
The Ring of Gyges: Investigating the Future of Criminal Smart Contracts

Ari Juels
Cornell Tech (Jacobs)

Ahmed Kosba
Univ. of Maryland

Elaine Shi
Cornell Univ.

The Ring of Gyges is a mythical magical artifact men-

tioned by the philosopher Plato in Book 2 of his Repub-

lic. It granted its owner the power to become invisible at

will. —Wikipedia, “Ring of Gyges”

“[On wearing the ring,] no man would keep his hands

off what was not his own when he could safely take what

he liked out of the market, or go into houses and lie with

anyone at his pleasure, or kill or release from prison

whom he would... ” —Plato, The Republic, Book 2

(2.360b) (trans. Benjamin Jowett)

Abstract

Thanks to their anonymity (pseudonymity) and elimina-

tion of trusted intermediaries, cryptocurrencies such as

Bitcoin have created or stimulated growth in many busi-

nesses and communities. Unfortunately, some of these

are criminal, e.g., money laundering, illicit marketplaces,

and ransomware.

Next-generation cryptocurrencies such as Ethereum

will include rich scripting languages in support of

smart contracts, programs that autonomously interme-

diate transactions. In this paper, we explore the risk of

smart contracts fueling new criminal ecosystems. Specif-

ically, we show how what we call criminal smart con-

tracts (CSCs) can facilitate leakage of confidential in-

formation, theft of cryptographic keys, and various real-

world crimes (murder, arson, terrorism).

We show that CSCs for leakage of secrets (à la Wik-

ileaks) are efficiently realizable in existing scripting lan-

guages such as that in Ethereum. We show that CSCs

for theft of cryptographic keys can be achieved using

primitives, such as Succinct Non-interactive ARguments

of Knowledge (SNARKs), that are already expressible

in these languages and for which efficient supporting

language extensions are anticipated. We show simi-

larly that authenticated data feeds, an emerging feature

of smart contract systems, can facilitate CSCs for real-

world crimes (e.g., property crimes).

Our results highlight the urgency of creating policy

and technical safeguards against CSCs in order to real-

ize the promise of smart contracts for beneficial goals.

1 Introduction

Cryptocurrencies such as Bitcoin remove the need for

trusted third parties from basic monetary transactions

and offer anonymous (more accurately, pseudonymous)

transactions between individuals. While attractive for

many applications, these features have a dark side.

Bitcoin has stimulated the growth of ransomware [6],

money laundering [40], and illicit commerce, as exem-

plified by the notorious Silk Road [32].

New cryptocurrencies such as Ethereum (as well

as systems such as Counterparty [48] and SmartCon-

tract [1]) offer even richer functionality than Bitcoin.

They support smart contracts, a generic term denot-

ing programs written in Turing-complete cryptocurrency

scripting languages. In a fully distributed system such as

Ethereum, smart contracts enable general fair exchange

(atomic swaps) without a trusted third party, and thus can

effectively guarantee payment for successfully delivered

data or services. Given the flexibility of such smart con-

tract systems, it is to be expected that they will stimulate

not just new beneficial services, but new forms of crime.

We refer to smart contracts that facilitate crimes in dis-

tributed smart contract systems as criminal smart con-

tracts (CSCs). An example of a CSC is a smart contract

for (private-)key theft. Such a CSC might pay a reward

for (confidential) delivery of an target key sk, such as a

certificate authority’s private digital signature key.

We explore the following key questions in this paper.

Could CSCs enable a wider range of significant new

crimes than earlier cryptocurrencies (Bitcoin)? How

practical will such new crimes be? And What key ad-

vantages do CSCs provide to criminals compared with

conventional online systems? Exploring these questions
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is essential to identifying threats and devising counter-

measures.

1.1 CSC challenges

Would-be criminals face two basic challenges in the con-

struction of CSCs. First, it is not immediately obvious

whether a CSC is at all feasible for a given crime, such as

key theft. This is because it is challenging to ensure that

a CSC achieves a key property in this paper that we call

commission-fair, meaning informally that its execution

guarantees both commission of a crime and commensu-

rate payment for the perpetrator of the crime or neither.

(We formally define commission-fairness for individual

CSCs in the paper.) Fair exchange is necessary to ensure

commission-fairness, but not sufficient: We show how

CSC constructions implementing fair exchange still al-

low a party to a CSC to cheat. Correct construction of

CSCs can thus be quite delicate.

Second, even if a CSC can in principle be constructed,

given the limited opcodes in existing smart contract sys-

tems (such as Ethereum), it is not immediately clear that

the CSC can be made practical. By this we mean that the

CSC can be executed without unduly burdensome com-

putational effort, which in some smart contract systems

(e.g., Ethereum) would also mean unacceptably high ex-

ecution fees levied against the CSC.

The following example illustrates these challenges.

Example 1a (Key compromise contract) Contractor C
posts a request for theft and delivery of the signing key

skV of a victim certificate authority (CA) CertoMart. C
offers a reward $reward to a perpetrator P for (confiden-

tially) delivering the CertoMart private key skV to C.

To ensure fair exchange of the key and reward in Bit-

coin, C and P would need to use a trusted third party or

communicate directly, raising the risks of being cheated

or discovered by law enforcement. They could vet one

another using a reputation system, but such systems are

often infiltrated by law enforcement authorities [57]. In

contrast, a decentralized smart contract can achieve self-

enforcing fair exchange. For key theft, this is possible

using the CSC Key-Theft in the following example:

Example 1b (Key compromise CSC) C generates a

private / public key pair (skC ,pkC) and initializes

Key-Theft with public keys pkC and pkV (the CertoMart

public key). Key-Theft awaits input from a claimed per-

petrator P of a pair (ct,π), where π is a zero-knowledge

proof that ct = encpkC
[skV ] is well-formed. Key-Theft

then verifies π and upon success sends a reward of

$reward to P . The contractor C can then download and

decrypt ct to obtain the compromised key skV .

Key-Theft implements a fair exchange between C and

P , paying a reward to P if and only if P delivers a valid

key (as proven by π), eliminating the need for a trusted

third party. But it is not commission-fair, as it does not

ensure that skvict actually has value. The CertoMart can

neutralize the contract by preemptively revoking its own

certificate and then itself claiming C’s reward $reward!

As noted, a major thrust of this paper is showing how,

for CSCs such as Key-Theft, criminals will be able to

bypass such problems and still construct commission-

fair CSCs. (For key compromise, it is necessary to

enable contract cancellation should a key be revoked.)

Additionally, we show that these CSCs can be effi-

ciently realized using existing cryptocurrency tools or

features currently envisioned for cryptocurrencies (e.g.,

zk-SNARKS [20]).

1.2 This paper

We show that it is or will be possible in smart contract

systems to construct commission-fair CSCs for three

types of crime:

1. Leakage / sale of secret documents;

2. Theft of private keys; and

3. “Calling-card” crimes, a broad class of physical-

world crimes (murder, arson, etc.)

The fact that CSCs are possible in principle is not surpris-

ing. Previously, however, it was not clear how practical

or extensively applicable CSCs might be. As our con-

structions for commission-fair CSCs show, constructing

CSCs is not as straightforward as it might seem, but new

cryptographic techniques and new approaches to smart

contract design can render them feasible and even prac-

tical. Furthermore, criminals will undoubtedly devise

CSCs beyond what this paper and the community in gen-

eral are able to anticipate.

Our work therefore shows how imperative it is for

the community to consider the construction of defenses

against CSCs. Criminal activity committed under the

guise of anonymity has posed a major impediment to

adoption for Bitcoin. Yet there has been little discus-

sion of criminal contracts in public forums on cryptocur-

rency [14] and the launch of Ethereum took place in July

2015. It is only by recognizing CSCs early in their lifecy-

cle that the community can develop timely countermea-

sures to them, and see the promise of distributed smart

contract systems fully realized.

While our focus is on preventing evil, happily the tech-

niques we propose can also be used to create beneficial

contracts. We explore both techniques for structuring

CSCs and the use of cutting-edge cryptographic tools,

e.g., Succinct Non-interactive ARguments of Knowledge

(SNARKs), in CSCs. Like the design of beneficial smart
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contracts, CSC construction requires a careful combina-

tion of cryptography with commission-fair design [35].

In summary, our contributions are:

• Criminal smart contracts: We initiate the study of

CSCs as enabled by Turing-complete scripting lan-

guages in next-generation cryptocurrencies. We ex-

plore CSCs for three different types of crimes: leak-

age of secrets in Section 4 (e.g., pre-release Holly-

wood films), key compromise / theft (of, e.g., a CA

signing key) in Section 5, and “calling-card” crimes,

such as assassination, that use data sources called

“authenticated data feeds” (described below) in Sec-

tion 6. We explore the challenges involved in crafting

such criminal contracts and demonstrate (anticipate)

new techniques to resist neutralization and achieve

commission-fairness.

We emphasize that because commission-fairness

means informally that contracting parties obtain their

“expected” utility, an application-specific metric,

commission-fairness must be defined in a way specific

to a given CSC. We thus formally specify commission-

fairness for each of our CSC constructions in the rele-

vant paper appendices.

• Proof of concept: To demonstrate that even sophisti-

cated CSC are realistic, we report (in their respective

sections) on implementation of the CSCs we explore.

Our CSC for leakage of secrets is efficiently realizable

today in existing smart contract languages (e.g., that

of Ethereum). Those for key theft and “calling-card”

crimes rely respectively for efficiency and realizability

on features currently envisioned by the cryptocurrency

community.

• Countermeasures: We briefly discuss in Section 7

some possible approaches to designing smart contract

systems with countermeasures against CSCs. While

this discussion is preliminary, a key contribution of our

work is to show the need for such countermeasures and

stimulate exploration of their implementation in smart

contract systems such as Ethereum.

We also briefly discuss in Appendix B how maturing

technologies, such as hardware roots of trust (e.g., In-

tel SGX [43]) and program obfuscation can enrich the

space of possible CSCs—as they can, of course, benefi-

cial smart contracts.

2 Background and Related Work

Emerging decentralized cryptocurrencies [55, 63] rely

on a novel blockchain technology where miners reach

consensus not only about data, but also about computa-

tion. Loosely speaking, the Bitcoin blockchain (i.e., min-

ers) verify transactions and store a global ledger, which

may be modeled as a piece of public memory whose

integrity relies on correct execution of the underlying
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Figure 1: Schematic of a decentralized cryptocur-

rency system with smart contracts, as illustrated by

Delmolino et al. [35]. A smart contract’s state is stored

on the public blockchain. A smart contract program is

executed by a network of miners who reach consensus

on the outcome of the execution, and update the con-

tract’s state on the blockchain accordingly. Users can

send money or data to a contract; or receive money or

data from a contract.

distributed consensus protocol. Bitcoin supports a lim-

ited range of programmable logic to be executed by the

blockchain. Its scripting language is restrictive, how-

ever, and difficult to use, as demonstrated by previous

efforts at building smart contract-like applications atop

Bitcoin [21, 15, 7, 56, 49].

When the computation performed by the blockchain

(i.e., miners) is generalized to arbitrary Turing-complete

logic, we obtain a more powerful, general-purpose smart

contract system. The first embodiment of such a decen-

tralized smart contract system is the recently launched

Ethereum [63]. Informally, a smart contract in such a

system may be thought of as an autonomously execut-

ing piece of code whose inputs and outputs can include

money. (We give more formalism below.) Hobbyists

and companies are already building atop or forking off

Ethereum to develop various smart contract applications

such as security and derivatives trading [48], prediction

markets [5], supply chain provenance [11], and crowd

fund raising [2].

Figure 1 shows the high-level architecture of a smart

contract system instantiated over a decentralized cryp-

tocurrency such as Bitcoin or Ethereum. When the

underlying consensus protocol employed the cryptocur-

rency is secure, a majority of the miners (as measured by

computational resources) are assumed to correctly exe-

cute the contract’s programmable logic.

Gas. Realistic instantiations of decentralized smart con-

tract systems rely on gas to protect miners against denial-

of-service attacks (e.g., running an unbounded contract).
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Gas is a form of transaction fee that is, roughly speaking,

proportional to the runtime of a contract.

In this paper, although we do not explicitly express

gas in our smart contract notation, we attempt to factor

program logic away from the contract as an optimization

when possible, to keep gas and thus transactional fees

low. For example, some of the contracts we propose in-

volve program logic executed on the user side, with no

loss in security.

2.1 Smart contracts: the good and bad

Decentralized smart contracts have many beneficial uses,

including the realization of a rich variety of new finan-

cial instruments. As Bitcoin does for transactions, in a

decentralized smart contract system, the consensus sys-

tem enforces autonomous execution of contracts; no one

entity or small set of entities can interfere with the execu-

tion of a contract. As contracts are self-enforcing, they

eliminate the need for trusted intermediaries or reputa-

tion systems to reduce transactional risk. Decentralized

smart contracts offer these advantages over traditional

cryptocurrencies such as Bitcoin:

• Fair exchange between mutually distrustful parties

with rich contract rules expressible in a programmable

logic. This feature prevents parties from cheating

by aborting an exchange protocol, yet removes the

need for physical rendezvous and (potentially cheat-

ing) third-party intermediaries.

• Minimized interaction between parties, reducing op-

portunities for unwanted monitoring and tracking.

• Enriched transactions with external state by allowing

as input authenticated data feeds (attestations) pro-

vided by brokers on physical and other events outside

the smart-contract system, e.g., stock tickers, weather

reports, etc. These are in their infancy in Ethereum,

but their availability is growing.

Unfortunately, for all of their benefit, these properties

have a dark side, potentially facilitating crime because:

• Fair exchange enables transactions between mutually

distrustful criminal parties, eliminating the need for

today’s fragile reputation systems and/or potentially

cheating or law-enforcement-infiltrated third-party in-

termediaries [57, 41].

• Minimized interaction renders illegal activities harder

for law enforcement to monitor. In some cases, as

for the key-theft and calling-card CSCs we present, a

criminal can set up a contract and walk away, allowing

it to execute autonomously with no further interaction.

• Enriched transactions with external state broaden the

scope of possible CSCs to, e.g., physical crimes (ter-

rorism, arson, murder, etc.).

As decentralized smart contract systems typically in-

herit the anonymity (pseudonymity) of Bitcoin, they of-

fer similar secrecy for criminal activities. Broadly speak-

ing, therefore, there is a risk that the capabilities enabled

by decentralized smart contract systems will enable new

underground ecosystems and communities.

2.2 Digital cash and crime
Bitcoin and smart contracts do not represent the earli-

est emergence of cryptocurrency. Anonymous e-cash

was introduced in 1982 in a seminal paper by David

Chaum [30]. Naccache and von Solms noted that anony-

mous currency would render “perfect crimes” such as

kidnapping untraceable by law enforcement [61]. This

observation prompted the design of fair blind signatures

or “escrow” for e-cash [24, 62], which enables a trusted

third party to link identities and payments. Such linkage

is possible in classical e-cash schemes where a user iden-

tifies herself upon withdraw of anonymous cash, but not

pseudonymous cryptocurrencies such as Bitcoin.

Ransomware has appeared in the wild since 1989 [16].

A major cryptovirological [64] “improvement” to ran-

somware has been use of Bitcoin [47], thanks to which

CryptoLocker ransomware has purportedly netted hun-

dreds of millions of dollars in ransom [23]. Assassi-

nation markets using anonymous digital cash were first

proposed in a 1995-6 essay entitled “Assassination Poli-

tics” [17].

There has been extensive study of Bitcoin-enabled

crime, such as money laundering [54], Bitcoin theft [52],

and illegal marketplaces such as the Silk Road [32].

Meiklejohn et al. [52] note that Bitcoin is pseudony-

mous and that mixes, mechanisms designed to confer

anonymity on Bitcoins, do not operate on large volumes

of currency and in general today it is hard for criminals

to cash out anonymously in volume.

On the other hand, Ron and Shamir provide evidence

that the FBI failed to locate most of the Bitcoin holdings

of Dread Pirate Roberts (Ross Ulbricht), the operator of

the Silk Road, even after seizing his laptop [59]. Möser,

Böhome, and Breuker [54] find that they cannot success-

fully deanonymize transactions in two of three mixes un-

der study, suggesting that the “Know-Your-Customer”

principle, regulators’ main tool in combatting money

laundering, may prove difficult to enforce in cryptocur-

rencies. Increasingly practical proposals to use NIZK

proofs for anonymity in cryptocurrencies [18, 34, 53],

some planned for commercial deployment, promise to

make stronger anonymity available to criminals.

3 Notation and Threat Model

We adopt the formal blockchain model proposed by

Kosba et al. [45]. As background, we give a high-level
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description of this model in this section. We use this

model to specify cryptographic protocols in our paper;

these protocols encompass criminal smart contracts and

corresponding user-side protocols.

Protocols in the smart contract model. Our model

treats a contract as a special party that is entrusted to

enforce correctness but not privacy, as noted above. (In

reality, of course, a contract is enforced by the network.)

All messages sent to the contract and its internal state

are publicly visible. A contract interacts with users and

other contracts by exchanging messages (also referred to

as transactions). Money, expressed in the form of ac-

count balances, is recorded in the global ledger (on the

blockchain). Contracts can access and update the ledger

to implement money transfers between users, who are

represented by pseudonymous public keys.

3.1 Threat Model

We adopt the following threat model in this paper.

• Blockchain: Trusted for correctness but not privacy.

We assume that the blockchain always correctly stores

data and performs computations and is always avail-

able. The blockchain exposes all of its internal states

to the public, however, and retains no private data.

• Arbitrarily malicious contractual parties. We assume

that contractual parties are mutually distrustful, and

they act solely to maximize their own benefit. Not only

can they deviate arbitrarily from the prescribed proto-

col, they can also abort from the protocol prematurely.

• Network influence of the adversary. We assume that

messages between the blockchain and players are de-

livered within a bounded delay, i.e., not permanently

dropped. (A player can always resend a transaction

dropped by a malicious miner.) In our model, an ad-

versary immediately receives and can arbitrarily re-

order messages, however. In real-life decentralized

cryptocurrencies, the winning miner determines the or-

der of message processing. An adversary may collude

with certain miners or influence message-propagation

among nodes. As we show in Section 5, for key-theft

contracts, message-reordering enables a rushing attack

that a commission-fair CSC must prevent.

The formal model we adopt (reviewed later in this sec-

tion and described in full by Kosba et al. [45]) captures

all of the above aspects of our threat model.

3.2 Security definitions

For a CSC to be commission-fair requires two things:

• Correct definition of commission-fairness. There is no

universal formal definition of commission fairness: It

is application-specific, as it depends on the goals of

the criminal (and perpetrator). Thus, for each CSC, we

specify in the paper appendix a corresponding defini-

tion of commission-fairness by means of a UC-style

ideal functionality that achieves it. Just specifying

a correct ideal functionality is itself often challeng-

ing! We illustrate the challenge in Section 5 and Ap-

pendix D with a naive-key functionality that represents

seemingly correct but in fact flawed key-theft contract.

• Correct protocol implementation. To prove that a

CSC is commission-fair, we must show that its (real-

world) protocol emulates the corresponding ideal func-

tionality. We prove this for our described CSCs in

the standard Universally Composable (UC) simula-

tion paradigm [26] adopted in the cryptography litera-

ture, against arbitrarily malicious contractual counter-

parties as well as possible network adversaries. Our

protocols are also secure against aborting adversaries,

e.g., attempts to abort without paying the other party.

Fairness in the presence of aborts is well known in

general to be impossible in standard models of dis-

tributed computation [33]. Several recent works, show

that a blockchain that is correct, available, and aware

of the progression of time can enforce financial fair-

ness against aborting parties [21, 45, 15]. Specifically,

when a contract lapses, the blockchain can cause the

aborting party to lose a deposit to the honest parties.

3.3 Notational Conventions

We now explain some notational conventions for writing

contracts. Appendix A gives a warm-up example.

• Currency and ledger. We use ledger[P] to denote

party P’s balance in the global ledger. For clarity,

variables that begin with a $ sign denote money, but

otherwise behave like ordinary variables.

Unlike in Ethereum’s Serpent language, in our for-

mal notation, when a contract receives some $amount

from a party P , this is only message transfer, and no

currency transfer has taken place at this point. Money

transfers only take effect when the contract performs

operations on the ledger, denoted ledger.

• Pseudonymity. Parties can use pseudonyms to ob-

tain better anonymity. In particular, a party can

generate arbitrarily many public keys. In our nota-

tional system, when we refer to a party P , P de-

notes the party’s pseudonym. The formal blockchain

model [45] we adopt provides a contract wrapper man-

ages the pseudonym generation and the message sign-

ing necessary for establishing an authenticated chan-

nel to the contract. These details are abstracted away

from the main contract program.

• Timer. Time progresses in rounds. At the beginning

of each round, the contract’s Timer function will be

invoked. The variable T encodes the current time.
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• Entry points and variable scope. A contract can

have various entry points, each of which is invoked

when receiving a corresponding message type. Thus

entry points behave like function calls invoked upon

receipt of messages.

All variables are assumed to be globally scoped, with

the following exception: When an entry point says

“Upon receiving a message from some party P ,” this

allows the registration of a new party P . In general,

contracts are open to any party who interacts with

them. When a message is received from P (without

the keyword “some”), party P denotes a fixed party –

and a well-formed contract has already defined P .

This notational system [45] is not only designed for

convenience, but is also endowed with precise, formal

meanings compatible with the Universal Composability

framework [26]. We refer the reader to [45] for formal

modeling details. While our proofs in the paper appen-

dices rely on this supporting formalism, the main body

can be understood without it.

4 CSCs for Leakage of Secrets

As a first example of the power of smart contracts, we

show how an existing type of criminal contract deployed

over Bitcoin can be made more robust and functionally

enhanced as a smart contract and can be practically im-

plemented in Ethereum.

Among the illicit practices stimulated by Bitcoin is

payment-incentivized leakage, i.e., public disclosure, of

secrets. The recently created web site Darkleaks [3] (a

kind of subsidized Wikileaks) serves as a decentralized

market for crowdfunded public leakage of a wide variety

of secrets, including, “Hollywood movies, trade secrets,

government secrets, proprietary source code, industrial

designs like medicine or defence, [etc.].”

Intuitively, we define commission-fairness in this set-

ting to mean that a contractor C receives payment iff it

leaks a secret in its entirety within a specified time limit.

(See Appendix E for a formal definition.) As we show,

Darkleaks highlights the inability of Bitcoin to support

commission-fairness. We show how a CSC can in fact

achieve commission-fairness with high probability.

4.1 Darkleaks

In the Darkleaks system, a contractor C who wishes to

sell a piece of content M partitions it into a sequence of

n segments {mi}
n
i=1. At a time (block height) Topen pre-

specified by C, a randomly selected subset Ω ⊂ [n] of

k segments is publicly disclosed as a sample to entice

donors / purchasers—those who will contribute to the

purchase of M for public leakage. When C determines

that donors have collectively paid a sufficient price, C

decrypts the remaining segments for public release. The

parameter triple (n,k,Topen) is set by C (where n = 100

and k = 20 are recommended defaults).

To ensure a fair exchange of M for payment without

direct interaction between parties, Darkleaks implements

a (clever) protocol on top of the Bitcoin scripting lan-

guage. The main idea is that for a given segment mi of M

that is not revealed as a sample in Ω, donors make pay-

ment to a Bitcoin account ai with public key pki. The

segment mi is encrypted under a key κ = H(pki) (where

H = SHA-256). To spend its reward from account ai, C
is forced by the Bitcoin transaction protocol to disclose

pki; thus the act of spending the reward automatically

enables the community to decrypt mi.

We give further details in Appendix F.1.

Shortcomings and vulnerabilities. The Darkleaks pro-

tocol has three major shortcomings / vulnerabilities that

appear to stem from fundamental functional limitations

of Bitcoin’s scripting language when constructing con-

tracts without direct communication between parties.

The first two undermine commission-fairness, while the

third limits functionality.1

1. Delayed release: C can refrain from spending pur-

chasers’ / donors’ payments and releasing unopened seg-

ments of M until after M loses value. E.g., C could with-

hold segments of a film until after its release in theaters,

of an industrial design until after it is produced, etc.

2. Selective withholding: C can choose to forego pay-

ment for selected segments and not disclose them. For

example, C could leak and collect payment for all of a

leaked film but the last few minutes (which, with high

probability, will not appear in the sample Ω), signifi-

cantly diminishing the value of leaked segments.

3. Public leakage only: Darkleaks can only serve to leak

secrets publicly. It does not enable fair exchange for pri-

vate leakage, i.e., for payment in exchange for a secret

M encrypted under the public key of a purchaser P .

Additionally, Darkleaks has a basic protocol flaw:

4. Reward theft: In the Darkleaks protocol, the Bitcoin

private key ski corresponding to pki is derived from mi;

specifically ski = SHA-256(mi). Thus, the source of M

(e.g., the victimized owner of a leaked film) can derive

ski and steal rewards received by C. (Also, when C claims

a reward, a malicious node that receives the transaction

can decrypt mi, compute ski = SHA-256(mi), and po-

tentially steal the reward by flooding the network with a

competing transaction [38].)

1That these limitations are fundamental is evidenced by calls for

new, time-dependent opcodes. One example is CHECKLOCKTIMEV-

ERIFY; apart from its many legitimate applications, proponents note

that it can facilitate secret leakage as in Darkleaks [37].
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This last problem is easily remedied by generating the

set {κi}
n
i=1 of segment encryption keys pseudorandomly

or randomly, which we do in our CSC designs.

Remark: In any protocol in which goods are represented

by a random sample, not just Darkleaks, C can insert a

small number of valueless segments into M. With non-

negligible probability, these will not appear in the sample

Ω, so Ω necessarily provides only a weak guarantee of

the global validity of M. The larger k and n, the smaller

the risk of such attack.

4.2 A generic public-leakage CSC

We now present a smart contract that realizes public

leakage of secrets using blackbox cryptographic prim-

itives. (We later present efficient realizations.) This

contract overcomes limitation 1. of the Darkleaks pro-

tocol (delayed release) by enforcing disclosure of M at

a pre-specified time Tend—or else immediately refund-

ing buyers’ money. It addresses limitation 2. (selective

withholding) by ensuring that M is revealed in an all-or-

nothing manner. (We later explain how to achieve private

leakage and overcome limitation 3.)

Again, we consider settings where C aims to sell M for

public release after revealing sample segments M∗.

Informal protocol description. Informally, the proto-

col involves the following steps:

• Create contract. A seller C initializes a smart con-

tract with the encryption of a randomly generated mas-

ter secret key msk. The master secret key is used

to generate (symmetric) encryption keys for the seg-

ments {mi}
n
i=1. C provides a cryptographic commit-

ment c0 := Enc(pk,msk,r0) of msk to the contract. (To

meet the narrow technical requirements of our security

proofs, the commitment is an encryption with random-

ness r0 under a public key pk created during a trusted

setup step.) The master secret key msk can be used to

decrypt all leaked segments of M.

• Upload encrypted data. For each i ∈ [n], C generates

encryption key κi :=PRF(msk, i), and encrypts the i-th

segment as cti = encκi
[mi]. C sends all encrypted seg-

ments {cti}i∈[n] to the contract (or, for efficiency, pro-

vides hashes of copies stored with a storage provider,

e.g., a peer-to-peer network). Interested purchasers /

donors can download the segments of M, but cannot

decrypt them yet.

• Challenge. The contract generates a random challenge

set Ω ⊂ [n], in practice based on the hash of the most

recent currency block or some well known randomness

source, e.g., the NIST randomness beacon [9].

• Response. C reveals the set {κi}i∈Ω to the contract, and

gives ZK proofs that the revealed secret keys {κi}i∈Ω

are generated correctly from the msk encrypted as c0.

• Collect donations. During a donation period, potential

purchasers / donors can use the revealed secret keys

{κi}i∈Ω to decrypt the corresponding segments. If they

like the decrypted segments, they can donate money to

the contract as contribution for the leakage.

• Accept. If enough money has been collected, C decom-

mits msk for the contract (sends the randomness for the

ciphertext along with msk). If the contract verifies the

decommitment successfully, all donated money is paid

to C. The contract thus enforces a fair exchange of msk

for money. (If the contract expires at time Tend without

release of msk, all donations are refunded.)

The contract. Our proposed CSC PublicLeaks for im-

plementing this public leakage protocol is given in Fig-

ure 2. The corresponding user side is as explained infor-

mally above (and inferable from the contract).

Contract PublicLeaks

Init: Set state := INIT, and donations := {}. Let crs :=
KeyGennizk(1

λ ), pk := KeyGenenc(1
λ ) denote

hardcoded public parameters generated through a

trusted setup.

Create: Upon receiving (“create”, c0, {cti}
n
i=1, Tend) from

some leaker C:

Set state := CREATED.

Select a random subset Ω ⊂ [n] of size k, and

send (“challenge”, Ω) to C.

Confirm: Upon receiving (“confirm”, {(κi,πi)}i∈Ω) from C:

Assert state= CREATED.

Assert that ∀i ∈ S: πi is a valid NIZK proof (un-

der crs) for the following statement:

∃(msk,r0), s.t. (c0 = Enc(pk,msk,r0))
∧(κi = PRF(msk, i))

Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-

chaser P :

Assert state= CONFIRMED.

Assert ledger[P ]≥ $amt.

Set ledger[P ] := ledger[P ]−$amt.

donations := donations∪{($amt,P)}.
Accept: Upon receiving (“accept”, msk, r0) from C:

Assert state= CONFIRMED

Assert c0 = Enc(pk,msk,r0)
ledger[C] := ledger[C]+ sum(donations)
Send (“leak”,msk) to all parties.

Set state := ABORTED.

Timer: If state= CONFIRMED and T > Tend: ∀($amt,P)∈
donations: let ledger[P ] := ledger[P ]+$amt. Set

state := ABORTED.

Figure 2: A contract PublicLeaks that leaks a secret M

to the public in exchange for donations.
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4.3 Commission-fairness: Formal defini-

tion and proof

In Appendix E, we give a formal definition of

commission-fairness for public leakage (explained infor-

mally above) as an ideal functionality. We also prove

that PublicLeaks realizes this functionality assuming all

revealed segments are valid—a property enforced with

high (but not overwhelming) probability by random sam-

pling of M in PublicLeaks.

4.4 Optimizations and Ethereum imple-

mentation

The formally specified contract PublicLeaks uses generic

cryptographic primitives in a black-box manner. We now

give a practical, optimized version, relying on the ran-

dom oracle model (ROM), that eliminates trusted setup,

and also achieves better efficiency and easy integration

with Ethereum [63].

A practical optimization. During contract creation, C

chooses random κi
$
←{0,1}λ for i ∈ [n], and computes

c0 := {H(κ1,1), . . . ,H(κn,n)}.

The master secret key is simply msk := {κ1, . . . ,κn},
i.e., the set of hash pre-images. As in PublicLeaks,

each segment mi will still be encrypted as cti :=
encκ [mi]. (For technical reasons—to achieve simu-

latability in the security proof—here encκ [mi] = mi ⊕
[H(κi,1,“enc”) ||H(κi,2,“enc”) . . . ,
||H(κi,z,“enc”)] for suitably large z.)

C submits c0 to the smart contract. When challenged

with the set Ω, C reveals {κi}i∈Ω to the contract, which

then verifies its correctness by hashing and comparing

with c0. To accept donations, C reveals the entire msk.

This optimized scheme is asymptotically less efficient

than our generic, black-box construction PublicLeaks—

as the master secret key scales linearly in the number of

segments n. But for typical, realistic document set sizes

in practice (e.g., n = 100, as recommended for Dark-

leaks), it is more efficient.

Ethereum-based implementation. To demonstrate the

feasibility of implementing leakage contracts using cur-

rently available technology, we implemented a version of

the contract PublicLeaks atop Ethereum [63], using the

Serpent contract language [10]. We specify the full im-

plementation in detail in Appendix F.2.

The version we implemented relies on the practical

optimizations described above. As a technical matter,

Ethereum does not appear at present to support timer-

activated functions, so we implemented Timer in such a

way that purchasers / donors make explicit withdrawals,

rather than receiving automatic refunds.

This public leakage Ethereum contract is highly effi-

cient, as it does not require expensive cryptographic op-

erations. It mainly relies on hashing (SHA3-256) for ran-

dom number generation and for verifying hash commit-

ments. The total number of storage entries (needed for

encryption keys) and hashing operations is O(n), where,

again, Darkleaks recommends n = 100. (A hash func-

tion call in practice takes a few micro-seconds, e.g., 3.92

µsecs measured on a core i7 processor.)

4.5 Extension: private leakage

As noted above, shortcoming 3. of Darkleaks is its in-

ability to support private leakage, in which C sells a se-

cret exclusively to a purchaser P . In Appendix F.3, we

show how PublicLeaks can be modified for this purpose.

The basic idea is for C not to reveal msk directly, but to

provide a ciphertext ct= encpkP [msk] on msk to the con-

tract for a purchaser P , along with a proof that ct is cor-

rectly formed. We describe a black-box variant whose

security can be proven in essentially the same way as

PublicLeaks. We also describe a practical variant that

variant combines a verifiable random function (VRF) of

Chaum and Pedersen [31] (for generation of {κi}
n
i=1)

with a verifiable encryption (VE) scheme of Camensich

and Shoup [25] (to prove correctness of ct). This variant

can be deployed today using beta support for big number

arithmetic in Ethereum.

5 A Key-Compromise CSC

Example 1b in the paper introduction described a CSC

that rewards a perpetrator P for delivering to C the stolen

key skV of a victim V—in this case a certificate authority

(CA) with public key pkV . Recall that C generates a pri-

vate / public key encryption pair (skC ,pkC). The contract

accepts as a claim by P a pair (ct,π). It sends reward

$reward to P if π is a valid proof that ct = encpkC [skV ]
and skV is the private key corresponding to pkV .

Intuitively, a key-theft contract is commission-fair if

it rewards a perpetrator P for delivery of a private key

that: (1) P was responsible for stealing and (2) Is valid

for a substantial period of time. (We formally define it in

Appendix D.)

This form of contract can be used to solicit theft of

any type of private key, e.g., the signing key of a CA, the

private key for a SSL/TLS certificate, a PGP private key,

etc. (Similar contracts could solicit abuse, but not full

compromise of a private key, e.g., forged certificates.)

Figure 3 shows the contract of Example 1b in our

notation for smart contracts. We let crs here de-

note a common reference string for a NIZK scheme

and match(pkV ,skV) denote an algorithm that verifies
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Contract KeyTheft-Naive

Init: Set state := INIT. Let crs := KeyGennizk(1
λ ) denote

a hard-coded NIZK common reference string gener-

ated during a trusted setup process.

Create: Upon receiving (“create”, $reward, pkV , Tend) from

some contractor C := (pkC , . . .):
Assert state= INIT.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward.

Set state := CREATED.

Claim: Upon receiving (“claim”, ct, π) from some purported

perpetrator P :

Assert state= CREATED.

Assert that π is a valid NIZK proof (under crs) for

the following statement:

∃r,skV s.t. ct= Enc(pkC ,(skV ,P),r)
and match(pkV ,skV ) = true

ledger[P ] := ledger[P ]+$reward.

Set state := CLAIMED.

Timer: If state= CREATED and current time T > Tend:

ledger[C] := ledger[C]+$reward

state := ABORTED

Figure 3: A naı̈ve, flawed key theft contract (lacking

commission-fairness)

whether skV is the corresponding private key for some

public key pkV in a target public-key cryptosystem.

As noted above, this CSC is not commission-fair.

Thus we refer to it as KeyTheft-Naive.We use KeyTheft-

Naive as a helpful starting point for motivating and un-

derstanding the construction of a commission-fair con-

tract proposed later, called KeyTheft.

5.1 Flaws in KeyTheft-Naive

The contract KeyTheft-Naive fails to achieve

commission-fairness due to two shortcomings.

Revoke-and-claim attack. The CA V can revoke the

key skV and then itself submit the key for payment. The

CA then not only negates the value of the contract but

actually profits from it! This revoke-and-claim attack

demonstrates that KeyTheft-Naive is not commission-

fair in the sense of ensuring the delivery of a usable pri-

vate key skV .

Rushing attack. Another attack is a rushing attack.

As noted in Section 3, an adversary can arbitrarily re-

order messages—a reflection of possible attacks against

the network layer in a cryptocurrency. (See also the for-

mal blockchain model [45].) Thus, given a valid claim

from perpetrator P , a corrupt C can decrypt and learn

skV , construct another valid-looking claim of its own,

and make its own claim arrive before the valid one.

5.2 Fixing flaws in KeyTheft-Naive

We now show how to modify KeyTheft-Naive to prevent

the above two attacks and achieve commission-fairness.

Thwarting revoke-and-claim attacks. In a revoke-and-

claim attack against KeyTheft-Naive, V preemptively re-

vokes its public key pkV and replaces it with a fresh one

pk′V . As noted above, the victim can then play the role

of perpetrator P , submit skV to the contract and claim

the reward. The result is that C pays $reward to V and

obtains a stale key.

We address this problem by adding to the contract a

feature called reward truncation, whereby the contract

accepts evidence of revocation Πrevoke.

This evidence Πrevoke can be an Online Certificate Sta-

tus Protocol (OCSP) response indicating that pkV is no

longer valid, a new certificate for V that was unknown

at the time of contract creation (and thus not stored in

Contract), or a certificate revocation list (CRL) contain-

ing the certificate with pkV .

C could submit Πrevoke, but to minimize interaction

by C, KeyTheft could provide a reward $smallreward to

a third-party submitter. The reward could be small, as

Πrevoke would be easy for ordinary users to obtain.

The contract then provides a reward based on the in-

terval of time over which the key skV remains valid. Let

Tclaim denote the time at which the key skV is provided

and Tend be an expiration time for the contract (which

must not exceed the expiration of the certificate contain-

ing the targeted key). Let Trevoke be the time at which

Πrevoke is presented (Trevoke = ∞ if no revocation happens

prior to Tend). Then the contract assigns to P a reward of

f (reward, t), where t = min(Tend,Trevoke)−Tclaim.

We do not explore choices of f here. We note, how-

ever, that given that a CA key skV can be used to forge

certificates for rapid use in, e.g., malware or falsified

software updates, much of its value can be realized in a

short interval of time which we denote by δ . (A slant

toward up-front realization of the value of exploits is

common in general [22].) A suitable choice of reward

function should be front-loaded and rapidly decaying. A

natural, simple choice with this property is

f ($reward, t) =

{
0 : t < δ

$reward(1−ae−b(t−δ )) : t ≥ δ

for a < 1/2 and some positive real value b. Note that a

majority of the reward is paid provided that t ≥ δ .

Thwarting rushing attacks. To thwart rushing attacks,

we separate the claim into two phases. In the first phase,

P expresses an intent to claim by submitting a commit-

ment of the real claim message. P then waits for the

next round to open the commitment and reveal the claim

message. (Due to technical subtleties in the proof, the
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commitment must be adaptively secure; in the proof, the

simulator must be able to simulate a commitment with-

out knowing the string s being committed to, and later, be

able to claim the commitment to any string s.) In real-life

decentralized cryptocurrencies, P can potentially wait

multiple block intervals before opening the commitment,

to have higher confidence that the blockchain will not

fork. In our formalism, one round can correspond to one

or more block intervals.

Figure 4 gives a key theft contract KeyTheft that

thwarts revoke-and-claim and the rushing attacks.

5.3 Target and state exposure

An undesirable property of KeyTheft-Naive is that its

target / victim and state are publicly visible. V can

thus learn whether it is the target of KeyTheft-Naive. V
also observes successful claims—i.e., whether skV has

been stolen—and can thus take informed defensive ac-

tion. For example, as key revocation is expensive and

time-consuming, V might wait until a successful claim

occurs and only then perform a revoke-and-claim attack.

To limit target and state exposure, wenote two possi-

ble enhancements to KeyTheft. The first is a multi-target

contract, in which key theft is requested for any one of a

set of multiple victims. The second is what we call cover

claims, false claims that conceal any true claim. Our im-

plementation of KeyTheft, as specified in Figure 4, is a

multi-target contract, as this technique provides both par-

tial target and partial state concealment.

Multi-target contract. A multi-target contract so-

licits the private key of any of m potential victims

V1,V2, . . . ,Vm. There are many settings in which the pri-

vate keys of different victims are of similar value. For

example, a multi-target contract KeyTheft could offer a

reward for the private key skV of any CA able to issue

SSL/TLS certificates trusted by, e.g., Internet Explorer

(of which there are more than 650 [39]).

A challenge here is that the contract state is public,

thus the contract must be able to verify the proof for a

valid claim (private key) skVi
without knowing which key

was furnished, i.e., without learning i. Our implementa-

tion shows that constructing such proofs as zk-SNARKs

is practical. (The contractor C itself can easily learn i

by decrypting skVi
, generating pkVi

, and identifying the

corresponding victim.)

Cover claims. As the state of a contract is publicly vis-

ible, a victim V learns whether or not a successful claim

has been submitted to KeyTheft-Naive. This is particu-

larly problematic in the case of single-target contracts.

Rather than sending the NIZK proof π with ct, it is

possible instead to delay submission of π (and payment

of the reward) until Tend. (That is, Claim takes as input

Contract KeyTheft

Init: Set state := INIT. Let crs := KeyGennizk(1
λ ) de-

note a hard-coded NIZK common reference string

generated during a trusted setup process.

Create: Same as in Contract KeyTheft-Naive (Figure 3),

except that an additional parameter ∆T is addition-

ally submitted by C.

Intent: Upon receiving (“intent”, cm) from some purported

perpetrator P:

Assert state= CREATED

Assert that P has not sent “intent” earlier

Store cm,P
Claim: Upon receiving (“claim”, ct, π , r) from P:

Assert state= CREATED

Assert P submitted (“intent”, cm) earlier such

that cm= comm(ct||π,r).
Continue in the same manner as in contract

KeyTheft-Naive, except that the ledger update

ledger[P ] := ledger[P ] + $reward does not take

place immediately.

Revoke: On receive (“revoke”, Πrevoke) from some R:

Assert Πrevoke is valid, and state 6= ABORTED.

ledger[R] := ledger[R]+$smallreward.

If state= CLAIMED:

Let t := (time elapsed since successful Claim).

Let P := (successful claimer).

rewardP := f ($reward, t).
ledger[P ] := ledger[P ]+ rewardP .

Else, rewardP := 0

ledger[C] := ledger[C]+$reward

−$smallreward− rewardP
Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed

since Claim:

ledger[P ] := ledger[P ]+$reward;

Set state := ABORTED.

Else if current time T > Tend and state 6= ABORTED:

ledger[C] := ledger[C]+$reward.

Set state := ABORTED.

// P should not submit claims after Tend−∆T .

Figure 4: Key compromise CSC that thwarts the revoke-

and-claim attack and the rushing attack.

(“claim”, ct).) This approach conceals the validity of ct.

Note that even without π , C can still make use of ct.

A contract that supports such concealment can also

support an idea that we refer to as cover claims. A cover

claim is an invalid claim of the form (“claim”, ct), i.e.,

one in which ct is not a valid encryption of skV . Cover

claims may be submitted by C to conceal the true state

of the contract. So that C need not interact with the con-

tract after creation, the contract could parcel out small

rewards at time Tend to third parties that submit cover

claims. We do not implement cover claims in our ver-

sion of KeyTheft nor include them in Figure 4.s
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1-Target #threads RSA-2048 ECDSA P256

Key Gen.[C] 1 418.27 sec 926.308 sec

4 187.49 sec 421.05 sec

Eval. Key 0.78GB 1.80 GB

Ver. Key 17.29 KB 15.6 KB

Prove[P ] 1 133.06 sec 325.73 sec

4 55.30 sec 150.80 sec

Proof 288 B 288 B

Verification [Contract] 0.0102 sec 0.0099 sec

500-Target #threads RSA-2048 ECDSA P256

Key Gen.[C] 1 419.93 sec 934.89 sec

4 187.88 sec 329.39 sec

Eval. Key 0.79 GB 1.81 GB

Ver. Key 1.14 MB 330.42 KB

Prove[P ] 1 132.98 sec 325.73 sec

4 68.67 sec 149.19 sec

Proof 288 B 288 B

Verification [Contract] 0.0316 sec 0.0159 sec

Table 1: Performance of the key-compromise zk-SNARK cir-

cuit for Claim in the case of a 1-target and 500-target contracts.

[.] refers to the entity performing the computational work.

5.4 Commision-fairness: Formal definition

and proof

We define commission-fairness for key theft in terms of

an ideal functionality in Appendix D and also provide a

formal proof of security there for KeyTheft.

5.5 Implementation

We rely on zk-SNARKs for efficient realization of

the protocols above. zk-SNARKs are zero-knowledge

proofs of knowledge that are succinct and very efficient

to verify. zk-SNARKs have weaker security than what is

needed in UC-style simulation proofs. We therefore use a

generic transformation described in the Hawk work [45]

to lift security such that the zero-knowledge proof en-

sures simulation-extractable soundness. (In brief, a one-

time key generation phase is needed to generate two

keys: a public evaluation key, and a public verification

key. To prove a certain NP statement, an untrusted prover

uses the evaluation key to compute a succinct proof; any

verifier can use the public verification key to verify the

proof. The verifier in our case is the contract.) In our im-

plementation, we assume the key generation is executed

confidentially by a trusted party; otherwise a prover can

produce a valid proof for a false statement. To mini-

mize trust in the key generation phase, secure multi-party

computation techniques can be used as in [19].

zk-SNARK circuits for Claim. To estimate the proof

computation and verification costs required for Claim,

we implemented the above protocol for theft of RSA-

2048 and ECDSA P256 keys, which are widely used in

SSL/TLS certificates currently. The circuit has two main

sub-circuits: a key-check circuit, and an encryption cir-

cuit 2 The encryption circuit was realized using RSAES-

OAEP [44] with a 2048-bit key. Relying on compilers for

high-level implementation of these algorithms may pro-

duce expensive circuits for the zk-SNARK proof com-

putation. Instead, we built customized circuit genera-

tors that produce more efficient circuits. We then used

the state-of-the-art zk-SNARK library [20] to obtain the

evaluation results. Table 1 shows the results of the eval-

uation of the circuits for both single-target and multi-

target contracts. The experiments were conducted on an

Amazon EC2 r3.2xlarge instance with 61GB of memory

and 2.5 GHz processors.

The results yield two interesting observations: i) Once

a perpetrator obtains the secret key of a TLS public key,

computing the zk-SNARK proof would require much

less than an hour, costing less than 1 USD [4] for either

single or multi-target contracts; ii) The overhead intro-

duced by using a multi-target contract with 500 keys on

the prover’s side is minimal. This minimized overhead

for the 500-key contract is obtained by the use of a very

cheap multiplexing circuit with a secret input, while us-

ing the same components of the single-target case as is.

On the other hand, in the 500-key case, the contract will

have to store a larger verification key, resulting in verifi-

cation times of 35msec for RSA. Further practical imple-

mentation optimizations, though, can reduce the contract

verification key size and overhead.

Validation of revoked certificates. The reward func-

tion in the contract above relies on certificate revocation

time, and therefore the contract needs modules that can

process certificate revocation proofs, such as CRLs and

OCSP responses, and verify the CA digital signatures on

them. As an example, we measured the running time of

openssl verify -crl_check command, testing the

revoked certificate at [12] and the CRL last updated at [8]

on Feb 15th, 2016, that had a size of 143KB. On average,

the verification executed in about 0.016 seconds on a 2.3

GHz i7 processor. The signature algorithm was SHA-

256 with RSA encryption, with a 2048-bit key. Since

OCSP responses can be smaller than CRLs, the verifica-

tion time could be even less for OCSP.

The case of multi-target contracts. Verifying the re-

vocation proof for single-target contracts is straightfor-

ward: The contract can determine whether a revocation

proof corresponds to the targeted key. In multi-target

contracts, though, the contract does not know which tar-

get key corresponds to the proof of key theft P submit-

ted. Thus, a proof is needed that the revocation corre-

sponds to the stolen key, and it must be submitted by C.

We built a zk-SNARK circuit through which C can

prove the connection between the ciphertext submitted

2The circuit also has other signature and encryption sub-circuits

needed for simulation extractability – see Appendix C.3.
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by the perpetrator and a target key with a secret index.

For efficiency, we eliminated the need for the key-check

sub-circuit in Revoke by forcing P to append the se-

cret index to the secret key before applying encryption

in Claim. The evaluation in Table 2 illustrates the effi-

ciency of the verification done by the contract receiving

the proof, and the practicality for C of constructing the

proof. In contrast to the case for Claim, the one-time key

generation for this circuit must be done independently

from C, so that C cannot cheat the contract. We note that

the Revoke circuit we built is invariant to the cryptosys-

tem of the target keys.

#threads RSA-2048 ECDSA P256

Key Gen. 1 394.93 sec 398.53 sec

4 178.33 sec 162.537 sec

Eval. Key 0.74 GB 0.74 GB

Ver. Key 14.62 KB 14.62 KB

Prove[C] 1 131.38 sec 133.88 sec

4 68.66 sec 69.036 sec

Proof 288 B 288 B

Verification [Contract] 0.0098 sec 0.0097 sec

Table 2: Performance of the key-compromise zk-SNARK cir-

cuit for Revoke needed in the case of multi-target contract. [.]

refers to the entity performing the computational work.

6 Calling-Card Crimes

As noted above, decentralized smart contract systems

(e.g., Ethereum) have supporting services that provide

authenticated data feeds, digitally signed attestations to

news, facts about the physical world, etc. While still

in its infancy, this powerful capability is fundamental to

many applications of smart contracts and will expand the

range of CSCs very broadly to encompass events in the

physical world, as in the following example:

Example 2 (Assassination CSC) Contractor C posts a

contract Assassinate for the assassination of Senator X.

The contract rewards the perpetrator P of this crime.

The contract Assassinate takes as input from a perpe-

trator P a commitment vcc specifying in advance the de-

tails (day, time, and place) of the assassination. To claim

the reward, P decommits vcc after the assassination. To

verify P’s claim, Assassinate searches an authenticated

data feed on current events to confirm the assassination

of Senator X with details matching vcc.

This example also illustrates the use of what we re-

fer to as a calling card, denoted cc. A calling card is

an unpredictable feature of a to-be-executed crime (e.g.,

in Example 2, a day, time, and place). Calling cards,

alongside authenticated data feeds, can support a general

framework for a wide variety of CSCs.

A generic construction for a CSC based on a calling

card is as follows. P provides a commitment vcc to a

calling card cc to a contract in advance. After the com-

mission of the crime, P proves that cc corresponds to vcc

(e.g., decommits vcc). The contract refers to some trust-

worthy and authenticated data feed to verify that: (1) The

crime was committed and (2) The calling card cc matches

the crime. If both conditions are met, the contract pays a

reward to P .

Intuitively, we define commission fairness to mean

that P receives a reward iff it was responsible for car-

rying out a commissioned crime. (A formal definition is

given in Appendix H.)

In more detail, let CC be a set of possible calling cards

and cc ∈ CC denote a calling card. As noted above, it

is anticipated that an ecosystem of authenticated data

feeds will arise around smart contract systems such as

Ethereum. We model a data feed as a sequence of pairs

from a source S , where (s(t),σ(t)) is the emission for

time t. The value s(t) ∈ {0,1}∗ here is a piece of data

released at time t, while σ(t) is a corresponding digital

signature; S has an associated private / public key pair

(skS ,pkS) used to sign / verify signatures.

Note that once created, a calling-card contract requires

no further interaction from C, making it hard for law en-

forcement to trace C using subsequent network traffic.

6.1 Example: website defacement contract

As an example, we specify a simple CSC SiteDeface for

website defacement. The contractor C specifies a website

url to be hacked and a statement stmt to be displayed.

(For example, stmt = ”Anonymous. We are Legion. We

do not Forgive...” and url= whitehouse.gov.)

We assume a data feed that authenticates website con-

tent, i.e., s(t) = (w,url, t), where w is a representation of

the webpage content and t is a timestamp, denoted for

simplicity in contract time. (For efficiency, w might be

a hash of and pointer to the page content.) Such a feed

might take the form of, e.g., a digitally signed version of

an archive of hacked websites (e.g., zone-h.com).

We also use a special function preamble(a,b) that ver-

ifies b = a||x for strings a,b and some x. The function

SigVer does the obvious signature verification operation.

As example parameterization, we might let CC =
{0,1}256, i.e., cc is a 256-bit string. A perpetrator P

simply selects a calling card cc
$
←{0,1}256 and commit-

ment vcc := commit(cc,P;ρ), where commit denotes a

commitment scheme, and ρ ∈ {0,1}256 a random string.

(In practice, HMAC-SHA256 is a suitable choice for

easy implementation in Ethereum, given its support for

SHA-256.) P decommits by revealing all arguments to

commit.

The CSC SiteDeface is shown in Figure 5.

Remarks. SiteDeface could be implemented alterna-
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Contract SiteDeface

Init: On receiving ($reward, pkS , url, stmt) from some

C:

Store ($reward, pkS , url, stmt)

Set i := 0, Tstart := T

Commit: Upon receiving commitment vcc from some P :

Store vcci := vcc and Pi := P ; i := i+1.

Claim: Upon receiving as input a tuple (cc,ρ,σ ,w, t) from

some P :

Find smallest i such that vcci =
commit(cc,P ;ρ), abort if not found.

Assert stmt ∈ w

Asset preamble(cc,w) = true

Assert t ≥ Tstart

Assert SigVer(pkS ,(w,url, t),σ) = true

Send $reward to Pi and abort.

Figure 5: CSC for website defacement

tively by having P generate cc as a digital signature.

Our implementation, however, also accommodates short,

low-entropy calling cards cc, which is important for gen-

eral calling-card CSCs. See Appendix G.

Implementation. Given an authenticated data feed, im-

plementing SiteDeface would be straightforward and ef-

ficient. The main overhead lies in the Claim module,

where the contract computes a couple of hashes and val-

idates the feed signature on retrieved website data. As

noted in Section 4, a hash function call can be computed

in very short time (4µsec), while checking the signature

would be more costly. For example, if the retrieved con-

tent is 100KB, the contract needs only about 10msec to

verify an RSA-2048 signature.

6.2 Commission-fairness: Formal defini-

tion

We give a formal definition of commission-fairness for

a general calling-card CSC in Appendix H. We do not

provide a security proof, as this would require modeling

of physical-world systems, which is outside the scope of

this paper.

6.3 Other calling-card crimes

Using a CSC much like SiteDeface, a contractor C can

solicit many other crimes, e.g., assassination, assault,

sabotage, hijacking, kidnapping, denial-of-service at-

tacks, and terrorist attacks. A perpetrator P must be able

to designate a calling card that is reliably reported by an

authenticated data feed. (If C is concerned about suppres-

sion of information in one source, it can of course cre-

ate a CSC that references multiple sources, e.g., multiple

news feeds.) We discuss these issues in Appendix G.

7 Countermeasures

The main aim of our work is to emphasize the impor-

tance of research into countermeasures against CSCs for

emerging smart contract systems such as Ethereum. We

briefly discuss this challenge and one possible approach.

Ideas such as blacklisting “tainted” coins /

transactions—those known to have been involved

in criminal transactions—have been brought forward

for cryptocurrencies such as Bitcoin. A proactive

alternative noted in Section 2 is an identity-escrow idea

in early (centralized) e-cash systems sometimes referred

as “trustee-based tracing” [24, 62]. Trustee-tracing

schemes permitted a trusted party (“trustee”) or a

quorum of such parties to trace monetary transactions

that would otherwise remain anonymous. In decentral-

ized cryptocurrencies, however, users do not register

identities with authorities—and many would object to

doing so. It would be possible for users to register vol-

untarily with authorities of their choice, and for users to

choose only to accept only currency they deem suitably

registered. The notion of tainting coins, however, has

been poorly received by the cryptocurrency community

because it undermines the basic cash-like property of

fungibility [13, 51], and trustee-based tracing would

have a similar drawback. It is also unclear what entities

should be granted the authority to perform blacklisting

or register users.

We propose instead the notion of trustee-neutralizable

smart contracts. A smart contract system might be de-

signed such that an authority, quorum of authorities, or

suitable set of general system participants is empow-

ered to remove a contract from the blockchain. Such

an approach would have a big advantage over traditional

trustee-based protections, in that it would not require

users to register identities. Whether the idea would be

palatable to cryptocurrency communities and whether a

broadly acceptable set of authorities could be identified

are, of course, open questions, as are the right supporting

technical mechanisms. We believe, however, that such

a countermeasure might prove easier to implement than

blacklisting or user registration.

8 Conclusion

We have demonstrated that a range of commission-fair

criminal smart contracts (CSCs) are practical for im-

plementation in decentralized currencies with smart con-

tracts. We presented three—leakage of secrets, key theft,

and calling-card crimes—and showed that they are effi-

ciently implementable with existing cryptographic tech-

niques, given suitable support in smart contract systems

such as Ethereum. The contract PublicLeaks and its pri-

vate variant can today be efficiently implemented in Ser-
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pent, an Ethereum scripting language. KeyTheft would

require only modest, already envisioned opcode support

for zk-SNARKs for efficient deployment. Calling-card

CSCs will be possible given a sufficiently rich data-feed

ecosystem. Many more CSCs are no doubt possible.

We emphasize that smart contracts in distributed cryp-

tocurrencies have numerous promising, legitimate appli-

cations and that banning smart contracts would be neither

sensible nor, in all likelihood, possible. The urgent open

question raised by our work is thus how to create safe-

guards against the most dangerous abuses of such smart

contracts while supporting their many powerful, benefi-

cial applications.
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A Smart Contract Example

As a warm-up example, Figure 6 gives a simple smart

contract using our notation system. This contract sells

domain names. A name is awarded to the first bidder to

offer at least $price currency units. When a presale time

period expires indicated by Tend, the price of each domain

name is increased from 1 to 10 currency units. (The con-

tract does not handle assignment of domain names.)

Init: Set all := {}, Tend := 10/12/2015, $price := 1.

Register: On receiving ($amt, name) from some party P :

Assert name /∈ all and $amt≥ $price.

ledger[P ] := ledger[P ]−$amt.

all := all∪{name}.

Timer: If T > Tend and $price= 1: set $price := 10.

Figure 6: Warmup: a simple smart contract for do-

main name registration. The formal operational se-

mantics of a contract program is described in Kosba et

al. [45].

B Future Directions: Other CSCs

The CSCs we have described in the body of the paper

are just a few examples of the broad range of such con-

tracts possible with existing technologies. Also deserv-

ing study in a more expansive investigation are CSCs

based on emerging or as yet not practical technologies.

In this appendix, we give a couple of examples.

Password theft (using SGX): It is challenging to create

a smart contract PwdTheft for theft of a password PW

(or other credentials such as answers to personal ques-

tions) sufficient to access a targeted account (e.g., web-

mail account) A. There is no clear way forP to prove that

PW is valid for A. Leveraging trusted hardware, how-

ever, such as Intel’s recently introduced Software Guard

eXtension (SGX) set of x86-64 ISA extensions [43],

it is possible to craft an incentive compatible contract

PwdTheft. SGX creates a confidentiality- and integrity-

protected application execution environment called an

enclave; it protects against even a hostile OS and the

owner of the computing device. SGX also supports gen-

eration of a quote, a digitally signed attestation to the

hash of a particular executable app in an enclave and

permits inclusion of app-generated text, such as an app-

specific key pair (skapp,pkapp). A quote proves to a re-

mote verifier that data came from an instantiation of app

on an SGX-enabled host.

We sketch the design of an executable app for

PwdTheft. It does the following: (1) Ingests the pass-

word PW from P and (pkC , A) from the contract; (2)

Creates and authenticates (via HTTPS, to support source

authentication) a connection to the service on which A

is located; and logs into A using PW ; and (3) If steps

(1) and (2) are successful, sends to PwdTheft the val-

ues ct= encpkC [PW ], σ = Sigskapp [ct], and a quote α for

app. The functionality Claim in PwdTheft inputs these

values and verifies σ and α , ensuring that PW is a valid

password for A. At this point, PwdTheft releases a re-

ward to P; we omit details for this step. Figure 7 depicts

the basic setup for this CSC.

After delivery of PW , P could cheat by changing PW ,

thus retaining access to A but depriving C of it. It is possi-

ble for app thus to include a step (2a) that changes PW to

a fresh, random password PW ′ without revealing PW ′ to

P . This is in effect a “proof of ignorance,” a capability of

trusted hardware explored in [50]. To ensure freshness,

app might also ingest a timestamp, e.g., the current block

header in the cryptocurrency.

Sale of 0-days: A zero-day exploit (“0-day”) is a piece

of code that exploits a target piece of software through

a vulnerability as yet unknown to the developers and

for which patches are thus unavailable. A substan-

tial market [36] exists for the sale of 0-days as cyber-

weaponry [60]. Demonstrating the validity of a “0-day”

without revealing it has been a persistent problem in 0-

day markets, which consequently rely heavily on reputa-

tions [58].

SGX could enable proofs of validity of a 0-days: app
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Contract
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Service with 

Account A

HTTPS login 

using PW
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app
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PKC , A

PW (provided by P )

3

P’s SGX-enabled host

ct , σ, α

Figure 7: Diagram of execution of PwdTheft with appli-

cation app running on SGX-enabled platform. The steps

of operation are described in text.

would in this case simulate an execution environment

and attest to the state of a target piece of software af-

ter execution of the 0-day. An alternative, in principle,

is to construct a zk-SNARK, although, simulation of a

complete execution environment would carry potentially

impractical overhead.

Either technique would support the creation of a smart

contract for the sale of 0-day vulnerabilities, greatly sim-

plifying 0-day markets. Additionally, sales could be

masked using an idea like that of cover claims, namely by

formulating contracts EITHER to sell a 0-day vulnerabil-

ity for $X OR sell $X worth of cryptocurrency. “Cover”

or “decoy” contracts could then be injected into the mar-

ketplace.

C Preliminaries

Our CSCs rely on a cryptographic building block

called non-interactive zero-knowledge proofs (NIZK).

We adopt exactly the same for definitions for NIZKs as

in Kosba et al. [46]. For completeness, we restate their

definitions below.

Notation. In the remainder of the paper, f (λ ) ≈ g(λ )
means that there exists a negligible function ν(λ ) such

that | f (λ )−g(λ )|< ν(λ ).

C.1 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof system (NIZK)

for an NP language L consists of the following algo-

rithms:

• crs ← K(1λ ,L), also written as crs ←
KeyGennizk(1

λ ,L): Takes in a security param-

eter λ , a description of the language L, and

generates a common reference string crs.

• π←P(crs,stmt,w): Takes in crs, a statement stmt,

a witness w such that (stmt,w) ∈ L, and produces a

proof π .

• b ← V(crs,stmt,π): Takes in a crs, a statement

stmt, and a proof π , and outputs 0 or 1, denoting

accept or reject.

• (ĉrs,τ,ek) ← K̂(1λ ,L): Generates a simulated

common reference string ĉrs, trapdoor τ , and ex-

tract key ek

• π ← P̂(ĉrs,τ,stmt): Uses trapdoor τ to produce a

proof π without needing a witness

Perfect completeness. A NIZK system is said to be per-

fectly complete, if an honest prover with a valid witness

can always convince an honest verifier. More formally,

for any (stmt,w) ∈ R, we have that

Pr

[
crs←K(1λ ,L), π ←P(crs,stmt,w) :

V(crs,stmt,π) = 1

]
= 1

Computational zero-knowlege. Informally, a NIZK

system is computationally zero-knowledge, if the proof

does not reveal any information about the witness to any

polynomial-time adversary. More formally, a NIZK sys-

tem is said to computationally zero-knowledge, if for all

non-uniform polynomial-time adversaryA, we have that

Pr
[
crs←K(1λ ,L) :AP(crs,·,·)(crs) = 1

]

≈ Pr
[
(ĉrs,τ,ek)← K̂(1λ ,L) :AP̂1(ĉrs,τ,·,·)(ĉrs) = 1

]

In the above, P̂1(ĉrs,τ,stmt,w) verifies that (stmt,w) ∈

L, and if so, outputs P̂(ĉrs,τ,stmt) which simulates

a proof without knowing a witness. Otherwise, if

(stmt,w) /∈ L, the experiment aborts.

Computational soundness. A NIZK scheme for the

language L is said to be computationally sound, if for

all polynomial-time adversaries A,

Pr

[
crs←K(1λ ,L),(stmt,π)←A(crs) :

(V(crs,stmt,π) = 1)∧ (stmt /∈ L)

]
≈ 0

Simulation sound extractability. Simulation sound

extractability says that even after seeing many simu-

lated proofs, whenever the adversary makes a new proof,

a simulator is able to extract a witness. Simulation

extractability implies simulation soundness and non-

malleability, since if the simulator can extract a valid

witness from an adversary’s proof, the statement must

belong to the language.
More formally, we say a NIZK for a language L is

(strongly) simulation sound extractable iff there exists an
extractor E such that for all polynomial-time adversary
A, the following holds:

Pr




(ĉrs,τ,ek)← K̂(1λ )

(stmt,π)←AP̂(ĉrs,τ,·)(ĉrs,ek)
w← E(ĉrs,ek,stmt,π)

:

(stmt,π) /∈ Q and

(stmt,w) /∈ RL and

V(ĉrs,stmt,π) = 1




= negl(λ )
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where Q is the set of statement-proof pairs generated by

the oracle calls to P̂ .

C.2 Succinct Non-Interactive ARguments

of Knowledge (SNARKs)

A SNARK is a NIZK scheme that is perfectly complete,

computationally zero-knowledge, and with the additional

properties of being succinct and having a knowledge ex-

tractor (which is a stronger property than soundness):

Succinctness. A SNARK is said to be succinct if an

honestly generated proof has poly(λ ) bits and that the

verification algorithm V(crs,stmt,π) runs in poly(λ ) ·
O(|stmt|) time.

Knowledge extraction. Knowledge extraction property

says that if a proof generated by an adversary is accepted

by the verifier, then the adversary “knows” a witness for

the given instance. Formally, a SNARK for language L
satisfies the knowledge extraction property iff:

For all polynomial-time adversary A, there exists a

polynomial-time extractor E , such that for all uniform

advice string z,

Pr




crs←K(1λ ,L)
(stmt,π)←A(crs,z)
a←E(crs,z)

:
V(crs,stmt,π) = 1

(stmt,a) /∈ RL


≈ 0

Note that the knowledge extraction property implies

computationally soundness (defined for NIZK), as a

valid witness is extracted.

C.3 Instantiating Simulation Sound Ex-

tractable NIZKs

The composability of cryptographic building blocks such

as zero-knowledge proofs is of vital importance when

constructing larger protocols. In practice, this ensures

that each cryptographic building block or protocol does

not interfere with other (possibly concurrently executing)

protocol instances. It has been shown [42] that simula-

tion sound extractability for NIZKs is roughly equivalent

to universal composable [26, 27, 29] security for NIZKs.

In our implementations, we use the techniques de-

scribed by Kosba et al. [46] to realize simulation

sound extractable NIZKs (formally defined in Sec-

tion C.1) from regular SNARKs (formally defined in Ap-

pendix C.2).

Ideal-NaiveKeyTheft

Init: Set state := INIT.

Create: Upon recipient of (“create”,$reward,pkV ,Tend) from

some contractor C:

Notify (“create”,$reward,pkV ,Tend,C) to S.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward

state := CREATED.

Intent: On recv (“intent”, skV ) from some perpetrator P :

Assert state= CREATED.

Notify (“intent”,P) to S.

Assert this is the first “intent” received from P .

Store (P ,skV ).

Claim: Upon recipient of (“claim”) from P:

Assert state= CREATED.

Assert that P has sent (“intent”, skV ) earlier.

Assert match(pkV ,skV ) = 1

Notify (“claim”,P) to S.

If C is corrupted, send skV to S.

ledger[P ] := ledger[P ]+$reward

Send skV to C

Set state := CLAIMED.

/* reward goes to 1st successful claim*/

Timer: If state= CREATED and current time T > Tend:

Set ledger[C] := ledger[C]+$reward

Set state := ABORTED.

Figure 8: Ideal program for naive key theft. This version

of the ideal program defends against the rushing attack,

but does not protect against the revoke-and-claim attack.

D Formal Protocols for Key Theft Con-

tract

D.1 Ideal Program for the Naive Key Theft

The ideal program for the naive key theft contract is

given in Figure 8. We stress that here, this naive key

theft ideal program is different from the strawman exam-

ple in the main body (Figure 3). For ease of understand-

ing, Figure 3 in the main body is prone to a rushing at-

tack by a corrupted contractor. Here, our naive key theft

ideal program secures against the rushing attack – how-

ever, this naive key theft ideal program is still prone to

the revoke-and-claim attack (see Section 5.1). We will

fix the revoke-and-claim attack later in Appendix D.4
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Contract-NaiveKeyTheft

Init: Set state := INIT. Let crs := KeyGennizk(1
λ )

denote a hard-coded NIZK common reference

string generated during a trusted setup process.

Create: Upon receiving (“create”, $reward, pkV , Tend)

from some contractor C := (pkC , . . .):

Assert state= INIT.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward.

Set state := CREATED.

Intent: Upon receiving (“intent”, cm) from some pur-

ported perpetrator P:

Assert state= CREATED.

Assert that P did not send “intent” earlier.

Store cm,P .

Claim: Upon receiving (“claim”, ct, π , s) from P:

Assert state= CREATED.

Assert P sent (“intent”, cm) earlier such that

cm := comm(ct||π,s).

Assert that π is a valid NIZK proof (under crs)

for the following statement:

∃r,skV s.t. ct= Enc(pkC ,(skV ,P),r)
and match(pkV ,skV) = true

ledger[P] := ledger[P]+$reward.

Send (“claim”, ct) to the contractor C.

Set state := CLAIMED.

Timer: If state= CREATED and current time T > Tend:

ledger[C] := ledger[C]+$reward

state := ABORTED

Figure 9: A naı̈ve, flawed key theft contract (lacking

incentive compatibility). The notation pkC serves as a

short-hand for C.epk. This figure is a repeat of Figure 3

for the readers’ convenience.

Remarks. We make the following remarks about this

ideal functionality:

• All bank balances are visible to the public.

• Bank transfers are guaranteed to be correct.

Prot-NaiveKeyTheft

Contractor C:

Create: Upon receiving input (“create”, $reward, pkV ,Tend,

C):

Send (“create”, $reward, pkV ,Tend) to

G(Contract-NaiveKeyTheft).

Claim: Upon receiving a message (“claim”, ct) from

G(Contract-NaiveKeyTheft):

Decrypt and output m :=Dec(skC ,ct).

Perpetrator P:

Intent: Upon receiving input (“intent”, skV , P):

Assert match(pkV ,skV ) = true

Compute ct := Enc(pkC ,(skV ,P),s) where s is

randomly chosen.

Compute a NIZK proof π for the following state-

ment:

∃r,skV s.t. ct= Enc(pkC ,(skV ,P),r)
and match(pkV ,skV ) = true

Let cm := comm(ct||π,s) for some random s ∈
{0,1}λ .

Send (“intent”, cm) to

G(Contract-NaiveKeyTheft).

Claim: Upon receiving input (“claim”):

Assert an “intent” message was sent earlier.

Send (“claim”, ct, π , s) to

G(Contract-NaiveKeyTheft).

Figure 10: User-side programs for naive key theft. The

notation pkC serves as a short-hand for C.epk.

• The ideal functionality captures transaction non-

malleability, and precludes any front-running attack,

since our real-world execution model assumes a rush-

ing adversary.

D.2 Full Protocol for Naive Key Theft

The contract and full protocols for naive key theft are

given in Figures 9 and 10. Specifically, Figure 9 is a

repeat of Figure 3 for the readers’ convenience.

Theorem 1 Assume that the encryption scheme

(Enc,Dec) is perfectly correct and semantically

secure, the NIZK scheme is perfectly complete, com-

putationally zero-knowledge and simulation sound

extractable, the commitment scheme comm is adaptively

secure, then the above protocol securely emulates

F(Ideal-NaiveKeyTheft).
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D.3 Proofs for Naive Key Theft Contract

We now prove Theorem 1. For any real-world adver-

sary A, we construct an ideal-world simulator S , such

that no polynomial-time environment E can distinguish

whether it is in the real or ideal world. We first describe

the construction of the simulator S and then argue the

indistinguishability of the real and ideal worlds.

D.3.1 Ideal-World Simulator

Due to Canetti [26], it suffices to construct a simulator S
for the dummy adversary that simply passes messages to

and from the environment E . The ideal-world simulator

S also interacts with the F(Ideal-NaiveKeyTheft) ideal

functionality. Below we construct the user-defined por-

tion of our simulator simP. Our ideal adversary S can

be obtained by applying the simulator wrapper S(simP).
The simulator wrapper modularizes the simulator con-

struction by factoring out the common part of the simu-

lation pertaining to all protocols in this model of execu-

tion.

Init. The simulator simP runs (ĉrs,τ,ek) ←

NIZK.K̂(1λ ), and gives ĉrs to the environment E , and

retains the trapdoor τ .

Simulating honest parties. When the environment E
sends inputs to honest parties, the simulator S needs to

simulate messages that corrupted parties receive, from

honest parties or from functionalities in the real world.

The honest parties will be simulated as below.

• Environment E sends input (“create”, $reward,

pkV ,Tend,C) to an honest contractor C: Simulator

simP receives (“create”, $reward, pkV ,Tend,C) from

F(Ideal-NaiveKeyTheft). simP forwards the mes-

sage to the simulated inner contract functionality

G(Contract-NaiveKeyTheft), as well as to the envi-

ronment E .

• Environment E sends input (“intent”, skV ) to an hon-

est perpetrator P: Simulator simP receives notification

from the ideal functionality F(Ideal-NaiveKeyTheft)
without seeing skV . Simulator simP now computes ct

to be an encryption of the 0 vector. simP then sim-

ulates the NIZK π . simP now computes the com-

mitment cm honestly. simP sends (“intent”,cm) to

the simulated G(Contract-NaiveKeyTheft) functional-

ity, and simulates the contract functionality in the ob-

vious manner.

• Environment E sends input (“claim”) to an honest per-

petrator P:

Case 1: Contractor C is honest. simP sends the

(“claim”, ct, π , r) values to the internally simu-

lated G(Contract-NaiveKeyTheft) functionality,

where ct and π are the previously simulated val-

ues and r is the randomness used in the commit-

ment cm earlier.

Case 2: Contractor C is corrupted. simP receives skV
from F(Ideal-NaiveKeyTheft).

simP computes (ct′,π ′) terms using the hon-

est algorithm. simP now explains the com-

mitment cm to the correctly formed (ct′,π ′)
values. Notice here we rely the commitment

scheme being adaptively secure. Suppose the

corresponding randomness is r′ simP now sends

(“claim”,ct′,π ′,r′) to the internally simulated

G(Contract-NaiveKeyTheft) functionality, and

simulates the contract functionality in the obvi-

ous manner.

Simulating corrupted parties. The following mes-

sages are sent by the environment E to the simula-

tor S(simP) which then forwards it onto simP. All

of the following messages received by simP are of

the “pseudonymous” type, we therefore omit writing

“pseudonymous”.

• simP receives an intent message (“intent”, cm):

forward it to the internally simulated G(Contract-

NaiveKeyTheft) functionality,

• simP receives a claim message (“claim”, ct,π,r,P):

If π verifies, simulator simP runs the NIZK’s extrac-

tion algorithm, and extracts a set of witnesses includ-

ing skV . S now sends (“claim”, skV ,P) to the ideal

functionality F(Ideal-NaiveKeyTheft).

• Simulator simP receives a message (“create”, $reward,

pkV ,Tend,C): do nothing.

D.3.2 Indistinguishability of Real and Ideal Worlds

To prove indistinguishability of the real and ideal worlds

from the perspective of the environment, we will go

through a sequence of hybrid games.

Real world. We start with the real world with a dummy

adversary that simply passes messages to and from the

environment E .

Hybrid 1. Hybrid 1 is the same as the real world, ex-

cept that now the adversary (also referred to as a sim-

ulator) will call (ĉrs,τ,ek) ← NIZK.K̂(1λ ) to perform

a simulated setup for the NIZK scheme. The simulator

will pass the simulated ĉrs to the environment E . When

an honest perpetrator P produces a NIZK proof, the sim-

ulator will replace the real proof with a simulated NIZK

proof before passing it onto the environment E . The

simulated NIZK proof can be computed by calling the
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NIZK.P̂(ĉrs,τ, ·) algorithm which takes only the state-

ment as input but does not require knowledge of a wit-

ness.

Fact 1 It is not hard to see that if the NIZK scheme is

computational zero-knowledge, then no polynomial-time

environment E can distinguish Hybrid 1 from the real

world except with negligible probability.

Hybrid 2. The simulator simulates the G(Contract-

NaiveKeyTheft) functionality. Since all messages to

the G(Contract-NaiveKeyTheft) functionality are pub-

lic, simulating the contract functionality is trivial. There-

fore, Hybrid 2 is identically distributed as Hybrid 1 from

the environment E’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except for

the following changes. When an honest party sends a

message to the contract (now simulated by the simulator

S), it will sign the message with a signature verifiable

under an honestly generated nym. In Hybrid 3, the sim-

ulator will replace all honest parties’ nyms and generate

these nyms itself. In this way, the simulator will simulate

honest parties’ signatures by signing them itself. Hybrid

3 is identitally distributed as Hybrid 2 from the environ-

ment E’s view.

Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for

the following changes. When the honest perpetrator P
produces an ciphertext ct and if the contractor is also un-

corrupted, then simulator will replace this ciphertext with

an encryption of 0 before passing it onto the environment

E .

Fact 2 It is not hard to see that if the encryption scheme

is semantically secure, then no polynomial-time environ-

ment E can distinguish Hybrid 4 from Hybrid 3 except

with negligible probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except the

following changes. Whenever the environment E passes

to the simulator S a message signed on behalf of an hon-

est party’s nym, if the message and signature pair was not

among the ones previously passed to the environment E ,

then the simulator S aborts.

Fact 3 Assume that the signature scheme employed is

secure, then the probability of aborting in Hybrid 5 is

negligible. Notice that from the environment E’s view,

Hybrid 5 would otherwise be identically distributed as

Hybrid 4 modulo aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except

for the following changes. Whenever the environment

passes (“claim”, ct,π) to the simulator (on behalf of cor-

rupted party P), if the proof π verifies under the state-

ment (ct,P), then the simulator will call the NIZK’s ex-

tractor algorithm E to extract a witness (r,skV). If the

NIZK π verifies under the statement (ct,P), and the ex-

tracted skV does not satisfy match(pkV ,skV) = 1, then

abort the simulation.

Fact 4 Assume that the NIZK is simulation sound ex-

tractable, then the probability of aborting in Hybrid 6

is negligible. Notice that from the environment E’s view,

Hybrid 6 would otherwise be identically distributed as

Hybrid 5 modulo aborting.

Finally, observe that Hybrid 6 is computationally in-

distinguishable from the ideal simulation S unless one

of the following bad events happens:

• The skV decrypted by an honest contractor C is differ-

ent from that extracted by the simulator S . However,

given that the encryption scheme is perfectly correct,

this cannot happen.

• The honest public key generation algorithm results

in key collisions. Obviously, this happens with neg-

ligible probability if the encryption and signature

schemes are secure.

Fact 5 Given that the encryption scheme is semanti-

cally secure and perfectly correct, and that the signa-

ture scheme is secure, then Hybrid 6 is computation-

ally indistinguishable from the ideal simulation to any

polynomial-time environment E .

D.4 Extension to Incentive Compatible

Key Theft Contract

Ideal program. The ideal program for an incentive

compatible key theft contract is given in Figure 11.

Contract. The incentive compatible key theft contract

is given in Figure 12 (a repeat of Figure 4 for the readers’

convenience).

Protocol. The user-side programs for the incentive com-

patible key theft contract are supplied in Figure 13.

Theorem 2 (Incentive compatible key theft contract)

Assume that the encryption scheme (Enc,Dec) is per-

fectly correct and semantically secure, the NIZK scheme

is perfectly complete, computationally zero-knowledge

and simulation sound extractable, then the protocol

described in Figures 12 and 13 securely emulates

F(Ideal-NaiveKeyTheft).

Proof: A trivial extension of the proof of Theorem 1,

the naive key theft case.
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Ideal-KeyTheft

Init: Set state := INIT.

Create: Upon recipient of (“create”,$reward,pkV ,Tend,∆T )
from some contractor C:

Same as Ideal-NaiveKeyTheft (Figure 8), and addi-

tionally store ∆T .

Intent: Upon recipient of (“intent”, skV ) from some perpe-

trator P : Same as Ideal-NaiveKeyTheft.

Claim: Upon recipient of (“claim”) from perpetrator P :

Same as Ideal-NaiveKeyTheft except that the ledger

update ledger[P ] := ledger[P ] + $reward does not

happen.

Revoke: Upon receiving (“revoke”, Πrevoke) from some R:

Notify S of (“revoke”, Πrevoke)

Assert Πrevoke is valid, and state 6= ABORTED.

ledger[R] := ledger[R]+$smallreward.

If state= CLAIMED:

t := (time elapsed since successful Claim).

P := (successful claimer).

rewardP := f ($reward, t).

ledger[P ] := ledger[P ]+ rewardP .

Else, rewardP := 0

ledger[C] := ledger[C]+$reward− rewardP
−$smallreward

Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed

since successful Claim:

ledger[P ] := ledger[P ]+$reward;

Set state := ABORTED.

Else if current time T > Tend and state 6= ABORTED:

ledger[C] := ledger[C]+$reward.

Set state := ABORTED.

Figure 11: Thwarting revoke-and-claim attacks in the

key theft ideal program.

Contract-KeyTheft

Init: Set state := INIT. Let crs := KeyGennizk(1
λ ) denote

a hard-coded NIZK common reference string gener-

ated during a trusted setup process.

Create: Same as in Contract-NaiveKeyTheft (Figure 9), ex-

cept that an additional parameter ∆T is additionally

submitted by C.

Intent: Same as Contract-NaiveKeyTheft.

Claim: Same as Contract-NaiveKeyTheft, except that the

ledger update ledger[P ] := ledger[P ]+$reward does

not take place immediately.

Revoke: On receive (“revoke”, Πrevoke) from some R:

Assert Πrevoke is valid, and state 6= ABORTED.

ledger[R] := ledger[R]+$smallreward.

If state= CLAIMED:

t := (time elapsed since successful Claim).

P := (successful claimer)

rewardP := f ($reward, t).

ledger[P ] := ledger[P ]+ rewardP .

Else, rewardP := 0

ledger[C] :=

ledger[C]+$reward−$smallreward

−rewardP

Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed

since successful Claim:

ledger[P ] := ledger[P ]+$reward where P is suc-

cessful claimer;

Set state := ABORTED.

Else if current time T > Tend and state 6= ABORTED:

ledger[C] := ledger[C]+$reward.

Set state := ABORTED.

// P should not submit claims after time Tend−∆T .

Figure 12: Key compromise CSC that thwarts revoke-

and-claim attacks. Although supercially written in a

slightly different manner, this figure is essentially equiv-

alent to Figure 4 in the main body. We repeat it here and

write the contract with respect to the differences from

Figure 9 for the readers’ convenience.
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Prot-KeyTheft

Contractor C:

Create: Upon receiving input (“create”, $reward, pkV ,Tend,

∆T , C):

Send (“create”, $reward, pkV , Tend, ∆T ) to

G(Contract-KeyTheft).

Claim: Upon receiving a message (“claim”, ct) from

G(Contract-KeyTheft):

Decrypt and output m :=Dec(skC ,ct).

Perpetrator P:

Intent: Same as Prot-NaiveKeyTheft (Figure 10), but

send messages to G(Contract-KeyTheft) rather than

G(Contract-NaiveKeyTheft).

Claim: Same as Prot-NaiveKeyTheft, but send mes-

sages to G(Contract-KeyTheft) rather than

G(Contract-NaiveKeyTheft).

Revoker R:

Revoke: Upon receiving (“revoke”, Πrevoke) from

the environment E : forward the message to

G(Contract-KeyTheft).

Figure 13: User-side programs for incentive compatible

key theft.

E Formal Protocols for Public Document

Leakage

E.1 Formal Description

Ideal program for public document leakage. We for-

mally describe the ideal program for public document

leakage in Figure 14.

Contract. The contract program for public leakage is

formally described in Figure 15, which is a repeat of Fig-

ure 2 for the readers’ convenience.

Protocol. The protocols for public leakage are formally

described in Figure 16.

Theorem 3 (Public leakage) Assume that the encryp-

tion scheme (Enc,Dec) is perfectly correct and seman-

tically secure, the NIZK scheme is perfectly complete

and computationally zero-knowledge, then the proto-

col described in Figures 2 and 16 securely emulates

F(Ideal-PublicLeaks).

Proof: The formal proofs are supplied in Appendix E.2.

E.2 Proofs for Public Document Leakage

E.2.1 Ideal World Simulator

The wrapper part of S(simP) was described earlier , we

now describe the user-defined simulator simP.

Init. The simulator simP runs crs← NIZK.K(1λ ), and

(pk,sk)←KeyGenenc(1
λ ). The simulator gives (crs,pk)

to the environment E , and remembers sk.

The simulator S(simP) will also simulate the random

oracle (RO) queries. For now, we simply assume that

a separate RO instance is employed for each protocol

instance – or we can use the techniques by Canetti et

al. [28] to have a global RO for all protocol instances.

Simulation for an honest seller C.

• Create: Environment E sends input (“create”, M,

C, Tend) to an honest leaker C: simP receives

(“create”, |M|, C) from the ideal functionality

F(Ideal-PublicLeaks) – and this message is routed

through S . simP now generates an msk using the hon-

est algorithm. For i ∈ [n], pick cti
$
←{0,1}ℓ where

ℓ denotes the length of each document. Pick c0 :=
Enc(pk,0,r0) for some random r0.

Now, send (“create”, c0, Tend) to the internally sim-

ulated G(Contract-PublicLeaks). Upon receiving a

challenge set Ω from the ideal functionality, use the

same Ω for simulating G(Contract-PublicLeaks).
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Ideal-PublicLeaks

Init: Set state= INIT, and donations := {}.

Create: Upon receiving (“create”, M, Tend) from some

leaker C, where M is a document consisting of n

segments denoted M := {mi}i∈[n]:

Notify (“create”, |M|, C) to S.

Select a random subset Ω ⊂ [n] of size k,

and send Ω to the adversary S.

Set state := CREATED.

Confirm: Upon receiving (“confirm”) from leaker C:

Assert state= CREATED.

Send {mi}i∈Ω to the adversary S.

Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-

chaser P :

Notify S of (“donate”, $amt, P)

Assert state= CONFIRMED

Assert ledger[P ]≥ $amt.

Set ledger[P ] := ledger[P ]−$amt.

donations := donations∪{($amt,P)}.

Accept: Upon receiving (“accept”) from C:

Notify (“accept”, C) to the ideal adversary S.

Assert state= CONFIRMED.

ledger[P ] := ledger[P ]+ sum(donations)

Send M to the ideal adversary S.

Set state := ABORTED.

Timer: If state= CONFIRMED and T > Tend: ∀($amt,P)∈
donations: let ledger[P ] := ledger[P ]+$amt. Set

state := ABORTED.

Figure 14: Ideal program for public leaks.

Contract-PublicLeaks

Init: Set state := INIT, and donations := {}. Let crs :=
KeyGennizk(1

λ ), pk := KeyGenenc(1
λ ) denote

hardcoded public parameters generated through a

trusted setup.

Create: Upon receiving (“create”, c0, {cti}
n
i=1, Tend) from

some leaker C:

Set state := CREATED.

Select a random subset Ω ⊂ [n] of size k, and

send (“challenge”, Ω) to C.

Confirm: Upon receiving (“confirm”, {(κi,πi)}i∈Ω) from C:

Assert state= CREATED.

Assert that ∀i ∈ S: πi is a valid NIZK proof (un-

der crs) for the following statement:

∃(msk,r0), s.t. (c0 = Enc(pk,msk,r0))
∧(κi = PRF(msk, i))

Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-

chaser P :

Assert state= CONFIRMED.

Assert ledger[P ]≥ $amt.

Set ledger[P ] := ledger[P ]−$amt.

donations := donations∪{($amt,P)}.

Accept: Upon receiving (“accept”, msk, r0) from C:

Assert state= CONFIRMED

Assert c0 = Enc(pk,msk,r0)

ledger[C] := ledger[C]+ sum(donations)

Send (“leak”,msk) to all parties.

Set state := ABORTED.

Timer: If state= CONFIRMED and T > Tend: ∀($amt,P)∈
donations: let ledger[P ] := ledger[P ]+$amt. Set

state := ABORTED.

Figure 15: A contract PublicLeaks that leaks a secret M

to the public in exchange for donations. This figure is a

repeat of Figure 2 for the readers’ convenience.
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Prot-PublicLeaks

Init: Let crs := KeyGennizk(1
λ ) and pk :=

KeyGenenc(1
λ ) denote hardcoded public pa-

rameters generated through a trusted setup.

As leaker C:

Create: Upon receiving (“create”,M := {mi}i∈[n],Tend,C)
from the environment E :

msk
$
←{0,1}λ

For i ∈ [n], compute κi := PRF(msk, i). Then,

compute cti := H(κi)⊕mi.

Pick random r0
$
←{0,1}λ and compute c0 :=

Enc(pk,msk,r0).

Send (“create”, c0, {cti}i∈[n], Tend). to

G(Contract-PublicLeaks).

Challenge: Upon receiving (“challenge”, Ω) from

G(Contract-PublicLeaks):

For i∈Ω: compute a NIZK proof πi for the state-

ment using witness (msk,r0):

∃(msk,r0), s.t. (c0 = Enc(pk,msk,r0))
∧(κi = PRF(msk, i))

Send (“confirm”, {κi,πi}i∈Ω). to

G(Contract-PublicLeaks).

Accept: Upon receiving (“accept”, C) from the en-

vironment: Send (“accept”, msk, r0). to

G(Contract-PublicLeaks).

As purchaser P:

Donate: Upon receiving (“donate”, $amt, P) from the

environment E : Send (“donate”, $amt). to

G(Contract-PublicLeaks).

Leak: Upon receiving (“leak”, msk) from

G(Contract-PublicLeaks):

Download {(i,cti)i∈[n]} from

G(Contract-PublicLeaks).

For i ∈ [n], output Dec(H(PRF(msk, i)),cti).

Figure 16: User-side programs for public leaks.

• Confirm: Upon receiving {mi}i∈Ω from the ideal func-

tionality: the simulator simP now computes3 κi :=
PRF(msk, i) for i ∈ Ω. The simulator programs the

random oracle such that H(κi) = mi⊕ cti. Now, the

simulator computes the NIZKs honestly, and send

{κi,πi}i∈Ω to the simulated G(Contract-PublicLeaks).

• Accept: Upon receiving (“accept”, P) from the ideal

functionality, upon receiving M from the ideal func-

tionality: send (“accept”, msk) to the simulated

G(Contract-PublicLeaks). Now, based on M, program

the random oracle such that H(PRF(msk, i))⊕cti =mi

for i ∈ [n].

Simulation for an honest purchaser P .

• Donate: Environment sends (“donate”, $amt, P)

to an honest donor, simulator simP receives (“do-

nate”, $amt, P) from the ideal functionality (routed

by the wrapper S), and forwards it to the simulated

G(Contract-PublicLeaks).

Simulation for a corrupted purchaser P .

• Donate: If the environment E sends (“donate”, $amt,

P) to simP on behalf of a corrupted purchaser P
(message routed through the wrapper S), simP passes

it onto the ideal functionality, and the simulated

G(Contract-PublicLeaks).

Simulation for a corrupted leaker C.

• Create: When the environment E sends (“create”, (ct0,

{(i,cti}i∈[n]), Tend, C) to simP, simP passes it to the in-

ternally simulated G(Contract-PublicLeaks). Further,

simP decrypts the msk from c0.

Now reconstruct M in the following manner: Compute

all κi’s from the msk. For every κi that was submitted

as an RO query, the simulator recovers the mi. Oth-

erwise if for some i, κi was an RO query earlier, the

simulator programs the RO randomly at κi, and com-

putes the mi accordingly – in this case mi would be

randomly distributed.

Now, send (“create”, M, Tend) on behalf of C to the

ideal functionality where M is the document set recon-

structed as above.

• Challenge: When the environment E sends (“con-

firm”, {κi,πi}i∈Ω, C) to simP (message routed through

the wrapper S), pass the message to the simulated

G(Contract-PublicLeaks). If the NIZK proofs all ver-

ify, then send “confirm” as C to the ideal functionality.

3 If the hash function has short output, we can

compute the encryption of mi as follows: mi ⊕
[H(κi,1,“enc”) ||H(κi,2,“enc”) . . . , ||H(κi,z,“enc”)] for suitably

large z. Here we simply write H(κi)⊕mi for convenience.
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• Accept: When the environment E sends (“accept”,

msk,r0, C) to simP (message routed through the

wrapper S), pass the message to the simulated

G(Contract-PublicLeaks). If Enc(pk,msk,r0) = c0,

then send “accept” as C to the ideal functionality.

Indistinguishability of real and ideal worlds. Given

the above description of the ideal-world simulation, it is

not hard to proceed and show the computational indis-

tinguishability of the real and the ideal worlds from the

perspective of the environment E .

Remark. Our overall proof structure for this variant is

the same as that for the optimized scheme, under the

ROM for H. For schemes under the ROM to be uni-

versally composable, each protocol instance needs to in-

stantiate a different random oracle, or the approach of

Canetti et al. [28] can be adopted.

F Supplemental Details for Document

Leakage

F.1 Background: Existing Darkleaks Pro-

tocol

In this appendix, we present an overview of the existing,

broken Darkleaks protocol, as we are unaware of any uni-

fied technical presentation elsewhere. (Specific details,

e.g., message formats, may be found in the Darkleaks

source code [3], and cryptographic primitives h1,h2,h2,
and (enc,dec) are specified below.)

The protocol steps are as follows:

• Create: The contractor C partitions the secret M =
m1 ‖ m2 ‖ . . . ‖ mn. For each segment mi in M =
{mi}

n
i=1, C computes:

– A Bitcoin (ECDSA) private key ski = h1(mi)
and the corresponding public key pki.

– The Bitcoin address ai = h2(pki) associated

with pki.

– A symmetric key κi = h3(pki), computed as a

hash of public key pki.

– The ciphertext ei = encκi
[mi].

C publishes: The parameter triple (n,k,Topen), ci-

phertexts E = {ei}
n
i=1, and Bitcoin addresses A =

{ai}
n
i=1.

• Challenge: At epoch (block height) Topen, the cur-

rent Bitcoin block hash Bt serves as a pseudoran-

dom seed for a challenge S∗ = {si}
k
i=1.

• Response: In epoch Topen, C publishes the subset

of public keys PK∗ = {pks}s∈S∗ corresponding to

addresses A∗ = {as}s∈S∗ . (The sample of segments

M∗ = {ms}s∈S∗ can then be decrypted by the Dark-

leaks community.)

• Payment: To pay for M, buyers send Bitcoin to the

addresses A− A∗ corresponding to unopened seg-

ments.

• Disclosure: The leaker C claims the payments made

to addresses in A−A∗. As spending the Bitcoin in

address ai discloses pki., decryption of all unopened

segments M −M∗ is automatically made possible

for the Darkleaks community.

Here, h1 = SHA-256, h2 =
RIPEMD-160(SHA-256()), and h3 =
SHA-256(SHA-256()). The pair (enc,dec) in Darkleaks

corresponds to AES-256-ECB.

As a byproduct of its release of PK∗ in response to

challenge S∗, C proves (weakly) that undecrypted ci-

phertexts are well-formed, i.e., that ei = encκi
[mi] for

κi = h3(pki). This cut-and-choose-type proof assures

buyers that when C claims its reward, M will be fully

disclosed.

F.2 Public leakage implementation on

Ethereum

The section illustrates an actual smart contract for public

leakage. This contract fixes two main drawbacks with the

existing Darkleaks protocol (Shortcomings 1 and 2 dis-

cussed in 4.1). The contract mainly enables better guar-

antees through deposits and timeout procedures, while

preventing selective withholding. Figure 17 illustrates

the contract code. The main goal of providing this code

is to illustrate how fast it could be to write such contracts.

The contract in Figure 17 mainly considers a leaker

who announces the ownership of the leaked material (e-

mails, photos, secret documents, .. etc), and reveals a

random subset of the encryption keys at some point to

convince users of the ownership. Interested users can

then deposit donations. In order for the leaker to get the

reward from the contract, all the rest of the keys must be

provided at the same time, before a deadline.

To ensure incentive compatability, the leaker is re-

quired by the contract in the beginning to deposit an

amount of money, that is only retrievable if complied

with the protocol. Also, for users to feel safe to de-

posit money, a timeout mechanism is used, such that if

the leaker does not provide a response in time, the users

will be able to withdraw the donations.
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F.3 Private Secret-Leakage Contracts

In Section 4, we consider a public leakage model in

which C collects donations, and when satisfied with total

amount donated, leaks a secret to the public. In a varia-

tion in this appendix, we can consider a private leakage

model in which C leaks a secret privately to a purchaser

P . A simple modification to the blackbox protocol sup-

ports this case. In particular, if C accepts P’s bid, it com-

putes the pair (ct,π) as follows:

• ct :=Enc(pkP ,msk,r), for random coins r and where

pkP denotes purchaser P’s (pseudonymous) public

key.

• π is a NIZK proof for the following statement:

∃(msk,r0,r) s.t. (c0 = Enc(pk,msk,r0))
∧(ct= Enc(pkP ,msk,r))

When C submits (ct,π) to the contract, the contract

verifies the NIZK proof π , and if it is correct, sends P’s

deposited bid to C. At this point, the purchaser P can

decrypt the master secret key msk and then the unopened

segments.

The above private leakage protocol can be proven se-

cure in a similar manner as our public leakage contract.

A practical version for Ethereum. An efficient instan-

tiation of this protocol is possible using a verifiable ran-

dom function (VRF). and verifiable encryption (VE). We

sketch the construction informally here (without proof).

We then describe a specific pair of primitive choices

(a VRF by Chaum and Pedersen [31] and VE by Ca-

menisch and Shoup [25]) that can be efficiently realized

in Ethereum.

Briefly, a VRF is a public-key primitive with private

/ public key pair (skvrf,pkvrf) and an associated pseudo-

random function F . It takes as input a value i and outputs

a pair (σ ,π), where σ = Fskvrf
(i), and π is a NIZK proof

of correctness of σ . The NIZK π can be verified using

pkvrf.

A VE scheme is also a public-key primitive, with pri-

vate / public key pair (skve,pkve). It takes as input a mes-

sage m and outputs a ciphertext / proof pair (ct,π), where

π is a NIZK proof that ct = encpkve
[m] for a message m

that satisfies some publicly defined property θ .

Our proposed construction, then, uses a VRF to gener-

ate (symmetric) encryption keys for segments of M such

that κi = Fskvr f
(i). That is, msk= skvr f . The correspond-

ing NIZK proof π is used in the Confirm step of the

contract to verify that revealed symmetric keys are cor-

rect. A VE, then, is used to generate a ciphertext ct on

msk = skvr f under the public key pkP of the purchaser.

The pair (ct,π), is presented in the Accept step of the

contract. The contract can then verify the correctness of

ct.

A simple and practical VRF due to Chaum and Peder-

sen [31] is one that for a group G of order p with gen-

erator g (and with some reasonable restrictions on p),

msk = skvr f = x, for x ∈R Zp and pkvr f = gx. Then

Fskvrf
(i) = H(i)x for a hash function H : {0,1}∗ → G,

while π is a Schnorr-signature-type NIZKP. (Security re-

lies on the DDH assumption on G and the ROM for H.)

A corresponding, highly efficient VE scheme of Ca-

menisch and Shoup [25] permits encryption of a discrete

log over a group G; that is, it supports verifiable encryp-

tion of a message x, where for a public value y, the prop-

erty θG(y) is x = dlog(y) over G. Thus, the scheme sup-

ports verifiable encryption of msk = skvr f = x, where π
is a NIZK proof that x is the private key corresponding

to pkvr f = gx. (Security relies on Paillier’s decision com-

posite residuosity assumption.)

Serpent, the scripting language for Ethereum, offers

(beta) support for modular arithmetic. Thus, the Chaum-

Pedersen VRF and Camensich-Shoup VE can be effi-

ciently implemented in Ethereum, showing that private

leakage contracts are practical in Ethereum.

G Calling-Card Crimes

In this appendix, we explain how to construct CSCs for

crimes beyond the website defacement achieved by Sit-

eDeface.

In SiteDeface, the calling card cc is high-entropy—

drawn uniformly (in the ROM) from a space of size

|CC| = 2256. For other crimes, the space CC can

be much smaller. Suppose, for example, that cc for

an assassination of a public figure X is a day and

city. Then an adversary can make a sequence of on-

line guesses at cc with corresponding commitments

vcc(1),vcc(2), . . . ,vcc(n) such that with high probability

for relatively small n (on the order of thousands), some

vcc(i) will contain the correct value cc. (Note that com-

mit conceals cc, but does not prevent guessing attacks

against it.) These guesses, moreover, can potentially be

submitted in advance of the calling call cc of a true perpe-

trator P , resulting in theft of the reward and undermining

commission-fairness.

There are two possible, complementary ways to ad-

dress this problem. One is to enlarge the space CC by

tailoring attacks to include hard-to-guess details. For ex-

ample, the contract might support commitment to a one-

time, esoteric pseudonym Y used to claim the attack with

the media, e.g., “Police report a credible claim by a group

calling itself the [Y =] ‘Star-Spangled Guerilla Girls’.”

Or a murder might involve a rare poison (Y = Polonium-

210 + strychnine).
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Another option is to require a commitment vcc to carry

a deposit $deposit for the contract that is forfeit to C
if there is no successful claim against vcc after a pre-

determined time. Treating cc as a random variable, let

p = 2−H∞[cc]. Provided that $deposit> p×$reward, ad-

versaries are economically disincentivized from brute-

force guessing of calling cards. Commission-fairness

then relies on economic rationality.

Finally, we note that it is also possible to implement

anti-CSCs using calling cards. For example, an anony-

mous reward could be made available for returning a

stolen painting, informing on a criminal, etc.

H Formal Definition for Calling-Card

Criminal Contracts

We formally describe the ideal program for Calling-Card

Criminal Contracts in Figure 18. We make the simpli-

fying assumption that the trusted data feed DataFeed

emits pre-processed calling-card data that are directly

checked by the program. It should also be noted that

the Params argument denotes a general list of attributes

that are adapted to the context. For example, in the con-

text of the SiteDeface CSC discussed earlier (Figure 5),

Params will include the service public key, the webpage

URL, and the desired statement.

Ideal-CallingCard

Init: Set state := INIT.

Create: Upon receiving (“create”, $reward, Params,
DataFeed,Tend) from some contractor C:

Notify (“create”,$reward,Params,DataFeed,
Tend,C) to S.

Assert ledger[C]≥ $reward.

ledger[C] := ledger[C]−$reward

Set state := CREATED.

Commit: Upon receiving (“commit”, cc) from some perpetra-

tor P:

Assert state= CREATED.

Notify (“commit”,P) to S.

Assert cc was not sent before by any other perpe-

trator.

Assert this is the first commit received from P .

Store (P , cc).

Reward: Upon receiving (“reward”, Params′, cc′) from

DataFeed:

Assert state 6= ABORTED.

Notify (“reward”,Params′,cc,DataFeed) to S.

Assert Params′ = Params

Find the Perpetrator P who sent a (“commit”, cc)

such that cc = cc′.

If P 6= nil

Set ledger[P ] := ledger[P ]+$reward

else

Set ledger[C] := ledger[C]+$reward

Set state := ABORTED.

Timer: If state= CREATED and current time T > Tend:

Set ledger[C] := ledger[C]+$reward

Set state := ABORTED.

Figure 18: Ideal program for a generalized calling card

CSC.
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data leaker_address
data num_chunks
data revealed_set_size
data T_end
data deposit
data reveal_block_number
data selected_sample []
data key_hashes []
data donations []
data sum_donations
data num_donors
data finalized

def init():
self.leaker_address = msg.sender

# A leaker commits to the hashes of the
encryption keys , and sets the
announcement details

def commit( key_hashes:arr , revealed_set_size
, reveal_block_number , T_end ,
distribution_address):

# Assuming a deposit of a high value from
the leaker to discourage aborting

if( msg.value >= 1000000 and msg.sender ==
self.leaker_address and self.deposit == 0
and revealed_set_size < len(key_hashes))

:
self.deposit = msg.value
self.num_chunks = len(key_hashes)
self.revealed_set_size =
revealed_set_size
self.T_end = T_end
self.reveal_block_number =
reveal_block_number
i = 0
while(i < len(key_hashes)):

self.key_hashes[i] = key_hashes[i]
i = i + 1

return (0)
else:

return (-1)

def revealSample(sampled_keys:arr):
# The contract computes and stores the

random indices based on the previous
block hash. The PRG is implemented using
SHA3 here for simplicity.

# The contract does not have to check for
the correctness of the sampled keys. This
can be done offline by the users.

if( msg.sender == self.leaker_address and
len(sampled_keys) == self.
revealed_set_size and block.number ==
self.reveal_block_number ):
seed = block.prevhash
c = 0
while(c < self.revealed_set_size):

if(seed < 0):
seed = 0 - seed

idx = seed % self.num_chunks
# make sure idx was not selected before
while(self.selected_sample[idx] == 1):

seed = sha3(seed)
if(seed < 0):

seed = 0 - seed
idx = seed % self.num_chunks

self.selected_sample[idx] = 1
seed = sha3(seed)
c = c + 1

return (0)
else:

return (-1)

def donate ():
# Users verify the shown sample offline ,

and interested users donate money.
prev_donation = self.donations[msg.sender]
if( msg.value > 0 and block.timestamp <=

self.T_end and prev_donation == 0):
self.donations[msg.sender] = msg.value
self.num_donors = self.num_donors + 1
self.sum_donations = self.sum_donations +
msg.value

return (0)
else:

return (-1)

def revealRemaining(remaining_keys:arr):
# For the leaker to get the reward , the

remaining keys have to be all revealed at
once.

# The contract will check for the
consistency of the hashes and the
remaining keys this time.

if( msg.sender == self.leaker_address and
block.timestamp <= self.T_end and len(
remaining_keys)==self.num_chunks - self.
revealed_set_size and self.finalized ==
0):
idx1 = 0
idx2 = 0
valid = 1
while(valid == 1 and idx1 < len(
remaining_keys)):
while(self.selected_sample[idx2] == 1):

idx2 = idx2+1
key = remaining_keys[idx1]
key_hash = self.key_hashes[idx2]
if(not(sha3(key) == key_hash)):

valid = 0
idx1 = idx1+1
idx2 = idx2+1

if(valid == 1):
send(self.leaker_address , self.

sum_donations + self.deposit)
self.finalized = 1
return (0)

else:
return (-1)

else:
return (-1)

def withdraw ():
## This is a useful module that enables

users to get their donations back if the
leaker aborted

v = self.donations[msg.sender]
if(block.timestamp > self.T_end and self.

finalized == 0 and v > 0):
send(msg.sender , v + self.deposit/self.
num_donors)
return (0)

else:
return (-1)

Figure 17: Public leakage contract implemented on top of Ethereum.
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