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THE RING OF INVARIANTS OF MATRICES
YASUO TERANISHI

§1. Introduction

We denote by M(n) the space of all n X n-matrices with their coef-
ficients in the complex number field C and by G the group of invertible
matrices GL(n, C). Let W = M(n)'! be the vector space of [-tuples of n X
n-matrices. We denote by p: G — GL(W) a rational representation of G
defined as follows:

p(SAA(), A(2), - -+, A()) = (SA()S™!, SA@)S™, ---, SA()S™)
if SeG, A@)eM(n) (i =1,2,--, 0.

This action of G defines an action of G on an algebra C[W] = Clx, (1),

-+, x;(1)] of all polynomial functions on W. We denote by C[W]¢ the sub-

algebra of G invariant polynomials. This is a finitely generated subalgebra
of C[W].

If I =1 it is a classical result that this ring of invariants is a poly-
nomial ring in n variables. In fact the coefficients of characteristic poly-
nomial of the matrix X(1) = (x,,(1)) are algebraically independent invariants
and the ring of invariants is generated by them. By the Newton’s formula
all coefficients of characteristic polynomial of X(1) are expressed by n
traces

Tr (X(1)), Tr (X*(1)), - - -, Tr(X(1)"),

and hence Clx,,(1)]° is the polynomial ring generated by these traces.
Procesi [5] has shown the following important

THEOREM 1.1. The ring of invariants C{W]¢ is generated by all traces
Tr(X@,) - - X)) (j=1,2,--), where X(i,) - -+ X(i;) runs all possible non-
commutative monomials.

The object of this paper is to determine the Poincaré series of C[W]°¢
and to determine generators of C[W]¢ for some cases.
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The following notations are fixed throughout:
C the field of complex numbers

N additive semigroup of nonnegative integers
@ the field of rational numbers

For a complex number z, we denote by Z its complex conjugate and set

e(2) = exp 2nv/ —1z.

The author expresses his hearty thanks to Dr. Daniele Montanari who
pointed out a mistake in the earlier version of this paper.

§2. Poincaré series
We give C[W] the structure of N'-graded algebra by defining deg x;,(k)

to be the k-th unit coordinate vector ¢, in N!. Let

CIW] = @ CIWL,,

where C[W], 1s a vector space spanned over C by the monomials in C[W]
of degree d e N'. Then C[W]° has the structure

WY = @ CIWI:,

_d
of an N'-graded algebra given by
C[W]i = C[W]°n C[W],.

The Poincaré series of C[W]¢ is the formal power series P(z, -- -, 2,)
in [l-variables z,, - - -, z, defined by
P(z, ---,2z) =2 dimc C[W]5z¢
deN!
where z? =z ... 28 with d = (d,, - - -, d)).
A theorem of Hilbert-Serre implies that P(z, - - -, z,) is a rational func-
tion in [ variables z, - --, z,. By using a classical method of Molien-Weyl,

we shall calculate this rational function.
For each diagonal unitary matrix « with diagonal entries

€1y Egy "y Eny
since [¢,]=1(G@=1,2,---,n), we can put ¢ = e(p;) (0= ¢, <1). We set

4= 11;[1' (e((Pi) — e(ﬁoj)) .

Then the normalized volume element on the group consisting of diagonal
unitary matrices is given by
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,},,Ajdtpl - do,, [8].
n!

We define polynomials in one variable z by
A@) =TI (elp) — ze(e))
and
i) = [ (elp) — 2ep,)
TeEOREM 2.1. The Poincaré series P(zl, cee,2) 18

n! [ 1(1”z)nj IH A(Z)A(z) do, - do, |

Iz, <1,---, ]z <1.
Proof. Let f(z) be a polynomial in one variable z defined as

f(z) = det(I, — p(s)z), I, = the n X n-identity matrix,
= J] (@ — 2z

1<j=n

= (1 — 2)"4(2)4(2) .

Then by the Molien-Weyl formula (8], the Poincaré series P(z, - -

equals

1 J‘ J“ 44 d
- LR N @1 IR d90n s lzbl < 1 .
n!Jo o f(z) - f(20)
By changing variables from ¢, ---, ¢, to ¢, -+, ,, we have
P(Zh s ZL) B
2ﬂ- ,/ n' n 1 (1 — Zi)n cy cn le A(ZZ) _/](2,)

where C, denotes the unit circle || = 1 in the complex ¢-plane.

S0

) zl)

~ds,,

Thus

the Poincaré series P(z, ---, z,) can be calculated in principle by means

of residues. Since

A2)A(2) = (—2) e, ) ] (e — 22, ( —ée,.),

1< i
we have

44 . ,
= — (—“1)(71("_1)(IA1))/2(ZI R Z[)(n{l—u;)/_(sI L. e/)wz»l)({Al)
i1 4(2)4(z) ,

D(Ely e )

K T G e — ()
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where D(e;, -+, e,) = [[ic;(e: — ¢;)>. And so we can rewrite Theorem 2.1 as

22 P, -, 2)

= (= 1)me-va-me_ 1 o _ﬁ( 1 )"
n! ”i 1(1 - zi) (zl z)<"<"—1>)/2 2nv/ —1
I J (o '; &) Dy s ) g L e
np 1 l<,7 (Ei - szJ)(ez (1/2p51)

ProposiTION 2.3. The Poincaré series P(z, - -+, 2,) (I = 2) satisfies the
following functional equation

P(zl-li tT T ZL_I) = (—1)“[“)”(217 ) zl)nzP(zly ) Zl)‘

Proof. Consider a rational function I(z,, - - -, z,) defined in |2,| < 1, - - -,
lz,] <1 as follows

I(ZU Tty zl) = J. tet j le,~~-,z1,(519 Ty 5n)d51 ttt den )

where

g )OI L )
Fn,--- z (5 s Ty En) = (61 En) L Lok .
o [Ther i<y (es — zpej)(ei - (l/zp)ej)
Set inductively

I;(E;, Y 571) = le,u-,z;(ela RERY En) )
Ii+1(5i+1y Tty en) = jl - Ii(sh ity "ty en)dei ’
eil=
G=1--,n—1).

Then we find that I,(e;, - - -, ¢,) is, as a function of ¢;, holomorphic at ¢, = .
If || >1,---,]z] > 1, we have

I(zlnl’ tt zl—l) = J. ttt f le,---,zl(sl’ Tty 571)d51 Tt dEn

= ( 1)11 II I j Fz;,n-,zl(ei’ R} en)dsl e dan .
By the Cauchy integral formula we have
I<zl—l’ ] 2;1) = (__1)71-1](2” Tty ZL) )

and hence we obtain the result by 2.2.
We consider C[W] as a N-graded algebra

CW]l =@ ClWl
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by defining deg x, (k) =1 and define the Poincaré series P(z) in one variable
z by

P(z) = P(z, ---, 2) = >, dim; C[W]§z¢.

Then it follows from (2.2) that the Poincaré series P(z) equals

1 1 "
—1N\nm-Ht-1y2 =
(2-4) ( 1) ) n!(l - Z)mzmm—l)z)/z < Zﬂm )
(51 tte En)(n-‘)(lﬂl)_‘D(El’ ) En)
Xj 7 de, -+ - de, .

(ITi<s (&0 — ze)(e; — (1/2)e) 1
Let £, - -+, f., be a homogeneous system of parameters of the N-graded
algebra C[W]°. By a theorem of Hochster and Roberts [4], C[W]¢ is a
free module over the polynomial ring C[f, - -, f.]. Let ¢, ---, ¢, be a

homogeneous system of generators of this module,

CIWI = @ g, Clfy -, ful.

We claim that m = ( — 1)n*+1. For we W, we denote by G,, the iso-
tropy subgroup of GL(n, C) at w. If 1= 2, there exists a dense open subset
U of w such that G, = {e}. Then it follows from a theorem of Rosenlicht
[6] that the transcendence degree of C[W]¢ is equals dim W — dim G + 1.
This shows that m = (I — 1)n* + 1. Formanek [1] has shown that the
field of rational invariants C(W)¢ is unirational of transcendence degree
(d—Dnf + 1.

We set

By Proposition 2.3, P(z) satisfies the following functional equation
P(z") = (—1)4-hme+izntip(z) .
This equation is equivalent to
d+ - +d,—e _;.,=n+ e, i=1---,r.
In particular we have

ei+er~i+1:er, izl,"',l,
er=d1+"'+dm——n21

and
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(2.5) nl=3d,—23e,.
Tt

r -1

Let « and 3 be the first and second Laurant coefficients of P(z) re-
spectively. Then the Laurant expansion of the Poincaré series P(z) begins
with

Piz)=. % _ B
(Z) (1 _ z)m + (1 _ z)m—l +
By 2.5.9 Lemma (7), it follows that
(2.6) o = - ,,r,‘,, J—

and

g r2uid, - D =25 he
) od, ---d,

Then it follows from (2.5) that

2.7 B _nw-1
1 o 2

We shall need the following important theorem due to Hilbert [3].

THEOREM 2.8. Assume that some invariants I, ---, I, have a property
that their vanishing implies the vanishing of all invariants. Then the ring
of invariants is integral over the subring generated by I, -- -, 1I,.

§3. The ring of invariants of 2 X 2 matrices

In this section we shall be concerned with the ring of invariants of
2 X 2 matrices. Throughout this section we assume that [ > 2.

ProrosiTioN 3.1. (1) The Poincaré series PXz) is given by

L AN T -1
P(z) = (=) 2(l—1)!(1—z)“<de) (ze — 1) |e=s

(2) The Laurant expansion of Py(z) at a = 1 begins with
([ — 1. 3l —1],,

P& = ) C g i T Da g

where [ —1],, =0 —DII+ 1) --- @2l — 4).
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B If ClXQ), -, XD = @19 Clfss -+ -, fussl, where fi, -, fi
is a system of parameters of C[X(1), ---, X(1)]**®, we have

(1 —1],., "5 deg(f)
(I — 1! ,UI gu-1

Proof. (1) follows from (2.4). By a direct computation, we see that
the first Laurant coefficient at z = 1 equals

[l,,j,,l]"?? .
(I—1)!2%!
Then (2) follows from (2.7). (3)is an immediate consequence from (2) and
(2.6).
We denote by C, a subring of C[X(1), - - -, X(])]?*® generated by traces
Tr(XAOXG), 1 =4, j =1L Tr(X@), 1 2i <L

ProrosiTion 3.2. The ring of invariants C[X(1), - - -, X(D]?*® is inte-
gral over C,.

Proof. By Theorem 1.1, it is enough to show

() i Tr(AA)="Tr(4) =0 (A, A,e M(2,C), 1<i,j <D,
Tr(AAp -+ A,) =0 for any k, 1 <4y, -, 1, = 1.

b

We shall prove (x) by induction on /. By making the substitution A, —
BA.,B~' (Be GL(2,C)), we can assume A, =0 or A, = (O 1).

00
If A, =0, by the inductive hypothesis (x) is true. If A, = (8 (1)>, we
have A, = (8 gi>, a,eC (1<i<). Because Tr(4,4) =0 and A?=0.

1<i< 1l This shows that Tr (A, A, --- A,,) = 0. This completes the
proof.

Hl=20r3, Tr(XOX()AZL,j<D), Tr(X@) (1 <1 £1)is a homo-
geneous system of parameters of C[X(1), -- -, X(D]?+®.

ProrosiTion 3.3. (E. Formanek, P. Halpin and W.C.W. Li [2])

C[X(1), X(2)]7+®
= C[Tr (X(1), Tr(X(@), Tr(XQ)), Tr (X@9), Tr(XD)X@)]

Proof. By (3) Proposition 3.1, we have r = 1 and we obtain the result.
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§4. The ring of invariants C[X(1), X(2)]¢*®

In this section we treat the case: n =3 and [ = 2. Set

fi=Tr (X)), fo=TrX®D)"), f,="TrXQ)),
fi=Tr(X@), fi=Tr(X@®"), f=Tr(X(®)),

fr =Tr(X(X@), f,=Tr(XOX2)), f=TrX1\X(2),
fio = Tr(XAYX©2)), fu=TrXDX2)X(1) X(2)).

We denote by C the subring of C[X(1), X(2)]¢*® generated by ten invariants
fi, -+, fio which are algebraically independent.

TueoreEM 4.1. f, - -, f,, is a system of parameters of the ring C[X(1),

X(2)]¢t® and
ClX(Q), X(2)%® = CafuC.

Proof. Let A, and A, be 3 X 3-matrices which satisfy the following
condition: fi(A,, A,) = --- = fi(A,, A,) = 0.

Since Tr(A,) =Tr(A) =Tr(A) =0, i=1,2, we have A} = A} =0.
If A2 = A} =0, it follows from the Cayley-Hamilton theorem that A A,A,
= A,A A, = 0 and hence we have, for any %k, Tr(4,A,,--- A,)=0, 1 <
I, -+, I, < 2. Assume now that A # 0. Then, by making the substitution

A,—>BAB", i=12,

we can assume that A, and A, are of the form

01 Qyy Ay Qg
A = 01}, A; = ay Gy ayl
0 Q3 A3y Ay

The equations Tr(A;4,) = Tr(A?A,) = Tr(4,) =0 imply a, + @y + 0y =
ay + Ay = a;, = 0 and Tr(A2A)) =0 implies a,,a,, = 0. Hence we have q,, =
@y = @y = 0. This shows that A, is an upper triangular matrix with zero
diagonal entries. Consequently Tr(A; A, - - Ay) =0, 1,0, -+, 0, =1,2
for any k.

If A, or A, is the zero matrix, all traces are zero by our assumption.
Therefore C[X(1), X(2)]¢*® is integral over C. Since the transcendence
degree of the ring C[X(1), X(2)]*® is ten, f,, ---, fi, 15 a homogeneous
system of parameters.

Consider the Poincaré series P(z,, z,). By the theorem of Hochster and
Roberts C[X(1), X(2)]¢*® is a free module over the subring C. Therefore
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there is a polynomial F(z, z,) in two variables such that

P(z, z)
F(z, z)

T A—z)1— 21— 2)(1—2)(1—2)(1 — 21— 221 — 221 —z,2)(1—2:2)

It follows from the functional equation of P(z, z,) that F(z, z,) satisfies
the following relation

F(z, z) = (22)°F(z77, 27" .

And it is easily shown that F(z,, z,) = 1 + 2}z, Therefore C[X(1), X(2)]¢*®
is generated by f, - - -, f,, and an invariant ¢ of degree (3, 3).

Invariants Tr(X(1)X(2)X(1)*X(2)), Tr (X(2)X(1)X(2)*X(1)*) and Tr (X(1)-
X(2)X(1)X(2)X(1)X(2)) span the vector space C[X(1), X(2)]%~> consisting of
invariants of degree (3,3). By the Cayley-Hamilton theorem, we find that
Tr (X)X X(1)X2)X(1)X(@2)eC and Tr(X(1)X(2)X1)X(2)?) + Tr(X(?2)-
X(1)X(2)’X(1)») € C. Therefore the ring of invariants C[X(1), X(2)]?*® 1is
generated by f, ---, fu and C[X(®Q), X(2)]°*® = C@f,,C. This completes
the proof.

§5. The ring of invariants C[X(1), X(2)]¢*®

We denote by Sym (n) the symmetric group of n letters and recall the
multi-linearlized Cayley-Hamilton theorem for n X n-matrices Y,, ---, Y,:

Y”m Ce Yt(")
rESym (n)
n

+ Z Z Z q. Tr(Yx(l) e Yn(ul)) e Yr:(n—k+1)Yx(n—k+2) e Yx(n) =0 ’

k=1 u =x€Sym (n)

for suitable q, € @ and suitable j-tuples u = (u,, - - -, ©;) such that 1 < u,
Su<--Sujand u+ - +u =k

PropositioN 5.1. The ring of invariants C[X(1), X(2)]¢*® is generated
by invariants of the form

Tr (X(1)X(2)=X(1)=X(2)*), 0L ay, ay, a; < 3,

Tr (X(DX2XAYX@rX(1yX(2)), TrXDX@XDX2rX(1X(2)),
Tr(X@2)X(1)X(2)X(1)’X(2)X (1)) .

Proof. We claim that any invariant Tr (X(1)=X(2)* ... X(1)®-:X(2)*),

0 ay, -+, a,, < 3 (r > 6), can be written as a polynomial in T(X(1)"X(2)%
< X)X (2), 0 By, - -+, B = 8. We work by induction on r. We assume
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that, for any r’ <r, this assertion is true. Apply the multi-linearlized
Cayley-Hamilton theorem for 4 X 4-matrices X, X,, X, X, to the case X, =
X1, X, = X©2), XQ)=, X,=X2)=, X, =X1)=X(2)*. Then by the
inductive hypothesis we conclude the assertion. A similar argument shows
that any invariant of the form

Tr (X(l)a1X(2)a2X(1)a3X(2)a4X(1)a5X(2)aa) ) 1 é Ky Qyy + 0y Qg g 3 )

is written as a polynomial in T,(X(1)*X(2)=X(1)=X2)*), 0 ay, - -+, a, < 3,
Tr (X(1)X(2)X(1)2X(2)*X(1)*X(2)%), Tr(X(1)X(2)X(1)X(2)X(1)X(2)*), Tr(X(2)-
X(1)X(2)X(1))X(2)X(1)°). The proposition is proved.

Set

fi=Tr(X@), f=TrXQ2"), fi="TrXQ1)), fi=TrX(®1)",
fi=Tr(X@), fo=Tr(X©), fi=TrX@)), f =Tr(X@)"),
fo=Tr(X(MXQ), f,="TrXQyXQ2)), fu=Tr(X1)X(2)",
fio = Tr(XA\X(©2), fi=Tr(XDX@)"), fu=TrX1)'X2),
fis = T, (X(HXQXDX(2), fis =TrXDHXEQXMDX(2)),

fr = Tr(X@2)X1)yX(2)X(1)).

We denote by C a subring of C[X(1), X(2)]¢*® generated by f,, - - -, fir

ProposITION 5.2. f,, - - -, fi; is @ homogeneous system of parameters o,
the ring of invariants C[X(1), X(2)]°*®.

Proof. Since the transcendence degree of the ring C[X(1), X(2)]¢*® is
17, it is enough to show that, for 4 X 4-matrices A, and A,, fi(4,, 4,) =
<o =fiA,, A) =0imply Tr (A,, A,, --- A,)=0,1,, ---,1, = 1, 2 for any k.

Notice that A} = A} = 0, since f,(A,, A,)) = - -+ = f(A,, A;) = 0. Assume
that A} + 0. Then, by the substitution A, — BA;B~!, Be GL(4) and i =
1, 2, we can assume that

01 ay @y, Qg au]
01 Ay Qoo Aoz Qg
A = and A, =
01 Q3 Az A3z Ay
0 Ay Ay Qy3 Qg

It follows from the equations Tr(A}A,) = Tr(A%A,) =0 that a, = a,
+ a, = 0 and the Cayley-Hamilton theorem shows that the equation
Tr(A?A,A2A,) = 0 implies Tr(A24,4,4,A,) = 0.
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Since
Qg Qoo Aoz Aoy
Q3 Qzp Qz3 Ay
AxAZ =

0 a, a, a,
00 0 0

it follows from the equation Tr(A4:A,4,4,A,) = 0 that a,a,. = 0 and hence
we have a; = a, = 0. Then it follows from the relation Tr(4,4,) = a,, +
a, + a, = 0 that Tr(A}A)) = ana,, + ana,, = —aj, and we obtain a,, = 0.
Since

Aoy Aoy Uog Aoy .]

0 0 ay a, l

0 0 a,a,

0 0 0 0

2 2
= @y + Qi,

Tr(4,4,4,4,) = Tr

Gy = Q= Ay = 0 and hence A, is a 4 X 4 upper triangular matrix with
zero diagonal entries. Consequently we can conclude that Tr(A;, A, - - -
A)=0,1Z1,10, - -,1, <2 for any k. By the same argument, we obtain
the same conclution if A5+ 0.

We next assume that A? = A} = 0 and either Aj or AZ is not zero.
Then we can take A, as

01 [0 ]
01 01
A = or |,
0 01
0 o)
and divide into two cases:
Case 1.
[0 1 ‘| [011 Ay Qg alf]
01 I Ay Qoo Aoy Ay
Al = ’ AZ =

0 Ay Q3o Qg3 Asy
0 Ay Ay Ay a44J

In this case, it follows from the equations Tr(A2A.) =0, Tr(A,A.A,A,) =0
and Tr (4,A4,) = 0 that a,, = a,, = a;, = 0.
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Therefore A A, and A}A, are upper triangular matrices with zero
diagonal entries. Similarly, replacing A, by A}, we see that A, A} and AA?
are also upper triangular matrices with zero diagonal entries. This shows
that Tr(A; A, --- A4,)=0,1=Z14,,14, -+, 1, <2 for any k.

Case 2.
[0 Qi Qgp Qys Ay
01 Ayy Aoy Qo3 Ay
Ai = 9 = .
01 A3y Ay A3z Ay
0 Ay Qg Ay Ay

In this case, by the equation Tr(AA,) = 0, we have a,, = 0.
Since

0 0 0O

A3y Qg2 Qg3 Ay
AA, =
Ay Qo Ay Qyy

0 0 0 O

and Tr(A,4,4,4,) = 0, we have a,, = a,;, = 0. Then we find that A A4,A,
= a,A? and, replacing A, by A}, A,AZA, = bA2. Here b denotes the (3, 3)-
entry of the matrix Al

Notice that, for any 4 X 4-matrix X = (x;)),

0 Xy Xy Xy

0000
A2X =

0 0 00

00 00

Therefore we can conclude that Tr(4, 4, --- A;) = 0 for any k.

If A} = A} =0, we have evidently Tr(A4,,4,, --- 4;,) = 0. This com-
pletes the proof.

Proposition 5.2 shows that C is a polynomial ring in 17 variables
and C[X(1), X(2)]9*"® is a free module over C.
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