grünbaum for providing us with
several interesting examples.

2. Preliminaries. For our purposes, an (abstract) graph G is to be thought of
as a set V = {1, 2, . . . , v) together with a nonempty set E of two-element
subsets of V. Each element of V is referred to as a vertex of G and each
element of E is called an edge of G. On the other hand, a graph G (p) in R" is
a graph G = (V, E) together with a point p — (px, . . . ,pv) G R" X • • • X
R" = R"E. We refer to the points p¡ for / G V as the vertices and the line
segments [/>,,/>,] in R" for {i,j} G E as the edges of the graph G(p) in R".
Noté that for a graph G (p) in R", we have not required that p¡ =£ Pj for i i= j
and thus it is surely inappropriate to speak of G (p) as an embedding of G in
R".

Consider a graph G = (V, E) with v vertices and e edges, that is, V =
(1, . . . , v} and E has e elements. Order the e edges of G in some way and
definefG: Rnc->Reby

/c('i. ■• -.0 -(■■•• \Ui.-'yll2.--.)
where {i,j} G E, tk G R" for 1 < k < v, and || • || denotes the Euclidean
norm in R". Note that if G(p) is a graph in R", then/c(p) G Re consists of
the squares of the lengths of the e edges of G(p) and thus we refer to/G as the
edge function of the graph G. If fG(p) = fG(q) for p, q G R"", then the
corresponding edges of the graphs G (p) and G (q) in R" have the same
length. Consequently, the structure near p of the real algebraic variety
fc~x(fa(p)) is pertinent to the determination of the rigidity or flexibility of the
graph G(p) in R".

Let K^, (or simply K) denote the complete graph with v vertices, which
means that every two-element subset of V = (1, . . . , v) is an edge of Kv.
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THE RIGIDITY OF GRAPHS 281

Note that fK(p) = fK(q) for p, q G Rm if and only if the map p¡ -+ q¡,
I < t < t?, extends to an isometry of R". Recall that an isometry 7 of R" is a
map 7: R" -* R" such that || 7x - 7v|| = ||x - y\\ for all x, y G R". Since the
set $(n) of isometries of R" is a smooth manifold,/¿~ l(fK(p)) is also a smooth
manifold. (See §3 for details.) If G is a graph with v vertices and K the
complete graph with v vertices, then clearly /¿~'(/*(/>)) C /cT1(/c(/')) and it is
the nature nearp of this inclusion that determines the flexibility or rigidity of
the graph G (p) in R".

Next, we provide definitions of rigidity and flexibility.
Definition. Let G be a graph with v vertices, K the complete graph with v

vertices, and p G R"v. The graph G(p) is rigid in R" if there exists a
neighborhood U of p in R"" such that

/*'(/*(/>)) n f/ = /c-1(/G(/'))ni/.
The graph G(p) is flexible in R" if there exists a continuous path x : [0, 1] -»
R-0 such that x(0) = /> and x(t) G fGl(fG(p)) - f¡¿\fK(p)) for all t G (0, 1].

Thus G (/>) is rigid in R" if and only if for every q sufficiently close to p
with fG(q) = fG(p), there exists an isometry of R" taking/?, to q¡ for 1 < / <
v. On the other hand, G(p) is flexible in R" if and only if it is possible to
continuously move the vertices of G(p) to noncongruent positions while
preserving the edge lengths of the figure.

In addition to establishing the equivalence of nonrigidity and flexibility, the
following proposition demonstrates the equivalence of another reasonable
notion of flexibility.

Proposition 1. Let G be a graph with v vertices, K the complete graph with v
vertices, andp G Rnv. The following are equivalent:

(a) G(p) is not rigid in R";
(b) G(p) is flexible in R";
(c) there exists a continuous path y in fG i(fG(p)) with v(0) = p andy(t) £

fx \fK(P))M some t G (0,1].

Proof. If G (p) is not rigid in R", then every neighborhood of p contains
points of the algebraic variety fG\fG(p)) not belonging to the subvariety
fKX(fK(p)) and thus the existence of an analytic path x with x(0) = p and
x(t) e/G~\/G(/0) -/*'(/*(/>)), 0 < í < 1, follows from [5, Lemma 18.3].
(See also [4].) Thus (a) implies (b). Clearly (b) implies (c).

If (c) holds, then there exists t0 G [0, 1) such that y(t0) is the last point in
IkKJAp)) as * increases. Let y(t0) = q = (qx, . . . , qv) àndp = (/>„ . . . ,pv).
Then there is an isometry 7 of R" with Tq¡ — p¡, 1 < / < v, and thus
(T ° yx, . . . , T o yv) maps (t0, 1] into fG\fG(p)) - f¿l(fK(p)). Since
(7 ° y,, . . . , 7 « yv)(t0) = p, every neighborhood of p intersects fGx(fG(p))
— fKX(fK(p)) and therefore G(p) is not rigid in R".
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282 L. ASIMOW AND B. ROTH

For a smooth map /: X —» Y where X and Y are smooth manifolds, we
denote the derivative of / at x G X by df (x). Let k = max{rank df(x):
x G X). We say that x E X is a regular point of / if rank df(x) — k and a
singular point otherwise.

Proposition   2.   Le/   /:    R" -» Rm   be   a   smooth   map   and   k =
max (rank df(x) : x G R"}. If x0 G R" is a regular point off, then the image
under f of some neighborhood o/x0 is a k-dimensional manifold.

Proof. Let/ = (fx,f2) where/, consists of the first k coordinate functions
of / and assume that rank dfx(x0) = k. Since rank dfx = k in a neighborhood
of x0, the Inverse Function Theorem yields local coordinates at x0 such that
/i(X|, Xj) = x,. Thus in local coordinates

df~
I 0

9x,       3x2

Since rank df = k near x0, 3/2/3x2 = 0 near x0. Hence/2(x„ Xj) = g(xx) and
therefore/(x,, x2) = (x,, g(x,)) near x0. Thus/maps some neighborhood of
x0 onto the graph of g which is a ^-dimensional manifold.

It follows that Up is a regular point of/G, then/¿"'(/<;(/?)) is a manifold of
co-dimension k near/?. In this case, the construction of a smooth path in (a)
implies (b) of Proposition 1 is straightforward since near p we then have that
fx\fAP)) is a proper submanifold of fG \fc(p)).

Finally, a subset M of R" is said to be an affine set if M contains the entire
line through each pair of distinct points in M. The dimension of an affine set
M in R" is defined to be the dimension of the subspace M — M = (x -
y : x,y G M) parallel to M and the affine hull of a set S c R" is the smallest
affine set containing S. For p = (/?,, . . . ,pv) G Rnc, let dim/? be the
dimension of the affine hull of {/?,,... ,pv}.

3. The main result.

Theorem. Let G be a graph with v vertices, e edges, and edge function fG:
R"v —> Re. Suppose that p G R"v is a regular point of fc and let m = dim p.
Then the graph G(p) is rigid in R" if and only if

rank dfG (p) = nv — (m + l)(2n — m)/2,

and G (p) is flexible in R" if and only if
rank dfG (p) < nv — (m + l)(2n — m)/2.

Proof. Let k = max(rank dfG(x) : x G R"v). Then k = rank dfG(p). By
Proposition 2 of §2, there exists a neighborhood V of p in R™ such that
/orl(/c(/')) n ^is an (nv — /V)-dimensional manifold.
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Let i(n) be the n(n + l)/2-dimensional manifold of isometries of R" and
define F : $(n) -> R"v by F(7) = (Tpx,..., Tpv) for 7 G S (n). Note that F
is smooth and im(F) = /*" x(fK(p)) where AT is the complete graph with v
vertices. Let M be the affine hull of {/?,,... ,/?„}. Thus dim M = dim/? =
w. Clearly F~l(p) is the subgroup of i(«) consisting of isometries which
equal the identity on M and F~\p) can be identified with the (n - m)(n —
m — l)/2-dimensional manifold 0(TV) of orthogonal linear transformations
of TV where TV is the (ai - /?i)-dimensional subspace orthogonal to the m-
dimensional subspace M — M. Let

be the natural projection and define

F: ^(n)/F~x(p)^Rnv

so that F = F ° m. Then F is smooth since F is smooth and, moreover, F:
5(rt)/F~'(/>) -» im(F) is a diffeomorphism. Since 9(n)/F~\p) is a manifold
of dimension

n(n + l)/2 - (n - m)(n - m - l)/2 = (m + \)(2n - m)/2,
we conclude that im(F) = im(F) = fj[x(fK(p)) is an (m + 1)(2« — m)/2-
dimensional manifold.

The (m + l)(2n — w)/2-dimensional manifold f¿ x(fK(p)) D V is a
submanifold of the (m? — A)-dimensional manifold fGx(fG(p)) n K. There-
fore we have

A < nv - (m + l)(2n - m)/2.
Clearly A: = nv — (m + l)(2n — m)/2 if and only if there exists a neigh-
borhood U of p in Rnv such that/f x(fK(p)) n U = fc~x(fG(p)) n Í/, that is,
if and only if G(p) is rigid in R". Since k < «u - (m + l)(2n - /m)/2, G(/j)
is flexible in R" if and only if k < nv — (m + l)(2n - m)/2, which con-
cludes the proof.

Let P(x) be the sum of the squares of the determinants of all the A; X A;
submatrices of dfG(x) for x E R"". Then F is a nontrivial polynomial in nv
variables and thus the set R of regular points of fG is a dense open subset of
R"" since R = {x £ Rnv : P(x) ^ 0}. Moreover, Fubini's Theorem enables
one to conclude that the set R"" — R of singular points of fG has Lebesgue
measure zero in R"". Therefore the above theorem determines the rigidity or
flexibility in R" of a graph G(p) for almost all/? E R"v, where "almost all"
can be interpreted both topologically and measure theoretically. Furthermore,
in §4 we show that this determination is constant for regular points of fG, that
is, either G(p) is rigid in R" for all/? E R or G(p) is flexible for all/? E R.

4. Corollaries. In the following lemma and our first two corollaries, the
dimension n of the Euclidean space in which we consider a graph varies, so
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284 L. ASIMOW AND B. ROTH

we temporarily denote the edge function of a graph G by fG„. Thus fGn:
Rm -» Re and

/G,„('.,---,0 = (•••> II',■-f/ll2.---)
where {/',/} is an edge of G and each tk G R".

Lemma. Let G be a graph with v vertices. Suppose p G R"" is a regular point
of fGn and let m = dim/?. Then there exists q G Rmv such that q is a regular
point of /G?m, dim q = m, and rank dfGm(q) = rank dfG„(/?). Moreover, if
G(p) is rigid in R", then G(q) is rigid in Rm.

Proof. Define C: Rm -h> R" by C(x„ . . . , xj = (x„ . . ., xm, 0, . . . , 0).
There exists an isometry 7 of R" taking the m-dimensional subspace im(C)
onto the affine hull M of {/?„ . . . ,/?„}. Then 7 ° C maps Rm onto M and it
is not difficult to show that for all (tx, . . . , tc) G R™,

rank dfGm (tx, ...,/„) = rank dfGn(TCtx, ..., TCtv).
Choose q = (qx, . . . , qv) G R"10 such that TCq¡ = /?„ 1 < i < v. Clearly
dim q = dim/? and max{rank dfGm) < max{rank ^G„} = rank dfGn(p) =
rank dfGm(q) < max(rank dfGm). Therefore q is a regular point of fGm.

If G (9) is flexible in Rm, then the flexing of G(q) guaranteed by the
definition together with 7 ° C provides a flexing of G(p) in R".

Consider a graph G with v vertices. Then R"" is partitioned in three ways.
There is the set where G (/?) is rigid in R" and the set where G (/?) is flexible in
R"; there are the sets of regular and singular points of the edge function fG;
and there are the sets where dim/? = min{t> — 1, n] and dim/? < min{r —
1, n). How are these three partitions related? Our first corollary establishes
that it is never the case that G(p) is rigid in R" where/? is a regular point of fG
with dim/? < min(t) - 1, n). It is not difficult to find graphs G and points
/? E R2u showing the seven remaining possibilities can all occur.

Corollary 1. Let G be a graph with v vertices. If G(p) is rigid in R" where
p G R"v is a regular point offGn, then dim/? = min(t) — 1, n).

Proof. Let m = dim p. By the lemma, there exists q G R"1" with q a regular
point of fGm, dim q = m, rank dfGm(q) = rank dfGn(p), and G(q) rigid in
Rm. Applying the theorem of §3 to G(p) in R" and G (q) in Rm, we obtain

mv - (m + l)(2m - m)/2 = rank dfGm (q) = rank dfGn (/?)
= nv — (m + l)(2n — m)/2.

Since the function g(x) = vx - (m + l)(2x - w)/2 is affine and g(m) =
g(n), either m = n or the coefficient v — (m + 1) of x in g equals zero.
Therefore m = rnin{u - 1, n).

In connection with Corollary 1, we note that if dim/? = v - 1, then for
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each y the set {/?, — /?, : i ¥=■ j) is linearly independent. It follows that/? is a
regular point since rank dfG(p) = e.

Let G be the graph consisting of two triangles sharing a common edge and
let/G : R12 -* R5 be the edge function of G in R3. Then it is a simple matter to
find regular points p,q ER12 of fG where dim/? = 3 and dim q = 2. In this
case, G (/?) and G (q) are both flexible in R3 and our next corollary states that
regular points of different dimensions cannot occur if one of the graphs is
rigid.

Corollary 2. Let G be a graph with v vertices and edge function fGn:
Rnv -> Re. Ifp, q G Rnv are regular points of fGn and G(p) is rigid in Rn, then
G(q) is also rigid in R" and dim/? = dim q.

Proof. Let m = dim/? and / = dim q. By Corollary \,m = min{t> — 1, n)
and, as always, / < min{t> - 1, n}. Since/? and q are both regular points of
fGn, the lemma gives/?' E Rmv and q' G Rlv with/?' a regular point of fGm, q' a
regular point of fGl, dim /?' = m, dim q' = I, and rank dfGm(p') =
rank dfG„(p) = rank dfGn(q) = rank dfGl(q'). By the theorem of §3,
rank dfG,(q') < Iv - 1(1 + l)/2. By the lemma, G(p') is rigid in Rm and thus
rank dfGm(p') = mv — m(m + l)/2 by the theorem. But the function g(x) =
vx — x(x + l)/2 is strictly increasing for x < v — 1 and thus I = m since
g(l) = g(m). Therefore dim p = dim q which implies that G (q) is also rigid
inR".

Since Corollary 2 guarantees that G(p) is rigid in R" for all regular points/?
whenever it is rigid for a single regular point, we can conclude that either
G(p) is rigid in R" for all regular points or G(p) is flexible in R" for all
regular points.

Our next corollary makes precise the appealing idea that a graph with too
few edges can almost never be rigid. (See §5 for examples of rigid graphs
having too few edges.)

Corollary 3. Let G be a graph with v vertices and e edges. If e < nv — n(n
+ l)/2, then G(p) is flexible in R" for all regular points p of fG.

Proof. Let/? E R"v be a regular point of fG and m = dim p. Then

rank dfG (/?) < e < nv — n(n + l)/2 < nv — (m + l)(2/i - m)/2
and thus G(p) is flexible in R" by the theorem of §3.

Corollary 3 represents a first step in the direction of a purely combinatorial
method for determining whether a graph is almost always rigid or flexible in
R". A graph theoretic characterization in the case n = 2 is given by Laman [3,
Theorem 6.5].

Let K be a complete graph. By the definition of rigidity, it is clear that
K(p) is rigid in R" for all n and all /? £ R"". One consequence of our next
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corollary is that an incomplete graph is almost always flexible in R" for all
n > v — 1.

Corollary 4. Let G be a graph with v vertices. The following are equivalent:
(a) G is a complete graph;
(b)for all n, G(p) is rigid in R" for allp G Rnv;
(c)for some n > v — 1, G(p) is rigid in R" for all regular points p.

Proof. The fact that (a) implies (b) is a consequence of the definition of
rigidity and (b) obviously implies (c). Suppose there exists n > v — 1 such
that G(p) is rigid in R" where p G R"v is a regular point. By Corollary 1,
dim/? = v — 1 and thus rank dfG(p) = v(v — l)/2 by the theorem of §3. But
e < v(v — l)/2 = rank dfG(p) < e and therefore e = v(v — l)/2, that is, G
is a complete graph.

Our last two corollaries concern planar graphs, which are graphs that can
be embedded in the plane R2, that is, drawn in the plane in such a way that
edges intersect only at the appropriate vertices. For a connected planar graph
G, Euler's formula implies that the number / of faces of G is well-defined
since v — e + f = 2 for any embedding of G in the plane. For a connected
planar graph, we define the average number A of edges per face by A = 2e/f.
A version of our next corollary was first suggested and proved by Sherman
Stein.

Corollary 5. Let G be a planar graph such that G (/?) is rigid in R2 for all
regular points p of fG. Then the average number A of edges per face of G is less
than four and if G has more than two vertices, then G contains a triangle.

Proof. Since G (/?) is rigid in R2 for all regular points p G R2v, G is
connected and Corollary 3 implies that e > 2t> — 3. Therefore

A = 2e/f = 2e/ (2 - v + e) < 4e/ (e + 1) < 4.
Now suppose v > 3 and consider any embedding of the connected planar

graph G in R2. Every face of the embedded graph is bounded by at least three
edges, where an edge is counted twice for a face if the face lies on both sides
of the edge. If no face has exactly three boundary edges, then 2e > 4/ which
contradicts A = 2e/f < 4. Therefore some face of the embedded graph has
exactly three boundary edges which imphes that G contains a subgraph
isomorphic to the graph K3, that is, G contains a triangle.

It can be shown that four is the best possible bound in Corollary 5.
If G is a connected planar graph with v > 3, then 3/ < 2e and 3/ = 2e if

and only if every face (including the unbounded one) of some (or equiva-
lently every) embedding of G in the plane has exactly three boundary edges,
where again an edge is counted twice for a face if the edge hes inside the face.
Thus we refer to connected planar graphs with 3/ = 2e as triangular.
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We say that a graph is polyhedral if the graph can be embedded in R in
such a way that its vertices and edges are the vertices and edges of a convex
polyhedron in R3. Thus G is polyhedral if and only if there exists p =
(/?,, ...,/?„)£ R3v such that/?, ^pj for i =£ j and the edges [/?„/?,] of G(p)
are the edges of a convex polyhedron in R3. Clearly every polyhedral graph is
3-connected and planar.

If G is polyhedral and /? £ R3° is chosen so that the vertices and edges of
G (/?) are the vertices and edges of a convex polyhedron in R3, then /? is a
regular point of fG since rank dfG(p) = e. This fact stems from some
approaches to Cauchy's Theorem on the rigidity of polyhedra in R3. (For
example, see [2, Lemma 5.2, Lemma 5.3, and the proof of Theorem 5.1] where
we interpret "strictly convex" to mean edges as well as vertices are extremal.)
The following corollary is essentially a reformulation of results of Gluck [2]
obtained in a somewhat different setting.

Corollary 6. Let G be a connected planar graph with v > 4. The following
are equivalent:

(a) G(p) is rigid in R3 for all regular points p G R3v;
(b) G is triangular;
(c) G is triangular and polyhedral.

Proof. If (a) holds, then e > 3v - 6 by Corollary 3. Thus
e > 3v - 6 = 3(v - 2) = 3(e - f) = e + (2e - 3/) > e

and therefore 2e = 3/ which means that G is triangular.
The fact that (b) implies (c) follows from Steinitz's Theorem [1], which

provides necessary and sufficient conditions for a collection of vertices, edges,
and faces to be realized as the vertices, edges, and faces of a convex
polyhedron. It is here that we need v > 4.

Suppose (c) holds. Then there exists q G R3v such that the vertices and
edges of G (q) are the vertices and edges of a convex polyhedron in R3 and
2e = 3/ Thus rank dfG(q) = e = 3(e — f) = 3(v — 2) — 3v — 6 which
implies that G (q) is rigid in R3 by the theorem of §3. Therefore G (p) is rigid
in R3 for all regular points/?.

In particular, the one-skeleton of a convex polyhedron in R3 is rigid in R3 if
and only if every face of the polyhedron is a triangle. Moreover, the use of
the result on rank arising from Cauchy's Theorem in conjunction with
Corollary 3 shows that for a convex polyhedron in R3 with all triangular faces
the removal of any edge from its one-skeleton leads to flexibility.

Another condition equivalent to (a), (b), and (c) in Corollary 6 is "G is
triangular and 3-connected". Therefore if G is a connected planar graph with
v > 4 such that G(p) is almost always rigid in R3, then G is 3-connected.
More generally, the referee has observed that if G is a graph with v > n + 1
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such that G(p) is rigid in R" for all regular points/?, then G is «-connected.

5. Examples. It is quite easy to induce pathological behavior by allowing
some of the vertices of a graph G(p) in R" to coincide; we have chosen
examples in which this does not occur.

Example 1. Let G be the graph shown in Figure 1 for which v = 6 and
e = 8. Since e < 2t? - 3, Corollary 3 implies that G(p) is flexible in R2 for all
regular points/? E R12. However, if the location q of the vertices is as shown
in Figure 1, then a simple geometrical argument shows that G(q) is rigid in
R2. By perturbing the four collinear vertices of G(q), one obtains graphs
isomorphic to G (q) but flexible in R2. We note also that the average number
of edges per face of the rigid graph G (q) equals four.

Figure 1

Our next example is almost always rigid in R2 and only occasionally
flexible, in contrast to Example 1.

Example 2. Let G be the graph shown in Figure 2 for which v = 6 and
e = 9. For the location q of the vertices shown in Figure 2, a simple
geometrical argument shows that G(q) is flexible in R2. However, it is not
difficult to find/? E R12 with rank dfG(p) = 9 and dim/? = 2. Therefore G(p)
is rigid in R2 by the theorem of §3 and thus rigid at all regular points by
Corollary 2.

Figure 2

Example 3. Let G be the graph shown in Figure 3 which consists of a
tetrahedron with a triangle inside its base. Since G is planar but not triangu-
lar, G(p) is flexible in R3 for all regular points p G R2X by Corollary 6.
However, if the location q of the vertices is as shown in Figure 3 with the
triangle lying in the plane of the base of the tetrahedron, then a simple
geometrical argument shows that G(q) is rigid in R3 even though G(q) has
three nontriangular faces.

One consequence of Cauchy's Theorem is that if G(p) forms the one-
skeleton of a convex polyhedron in R3, then rank dfG(p) = e. Our last
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Figure 3
example shows that this fact does not generalize to higher dimensional
polytopes.

Example 4. Let C be a convex polytope in R" with nonempty interior. We
construct the convex polytope r(C) in R"+1 as follows. Embed C in a
hyperplane H in R"+1 and choose new vertices x, v £ Rn+1 — H such that
the line segment [x,^] intersects the relative interior of C. Then r(C) is the
convex hull of C with [x, y] and it can be verified that the vertices of r(C) are
x and v together with the vertices of C. Also the edges of r(C) are the edges
of C together with all [x, z] and [y, z] where z is a vertex of C. Thus, if v' and
e' are the number of vertices and edges of r(C), we have v' = v + 2 and
e' = e + 2v where v and e are the number of vertices and edges of C.

Now let C be a convex polygon in R2 with v vertices and v edges. Then for
r(C) in R3, we have e' ■» v + 2 and e' = 3v, while for r2(C) in R4, we have
v" = v + 4 and e" = 5v + 4. Suppose G is the graph of vertices and edges of
r2(C). Then for v > 3,

max{rank dfG } < 4v" - 10 = 4u + 6 < 5v + 4 = e".
Finally, we note that for v = 3, if C, r(C) and r2(C) are suitably chosen and
G(p) forms the one-skeleton of r2(C), then rank dfG(p) = 18. Therefore/? is a
regular point of fG and G (/?) is rigid in R4.
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