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Abstract

Background: The integrity of RNA molecules is of paramount importance for experiments that

try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently,

there has been no reliable standard for estimating the integrity of RNA samples and the ratio of

28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be

inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for

an automated high-throughput approach, in order to estimate the integrity of RNA samples in an

unambiguous way.

Methods: A method is introduced that automatically selects features from signal measurements

and constructs regression models based on a Bayesian learning technique. Feature spaces of

different dimensionality are compared in the Bayesian framework, which allows selecting a final

feature combination corresponding to models with high posterior probability.

Results: This approach is applied to a large collection of electrophoretic RNA measurements

recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity.

The resulting algorithm is a user-independent, automated and reliable procedure for

standardization of RNA quality control that allows the calculation of an RNA integrity number

(RIN).

Conclusion: Our results show the importance of taking characteristics of several regions of the

recorded electropherogram into account in order to get a robust and reliable prediction of RNA

integrity, especially if compared to traditional methods.
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Background
The RNA molecule plays a critical role in transferring
information encoded in the genome (DNA) to the many
different forms of proteins. After extracting RNA from cells
by various methods, scientists are provided with a direct
measure of cellular activity using gene expression meas-
urement techniques. Among these, real-time PCR and
DNA microarrays are the most widely used techniques.

Importance of integrity

RNA is a thermodynamically stable molecule, which is,
however, rapidly digested in the presence of the nearly
ubiquitous RNase enzymes. As a result, shorter fragments
of RNA commonly occur in a sample, which can poten-
tially compromise results of downstream applications
[1,2]. In order to evaluate the degree of degradation, elec-
trophoretic methods have been applied that separate the
samples according to the size of the comprised molecules.

Historically, RNA integrity is evaluated using agarose gel
electrophoresis stained with ethidium bromide, which
produces a certain banding pattern [3]. Typically, gel
images show two bands comprising the 28S and 18S
ribosomal RNA (rRNA) species and other bands where
smaller RNA species are located. RNA is considered of
high quality when the ratio of 28S:18S bands is about 2.0

and higher. Since this approach relies on human interpre-
tation of gel images, it is subjective, hardly comparable
from one lab to another, and the resulting data cannot be
processed digitally.

Towards an automated approach

In 1999, the Agilent 2100 bioanalyzer was introduced for
the separation of DNA, RNA, and protein samples. It has
since become a mainstream technique for the analysis of
RNA samples. The bioanalyzer is an automated bio-ana-
lytical device using microfluidics technology that provides
eletrophoretic separations in an automated and reproduc-
ible manner [4]. Tiny amounts of RNA samples are sepa-
rated in the channels of the microfabricated chips
according to their molecular weight and subsequently
detected via laser-induced fluorescence detection. The
result is visualized as an electropherogram where the
amount of measured fluorescence correlates with the
amount of RNA of a given size.

Since data are produced in a digital format, they can be
easily re-processed to allow additional calculations based
on the acquired raw data. When first released, the Biosizing
Software calculated the ratio of the two ribosomal bands,
following the commonly used approach for RNA integrity
assessment. However, although assessing RNA quality

Application environmentFigure 1
Application environment. (1) Role of RNA in gene expression and protein production, (2) extracted RNA molecules, 
measurement of RNA sizes applying Agilents 2100 bioanalyzer and (3) assignment of integrity categories to RNA samples. In 
the sample, RNA molecules of different sizes occur, which is measured by the 2100 bioanalyzer. The distinction with regard to 
integrity is based on this size distribution in each sample.
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RNA integrity categoriesFigure 2
RNA integrity categories. The figure shows typical representatives of the ten integrity categories. RIN values range from 10 
(intact) to 1 (totally degraded). The gradual degradation of rRNA is reflected by a continuous shift towards shorter fragment 
sizes.
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with the bioanalyzer proves to be far superior to the slab
gel based approach, the usage of ribosomal ratio for RNA
quality assessment has several shortcomings. In many
cases, ribosomal ratios showed only weak correlation with
RNA integrity [2,5] and more in-depth analysis of the elec-
trophoretic traces requires expert knowledge and is of a
subjective nature.

To provide a tool for standardization of RNA quality con-
trol, a user-independent, automated and reliable proce-
dure was developed. In this study we present a software
algorithm that allows the calculation of an RNA Integrity
Number (RIN). The algorithm was developed using meth-
ods from information theory to rank features according to
their information content and using a Bayesian approach
to train and select a prediction model on the basis of arti-
ficial neural networks. An overview of the application sce-
nario is summarized schematically in figure 1.

Techniques for measuring RNA integrity

For microcapillary electrophoresis, the Agilent 2100 bio-
analyzer was used in conjunction with the RNA 6000
Nano and the RNA 6000 Pico LabChip kits. This bio-ana-
lytical device is based on a combination of microfluidic
chips, voltage-induced size separation in gel filled chan-
nels and laser-induced fluorescence (LIF) detection on a
miniaturized scale [4]. Twelve samples can be processed
sequentially while consuming only very small amounts of
each sample. RNA molecules are stained with an interca-
lating dye and detected by means of LIF. Data are archived
automatically and available as electropherograms, gel-like
images, as well as in tabular format. Figure 2 shows exam-
ple electropherograms of different RNA samples display-
ing varying RNA integrity levels. Visual inspection of the
electrophoretic traces reveals that progressing degradation
entails a decrease of signal intensities for the two ribos-
omal bands in conjunction with an increase of shorter

fragments, i.e. an elevated baseline between the two ribos-
omal bands and below the 18S band.

Integrity measures for RNA

The degradation process of RNA is only partly understood
since it is dependent on the type of RNase that is present
and is often combined with fragmentation processes.
Also, the quality of RNA in a given experiment can vary
extensively from one extraction to another and needs to
be under constant surveillance. Using precise analytical
instrumentation such as the Agilent 2100 bioanalyzer,
human experts are capable of distinguishing RNA samples
of different quality by examining electrophoretic traces
and assigning integrity values or integrity categories [2].
Note that the degradation of RNA is a continuous process,
which implies that there are no natural integrity catego-
ries.

Table 2: Iterative feature ranking. The table gives the results of 

the iterative forward search. The 2nd column shows the 

percentage of information in the input vector compared to the 

entropy of the target. The 3rd column gives the values for single 

features and the 4th column the rank of the single features 

among all features. Feature names [see Additional file 2]: 1. 

total.rna.ratio 2. fr28s.height 3. fr28s.area.ratio 4. ratio1828.fast 

5. reg5s.endval 6. fast.area.ratio 7. fr18s.found 8. 

all.mean.median

Step MI(X,T)/H(T)
(Combination)

MI(Xi,T)/H(T)
(single feature)

Rank of single feature

1 0.79 0.79 1

2 0.79 0.50 38

3 0.81 0.74 3

4 0.83 0.55 19

5 0.83 0.46 51

6 0.85 0.60 10

7 0.85 0.47 48

8 0.86 0.50 39

Table 1: Description of the data. The table summarizes the distribution of electropherograms over categories and the percentages for 

training and test sets are given.

Category Training set in % Test set in % Total in %

1 190 20.3% 77 19.2% 267 20.0%

2 84 9.0% 35 8.7% 119 8.9%

3 17 1.8% 8 2,0% 25 1.9%

4 27 2.9% 8 2.0% 35 2.6%

5 17 1.8% 12 3.0% 29 2.2%

6 81 8.6% 35 8.7% 116 8.7%

7 80 8.5% 31 7.7% 111 8.3%

8 188 20.1% 81 20.1% 269 20.1%

9 117 12.5% 53 13.2% 170 12.7%

10 136 14.5% 62 15.4% 198 14.8%

Total 937 402 1339
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In this situation, machine learning methods can be
applied to data from experimental measurements to learn
an implicit model of RNA integrity in order to achieve a
user-independent method for assigning integrity values.
That is, the algorithm extracts the relationship between
characteristics of the measurement, or features, and the
expert-assigned categories.

Traditionally, a simple model evaluating the 28S to 18S
rRNA ratio has been used as a criterion for RNA quality. If
not restricted to very specific RNA types this model has
been shown to be insufficient for a general RNA integrity
prediction [2,5]. An adaptive approach can be applied to
solve this prediction task when based on a large collection
of samples. In general, an approach applied to this kind of
task comprises at least the following basic steps, which are
described in more detail below in the method section:

1. Data labeling and preprocessing

2. Extracting features from the electropherogram

3. Selecting an appropriate feature combination

4. Training prediction models and selecting the most
promising model

Results
Sample preparation and data basis

Total RNA was obtained from various tissues and different
organisms mainly human, rat, and mouse. All samples
were analyzed on the Agilent 2100 bioanalyzer. For the
development of the algorithm a large set of data files was
kindly provided by the Resource Center for Genome
Research [6] as well as by Agilent. The overall number of
samples in the database totals 1208. About 30% of the
samples are of known origin from human, mouse and rat
extracted from liver, kidney, colon, spleen, brain, heart
and placenta. The origin of the remaining samples was not
traceable, but is known to be of mammalian cells or cell
lines. For the development of the algorithm, it was impor-
tant to include samples of all degradation stages into the
database. The final data set included many intact as well
as almost completely degraded RNA samples (cf. table 1
for the distribution of samples). Partially degraded RNA
samples were less common but still sufficient in number.
Furthermore, the data set comprised different sample con-
centrations and different extraction methods. To some
extent anomalies were found in the data set as well. This
provided a realistic collection of input data containing a
representative basis for all stages of RNA degradation.

Applying our method described below to the data basis
yields a sorted list of features, which was used to construct
feature spaces for training regression models. Further-
more, results are given for models based on features pro-

Generalization errorsFigure 4
Generalization errors. Dependency of the generalization 
error of the model from the number of features used and 
from the degree of non-linearity in the hidden layer. The val-
ues are average values over a 10-fold cross-validation proce-
dure. Models with highest evidence (5 to 7 input features and 
2 to 5 hidden neurons respectively) have a low generalization 
error below 0.25.
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Evidence-based model selectionFigure 3
Evidence-based model selection. Dependency of model 
evidence on a logarithmic scale from the number of features 
used and from the degree of non-linearity in the hidden layer. 
The values are average values over a 10-fold cross-validation 
procedure. The highest evidence is reached for models with 
5 to 7 input features and 2 to 5 hidden neurons respectively. 
All these models have a low generalization error below 0.25.
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posed in the literature. Finally, we show the correlation of
the RIN with the outcome of real-time PCR experiments.

Feature selection

The total RNA ratio was selected as first feature covering
79% of the entropy of the categorical values. The next two
features contribute information about the 28S-region: 28S
peak height and the 28S area ratio.

The fourth feature compares the 18S and 28S area to the
area of the fast region. Feature 5 is the value of a linear
regression at the end point of the fast region, whereas the
next feature reflects the amount of detected fragments in
the fast region. Then, the presence or absence of the 18S
peak is selected, which enables the model to distinguish
between weaker and stronger degradation. The last feature
gives the relation of the overall mean value to the median
value. Since the mean value is sensitive to large peaks it
carries information about totally degraded RNA or about
abnormalities like spikes. Table 2 summarizes the results
of the feature selection process. An interpretation of these
features from a biological point of view is given in the dis-
cussion and an overview of all features is given in the
additional files [see Additional file 2].

Model training

Based on the sorted list of features we trained neural net-
works as regression models and systematically increased
the number of hidden neurons from 0 to 8, until the
model evidence decreased clearly. Furthermore, we varied
the feature space as described in the previous section. We
observed maximal model evidence using 5 to 7 features
with 2 to 5 neurons in the hidden layer. The values are
averaged over the results of a 10-fold cross-validation pro-
cedure (Fig. 3).

As expected, the model evidence is strongly negatively cor-
related with the generalization error (ρ = -0.93), which
shows that the model evidence is a sensible model selec-
tion criterion (Fig. 3 and 4). We selected the topology
using 5 features and 4 hidden neurons as the most proba-
ble model and performed the final training on the whole

training data set. The log value for the evidence of the final
model was slightly higher compared to the values during
cross validation (-74 vs. -100), whereas the generalization
error was stable (MSE of 0.26). The cross validation error
was observed to be a good estimate for the generalization
error on the test data.

The feature selection procedure provides in each step the
local optimal additional feature, which will not necessar-
ily lead to the globally best combination. In the later iter-
ation steps, several candidate features provide the same
gain in information about the target and there is some
randomness in the final selection. Explorative searching
for the best combination is intractable because of the
computational costs of the combinatorial search. In an
additional, manual optimization step application knowl-
edge was used to substitute some features by plausible
alternatives. Feature 3 and 4 were replaced by the area
ratio in the fast region (fast.area.ratio). Additionally the
marker height was selected. In the normalized electrophe-
rogram, the marker height allows to detect strongly
degraded samples, because it is the only part of the signal
which differs from the background noise. This combina-
tion also has a relative MI value of 0.83, but the best
model with 5 hidden neurons had a log value for the evi-
dence of -42. It reaches a cross-validation error of 0.25 and
a test error of 0.25, which is slightly better compared to
the results from figure 4. Both models perform equally
well, the later one was chosen for the final implementa-
tion in the expert software for the sake of simplicity.

Finally, we evaluated regression models for a subset of
400 samples on two different feature spaces: the 28S/18S
ratio, and the feature computed by the degradometer soft-
ware [1]. Table 3 shows that the RIN model is based on a
feature space, with higher information content than the
other two models. Model evidences indicate that using a
single feature results in a lower posterior probability of
the model. This is again consistent with the generalization
performance of the models. The error of RIN model is
forty times lower compared to 28S/18S-model and about
twenty times lower compared the degradometer based
model if all samples are considered.

If the samples that are labeled BLACK by the degradome-
ter software are removed from the data set (N = 186,
42%), the relative MI value increases to 0.63, the evidence
reaches a value of -121, whereas the cross validation error
is at 0.60, which is still four times higher than for the RIN
model.

Model evaluation

If a model is supposed to extract a relationship from
experimental data, it is helpful for the model evaluation
to explore the data in the most important two dimen-

Table 3: Comparison of model results. The table summarizes 

the results for three different models on a subset of 439 samples. 

The amount of information provided by the features is 

compared as well as the model evidences and the cross 

validation error. The values in parentheses give the results for a 

reduced sample set, which contains no samples labeled BLACK 

with the degradometer software.

28S/18S ratio degradation factor RIN model

MI (X;T)/H(T) 0.43 (0.63) 0.88

log evidence -1457 -577 (-121) +3.3

MSE (CV) 6.3 2.83 (0.60) 0.15
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sions, as well as to check for large error values which cor-
respond to categorical misclassifications. Furthermore,
the model prediction can be cross-checked against control
parameters of follow-up experiments, like RT-PCR.

Visualization of decision boundaries

The 2D-visualization of total RNA ratio and 28S peak
height shows, that we can clearly separate high integrity
values from low integrity values. The categories form clus-
ters in this space. However, as mentioned in the previous
section, the borderline between categories is not sharp,
which is due to the fact that degradation is a continuous
process.

Categorical misclassifications

Simple features like the ribosomal ratio which cover only
one aspect of the degradation process tend to have larger
errors for certain groups of experiments. That is, they can-
not distinguish very well between the categories. It is very
useful to check, that only a few experiments are inter-
changed over more than one categorical border, that is,
the model covers all aspects of the degradation process.
Misclassifications are measured by Receiver Operating
Characteristics (ROC, cf. [7]) for distinguishing electroph-
erograms from different groups of categories, whereas the
value of the area under the ROC-curve (AUC: area under
the curve) is a balanced measure for the classification
error.

We briefly and informally describe how a ROC curve is
constructed. The electropherograms are sorted into a
ordered list according to the integrity measure estimated
by the model. For a fixed classification task, a ROC curve
is constructed as exemplarily described in the following
for the task of distinguishing electropherograms of cate-
gory 10 from all other categories: walk through the sorted
list in descending order. In each step check if the consid-
ered item is in category 10 or not according to the original
expert label. If it is true, draw a line fragment in vertical
direction, if it is false draw it in horizontal direction. Per-
fect separation of category 10 from the others would
imply that the ROC curve shoots up vertically on the y-
axis to the maximal value, before the first horizontal step
is taken. Random assignment of electropherograms
would result in a ROC curve that corresponds to a diago-
nal line from the origin to the right top corner. A ROC
curve gives a balanced measure of the model performance
by integrating over all possible classification borders. Each
border corresponds to a specific ratio of sensitivity to
specifity, i.e. a specific point on the ROC curve.

Several electropherograms are interchanged between the
adjacent categories 9 and 10 (AUC 0.96), which is natural
due to the noise in label assignment step. Very rarely are
assignments from electropherograms from category 10 to
category 8 or less (AUC 0.98). Only 1 electropherogram is
interchanged between category 7 and category 10 (AUC
0.999, cf fig. 5).

Computing the AUC value for all other sensible groups of
categories shows that categorical misclassifications are sel-
dom observed. The average AUC-value is 98.7 with a
standard deviation of 1.4. Table 4 summarizes the cate-
gorical errors over all possible sets of experiments.

Correlation with the outcome of experiments

Correlation of RIN values with downstream experiments
is of critical importance. On the one hand, a good correla-
tion will demonstrate the validity of this approach. On the
other hand, it allows determination of threshold values in
order to get meaningful downstream data. For two-color
microarray experiments, this could mean for example that
the two input samples should not differ by more than a
given number of RIN classes, while the lowest acceptable
RIN can be determined as well.

In the present study, RIN values as well as ribosomal
ratios were correlated with real-time PCR data. A detailed
description of the sample types and extraction methods as
well of the entire experimental setup has been published
previously [5]. In short, a gene score was calculated based
on the average apparent expression level of 4 different
housekeeping genes (GAPDH, KYNF, NEFL, β2M) as
measured by real-time PCR. Please note that in this exper-

Receiver operating characteristics of categorical misclassifica-tionsFigure 5
Receiver operating characteristics of categorical mis-
classifications. The figure shows the Receiver Operating 
Characteristics for distinguishing electropherograms of cate-
gory 10 against the set union of other categories. The area 
under the curve (AUC) gives a measure of classification per-
formance. Random assignment is equal to an area of 0.5, 
whereas perfect assignment is equal to an area of 1.0. Only 
few experiments are exchanged over more than one cate-
gorical border.
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iment, differences in the apparent gene expression levels
are induced by progressing degradation of the RNA string
material. Figure 6 shows the plot of the average apparent
gene expression on a logarithmic scale against the RIN.
Immediately 2 cluster of data appear corresponding to
high gene expression (intact RNA) with a high RIN value
and low gene expression (degraded RNA) with a low RIN
value. On the other hand, the ribosomal ratio exhibits
only a weak correlation with the experimentally observed
gene expression level (RNA integrity). The RIN allows for
a straightforward separation in positives and negatives,
whereas the ribosomal ratio would reject many more
experiments than necessary. The historical value of 2.0
would reject about 40 experiments of good quality and a
value of 1.75 results in about 15 false negatives.

Discussion
Because of the critical influence of RNA integrity on
downstream experiments, there is a strong need for a reli-
able, reproducible, and standardized approach to classify
the quality of RNA samples. The long time standard con-
sisting in a 28S to 18S peak ratio of 2.0 was shown to pro-
vide only weak correlation with RNA integrity.

The Agilent 2100 bioanalyzer, a bio-analytical device
based on a combination of microfluidics, microcapillary
electrophoresis, and fluorescence detection, provides a
platform to record the size distribution of molecules, e.g.,
RNA, in a digital format. Since this approach is highly
reproducible and automated, it provides the basis for an
automated, user-independent, and reproducible
approach to evaluate the integrity of RNA samples using a
software algorithm.

For the development of the RNA Integrity Number algo-
rithm, a total of 1208 RNA samples from various sources
and of different degradation states was analyzed. After
assigning the samples to 10 different categories ranging

from 1 (worst) to 10 (best), methods from information
theory were applied to calculate features describing the
curve of the electropherogram. In the following step, fea-
tures were selected for further processing that showed
high information content about the task to distinguish the
10 categories. These features were then taken as input var-
iables for a model-training step. Here, using a Bayesian
learning approach to select the most probable model, sev-
eral models were trained utilizing artificial neural net-
works and the best was chosen for prediction of
previously unseen test data. The result produced by this
procedure is an algorithm called RNA Integrity Number
(RIN).

Analysis of the RIN model

The RIN algorithm is based on a selection of features that
contribute information about the RNA integrity. It is obvi-
ous, that a single feature is hardly sufficient for a universal
integrity measure. Moreover, a combination of different
features covers several aspects of the measurement and is
more robust against noise in the signal (see Additional file
2 for a overview of all features). To understand why the
features were selected and to enhance the confidence for
application specialists it is important, to give an interpre-
tation of the features:

1. The total RNA ratio measures the fraction of the area in
the region of 18S and 28S compared to the total area
under the curve and reflects the proportion of large mole-
cules compared to smaller ones. It has large values for cat-
egories 6 to 10.

2. The height of the 28S peak contributes additional infor-
mation about the state of the degradation process, i.e. dur-
ing degradation, the 28S band disappears faster than the
18S band. Therefore, it allows detection of a beginning
degradation. It has largest values for categories 9 and 10,
and zero values for categories 1 to 3.

Table 4: Proportion of misclassified samples. The table shows an detailed analysis of sample assignment to integrity categories. Each 

category ck is tested against a series of set union ∪ci of all other categories i with i = 1,...,k - 1. The RIN of each electropherogram is 

rounded up or down to the closest categorical value. The classification performance for assigning electropherograms to the two 

resulting sets is then measured by Receiver Operating Characteristics, more precisely by the area under the curve (cf. fig. 5). There 

are always a few interchanges between adjacent categories, but rarely interchanges over two categorical borders. Values are rounded 

to two decimals.

9 8 7 6 5 4 3 2 1

10 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 0.98 0.99 1.00 1.00 1.00 1.00 0.99

7 0.98 0.99 0.99 0.99 0.99 0.98

6 0.96 0.98 0.98 0.99 0.98

5 0.95 0.97 0.98 0.98

4 0.98 0.99 0.98

3 0.99 0.98

2 0.95
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3. The fast area ratio reflects how far the degradation pro-
ceeded and has typically larger values for the categories 3
to 6.

4. The marker height has large values for categories 1 and
2 and small values for all other categories since short deg-
radation products will overlap with the lower marker.

Figure 7 shows the projection of the distribution of integ-
rity categories onto a two-dimensional space spanned by
the two most important features. Clearly, a global non-
linear relationship can be observed. The experiments are
grouped along a characteristic line with varying variance.
The boundaries between adjacent categories are not per-
fectly sharp, but clearly visible in this projection with
some interchanges.

Comparing the approaches

Using a single simple feature to judge RNA Integrity was
already shown to be insufficient [2,5]. While focusing on
one aspect of the electropherogram allows for a rough ori-
entation about the integrity, it is still subjective to a high
degree. Linear models based on these features show a
mean squared error that is four to sixty times higher (deg-
radation factor resp. 28S/18S ratio) than compared to the
proposed approach.

The reason for this tremendous difference lies in the fact,
that neither the 28S/18S ratio nor the degradation factor
reflect all properties of the RNA degradation process. For
example, several samples of integrity category 10 are

labeled BLACK from the degradometer software as they
have low signal intensities. This happened for 42% of the
samples under consideration, which are all samples that
were under investigation for microarray experiments. The
degradation factor contains similar information as the fast
area ratio, which reflects typical characteristics of catego-
ries 3 to 7. The high ribosomal ratio is useful to detect a
certain amount of high quality samples, but the categori-
zation is not valid for all of them. Using several features
which complement one another and allow for a non-lin-
ear weighting of these features allowed to reduce the error
to a minimum value which is in the order of the natural
noise in the target data. The noise results from using a cat-
egorical grid for a continues process as well as from a few
abnormalities. Interestingly, almost no interchanges over
more than one categorical border are observed. Thus, the
classification errors appear almost only at the borderline
between two categories, which was also difficult for
humans to decide, when labeling the data.

Availability of the RIN model

The Agilent 2100 bioanalyzer system software can be
downloaded from Agilent's webpage [see Additional file
1]. Version B.01.03 and later will allow for measurement
reviews (free of licenses) including the calculation of the
RNA integrity number [8]. Up-to-date information about
the RIN-project can be found at the RIN web site [9].

Conclusion
This article investigates an automated procedure for
extracting features from signal measurements, selecting

Correlation between RNA integrity and rt-PCR experimentsFigure 6
Correlation between RNA integrity and rt-PCR experiments. The figure shows the correlation between RNA integ-
rity values and the outcome of an real-time-PCR experiment, i.e. the average expression values of 4 housekeeping genes 
(GAPDH, KYNF, NEFL, β2M). The vertical line is a meaningful threshold value for RIN classification, while the horizontal sepa-
rates acceptable from unacceptable real-time PCR results, a) The RIN shows a strong correlation (0.52) to the expression 
value of the house keeping genes. A straightforward separation into positives and negatives is possible. b) The ribosomal ratio 
shows a poor correlation (0.24) to the expression value of the house keeping genes.
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suitable subsets of features and extracting a functional
relationship to target labels of experiments. We demon-
strated that the application of the methodology to a large
collection of electrophoretic RNA measurements recorded
with an Agilent 2100 bioanalyzer provides a predictive
model for RNA integrity, the RIN. The generalization error
is as low as the natural noise in the target values and
apparently lower than for ribosomal ratios.

Our results show the importance of taking characteristics
of several regions of the recorded electropherogram into
account in order to get a robust and reliable prediction of
RNA integrity, Furthermore, it was demonstrated that the

RIN can be correlated with the outcome of downstream
experiments, i.e. by performing this quality assessment
step users can prevent themselves from erroneous results
and loss of money and resources.

We conclude, that the RNA integrity number is an impor-
tant tool in conducting valid gene expression measure-
ment experiments as real-time PCR or DNA microarray,
that is already widely and successfully used since the
release of the β-version. It is largely free from instrument
and concentration variability, thereby facilitating the
comparison of samples between different labs. For exam-
ple, the RIN can be assigned to a RNA sample before ship-

2D visualization of integrity categoriesFigure 7
2D visualization of integrity categories. The figure shows a projection of the categories onto the two-dimensional space 
spanned by the first two features of the selected combination. These are total RNA ratio and 28S peak height. The experi-
ments are clearly grouped along a curve from the left bottom corner up to the top and then to the right top corner. The vari-
ance in location of the experiments increases with larger categorical value. Categories 1 and 2 have almost no variance in this 
feature space. The grey border in the domain is given by the abnormality detectors for this two variables, i.e., for a data point 
outside the white area no RIN is computed.
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ping from a lab and the same quality control can be
performed in a user-independent way at the destination
lab.

Methods
Data labeling and preprocessing

For classification of RNA integrity, ten categories were
defined from 1 (totally degraded RNA) to 10 (fully intact
RNA). Figure 2 illustrates qualitatively the differences
between the categories. Each of the 1208 samples was
assigned manually to one of the categories by experienced
expert users.

The categorical values provide the target values for the
adaptive learning steps. The assignment to categories was
very carefully done as it is critical for the performance of
the resulting algorithm. Especially for RNA samples at the
borderline of two adjacent integrity categories, the assign-
ment to each of the two categories could be justified but
one had to be selected. This reflects a natural randomness
which is inherent in a gradual process like RNA degrada-
tion. However, such random noise in the target values can
easily be handled by the learning model, which assumes
noise in the target data.

Detecting abnormalities in the electropherogram is
another important preprocessing step to get a clean set of
training samples. Various anomalies can disturb the usual
shape of an electropherogram, e.g., ghost peaks, spikes,
wavy baseline, and unexpected sample type. They were
observed in approx. 5% of the samples. To separate anom-
alies from normal samples, several simple detectors were
constructed. Each detector performs a linear classification
based on a threshold value. Spikes, for example, can have
a large peak height but have very narrow peak width; they
appear as very sharp peaks. Normally, the largest peaks in
the electrophoretic traces are located at the 18S and 28S
bands but compared to a spike are significantly broader. If
a high peak does not cover the minimal requested area, it
is rejected as a spike and marked as abnormal. Applying
these detection criteria to the data set returned 117 elec-
tropherograms as abnormal. Eleven abnormal samples
could not be detected for example, because a spike arose
near the 28S peak and could not be identified as such. All
of them were assigned a sensible label and put in the test
set. This reflects the natural occurrence of such effects in
the test phase.

In the application phase we distinguish between critical
and non-critical anomalies based on their influence on
the computation of the RIN. The former are anomalies of
baseline and anomalies in the 5S-region, the latter anom-
alies in the pre-region, precursor-region and post-region
(cf. fig. 8).

If a critical anomaly is detected, the RIN is not computed.
Instead, an error message appears to the user. If a non-crit-
ical anomaly is detected, the RIN is computed and a warn-
ing to the user is displayed [10,11]. Baseline correction
and normalization are applied to the electropherogram
prior to the actual feature extraction process. These func-
tions are standard features of Agilent's Expert Software
[12]. The baseline is a constant background signal of the
electropherogram and its level may significantly differ
between different electropherograms. The baseline-cor-
rected signal is then normalized. For height related fea-
tures it is normalized to the global maximum of the 5S-
region to precursor-region. For area related features it is
normalized to the global signal area in the 5S-region to
precursor-region. The pre-region, marker-region and post-
region are intentionally not considered critical elements
of the electrophoretic trace since they don't contain criti-
cal information about the RNA degradation process.

Feature extraction

The aim of this step is to define and extract informative
features from the electropherograms. For this purpose,
each electropherogram is divided into the following nine
adjacent segments covering the entire electropherogram: a
pre-region, a marker-region, a 5S-region, a fast-region, an

Feature extractionFigure 8
Feature extraction. Segments of an electropherogram: 
The segment preceeding the lower marker is designated the 
pre-region. The marker-region coincides with the area occu-
pied by the lower-marker peak. The 5S-region covers the 
small rRNA fragments (5S and 5.8S rRNA, and tRNA). The 
18S-region and 28S-region cover the 18S peak and 28S peak, 
respectively. The fast-region lies between the 5S-region and 
the 18S-region. The inter-region lies between the 18S-region 
and the 28S-region. The precursor-region covers the pre-
cursor RNA following the 28S-region. And finally the post-
region lies beyond the precursor-region.
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18S-region, an inter-region, a 28S-region, a precursor-
region and a post-region (Fig. 8). The subdivision is based
on the peak table and the fragment table as computed by
Agilent's Expert Software.

Each of these segments can then be considered separately
yielding a number of local features. Several iterations of
generating and evaluating features showed that it is suffi-
cient to extract a set of specific features reflecting statistical
properties, such as average and maximum heights, areas
and their ratios as well as signal-to-noise ratios to cover
for the information contained in the different regions of
an electropherogram.

In addition, several global features were extracted, i.e. fea-
tures that span several segments. Among these, the aver-
age and maximum height, areas and their ratios, total
RNA ratio and the 28S area ratio are the most important
features. Both have been used as criteria for RNA integrity
assessment in the past. The total RNA ratio is the ratio of
the area of the ribosomal bands to the total area of the
electropherogram, whereas 28S area ratio measures only
the fraction of 28S-fragment. This set of features extracted
from the electropherograms and their manually assigned
RNA integrity categories form the knowledge base for the
following steps of the algorithm. Additional file 2 con-
tains a complete description of the set of features.

Feature selection

In practice, only a limited amount of data is available for
determining the parameters of a model. Therefore, the
dimensionality of the feature vector must be in a sensible
relation to the number of data points, i.e. electrophero-
grams. Each additional feature increases the information
content of the input about the target, but decreases the
number of data points per dimension in order to deter-
mine the parameters. This means that the class of func-
tions in which the solution is searched increases fast
('empty space phenomenon') [13]. Estimating a depend-
ency between the features and the target will be more
robust when the input-target space is low-dimensional. A
rough orientation to determine the maximum number of
features for training a prediction model is given in [14].
For a data set of about 1000 experiments the search is
therefore restricted to vectors which combine at most
eight features. To select the most promising features from
our candidates, we use a forward selection procedure
based on mutual information. The mutual information
MI (X ; T) of two random vectors X and T is defined as the
Kullback-Leibler distance between the joint distribution
p(x, t) and the product p(x)p(t):

and measures the degree of stochastic dependency
between the two random vectors [15]. This can be
expressed in terms of entropies as

MI (X; T) = H(T) - H(T|X)  (2)

which describes the reduction in the uncertainty or
entropy H(T) of a target vector T due to the knowledge of
X. To compute the required densities in equation 1 from
the empirical data, we use non-parametric kernel estima-
tors as described in [14,16].

As the first step in the selection procedure, a feature f is
selected from the set of candidates which has maximal
mutual information with the target for the given data set.
In each subsequent step, one of the remaining features is
selected which maximizes the mutual information with
the target when added to the already selected features.
This way the features are ranked by the amount of infor-
mation they add about the target.

The result of the feature selection process is a sorted list
(cf. table 2 which allows constructing a nested series of
feature spaces with growing dimensionality up to the
maximal amount of d = 8 features:

{f1} ⊂ {f1, f2} ⊂ {f1, f2, f3} ⊂ ... ⊂ {f1,..., f8}

Model training

After the nested series is constructed, regression models
are trained for each feature space. Neural networks are
used as semi-parametric regression models [16,17].

The functional relationship between the input features

and the target, which has to be learned from the empirical

data, must generalize to previously unseen data points,

i.e. electropherograms of newly measured RNA. The the-

ory of regularization shows that approximating the target

as good as possible on the training data, for example, by

minimizing the mean squared error ED, is not sufficient: it

is crucial to balance the training error against the model

complexity [17]. Therefore, we train the neural networks

to minimize the regularized error E = βED + αER. The reg-

ularization term Er measures the model complexity, taking

into account the weights wk in the network. We choose the

weight-decay  as the regularization term. The

factors α and β are additional control parameters, i.e.

hyperparameters.

We apply a Bayesian approach to determine the weights
wk, and the parameters α and β during training as

MI X T p x t
p x t

p x p t
dx dt( ; ) ( , ) log

( , )

( ) ( )
= ⋅ ( )∫∫ 1

1

2
2w
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described elsewhere [16,18]. Given the training data D we
want to find the 'best' model M(Θ) with parameter vector
Θ. This is expressed in Bayes' theorem as follows

The best model maximizes the posterior probability, i.e.
we want to find Θ* such that p(Θ*|D) ≥ p(Θ|D) ∀ Θ.

In case of neural networks, the parameter vector consists
of the weight vector w, the hyperparameters α and β as
well as the topology of the network. In general, we cannot
determine all these parameters at once.

For that, the Bayesian framework proceeds in a hierarchi-
cal fashion. While keeping all other parameters fixed on
the first level, we search for an optimal weight vector
which maximizes the posterior probability p(w|D) using
the fast optimization algorithm Rprop [19].

On the second level, optimal weighting coefficients α and
β are determined which again maximize the posterior
probability p(α,β|D). This is done iteratively: we fix α and
β and optimize the weights wk as described above. After-
wards, we re-estimate α and β and keep alternating several
times between optimizing the weights and updating α
and β (see [16] for the update rules and mathematical
details).

On the third level, we can compare networks with differ-

ent topologies. Using Bayes' rule we can write the poste-

rior probability of a model  as P( |D) =

p(D| )·P( )/p(D). If we assign the same prior P( )

to every model, it is sufficient to evaluate the quantity

p(D| ), which is called the evidence for [17,18].

Marginalizing over α and β and making use of the poste-

rior probability for α and β from the second level provides

an equation for the logarithm of the evidence ln p(D| ),

which depends on the training error, the possible sym-

metries resulting from the network topology, the size of

the hyperparameters α and β, the number of samples and

the number of weights, the second derivative of the error

(Hessian matrix) respective its determinant, as well as the

eigenvalues of the Hessian, thus reflecting the balance

between these terms (cf. [16]).

To find the model which best explains the given data set
i.e. with maximal evidence, we systematically vary the
number h of hidden units in the networks from 0 to 8. All
hidden units with tangens hyperbolicus as activation func-
tion are in a single layer, restricting the search space to

models with moderate non-linearity. The best topology is
selected as the topology with the highest evidence in aver-
age over a 10-fold cross-validation procedure on the train-
ing data. This topology is then used to train the final
model on the whole training set. Figure 6 shows a strong
correlation between the logarithm of the model evidence
and the cross-validation error, pointing out that the evi-
dence is a sensible selection criterion.
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