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Abstract A rigidity theory is developed for countably infinite simple graphs in R
d .

Generalisations are obtained for the Laman combinatorial characterisation of generic

infinitesimal rigidity for finite graphs in R
2 and Tay’s multi-graph characterisation of

generic infinitesimal rigidity for finite body-bar frameworks in R
d . Analogous results

are obtained for the classical non-Euclidean ℓq norms.
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1 Introduction

In 1864 James Clerk Maxwell [25] initiated a combinatorial trend in the rigidity theory

of finite bar-joint frameworks in Euclidean space. In two dimensions this amounted to

the observation that the underlying structure graph G = (V, E) must satisfy the simple

counting rule |E | ≥ 2|V | − 3. For minimal rigidity, in which any bar removal renders

the framework flexible, equality must hold together with the inequalities |E(H)| ≤
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2|V (H)| − 3 for subgraphs H with at least two vertices. The fundamental result

that these two necessary conditions are also sufficient for the minimal rigidity of a

generic framework was obtained by Laman in 1970 and this has given impetus to the

development of matroid theory techniques. While corresponding counting rules are

necessary in three dimensions they fail to be sufficient and a purely combinatorial

characterisation of generic rigidity is not available. On the other hand many specific

families of finite graphs are known to be generically rigid, such as the edge graphs of

triangle-faced convex polyhedra in three dimensions and the graphs associated with

finite triangulations of general surfaces. See, for example, Alexandrov [1], Fogelsanger

[9], Gluck [10], Kann [16] and Whiteley [42,43].

A finite simple graph G is said to be generically d-rigid, or simply d-rigid, if its reali-

sation as some generic bar-joint framework in the Euclidean space R
d is infinitesimally

rigid. Here generic refers to the algebraic independence of the set of coordinates of the

vertices and infinitesimal rigidity in this case is equivalent to continuous (non-trivial

finite motion) rigidity (Asimow and Roth [2,3]). The rigidity analysis of bar-joint

frameworks and related frameworks, such as body-bar frameworks and body-hinge

frameworks, continues to be a focus of investigation, both in the generic case and in

the presence of symmetry. For example Katoh and Tanigawa [18] have resolved the

molecular conjecture for generic structures, while Schulze [38] has obtained variants

of Laman’s theorem for semi-generic symmetric bar-joint frameworks. In the case of

infinite frameworks however developments have centred mainly on periodic frame-

works and the infinitesimal and finite motions which retain some form of periodicity.

Indeed, periodicity hypotheses lead to configuration spaces that are real algebraic

varieties and so to methods from multi-linear algebra and finite combinatorics. See,

for example, Borcea and Streinu [4], Connelly et al. [8], Malestein and Theran [24],

Owen and Power [32] and Ross et al. [37]. Periodic rigidity, broadly interpreted, is

also significant in a range of applied settings, such as the mathematical analysis of

rigid unit modes in crystals, as indicated in Power [34] and Wegner [41], for example.

In the development below we consider general countable simple graphs and the

flexibility and rigidity of their placements in the Euclidean spaces R
d and in the

non-Euclidean spaces (Rd , ‖ · ‖q) for the classical ℓq norms, for 1 < q < ∞. The

constraint conditions for the non-Euclidean ℓq norms are no longer given by polyno-

mial equations and so we adapt the Asimow–Roth notion of a regular framework to

obtain the appropriate form of a generic framework. This strand of norm constraint

rigidity theory for finite frameworks was initiated in [20] for ℓq norms. It was further

developed in [19] for polyhedral norms and in [22] for general norms. We continue

this development in Theorem 5.5 where we generalise Tay’s multi-graph characterisa-

tion [40] of generically rigid finite body-bar frameworks in R
d to the non-Euclidean

ℓq norms. As well as being a natural problem, one of the original motivations for

considering rigidity with respect to a different norm was based on similarities which

arose with the combinatorial methodologies used for surface-constrained frameworks

[28,29] and the potential for cross-fertilization between these topics. Subsequently,

norm based rigidity has gained interest in relation to metric embeddability [39].

Our first main result is Theorem 1.1 in which we determine the simple countable

graphs which are locally generically rigid for (R2, ‖ · ‖q), for 1 < q < ∞. This is
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a generalisation of Laman’s theorem (and its non-Euclidean analogue) to countable

graphs.

Theorem 1.1 Let G be a countable simple graph.

(A) The following statements are equivalent.

(i) G is rigid in (R2, ‖ · ‖2).

(ii) G contains a (2, 3)-tight vertex-complete tower.

(B) If q ∈ (1, 2) ∪ (2,∞) then the following statements are equivalent.

(i) G is rigid in (R2, ‖ · ‖q).

(ii) G contains a (2, 2)-tight vertex-complete tower.

We also see that these graphs are necessarily sequentially rigid in the sense of

containing a spanning subgraph which is a union of finite graphs, each of which

is infinitesimally rigid. This is the strongest form of infinitesimal rigidity and its

equivalence with infinitesimal rigidity is particular to two dimensions; an infinite

chain of double banana graphs shows that the corresponding equivalence fails to hold

in higher dimensions (see Fig. 2).

These results rest in part on a general characterisation of infinitesimal rigidity in

terms of what we refer to as the relative rigidity of a finite graph G1 with respect to

a containing finite graph G2. Specifically, for all dimensions and norms we show that

a countable simple graph G is infinitesimally rigid if and only if there is a subgraph

inclusion tower

G1 ⊆ G2 ⊆ G3 ⊆ · · ·

which is vertex spanning and in which for each k the graph Gk is relatively infinites-

imally rigid in Gk+1 (Theorem 3.14). This relative rigidity principle seems to be

generally useful in the characterisation of generic rigidity for infinite geometric frame-

works in a variety of contexts. In our second main result, in Sect. 5, we illustrate this

by generalising Tay’s theorem to infinite locally generic body-bar frameworks (The-

orem 1.2). That is we characterise such frameworks combinatorially in terms of their

associated countably infinite multi-graphs Gb.

Theorem 1.2 Let G be a countable multi-body graph for (Rd , ‖ · ‖q) where q ∈

(1,∞).

(A) The following statements are equivalent.

(i) G is rigid in (Rd , ‖ · ‖2).

(ii) Gb has a
(

d(d+1)
2

,
d(d+1)

2

)

-tight vertex-complete tower.

(B) If q ∈ (1, 2) ∪ (2,∞) then the following statements are equivalent.

(i) G is rigid in (Rd , ‖ · ‖q).

(ii) Gb has a (d, d)-tight vertex-complete tower.
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We comment on further directions and related problems at the end of Sect. 3.

Accounts of the foundations of geometric rigidity theory are given in Alexandrov [1],

Graver [12], Graver et al. [13] and Whiteley [45]. Also [13] has a comprehensive guide

to the literature up to 1993. The influential papers of Asimow and Roth introduced

regular frameworks as a more appropriate form of genericity and in Definition 2.6

we have followed Graver in requiring that all frameworks supported by vertices of G

should be regular.

2 Preliminaries

In this section we state necessary definitions for finite and countably infinite graphs

and we review the necessary background on the rigidity of finite graphs in R
d with

respect to the classical ℓq norms.

2.1 Continuous and Infinitesimal Rigidity

A bar-joint framework in a normed vector space (X, ‖·‖) is a pair (G, p) consisting of

a simple graph G = (V (G), E(G)) and a mapping p : V (G) → X , v 
→ pv , with the

property that pv �= pw whenever vw ∈ E(G). Unless otherwise stated, the vertex set

V (G) is allowed to be either finite or countably infinite. We call p a placement of G in

X and the collection of all placements of G in X will be denoted by P(G, X) or simply

P(G) when the context is clear. If H is a subgraph of G then the bar-joint framework

(H, p) obtained by restricting p to V (H) is called a subframework of (G, p).

Definition 2.1 A continuous flex of (G, p) is a family of continuous paths

αv : [−1, 1] → X, v ∈ V (G),

such that αv(0) = pv for all v ∈ V (G) and ‖αv(t) − αw(t)‖ = ‖pv − pw‖ for all

t ∈ [−1, 1] and all vw ∈ E(G).

A continuous flex is regarded as trivial if it results from a continuous isometric

motion of the ambient space. Formally, a continuous rigid motion of (X, ‖ · ‖) is a

mappingŴ(x, t) : X×[−1, 1] → X which is isometric in the variable x and continuous

in the variable t with Ŵ(x, 0) = x for all x ∈ X . Every continuous rigid motion gives

rise to a continuous flex of (G, p) by setting αv : [−1, 1] → X , t 
→ Ŵ(pv, t), for

each v ∈ V (G). A continuous flex of (G, p) is trivial if it can be derived from a

continuous rigid motion in this way. If every continuous flex of (G, p) is trivial then

we say that (G, p) is continuously rigid, otherwise we say that (G, p) is continuously

flexible.

Definition 2.2 An infinitesimal flex of (G, p) is a mapping u : V (G) → X , v 
→ uv ,

which satisfies

‖(pv + tuv) − (pw + tuw)‖ − ‖pv − pw‖ = o(t), as t → 0

for each edge vw ∈ E(G).
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We will denote the vector space of infinitesimal flexes of (G, p) by F(G, p). An

infinitesimal rigid motion of (X, ‖ · ‖) is a mapping γ : X → X derived from a

continuous rigid motion Ŵ by the formula γ (x) = d
dt

Ŵ(x, t)|t=0 for all x ∈ X . The

vector space of all infinitesimal rigid motions of (X, ‖ · ‖) is denoted T (X). Every

infinitesimal rigid motion γ ∈ T (X) gives rise to an infinitesimal flex of (G, p) by

setting uv = γ (pv) for all v ∈ V (G). We regard such infinitesimal flexes as trivial

and the collection of all trivial infinitesimal flexes of (G, p) is a vector subspace

of F(G, p) which we denote by T (G, p). The infinitesimal flexibility dimension of

(G, p) is the vector space dimension of the quotient space,

dimfl(G, p) := dim F(G, p)/T (G, p).

If T (G, p) is a proper subspace then (G, p) is said to be an infinitesimally flexible

bar-joint framework. Otherwise, we say that (G, p) is infinitesimally rigid and we call

p an infinitesimally rigid placement of G. A bar-joint framework (G, p) is minimally

infinitesimally rigid if it is infinitesimally rigid and removing any edge results in a

subframework which is infinitesimally flexible.

We will consider the rigidity properties of bar-joint frameworks in R
d with respect

to the family {‖ · ‖q : q ∈ (1,∞)} of ℓq norms,

‖ · ‖q : R
d → R, ‖(x1, . . . , xd)‖q =

(

d
∑

i=1

|xi |
q

)

1
q

We use a subscript q to indicate the ℓq norm when referring to the collection of

infinitesimal rigid motions Tq(Rd), the infinitesimal flexes Fq(G, p), and trivial

infinitesimal flexes Tq(G, p) of a bar-joint framework. In the Euclidean setting q = 2

it is well-known that the space of infinitesimal rigid motions T2(R
d) has dimension

d(d+1)
2

. In the non-Euclidean setting q �= 2 the infinitesimal rigid motions are precisely

the constant mappings and so Tq(Rd) is d-dimensional (see [20, Lem. 2.2]).

Proposition 2.3 Let (G, p) be a bar-joint framework in (Rd , ‖·‖q) where q ∈ (1,∞).

Then a mapping u : V (G) → R
d is an infinitesimal flex of (G, p) if and only if

d
∑

i=1

sgn(pv,i − pw,i )|pv,i − pw,i |
q−1(uv,i − uw,i ) = 0

for each edge vw ∈ E(G).

Proof See proof of [20, Prop. 3.1]. ⊓⊔

If G is a finite graph then the system of linear equations in Proposition 2.3 can

be expressed as a matrix equation Rq(G, p)u = 0 where Rq(G, p) is an |E(G)| ×

d|V (G)| matrix called the rigidity matrix for (G, p). The rows of Rq(G, p) are indexed

by the edges of G and the columns are indexed by the d coordinates of pv for each

vertex v ∈ V (G). The row entries for a particular edge vw ∈ E(G) are
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[

pv pw

vw 0 · · · 0 (pv − pw)(q−1) 0 · · · 0 −(pv − pw)(q−1) 0 · · · 0
]

,

where we use the notation x (q) = (sgn(x1)|x1|
q , . . . , sgn(xd)|xd |q). Evidently we

have Fq(G, p) ∼= ker Rq(G, p) for all q ∈ (1,∞) and it immediately follows that

rank Rq(G, p) ≤ d|V (G)| − dim Tq(G, p)

with equality if and only if (G, p) is infinitesimally rigid.

Definition 2.4 A finite bar-joint framework (G, p) is regular in (Rd , ‖ · ‖q) if the

function

P(G, R
d) → R, x 
→ rank Rq(G, x)

achieves its maximum value at p.

The equivalence of continuous and infinitesimal rigidity for regular finite bar-joint

frameworks in Euclidean space was established by Asimow and Roth [2,3]. In [21] this

result is extended to finite bar-joint frameworks in the non-Euclidean spaces (Rd , ‖·‖q)

for q ∈ (1,∞).

Theorem 2.5 (Asimow–Roth [2,3]) If (G, p) is a finite bar-joint framework in

Euclidean space (Rd , ‖ · ‖2) then the following statements are equivalent.

(i) (G, p) is continuously rigid and regular.

(ii) (G, p) is infinitesimally rigid.

We now formalise our meaning of a generic finite bar-joint framework in (Rd , ‖·‖q)

for q ∈ (1,∞). The complete graph on the vertices V (G) will be denoted KV (G).

Definition 2.6 A finite bar-joint framework (G, p) is generic in (Rd , ‖ · ‖q) if p ∈

P(KV (G), R
d) and every subframework of (KV (G), p) is regular.

If (G, p) is a finite bar-joint framework then p will frequently be identified with a

vector (pv1, pv2 , . . . , pvn ) ∈ R
d|V (G)| with respect to some fixed ordering of the ver-

tices V (G) = {v1, v2, . . . , vn}. In particular, the collection of all generic placements

of G in (Rd , ‖ · ‖q) is identified with a subset of R
d|V (G)|.

Lemma 2.7 Let G be a finite simple graph and let q ∈ (1,∞). Then the set of generic

placements of G in (Rd , ‖ · ‖q) is an open and dense subset of R
d|V (G)|.

Proof The set of regular placements of G is an open set since the rank function is

lower semi-continuous and the matrix-valued function x 
→ Rq(G, x) is continuous.

Let Vnr (G) denote the set of all non-regular placements of G and let V(G) be the

variety

V(G) :=

⎧

⎨

⎩

x ∈ R
d|V (G)| :

∏

vw∈E(G)

d
∏

i=1

(xv,i − xw,i ) = 0

⎫

⎬

⎭

.
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If p ∈ Vnr (G)\V(G) then there exists a neighbourhood U of p such that

Vnr (G) ∩ U = {x ∈ U : φ1(x) = · · · = φm(x) = 0},

where φ1(x), . . . , φm(x) are the minors of Rq(G, x) which correspond to its largest

square submatrices. The entries of Rq(G, x) when viewed as functions of x are real

analytic at all points in the complement of V(G) and so in particular we may assume

that φ1, . . . , φm are real analytic on U . Thus Vnr (G)\V(G) is a real analytic set in

R
d|V (G)| and so the set of regular placements of G is a dense subset of R

d|V (G)|.

Finally, the set of generic placements of G is obtained as a finite intersection of open

and dense sets. ⊓⊔

Note that the infinitesimal flexibility dimension dimfl(G, p) is constant on the set

of generic placements of G in (Rd , ‖ ·‖q). Also, if G has a (minimally) infinitesimally

rigid placement then all generic placements of G are (minimally) infinitesimally rigid

in (Rd , ‖ · ‖q).

Definition 2.8 Let G be a finite simple graph.

1. The infinitesimal flexibility dimension of G in (Rd , ‖ · ‖q) is

dimfl(G) := dimd,q(G) := dimfl(G, p) = dim Fq(G, p)/Tq(G, p).

where p is any generic placement of G.

2. G is (minimally) rigid in (Rd , ‖·‖q) if the generic placements of G are (minimally)

infinitesimally rigid.

One can readily verify that the complete graph Kd+1 on d + 1 vertices satisfies

dimd,2(Kd+1) = 0 and that Kd+1 is minimally rigid for R
d with the Euclidean norm.

Also, in d dimensions we have dimd,q(K2d) = 0, with minimal rigidity, for each of

the non-Euclidean q-norms.

2.2 Sparsity and Rigidity

We recall the following classes of multi-graphs.

Definition 2.9 Let k, l ∈ N with either (k, l) = (2, 3) or k = l. A multi-graph G is

1. (k, l)-sparse if |E(H)| ≤ k|V (H)| − l for each subgraph H of G which contains

at least two vertices.

2. (k, l)-tight if it is (k, l)-sparse and |E(G)| = k|V (G)| − l.

Our main interests are in the classes of simple (2, 2)-sparse and (2, 3)-sparse graphs

and the class of (k, k)-sparse multi-graphs for k ≥ 2.

Example 2.10 The complete graph Kn is (k, k)-sparse for 1 ≤ n ≤ 2k, (k, k)-tight for

n ∈ {1, 2k} and fails to be (k, k)-sparse for n > 2k. Also, K2 and K3 are (2, 3)-tight

while Kn fails to be (2, 3)-sparse for n ≥ 4.
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Laman’s theorem [23] provides a combinatorial characterisation of the class of

finite simple graphs which are rigid in the Euclidean plane and can be restated as

follows.

Theorem 2.11 (Laman [23]) If G is a finite simple graph then the following statements

are equivalent.

(i) G is rigid in (R2, ‖ · ‖2).

(ii) G contains a (2, 3)-tight spanning subgraph.

In particular, a generic bar-joint framework (G, p) is minimally infinitesimally

rigid in (R2, ‖ · ‖2) if and only if G is (2, 3)-tight. In [20] the following analogue of

Laman’s theorem was obtained for the non-Euclidean ℓq norms.

Theorem 2.12 [20] If G is a finite simple graph and q ∈ (1, 2) ∪ (2,∞) then the

following statements are equivalent.

(i) G is rigid in (R2, ‖ · ‖q).

(ii) G contains a (2, 2)-tight spanning subgraph.

3 Rigidity of Countable Graphs

In this section we establish the general principle that infinitesimal rigidity is equivalent

to local relative rigidity in the sense that every finite subframework is rigid relative

to some finite containing superframework (Theorem 3.14). Following this we prove

Theorem 1.1 which is the generalised Laman theorem. The rigidity of general infinite

graphs as bar-joint frameworks was considered first in Owen and Power [30,32] and

part (A) of Theorem 1.1 answers a question posed in [32].

3.1 Sparsity Lemmas

We first obtain characterisations of (k, l)-tightness which are needed for the construc-

tion of inclusion chains of rigid graphs.

Lemma 3.1 Let G be a (k, l)-sparse multi-graph containing vertices v,w ∈ V (G)

with vw /∈ E(G) and let G ′ = G ∪{vw}. Then exactly one of the following conditions

must hold.

(i) G ′ is (k, l)-sparse, or,

(ii) there exists a (k, l)-tight subgraph of G which contains both v and w.

Proof If G ′ is not (k, l)-sparse then there exists a subgraph H ′ of G ′ which fails the

sparsity count. Now H ′\{vw} is a (k, l)-tight subgraph of G which contains both v

and w. Conversely, if H is a (k, l)-tight subgraph of G which contains both v and w

then H ∪ {vw} is a subgraph of G ′ which fails the sparsity count. ⊓⊔

Lemma 3.2 Let G be a (k, l)-sparse multi-graph. Suppose that one of the following

conditions holds.
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(a) k = 2, l = 3 and G contains at least two vertices, or,

(b) k = l and G contains at least 2k vertices.

Then G is a spanning subgraph of a (k, l)-tight graph G ′ obtained by adjoining edges

of the form vw to E(G) where v and w are distinct vertices of V (G).

Proof Let K be the complete graph on the vertices of G. The collection of edge sets

of the (k, l)-sparse subgraphs of K form the independent sets of a matroid. Moreover,

the edge sets of the (k, l)-tight subgraphs of K are the base elements of this matroid.

In case (a), this is well-known and a consequence of Laman’s theorem, while case (b)

follows from Nash-Williams characterisation [26] of these graphs as those where the

edge set is the disjoint union of k spanning forests. Each independent set in a matroid

extends to a base element and so, in particular, the edge set of G extends to the edge

set of a (k, l)-tight graph G ′ on the same vertex set. ⊓⊔

3.2 Relative Infinitesimal Rigidity

We first prove that in two dimensional ℓq spaces relative infinitesimal rigidity is equiv-

alent to the existence of a rigid containing framework.

Definition 3.3 Let (G, p) be a bar-joint framework in a normed space (X, ‖ · ‖).

1. A subframework (H, p) is relatively infinitesimally rigid in (G, p) if there is no

non-trivial infinitesimal flex of (H, p) which extends to an infinitesimal flex of

(G, p).

2. A subframework (H, p) has an infinitesimally rigid container in (G, p) if there

exists an infinitesimally rigid subframework of (G, p) which contains (H, p) as

a subframework.

If the complete bar-joint framework (KV (H), p) is infinitesimally rigid in (X, ‖ · ‖)

then relative infinitesimal rigidity is characterised by the property

F(G, p) = F(G ∪ KV (H), p).

It follows that relative infinitesimal rigidity is a generic property for bar-joint frame-

works in (Rd , ‖ · ‖q) for all q ∈ (1,∞) since if p and p̃ are two generic placements

of G then

Fq(G, p̃) ∼= Fq(G, p) = Fq(G ∪ KV (H), p) ∼= Fq(G ∪ KV (H), p̃).

To ensure that (KV (H), p) is infinitesimally rigid in the Euclidean case we require that

H contains at least d + 1 vertices while in the non-Euclidean cases H must contain at

least 2d vertices. We will say that a subgraph H is relatively rigid in G with respect

to (Rd , ‖ · ‖q) if the subframework (H, p) is relatively infinitesimally rigid in (G, p)

for some (and hence every) generic placement of G. Note that the existence of an

infinitesimally rigid container is also a generic property for bar-joint frameworks in

(Rd , ‖ · ‖q). We will say that a subgraph H has a rigid container in G with respect to

(Rd , ‖ · ‖q) if there exists a rigid subgraph of G which contains H .
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Fig. 1 An example of a

relatively rigid subgraph in the

Euclidean space R
3 which does

not have a rigid container

If (H, p) has an infinitesimally rigid container in (G, p) then (H, p) is relatively

infinitesimally rigid in (G, p). The converse statement is not true in general as the

following example shows.

Example 3.4 Figure 1 illustrates a generic bar-joint framework (G, p) in (R3, ‖ · ‖2)

with subframework (H, p) indicated by the shaded region. Note that (H, p) is rela-

tively infinitesimally rigid in (G, p) but does not have an infinitesimally rigid container

in (G, p).

In the following we will say that a finite simple graph G is independent in (Rd , ‖·‖q)

if the rigidity matrix Rq(G, p) is independent for some (and hence every) generic

placement p : V (G) → R
d .

Proposition 3.5 Let G be a finite simple graph and let q ∈ (1,∞). Suppose that one

of the following conditions holds.

(a) q = 2, l = 3 and G contains at least two vertices, or,

(b) q �= 2, l = 2 and G contains at least four vertices.

Then the following statements are equivalent.

(i) G is independent in (R2, ‖ · ‖q).

(ii) G is (2, l)-sparse.

Proof Let p : V (G) → R
2 be a generic placement of G in (R2, ‖ · ‖q). If G is

independent and H is a subgraph of G then |E(H)| = rank Rq(H, p) ≤ 2|V (H)|− l.

We conclude that G is (2, l)-sparse.

Conversely, if G is (2, l)-sparse then, by Lemma 3.2, G is a subgraph of some

(2, l)-tight graph G ′ with V (G) = V (G ′). By Laman’s theorem and its analogue for

the non-Euclidean case (Theorems 2.11, 2.12), (G ′, p) is minimally infinitesimally

rigid and so G is independent. ⊓⊔

We now show that relative infinitesimal rigidity does imply the existence of an

infinitesimally rigid container for generic bar-joint frameworks in (R2, ‖ · ‖q) for all

q ∈ (1,∞).

Theorem 3.6 Let G be a finite simple graph and let H be a subgraph of G. Suppose

that q ∈ (1,∞) and that one of the following conditions holds.

(a) q = 2 and H contains at least two vertices, or,

(b) q �= 2 and H contains at least four vertices.

Then the following statements are equivalent.
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(i) H is relatively rigid in G with respect to (R2, ‖ · ‖q).

(ii) H has a rigid container in G with respect to (R2, ‖ · ‖q).

Proof (i) ⇒ (ii) Consider first the case when G is independent with respect to

(R2, ‖ · ‖q). By Proposition 3.5, G is (2, l)-sparse (where l = 3 when q = 2 and

l = 2 when q �= 2). Since KV (H) is rigid in (R2, ‖ · ‖q) the relative rigidity property

implies that

Fq(G, p) = Fq(G ∪ KV (H), p)

for every generic placement p ∈ P(G). It follows that if v,w ∈ V (H) and vw /∈ E(G)

then G ∪ {vw} is dependent. By Proposition 3.5, G ∪ {vw} is not (2, l)-sparse. Thus

by Lemma 3.1 there exists a (2, l)-tight subgraph Hv,w of G with v,w ∈ V (Hv,w).

By Theorems 2.11 and 2.12, Hv,w is rigid in (R2, ‖ · ‖q). Let H ′ be the subgraph of

G which consists of H and the subgraphs Hv,w. Then H ′ is rigid in (R2, ‖ · ‖q) and

so H ′ is a rigid container for H in G.

If G is dependent then let p : V (G) → R
2 be a generic placement of G. There

exists an edge vw ∈ E(G) such that

ker Rq(G, p) = ker Rq(G \ {vw}, p).

Let G1 = G \ {vw} and H1 = H \ {vw} and note that H1 is relatively rigid in G1.

Continuing to remove edges in this way we arrive after finitely many iterations at

subgraphs Hn and Gn such that V (Hn) = V (H), Hn is relatively rigid in Gn and Gn

is independent. By the above argument there exists a rigid container H ′
n for Hn in Gn .

Now H ′ = H ′
n ∪ H is a rigid container for H in G.

(ii) ⇒ (i) Let H ′ be a rigid container for H in G and let p : V (G) → R
2 be a

generic placement of G in (R2, ‖ ·‖q). Then no non-trivial infinitesimal flex of (H, p)

can be extended to an infinitesimal flex of (H ′, p) and so the result follows. ⊓⊔

Remark 3.7 In their analysis of globally linked pairs of vertices in rigid frameworks

Jackson et al. [15] remark that it follows from the characterisation of independent sets

for the rigidity matroid for the Euclidean plane that linked vertices {v1, v2} must lie

in the same rigid component. (See also [14].) This assertion is essentially equivalent

to part (a) of Theorem 3.6. The terminology here is that a pair of vertices {v1, v2}

in a graph G is linked in (G, p) if there exists an ǫ > 0 such that if q ∈ P(G) is

another placement of G with ‖qv − qw‖2 = ‖pv − pw‖2 for all vw ∈ E(G) and

‖qv − pv‖2 < ǫ for all v ∈ V (G) then ‖qv1 − qv2‖2 = ‖pv1 − pv2‖2. It can be shown

that this is a generic property and that a subgraph H ⊆ G is relatively rigid in G if and

only if for a generic placement (G, p) each pair of vertices in H is linked in (G, p).

3.3 Flex Cancellation and Relatively Rigid Towers

A tower of bar-joint frameworks in a normed vector space (X, ‖ · ‖) is a sequence

{(Gk, pk) : k ∈ N} of finite bar-joint frameworks in (X, ‖ · ‖) such that (Gk, pk) is a
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subframework of (Gk+1, pk+1) for each k ∈ N. The linear maps

ρ j,k : F(Gk, pk) → F(G j , p j )

defined for all j ≤ k by the restriction of flexes determine an inverse system

(F(Gk, pk), ρ j,k) with associated vector space inverse limit lim
←−

F(Gk, pk).

Definition 3.8 A tower of bar-joint frameworks {(Gk, pk) : k ∈ N} has the flex

cancellation property if for each k ∈ N and any non-trivial infinitesimal flex uk of

(Gk, pk) there is an m > k such that uk does not extend to an infinitesimal flex of

(Gm, pm).

If a bar-joint framework (Gm, pm) in a tower {(Gk, pk) : k ∈ N} has a non-tri-

vial infinitesimal flex um : V (Gm) → X which can be extended to every containing

framework in the tower then we call um an enduring infinitesimal flex for the tower.

Lemma 3.9 Let {(Gk, pk) : k ∈ N} be a tower of bar-joint frameworks in a finite

dimensional normed space (X, ‖ · ‖) and let u1 be an infinitesimal flex of (G1, p1)

which is an enduring flex for the tower. Then there exists a sequence {uk}
∞
k=1 such that,

for each k ∈ N, uk is an infinitesimal flex of (Gk, pk) and uk+1 is an extension of uk .

Proof Denote by F (k) ⊂ F(Gk, pk) the vector space of all infinitesimal flexes u ∈

F(Gk, pk) with the property that there exists a scalar λ ∈ K such that u(v) = λu1(v)

for all v ∈ V (G1). Let ρk : F (k) → F (2) be the restriction map and note that since u1

is an enduring flex we have a decreasing chain of non-zero finite dimensional linear

spaces

F
(2) ⊇ ρ3(F

(3)) ⊇ ρ4(F
(4)) ⊇ ρ5(F

(5)) ⊇ · · · .

Thus there exists m ∈ N such that ρn(F (n)) = ρm(F (m)) for all n > m. Since u1 is

non-trivial and enduring there is a necessarily non-trivial extension ũm say in F (m).

Let u2 be the restriction of ũm to (G2, p2). Note that u2 is an enduring flex since for

each n > m we have u2 ∈ ρm(F (m)) = ρn(F (n)). Also u2 is an extension of u1. An

induction argument can now be applied to obtain a sequence of consecutive extensions

uk ∈ F(Gk, pk). ⊓⊔

A bar-joint framework (G, p) contains a tower {(Gk, pk) : k ∈ N} if (Gk, pk)

is a subframework of (G, p) for each k ∈ N. A tower in (G, p) is vertex-complete

if V (G) =
⋃

k∈N
V (Gk) and edge-complete if E(G) =

⋃

k∈N
E(Gk). If a tower

is edge-complete then the vector space F(G, p) of infinitesimal flexes is naturally

isomorphic to the vector space inverse limit,

F(G, p) ∼= lim
←−

F(Gk, pk).

Proposition 3.10 Let (G, p) be a countable bar-joint framework in a finite dimen-

sional normed space (X, ‖ · ‖). If (G, p) is infinitesimally rigid then every edge-

complete tower in (G, p) has the flex cancellation property.
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Proof Suppose there exists an edge-complete tower {(Gk, pk) : k ∈ N} of finite

frameworks in (G, p) which does not have the flex cancellation property. Then there

exists a non-trivial infinitesimal flex of some (Gk, pk) which is an enduring flex for

the tower. We may assume without loss of generality that k = 1. By Lemma 3.9

there is a sequence of infinitesimal flexes u1, u2, u3, . . . for the chain with each flex

extending the preceding flex. The tower is edge-complete and so this sequence defines

an infinitesimal flex u for (G, p) by setting u(v) = uk(v) for all v ∈ V (Gk) and all

k ∈ N. Since u1 is a non-trivial infinitesimal flex of (G1, p1) the flex u is a non-trivial

infinitesimal flex of (G, p). ⊓⊔

Remark 3.11 The key Lemma 3.9 is reminiscent of the compactness principle for

locally finite structures to the effect that certain properties prevailing for all finite

substructures hold also for the infinite structure. For example the k-colourability of a

graph is one such property. See Nash-Williams [27].

We can now establish the connection between relative rigidity, flex cancellation and

infinitesimal rigidity for countable bar-joint frameworks.

Definition 3.12 A tower of bar-joint frameworks {(Gk, pk) : k ∈ N} is relatively

infinitesimally rigid if (Gk, pk) is relatively infinitesimally rigid in (Gk+1, pk+1) for

each k ∈ N.

Lemma 3.13 Let {(Gk, pk) : k ∈ N} be a framework tower in a finite dimensional

normed space (X, ‖ · ‖). If {(Gk, pk) : k ∈ N} has the flex cancellation property then

there exists an increasing sequence (mk)
∞
k=1 of natural numbers such that the tower

{(Gmk
, pmk

) : k ∈ N} is relatively infinitesimally rigid.

Proof Let F (k) ⊂ F(G1, p1) denote the set of all infinitesimal flexes of (G1, p1)

which extend to (Gk, pk) but not (Gk+1, pk+1). Suppose there exists an increasing

sequence (nk)
∞
k=1 of natural numbers such that F (nk) �= ∅ for all k ∈ N. Choose an

element uk ∈ F (nk) for each k ∈ N and note that {uk : k ∈ N} is a linearly independent

set in F(G1, p1). Since F(G1, p1) is finite dimensional we have a contradiction. Thus

there exists m1 ∈ N such that F (k) = ∅ for all k ≥ m1 and so (G1, p1) is relatively

infinitesimally rigid in (Gm1 , pm1). The result now follows by an induction argument.

⊓⊔

Theorem 3.14 Let (G, p) be a countable bar-joint framework in a finite dimensional

real normed linear space (X, ‖ · ‖). Then the following statements are equivalent.

(i) (G, p) is infinitesimally rigid.

(ii) (G, p) contains a vertex-complete tower which has the flex cancellation property.

(iii) (G, p) contains a vertex-complete tower which is relatively infinitesimally rigid.

Proof The implication (i) ⇒ (ii) is a consequence of Proposition 3.10. To prove (ii)

⇒ (iii) apply Lemma 3.13. We now prove (iii) ⇒ (i). Let {(Gk, pk) : k ∈ N} be a

vertex-complete tower in (G, p) which is relatively infinitesimally rigid and suppose

u is a non-trivial infinitesimal flex of (G, p). We will construct inductively a sequence

(γn)
∞
n=1 of infinitesimal rigid motions of X and an increasing sequence (kn)

∞
n=1 of

natural numbers satisfying
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1. u(v) = γn(p(v)) for all v ∈ V (Gkn ), and,

2. u(vkn+1) �= γn(p(vkn+1)) for some vkn+1 ∈ V (Gkn+1).

Since the tower {(Gk, pk) : k ∈ N} is relatively infinitesimally rigid the restriction

of u to (Gk, pk) is trivial for each k ∈ N. Thus there exists γ1 ∈ T (X) such that

u(v) = γ1(p(v)) for all v ∈ V (G1). Let k1 = 1. Since u is non-trivial and the

tower is vertex-complete there exists k2 > k1 such that u(vk2) �= γ1(p(vk2)) for

some vk2 ∈ V (Gk2). Now the restriction of u to (Gk2 , pk2) is trivial and so there

exists γ2 ∈ T (X) such that u(v) = γ2(p(v)) for all v ∈ V (Gk2). In general, given

γn ∈ T (X) and kn ∈ N we construct γn+1 and kn+1 using the same argument.

Let sn = γn+1 − γn ∈ T (X). Then sn(p(v)) = 0 for all v ∈ V (Gkn ) and

sn(p(vkn+1)) �= 0 for some vkn+1 ∈ V (Gkn+1). Thus {sn : n ∈ N} is a linearly inde-

pendent set in T (X) and since T (X) is finite dimensional we have a contradiction.

We conclude that (G, p) is infinitesimally rigid. ⊓⊔

Theorem 3.14 gives useful criteria for the determination of infinitesimal rigidity of

a countable framework (G, p).

Definition 3.15 A countable bar-joint framework (G, p) is sequentially infinitesi-

mally rigid if there exists a vertex-complete tower of bar-joint frameworks {(Gk, pk) :

k ∈ N} in (G, p) such that (Gk, pk) is infinitesimally rigid for each k ∈ N.

Corollary 3.16 Let (G, p) be a countable bar-joint framework in a finite dimensional

normed space (X, ‖ · ‖). If (G, p) is sequentially infinitesimally rigid then (G, p) is

infinitesimally rigid.

Proof If there exists a vertex-complete tower {(Gk, pk) : k ∈ N} in (G, p) such that

(Gk, pk) is infinitesimally rigid for each k ∈ N then this framework tower is relatively

infinitesimally rigid. The result now follows from Theorem 3.14. ⊓⊔

Remark 3.17 The set of placements of a countable graph with prescribed edge

lengths need not be an algebraic variety even when it can be realised as a finitely

parametrised set. In fact there are infinite Kempe linkages which can draw every-

where non-differentiable curves [31,35]. It follows that the Asimow–Roth proof [3]

that infinitesimal rigidity implies continuous rigidity is not available for infinite graphs,

and indeed this implication does not hold in this generality. A direct way to see this

is given in Kastis and Power [17] through the construction of continuously flexi-

ble crystallographic bar-joint frameworks which are infinitesimally rigid by virtue of

unavoidable infinite derivatives (velocities at joints) in any continuous motion.

3.4 Generic Placements for Countable Graphs

Let G be a countably infinite simple graph and let q ∈ (1,∞).

Definition 3.18 A placement p : V (G) → R
d is locally generic in (Rd , ‖ · ‖q) if

every finite subframework of (G, p) is generic.

A tower of graphs is a sequence of finite graphs {Gk : k ∈ N} such that Gk is a

subgraph of Gk+1 for each k ∈ N. A countable graph G contains a vertex-complete

tower {Gk : k ∈ N} if each Gk is a subgraph of G and V (G) =
⋃

k∈N
V (Gk).
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Proposition 3.19 Every countable simple graph G has a locally generic placement

in (Rd , ‖ · ‖q) for q ∈ (1,∞).

Proof Let {Gk : k ∈ N} be a vertex-complete tower in G and let

π j,k : R
d|V (Gk )| → R

d|V (G j )|, (xv)v∈V (Gk) 
→ (xv)v∈V (G j )

be the natural projections whenever G j ⊆ Gk . By Lemma 2.7 the set of generic place-

ments of each Gk is an open and dense subset of R
d|V (Gk )|. It follows by an induction

argument that for each k ∈ N there exists an open ball B(pk, rk) in R
d|V (Gk )| consist-

ing of generic placements of Gk such that rk+1 < rk and the projection πk,k+1(pk+1)

is contained in the open ball B
(

pk,
rk

2k

)

. For each j ∈ N the sequence {π j,k(pk)}
∞
k= j

is a Cauchy sequence of points in B
(

p j ,
r j

2

)

⊂ R
d|V (G j )| and hence converges to a

point in B(p j , r j ). Define p : V (G) → R
d by setting

p(v) = lim
k→∞
k≥ j

pk(v), for all v ∈ V (G j ), j ∈ N.

The restriction of p to V (G j ) is a generic placement of G j for all j ∈ N and so p is

a locally generic placement of G. ⊓⊔

We now show that infinitesimal rigidity and sequential infinitesimal rigidity are

generic properties for countable bar-joint frameworks in (Rd , ‖·‖q) for all q ∈ (1,∞).

Proposition 3.20 Let (G, p) be a locally generic countable bar-joint framework in

(Rd , ‖ · ‖q) where q ∈ (1,∞).

(i) The infinitesimal flex dimension dimfl(G, p) is constant on the set of all locally

generic placements of G.

(ii) If (G, p) is infinitesimally rigid then every locally generic placement of G is

infinitesimally rigid.

(iii) If (G, p) is sequentially infinitesimally rigid then every locally generic placement

of G is sequentially infinitesimally rigid.

Proof To show (i) choose an edge complete tower {(Gk, p) : k ∈ N} in (G, p). Then

Fq(G, p) is isomorphic to the inverse limit of the inverse system (Fq(Gk, p), ρ j,k)

and similarly Tq(G, p) is isomorphic to the inverse limit of the inverse system

(Tq(Gk, p), ρ j,k) where ρ j,k are restriction maps. If p′ is another locally generic

placement of G then Fq(Gk, p) is isomorphic to Fq(Gk, p′) and Tq(Gk, p) is iso-

morphic to Tq(Gk, p′) for each k. Moreover, we may choose isomorphisms which

give rise to an isomorphism of the corresponding inverse limits,

Fq(G, p) ∼= lim
←−

Fq(Gk, p) ∼= lim
←−

Fq(Gk, p′) ∼= Fq(G, p′),

Tq(G, p) ∼= lim
←−

Tq(Gk, p) ∼= lim
←−

Tq(Gk, p′) ∼= Tq(G, p′).

In particular the infinitesimal flex dimensions agree,

dimfl(G, p) = dim Fq(G, p)/Tq(G, p) = dim Fq(G, p′)/Tq(G, p′) = dimfl(G, p′).
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Fig. 2 The graphs G1, G2 and G3 in Example 3.22

Statement (ii) follows immediately from (i) and (iii) holds since infinitesimal rigid-

ity is a generic property for finite bar-joint frameworks. ⊓⊔

The infinitesimal flex dimension of a countable graph and the classes of countable

rigid and sequentially rigid graphs are now defined.

Definition 3.21 Let G be a countable simple graph.

(i) G is (minimally) rigid in (Rd , ‖ · ‖q) if the locally generic placements of G are

(minimally) infinitesimally rigid.

(ii) G is sequentially rigid in (Rd , ‖ · ‖q) if the locally generic placements of G are

sequentially infinitesimally rigid.

(iii) The infinitesimal flexibility dimension of G in (Rd , ‖ · ‖q) is

dimfl(G) := dimd,q(G) := dimfl(G, p) = dim Fq(G, p)/Tq(G, p).

where p is any locally generic placement of G.

The following example demonstrates the non-equivalence of rigidity and sequential

rigidity for countable graphs. The surprising fact that these properties are in fact

equivalent in two dimensions is established in Theorem 4.1 below.

Example 3.22 Figure 2 illustrates the first three graphs in a tower {Gn : n ∈ N} in

which Gn is constructed inductively from a double banana graph G1 by flex cancelling

additions of copies of K5 \ {e} (single banana graphs). The union G of these graphs

is a countable graph whose maximal rigid subgraphs are copies of K5 \ {e}. Thus the

locally generic placements of G are not sequentially infinitesimally rigid. However

the tower is relatively rigid in (R3, ‖ · ‖2) and so G is rigid.

4 The Equivalence of Rigidity and Sequential Rigidity

We now prove the equivalence of rigidity and sequential rigidity for countable graphs

in (R2, ‖ · ‖q) for q ∈ (1,∞).

Theorem 4.1 Let G be a countable simple graph and let q ∈ (1,∞). Then the

following statements are equivalent.

(i) G is rigid in (R2, ‖ · ‖q).

(ii) G is sequentially rigid in (R2, ‖ · ‖q).
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Proof (i) ⇒ (ii) Suppose G is rigid in (R2, ‖ · ‖q) and let p : V (G) → R
2 be a locally

generic placement. By Theorem 3.14, (G, p) has a vertex-complete framework tower

{(Gk, p) : k ∈ N} which is relatively infinitesimally rigid. By Theorem 3.6, Gk has

a rigid container Hk in Gk+1 for each k ∈ N. Thus {Hk : k ∈ N} is the required

vertex-complete tower of rigid subgraphs in G.

(ii) ⇒ (i) If p : V (G) → R
2 is a locally generic placement of G in (R2, ‖ ·‖q) then

by Corollary 3.16, (G, p) is infinitesimally rigid and so G is rigid. ⊓⊔

We now prove our main theorem. We use the convention that if P is a property of

a graph then a P-tower is a tower for which each graph Gk has property P . Thus a

(2, 3)-tight tower is a nested sequence of subgraphs {Gk : k ∈ N} each of which is

(2, 3)-tight.

Proof of Theorem 1 (i) ⇒ (ii) If G is rigid then by Theorem 4.1, G is sequentially

rigid and so there exists a vertex-complete tower {Gk : k ∈ N} of rigid subgraphs in

G. We will construct a tower {Hk : k ∈ N} of (2, l)-tight subgraphs of G satisfying

V (Hk) = V (Gk) for each k ∈ N.

Let H1 = G1\E1 be a minimally rigid spanning subgraph of G1 obtained by

removing a set E1 ⊂ E(G1) of edges from G1. It follows on considering the rigidity

matrix for a generic placement of Gk that Gk\E1 is rigid for each k ∈ N. Letting

G ′
k = Gk\E1 for all k ≥ 2 we obtain a vertex-complete tower of rigid subgraphs in G

H1 ⊂ G ′
2 ⊂ G ′

3 ⊂ · · · ,

where H1 is minimally rigid, V (H1) = V (G1) and V (G ′
k) = V (Gk) for all k ≥ 2.

Suppose we have constructed a vertex-complete tower of rigid subgraphs in G,

H1 ⊂ H2 ⊂ · · · ⊂ Hn ⊂ G ′
n+1 ⊂ G ′

n+2 ⊂ · · · ,

where H1, H2, . . . , Hn are minimally rigid, V (Hk) = V (Gk) for each k = 1, 2, . . . , n

and V (G ′
k) = V (Gk) for all k ≥ n +1. Let Hn+1 = Gn+1\En+1 be a minimally rigid

spanning subgraph of G ′
n+1 obtained by removing a set En+1 ⊂ E(G ′

n+1) of edges

from G ′
n+1. We can arrange that Hn is a subgraph of Hn+1. It follows on considering the

rigidity matrix for a generic placement of G ′
k that G ′

k\En+1 is rigid for each k ≥ n+1.

Replacing G ′
k with G ′

k\En+1 for each k ≥ n + 2 we obtain a vertex-complete tower

in G,

H1 ⊂ H2 ⊂ · · · ⊂ Hn+1 ⊂ G ′
n+2 ⊂ G ′

n+3 ⊂ · · ·

consisting of rigid subgraphs with H1, H2, . . . , Hn+1 minimally rigid, V (Hk) =

V (Gk) for each k = 1, 2, . . . , n + 1 and V (G ′
k) = V (Gk) for all k ≥ n + 2.

By induction there exists a vertex-complete tower {Hk : k ∈ N} of minimally rigid

subgraphs in G. In case (A), Theorem 2.11 implies that each Hk is (2, 3)-tight and in

case (B) Theorem 2.12 implies that each Hk is (2, 2)-tight.

123



548 Discrete Comput Geom (2018) 60:531–557

(ii) ⇒ (i) Let {Gk : k ∈ N} be a (2, l)-tight vertex-complete tower in G. By

Theorems 2.11 and 2.12, each Gk is a rigid graph in (R2, ‖·‖q) and so G is sequentially

rigid. By Theorem 4.1, G is rigid. ⊓⊔

Corollary 4.2 Let G be a countable simple graph.

(A) The following statements are equivalent.

(i) G is minimally rigid in (R2, ‖ · ‖2).

(ii) G contains a (2, 3)-tight edge-complete tower.

(B) If q ∈ (1, 2) ∪ (2,∞) then the following statements are equivalent.

(i) G is minimally rigid in (R2, ‖ · ‖q).

(ii) G contains a (2, 2)-tight edge-complete tower.

Proof (i) ⇒ (ii) If G is minimally rigid in (R2, ‖ · ‖q) then by Theorem 1.1, G

contains a (2, l)-tight vertex-complete tower {Gk : k ∈ N} and this tower must be

edge-complete.

(ii) ⇒ (i) If G contains a (2, l)-tight edge-complete tower {Gk : k ∈ N} then by

Theorem 1.1, G is rigid. Let vw ∈ E(G) and suppose G\{vw} is rigid. By Theorem

4.1, G\{vw} is sequentially rigid and so there exists a vertex-complete tower {Hk :

k ∈ N} in G\{vw} consisting of rigid subgraphs. Choose a sufficiently large k such

that v,w ∈ V (Hk) and choose a sufficiently large n such that vw ∈ E(Gn) and Hk is

a subgraph of Gn . Then Hk ∪ {vw} is a subgraph of Gn which fails the sparsity count

for Gn . We conclude that G\{vw} is not rigid in (R2, ‖ · ‖q) for all vw ∈ E(G). ⊓⊔

Note that it follows from this corollary that the graph of a minimally infinitesimally

rigid framework may have some or all of its vertices of countable degree.

4.1 Remarks and Open Problems

One can also take a matroidal point of view for infinitesimally rigid frameworks and

define the infinite matroid R∞
2 (resp. R∞

2,q ) on the set S of edges of the countable

complete graph K∞. The independent sets in this matroid are the subsets of edges

of a sequential Laman graph (resp. sequentially (2, 2)-tight graph). Our results show

that these matroids are finitary (see Oxley [33] and Bruhn et al. [6]) and so are closely

related to their finite matroid counterparts.

It is a long-standing open problem to characterise in combinatorial terms the finite

simple 3-rigid graphs despite progress in understanding the corresponding rigidity

matroid R3. See Cheng and Sitharam [7] for example. However the absence of rota-

tional isometries in the non-Euclidean spaces (R3, ‖·‖q) suggests that a combinatorial

characterisation of finite rigid graphs might be possible in terms of (3, 3)-tight graphs.

If this is so then part (B) of Theorem 1.1 would extend to d = 3.

We note that there are a number of further directions and natural problems in which

relative rigidity methods play a role.

(i) It is well-known that generic body-bar frameworks are more tractable than bar-

joint frameworks and in the next section we obtain variants of Tay’s [40] celebrated

combinatorial characterisation.
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(ii) Finite bar-joint frameworks in three dimensions whose joints are constrained

to move on an algebraic surface are considered in [28,29]. In particular the graphs

for generically minimally infinitesimally rigid frameworks for the cylinder are the

(2, 2)-tight graphs. The methods and results above for (R2, ‖ · ‖q) carry over readily

to the cylinder.

(iii) An important theme and proof technique in the rigidity of finite graphs and

geometric systems is the use of inductive constructions, that is, the construction of all

graphs in a combinatorial class through a finite number of elementary construction

moves, such as Henneberg moves. In our companion paper Kitson and Power [21] we

consider such constructions for infinite graphs and for infinitely faceted polytopes.

(iv) In [19] it is shown that relative infinitesimal rigidity with respect to a polyhedral

norm on R
d may be determined from an edge-labelling induced by the framework

placement. This provides a convenient tool which is applied to obtain an analogue of

Laman’s theorem for polyhedral norms on R
2. The passage to countable graphs differs

from the present case in that the notion of a locally generic placement used here for

ℓq norms is no longer appropriate in the case of a polyhedral norm. Thus an analogue

of Theorem 1.1 is not available, however, Theorem 3.14 may still be applied for all

polyhedral norms on R
d .

(v) Globally rigid graphs are those graphs G whose generic frameworks (G, p)

admit no equivalent non-congruent realisations. There have been a number of recent

significant advances in the determination of such graphs [11,14] and it would be of

interest to extend such results to countable graphs.

5 Rigidity of Multi-body Graphs

Tay’s theorem [40] provides a combinatorial characterisation of the finite multi-graphs

without reflexive edges which have infinitesimally rigid generic realisations as body-

bar frameworks in Euclidean space. In this section we extend Tay’s characterisation

to countable multi-graphs and obtain analogues of both characterisations for the non-

Euclidean ℓq norms for all dimensions d ≥ 2.

5.1 Tay’s Theorem and Non-Euclidean Rigidity

We now consider bar-joint frameworks in (Rd , ‖ · ‖q), where q ∈ (1,∞), which arise

from the following class of simple graphs.

Definition 5.1 A multi-body graph for (Rd , ‖·‖q) is a finite or countable simple graph

G for which there exists a vertex partition

V (G) =
⋃

k

Vk

consisting of a finite or countable collection of subsets Vk such that for each k,

1. the vertex-induced subgraph determined by Vk is a rigid graph in (Rd , ‖ · ‖q), and,

2. every vertex v ∈ Vk is adjacent to at most one vertex in V (G)\Vk .
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The rigid vertex-induced subgraph determined by Vk is denoted Bk and is called

a body of G. An edge vw ∈ E(G) which is incident with vertices from two distinct

bodies Bi and B j is called an inter-body edge. Thus a multi-body graph is composed

of pairwise vertex-disjoint bodies together with inter-body edges such that no pair of

inter-body edges of G shares a vertex.

Each multi-body graph G has an associated finite or countable body-bar graph

Gb = (V (Gb), E(Gb)) which is the multi-graph with vertex set labelled by the bodies

of G and with edge set derived from the inter-body edges of G.

Tay’s theorem may be restated as follows:

Theorem 5.2 (Tay [40]) Let G be a finite multi-body graph for (Rd , ‖·‖2) and suppose

that G contains at least two bodies. Then the following statements are equivalent.

(i) G is rigid in Euclidean space (Rd , ‖ · ‖2).

(ii) Gb contains a
(

d(d+1)
2

,
d(d+1)

2

)

-tight spanning subgraph.

The following lemma shows that the bodies B1, B2, . . . of a multi-body graph G

may be modelled in a number of different ways without altering the rigidity properties

of G.

Lemma 5.3 Let G and G ′ be two finite multi-body graphs for (Rd , ‖ · ‖q) with iso-

morphic body-bar graphs and q ∈ (1,∞). Then dimd,q(G) = dimd,q(G ′).

Proof Choose a multi-body graph H with body-bar graph Hb isomorphic to Gb and G ′
b

such that each body of H is a complete graph with more vertices than the corresponding

bodies of G and G ′. Then there exist natural graph homomorphisms φ : G → H and

φ′ : G ′ → H . If pH : V (H) → R
d is a generic placement of H then p : V (G) → R

d

defined by pv = (pH )φ(v) is a generic placement of G. Now the linear mapping

A : Fq(H, pH ) → Fq(G, p), A(u)v = uφ(v), is an isomorphism. Applying the same

argument to G ′ we obtain a generic placement p : V (G ′) → R
d and a linear isomor-

phism A′ : Fq(H, pH ) → Fq(G ′, p′). The result follows. ⊓⊔

Example 5.4 The complete graph Kd+1 is
(

d,
d(d+1)

2

)

-tight and is minimally rigid

for (Rd , ‖ · ‖2). The complete graph K2d is (d, d)-tight and is a minimally rigid

graph for (Rd , ‖ · ‖q) for each of the non-Euclidean ℓq -norms. These sparsity and

rigidity properties persist for graphs obtained from these complete graphs by a finite

sequence of Henneberg vertex extension moves of degree d. Thus we may assume

without loss of generality that the bodies of a finite multi-body graph for (Rd , ‖ · ‖q)

are
(

d,
d(d+1)

2

)

-tight in the Euclidean case and (d, d)-tight in the non-Euclidean case.

The convenience of modelling multi-body graphs in this way is that the combinatorial

and ℓq -norm analysis of earlier sections is ready-to-hand.

There is a natural vertex-induced surjective graph homomorphism π : G → Gb

where Gb is the multi-graph obtained by contracting the bodies of G. The body-bar

graph Gb is a subgraph of Gb obtained by removing reflexive edges and π gives a

bijection between the inter-body edges of G and the edges of Gb.

Theorem 5.5 Let G be a finite multi-body graph for (Rd , ‖ · ‖q) where q ∈ (1, 2) ∪

(2,∞). Then the following statements are equivalent.

123



Discrete Comput Geom (2018) 60:531–557 551

(i) G is rigid in (Rd , ‖ · ‖q).

(ii) Gb has a (d, d)-tight spanning subgraph.

Proof (i) ⇒ (ii) We can assume without loss of generality that each body of G is (d, d)-

tight. Suppose that G is minimally rigid in (Rd , ‖ · ‖q) with bodies B1, B2, . . . , Bn .

If Gb is the body-bar graph for G then |V (Gb)| = n and we have

|E(Gb)| = |E(G)| −

n
∑

i=1

|E(Bi )|

= (d|V (G)| − d) −

n
∑

i=1

(d|V (Bi )| − d) = d|V (Gb)| − d.

Let Hb be a subgraph of Gb and let π : G → Gb be the natural graph homomorphism.

Define H to be the subgraph of G with V (H) = π−1(V (Hb)) such that H contains

the body Bi whenever π(V (Bi )) ∈ V (Hb) and H contains the inter-body edge vw

whenever π(v)π(w) ∈ E(Hb). Then |V (Hb)| = |I| where I = {i ∈ {1, . . . , n} :

Bi ⊂ H} and

|E(Hb)| = |E(H)| −
∑

i∈I

|E(Bi )|

≤ (d|V (H)| − d) −
∑

i∈I

(d|V (Bi )| − d) = d|V (Hb)| − d.

Thus Gb is (d, d)-tight. For the general case note that by removing edges from G we

obtain a minimally rigid multi-body graph G̃. Thus by the above argument G̃b is a

vertex-complete (d, d)-tight subgraph of Gb.

(ii) ⇒ (i) If Gb is (d, d)-tight then it admits a partition as an edge-disjoint union

of d spanning trees T1, T2, . . . , Td (see [26]). We will construct a placement of G so

that pv − pw lies on the i th coordinate axis in R
d whenever vw is an inter-body edge

with π(vw) ∈ Ti .

By Lemma 5.3 we can assume that the bodies B1, B2, . . . , Bn of G are copies of the

complete graph Km for some sufficiently large m. Let p1 : V (B1) → R
d be a generic

placement of the body B1 and define inductively the placements pk : V (Bk) → R
d

for k = 2, . . . , n so that

(1) pk(V (Bk)) = p1(V (B1)), and,

(2) p j (v) = pk(w) whenever j < k and vw ∈ E(G) is an inter-body edge with

v ∈ V (B j ) and w ∈ V (Bk).

Then (Bk, pk) is a generic, and hence infinitesimally rigid, bar-joint framework for

each k = 1, 2, . . . , n.

Define p : V (G) → R
d by setting p(v) = pi (v) whenever v ∈ V (Bi ). Note that p

is not a placement of G since pv = pw for each inter-body edge vw ∈ E(G). However,

by perturbing p by a small amount we can obtain a placement p′. Let ǫ > 0 and let

e1, e2, . . . , ed be the usual basis in R
d . If v ∈ V (G) is not incident with an inter-body
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edge then set p′
v = pv . If vw ∈ E(G) is an inter-body edge and π(vw) ∈ Ti then let

p′
v = pv + ǫei and p′

w = pw. The rigidity matrix for (G, p′) has the form

Rq(G, p′) =

⎡

⎢

⎢

⎢

⎣

Rq(B1, p′)

. . .

Rq(Bn, p′)

Z

⎤

⎥

⎥

⎥

⎦

,

where the rows of the submatrix Z correspond to the inter-body edges in G.

Suppose u = (u1, . . . , un) ∈ ker Rq(G, p′). For a sufficiently small ǫ each sub-

framework (Bi , p′) is infinitesimally rigid, and so ui = (ai , . . . , ai ) for some ai ∈ R
d .

If vw is an inter-body edge with π(vw) ∈ Ti then the corresponding row entries in

Rq(G, p′) are non-zero in the pv,i and pw,i columns only. The spanning tree property

now ensures that a1 = · · · = an and so the kernel of Rq(G, p′) has dimension d.

Thus p′ is an infinitesimally rigid placement of G in (Rd , ‖ · ‖q). More generally if

Gb contains a vertex-complete (d, d)-tight subgraph then by the above argument G is

rigid in (Rd , ‖ · ‖q). ⊓⊔

A key feature of body-bar frameworks is the non-incidence condition for the bars.

This makes available special realisations which are rigid, as we have seen in the proof

of the analogue of Tay’s theorem, Theorem 5.5. Other instances of this can be seen

in the matroid analysis of Whiteley [44] and in the analysis of Borcea and Streinu

[5] and Ross [36] of locally finite graphs with periodically rigid periodic bar-joint

frameworks.

We will require the following definition and corollary to characterise the countable

rigid multi-body graphs for (Rd , ‖ · ‖q).

Definition 5.6 A multi-body graph for (Rd , ‖ · ‖q) is essentially minimally rigid if it

is rigid and removing any inter-body edge results in a multi-body graph which is not

rigid.

Corollary 5.7 Let G be a finite multi-body graph for (Rd , ‖ · ‖q) and suppose that

one of the following conditions holds.

(a) q = 2 and k = d(d+1)
2

, or,

(b) q ∈ (1, 2) ∪ (2,∞) and k = d.

Then the following statements are equivalent.

(i) G is essentially minimally rigid in (Rd , ‖ · ‖q).

(ii) Gb is a (k, k)-tight multi-graph.

Proof The proof follows immediately from Theorem 5.2 in case (a) and from Theorem

5.5 in case (b). ⊓⊔

5.2 Rigidity of Countable Multi-body Graphs

We are now able to characterise the countable rigid multi-body graphs in (Rd , ‖ · ‖q)

for all dimensions d ≥ 2 and all q ∈ (1,∞). Given a finite bar-joint framework (G, p)

in (Rd , ‖·‖q) we denote by Xrow(G, p) the row space of the rigidity matrix Rq(G, p).
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Definition 5.8 A finite multi-body graph for (Rd , ‖ · ‖q) is essentially independent if

given any generic placement p ∈ P(G) the row space of the rigidity matrix Rq(G, p)

may be expressed as a direct sum

Xrow(G, p) = X B1 ⊕ · · · ⊕ X Bn ⊕ XIB,

where X Bi
is the subspace of Xrow(G, p) spanned by the rows of Rq(G, p) which

correspond to the edges of the body Bi and XIB is the subspace spanned by the rows

which correspond to the inter-body edges of G.

The following result is an analogue of Proposition 3.5.

Proposition 5.9 Let G be a finite multi-body graph for (Rd , ‖ · ‖q) and suppose that

one of the following conditions holds.

(a) q = 2, k = d(d+1)
2

and G contains at least d(d + 1) vertices, or,

(b) q ∈ (1, 2) ∪ (2,∞), k = d and G contains at least 2d vertices.

Then the following statements are equivalent.

(i) G is essentially independent with respect to (Rd , ‖ · ‖q).

(ii) Gb is (k, k)-sparse.

Proof Suppose G is essentially independent and let p : V (G) → R
d be a generic

placement of G. If Hb is a subgraph of Gb and B1, B2, . . . , Bn are the bodies of G

then let H be the subgraph of G with V (H) = π−1(V (Hb)) such that H contains

the body Bi whenever π(V (Bi )) ∈ V (Hb) and H contains the inter-body edge vw

whenever π(vw) ∈ E(Hb). If I = {i ∈ {1, . . . , n} : Bi ⊂ H} then

|E(Hb)| = rank Rq(H, p) −
∑

i∈I

rank Rq(Bi , p)

≤ (d|V (H)| − k) −
∑

i∈I

(d|V (Bi )| − k) = k|V (Hb)| − k.

Thus Gb is (k, k)-sparse.

Conversely, if Gb is (k, k)-sparse then by Lemma 3.2, Gb is a vertex-complete

subgraph of a (k, k)-tight multi-graph G ′
b which has no reflexive edges. Let G ′ be a

multi-body graph with body-bar graph isomorphic to G ′
b and which contains G as a

subgraph. By Corollary 5.7, G ′ is essentially minimally rigid and it follows that G is

essentially independent. ⊓⊔

We now prove an analogue of Theorem 3.6 which shows that in the category of

multi-body graphs relative rigidity is equivalent to the existence of a rigid container

for all dimensions d and for all ℓq norms.

Theorem 5.10 Let G be a finite multi-body graph for (Rd , ‖ · ‖q) and let H be a

subgraph of G which is a multi-body graph whose body subgraphs are bodies of G.

Suppose that one of the following conditions holds.
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(a) q = 2 and H contains at least d(d + 1) vertices, or,

(b) q ∈ (1, 2) ∪ (2,∞) and H contains at least 2d vertices.

Then the following statements are equivalent.

(i) H is relatively rigid in G with respect to (Rd , ‖ · ‖q).

(ii) H has a rigid container in G with respect to (Rd , ‖ · ‖q) which is a multi-body

graph.

Proof (i) ⇒ (ii) Consider first the case when G is essentially independent with respect

to (Rd , ‖ · ‖q). By Proposition 5.9, the body-bar graph Gb is (k, k)-sparse, for the

appropriate value of k. Let π(v), π(w) ∈ V (Hb) be distinct vertices of Hb with

π(vw) /∈ E(Hb). By enlarging the bodies of G and H we can assume without loss of

generality that there exist representative vertices v,w ∈ V (H) such that v and w are

not incident with any inter-body edges of G. Since KV (H) is rigid in (Rd , ‖ · ‖q) the

relative rigidity property implies that

Fq(G, p) = Fq(G ∪ KV (H), p)

for every generic placement p. It follows that G ′ = G ∪ {vw} is a multi-body graph

which is not essentially independent. Note that G ′ has the same bodies as G and so by

Proposition 5.9, the associated body-bar graph (G ′)b = Gb ∪ {π(vw)} is not (k, k)-

sparse where π : G → Gb is the natural graph homomorphism. Thus by Lemma 3.1

there exists a (k, k)-tight subgraph (Hv,w)b of Gb with π(v), π(w) ∈ V ((Hv,w)b).

Let Hv,w be the induced multi-body subgraph of G with body-bar graph isomorphic

to (Hv,w)b. By Corollary 5.7, Hv,w is rigid in (R2, ‖ · ‖q).

Define H ′ to be the union of H together with the subgraphs Hv,w for all such pairs

π(v), π(w) ∈ V (Hb). Thus H ′ is the multi-body subgraph of G with body-bar graph

isomorphic to H ′
b. Then H ′ is rigid in (Rd , ‖ · ‖q) and so H ′ is a rigid container for

H in G.

If G is not essentially independent then let p : V (G) → R
d be a generic placement

of G. There exists an inter-body edge vw ∈ E(G) such that

ker Rq(G, p) = ker Rq(G \ {vw}, p).

Let G1 = G \ {vw} and H1 = H \ {vw} and note that H1 is relatively rigid in G1.

Continuing to remove edges in this way we arrive after finitely many iterations at

subgraphs Hn and Gn such that V (Hn) = V (H), Hn is relatively rigid in Gn and Gn

is essentially independent. By the above argument there exists a rigid container H ′
n

for Hn in Gn . Now H ′ = H ′
n ∪ H is a rigid container for H in G.

(ii) ⇒ (i) If H has a rigid container H ′ in G and p : V (G) → R
d is a generic

placement of G then no non-trivial infinitesimal flex of (H, p) extends to (H ′, p).

The result follows. ⊓⊔

We now prove the equivalence of rigidity and sequential rigidity for multi-body

graphs with respect to all ℓq -norms and in all dimensions d ≥ 2.

Theorem 5.11 Let G be a countable multi-body graph for (Rd , ‖ · ‖q) where q ∈

(1,∞). The following statements are equivalent.
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(i) G is rigid in (Rd , ‖ · ‖q).

(ii) G is sequentially rigid in (Rd , ‖ · ‖q).

Proof Suppose G is rigid in (Rd , ‖ · ‖q) and let p : V (G) → R
d be a locally generic

placement. By Theorem 3.14, there exists a vertex-complete tower {(Gk, pk) : k ∈ N}

in (G, p) which is relatively infinitesimally rigid. Moreover, we can assume that each

Gk is a multi-body graph. By Proposition 5.10, Gk has a rigid container Hk in Gk+1

for each k ∈ N. Thus the sequence {Hk : k ∈ N} is a vertex-complete tower of rigid

graphs in G. For the converse apply Corollary 3.16. ⊓⊔

We now prove our second main result which generalises Tay’s theorem to countable

multi-body graphs.

Proof of Theorem 2 (i) ⇒ (ii) If G is rigid then by Theorem 5.11, G is sequentially

rigid. Let {Gk : k ∈ N} be a vertex-complete tower of rigid subgraphs in G and let

B1, B2, . . . be the bodies of G. We may assume that each Gk is a multi-body graph.

Applying the induction argument used in Theorem 1.1 we construct a vertex-complete

tower of essentially minimally rigid multi-body subgraphs in G. To do this let H1 be

the multi-body graph obtained by taking all bodies which lie in G̃1 and adjoining inter-

body edges of G1 until an essentially minimally rigid graph is reached. The induced

sequence of body-bar graphs {(Hk)b : k ∈ N} is a vertex-complete tower in Gb. By

Corollary 5.7 each body-bar graph (Hk)b is
(

d(d+1)
2

,
d(d+1)

2

)

-tight in case (A) and

(d, d)-tight in case (B).

(ii) ⇒ (i) Let {Gk,b : k ∈ N} be a
(

d(d+1)
2

,
d(d+1)

2

)

-tight vertex-complete tower

in Gb and let π : G → Gb be the natural graph homomorphism. Define Gk to be

the subgraph of G with V (Gk) = π−1(V (Gk,b)) such that Gk contains the body Bi

whenever π(V (Bi )) ∈ V (Gk,b) and Gk contains the inter-body edge vw whenever

π(vw) ∈ E(Gk,b). Then Gk,b is the body-bar graph for Gk and so Gk is rigid by

Theorem 5.2. Thus {Gk : k ∈ N} is a vertex-complete tower of rigid subgraphs in G

and so G is sequentially rigid. By Theorem 5.11, G is rigid.

To prove (B) we apply similar arguments to the above using the non-Euclidean

versions of the relevant propositions and substituting Theorem 5.5 for Theorem 5.2.

⊓⊔

Corollary 5.12 Let G be a countable multi-body graph for (Rd , ‖ · ‖q) where q ∈

(1,∞).

(A) The following statements are equivalent.

(i) G is essentially minimally rigid in (Rd , ‖ · ‖2).

(ii) Gb has a
(

d(d+1)
2

,
d(d+1)

2

)

-tight edge-complete tower.

(B) If q ∈ (1, 2) ∪ (2,∞) then the following statements are equivalent.

(i) G is essentially minimally rigid in (Rd , ‖ · ‖q).

(ii) Gb has a (d, d)-tight edge-complete tower.

Proof (i) ⇒ (ii) If G is essentially minimally rigid in (Rd , ‖ · ‖q) then by Theorem

1.2, Gb contains a (k, k)-tight vertex-complete tower {Gk : k ∈ N} and this tower

must be edge-complete.
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(ii) ⇒ (i) If Gb contains a (k, k)-tight edge-complete tower {Gk,b : k ∈ N} then by

Theorem 1.2, G is rigid. Let vw ∈ E(G) be an inter-body edge and suppose G\{vw}

is rigid. By Theorem 5.11, G\{vw} is sequentially rigid and so there exists a vertex-

complete tower {Hk : k ∈ N} in G\{vw} consisting of rigid subgraphs. Moreover, we

can assume that each Hk is a multi-body graph. Choose a sufficiently large k such that

v,w ∈ V (Hk) and choose a sufficiently large n such that vw ∈ E(Gn) and Hk is a

subgraph of Gn . Then the body-bar graph for Hk ∪{vw} is a subgraph of (Gn)b which

fails the sparsity count for (Gn)b. We conclude that G\{vw} is not rigid in (Rd , ‖ · ‖q)

for all vw ∈ E(G). ⊓⊔
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