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ABSTRACT

Millimeter wave emission from the rippled-field magnetron (cross-field

free electron laser) is investigated experimentally and theoretically. In

this device, electrons move in quasi-circular orbits under the combined action

of a radial electric field, a uniform axial magnetic field, and a radial, azi-

muthally periodic wiggler magnetic field. In excess of 300kW of RF power is

observed in two narrow spectral lines whose frequency can be tuned continuously

from -25GHz to n-50GHz by variation of the axial magnetic field. The observa-

tions are interpreted as a free electron laser type of instability, associated

with a resonance in the particle motion, which is shown to occur when 2kw v

(Q /yo ) /1-(p/Q0 , where kw is the wiggler wavenumber, v is the azimuthal

electron velocity, Q is the relativistic cyclotron frequency in the axial mag-

netic field, w is the relativistic plasma frequency, and y =[1-(v0/c)2i.

tPermanent address: Laboratoire de Physique des Gaz et des Plasmas, Universitg

Paris XI, Centre Scientifique d'Orsay, France.
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I. INTRODUCTION

Many studies have been reported of linear' free electron lasers (FELs)

in which short wavelength radiation is produced when electrons moving in es-

sentially straight lines -interact- with a spatially periodic wiggler magnetic

field. Recently, novel circular -geometry FELs has been explored both theoret-

ically 2 , 3,4,s5 and experimentally 6'$' 8 in which a rotating, relativistic elec-

tron ring interacts with an azimuthally periodic wiggler field produced by

samarium cobalt magnets placed interior and exterior to the beam. The poten-

tial advantages of such systems include a longer effective interaction region,

a more compact geometrical configuration, and internal feedback resulting from

the recirculation of the electromagnetic wave. This last feature may mean that

the device can operate as an oscillator rather than an amplifier, as in the

case of linear FELs. Moreover, calculations show that the instability growth

rates are high' and comparable to those of a gyrotron.

In the experiments to date, two principal methods have been used to gener-

ate the rotating electron beam. The first experiments6 employed a diode con-

figuration similar to that used in relativistic magnetrons. Here the elec-

trons perform Mx drifts around the azimuth in the presence of a radial elec-

tric field and an axial magnetic field. Addition of an azimuthally periodic

magnetic field then results in a circular FEL called the Rippled-Field Magne-

tron or Cross-Field FEL, the latter term being sometimes reserved for the case

of a tenuous3 rotating ring, the former for the case of dense beams2 ,4 at or

near Brillouin equilibrium.

In an alternate configuration,7,8 the rotating electron beam is produced

by passing a hollow, nonrotating electron beam through a narrow magnetic cusp.

In this manner, the evz r force at the center of the cusp effectively converts

the axial beam velocity into rotational velocity downstream of the cusp region.

If the cusp is symmetric, the downstream beam performs simple axis encircling
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cyclotron orbits with a gyroradius equal to the radius of the beam on the up-

stream side of the cusp. This configuration has been discussed in detail else-

where,7'8 and lies outside the subject matter of this paper.

In this paper we describe a continuation of our earlier experiments' on

the rippled-field magnetron and new computations aimed at interpreting the ob-

servations. In section II we describe the experiments in which more than 300

kW of RF power is observed in two narrow spectral lines whose frequency can be

continuously tuned from m25GHz to %50GHz by variation of the axial magnetic

field. In section III we discuss computations of the dispersion equation of

the instability. We show that the observations can be interpreted as an in-

teraction between a cyclotron-like mode on the electron beam upshifted by the

wiggler periodicity, and an electromagnetic wave, at and near a resonance in

the particle motion found to occur when 2kwv( y)r-(p /20)_ . Here kw =

2rr/iw is the wiggler wavenumber with Zw as its periodicity; Q =eB /m y is the

relativistic electron cyclotron frequency w2=n e2 /y m C is the relativisticP0 0 0

electron plasma frequency, y = 1-(v/c)-l- is the relativistic energy factor,

and v is the azimuthal electron velocity. The existence of the aformentioned

resonance is substantiated by computer simulations which will also be discussed.

Section IV summarizes the findings.

II. EXPERIMENTS

.The device is illustrated schematically in Fig. 1. It comprises a smooth

cylindrical cathode of radius r c enclosing a smooth coaxial cylindrical anode

of radius ra. The electrons, emitted from the cathode by field emission9 are

subjected simultaneously to two quasi-steady fields acting at right angles to

one another: a uniform, axial magnetic field produced by magnetic coils,

and a radial electric field generated by applying a voltage V between

the electrodes. In the absence of the wiggler field, a space-charge cloud



forms, partially filling the interaction gap (rc-ra); the electrons undergo

azimuthal rotation having a sheared, radially dependent velocity v (r) =

E0 (r)/B 0 (r) where E0(r) and B (r) include the externally applied and self-

fields.

Superimposed on the t and 0 fields is an azimuthally periodic magnetic

wiggler field 9W, which perturbs the Brillouin flow of the electron stream.

Subject to the requirement that A- =VxVw=0, the field in the vacuum gap be-

tween the cathode and anode is calculated to be,

Bo FrN-1 r1i~11 (N 2-1)/2N

= cos(Ne) + j IN 7 r

BN-1 N+ (N2-1)/2N

- 'w sin(Ne) - ---

cIa

where r and 6 are unit vectors in the radial and azimuthal directions, respec-

tively. N=n(rc+ra)/Zw is the number of spatial periods and Zw is the linear

periodicity defined midway in the gap. Bw is the amplitude of the radial

component of field at a distance r=r -(r N- rN+1)1/(2N) where the azimuthalo c a

field component vanishes (which is roughly midway between the cathode and

anode). We see that near the center of the gap the wiggler field is primarily

radial and is thus transverse to the electron flow velocity v=t x /B2 , as is
0 0 0 0

the case in conventional free electron lasers.

In our device, the wiggler magnetic field is produced by an assembly of

samarium-cobalt10 bar magnets. The magnets are positioned behind smooth stain-

less steel electrodes and held in place in grooved aluminum cylinders. Once

the system is assembled, the inner electrode (anode) is connected to the posi-

tive terminal of the pulsed, high voltage accelerator. The outer field-emis-

sion cathode is grounded. Table I gives a summary of the diode dimensions and
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experimental parameters, and Table II gives data concerning the permanent mag-

net system. For N=12 periods around the azimuth, four magnets per period are

used; for n=24, two magnets per period are employed. Details of magnet place-

ment are described elsewhere. 6

Figure 2 shows an overall view of the experimental arrangement. The elec-

tric field between cathode and anode is provided by the Physics International

Pulserad 110A high voltage facility. The axial magnetic-field is generated by

two pulsed magnetic field coils surrounding, and coaxial with, the cylindrical

electrodes. Typical current-voltage characteristics of the system as a func-

tion of the axial magnetic field are shown in Fig. 3. In all cases the mag-

netic field exceeds the critical field required for magnetic insulation.'

The radiation generated in the rippled-field magnetron is allowed to leak

out through the Pyrex window seen in Fig. 2. The radiation leaving the Pyrex

window in a given direction is received with a horn antenna and rectified in a

calibrated crystal detector. To obtain the total emitted power9 in a given

microwave frequency band, we make an angular scan of the radiation pattern of

the transmitter, derive its gain and use the familiar radar formula.9

The frequency spectra are measured in one of two ways, by means of a solid

state or waveguide dispersive line and by a millimeter wave grating spectrom-

eter." A dispersive line gives the spectrum in a single firing of the acceler-

ator, but has poorer spectral resolution. The grating spectrometer has much

better resolution. However, since the spectra must be assembled from succes-

sive shots, data acquisition is tedious and for that reason the spectrometer

has been used sparingly, and then mostly to obtain detailed spectral line

widths.

Figure 4 shows the total radiated power in the 26-40GHz frequency band,

as a function of the axial magnetic field, for a wiggler having a periodicity

=2.53cm(N=12) and an amplitude Bow=1.96kG. The peaks in emitted power exceed
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300kW. When the wiggler is turned off (by removing the samarium-cobalt mag-

nets from their grooved aluminum cylinders), the emitted power falls by more

than a factor of 20.

Spectral characteristics of the emitted radiation, obtained with the

grating spectrometer are illustrated in Fin. 5. The measured line width at

the half power points is "2.2GHz (the instrument line width is '-l.OGHz). The

lower part of Fig. 5 shows that in the absence of the wiggler, the level of

radiation has fallen by more than three orders of magnitude; the emission is

broad-band and shows no narrow spectral features.

The radiation frequency of the spectral line shown in Fig. 5 increases

linearly with the strength of the axial magnetic field. This continuous fre-

quency tuning from 32GHz to 45GHz is illustrated in Fig. 6. Figure 7 shows

that in addition to the spectral line referred to in Figs. 5 and 6, there is

a lower frequency branch which has similar tuning characterist4cs with magnet-

ic field as the upper- branch. Figure 7 also shows the experimental results

obtained when the wiggler periodicity N equals 24 (see Table II). We see that

doubling the periodicity from N=12 to N=24 does not cause an appreciable change

in the radiation frequency. This is quite unlike a conventional FEL in which

doubling the periodicity would cause a doubling of the frequency. This behav-

ior of the rippled field magnetron and the tuning characteristics illustrated

in Figs. 6 and 7 are in agreement with the computed dispersion characteristics

discussed in Section III.

III. THEORY

Electron Dynamics

Because of the small gap width [d=(rc-ra)<(rc+ra)~ of the rippled-field

magnetron, the planar model illustrated in Fig. 8 is an adequate representa-

tion. For purposes of simplicity we first assume that the cathode-anode gap
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is filled with a tenuous electron beam having a spatial density profile n (x),

4.

and drifting (in the absence of the wiggler) with velocity v = E /B under

the combined action of the crossed electric and magnetic fields iE and 9B
0 0

respectively. We then have

0 (V/d)i

9' B0 0

= (E0/B)i , 0= v /c

y = (1 - )
0 0

where V is the voltage applied between the anode and the cathode, y the rela-

tivistic energy factor and n (x) a given density profile corresponding to the

beam shape. The assumption of a tenuous beam implies that f2 (x) w2 (x)/Q 2«1.
p 0

Here, Q =eB /y m and p2(x)e2n (x)/y m C where o2 is the relativistic cyclo-

tron frequency, and w the relativistic plasma frequency.

We now consider the presence of the periodic wiggler field iB wcos (k wz),

where k is the wiggler wavenumber k w=21r/tw Under the assumption B w/B <<1,

we can write that

v=vI +6 , y =(1 -v2/c2 =y+ y (2)

with 16'l<<v and Sy<<y , and obtain the equations of motion for the electron

momentum p:

S= e6v ZB (3a)

-y = - eiB wcos(kwz) (3b)

z = - edv B + e6v yBwcos(k Z) (3c)

We note that one can solve (3b) exactly, with the result that:

x 0 6v Z (4a)

&vz - C0x/y -/w sin (2kwz)/2kw (4b)
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where Q2w=eBw Ym .. Now setting z=v t, z=v , we obtain,

+ (n/y )
2 6V V 2cos(2k v t). (5)

This equation characterizes a system of eigen-frequency o /y driven by the

wiggler at 2kW v. The second harmonic of the wiggler appears due to the non-

linear coupling 6vyBwcos(kwz) in the z-component of the Lorentz force. Of

course such a system exhibits a resonance when & y =2k V .

Using the initial conditions z(t=0)=0, 6v(t=0)=O and the approximation

v t=z, leads to a steady rippled equilibrium:

6v (z) = Q v R[sin(2k z)/2kwv - Qsin(o z/y v )/y

6vy(z) = - aQsin(kwz)/kw (6)

Sv(z) = v pRcos(2kwz) - cos (n 0z/y v )

where

R = 0/ (4k v -( y2)) , (2k v 0 /y) (7)

specifies the amplitude of the 6v x and 6vz components of the velocity. We ob-

serve that only these two components exhibit a resonant increase. The y com-

ponent, which is transverse to the wiggler magnetic field and which plays the

dominant role in conventional',3,4 FEL interactions, is not resonantly en-

hanced. Since our interest is focused on FEL-like interactions associated

with the resonance enhancement, the y-directed oscillations will play no sig-

nificant role in our derivation of the wave dispersion equations discussed be-

low.

In order to check the analytical derivation of the rippled equilibrium,

we have integrated the system of equations (3) numerically for different val-

ues of E 0 , B 0 , and z . The single-particle simulation (Fig. 9 top) was generated

for the following set of parameters: B =6.0kG, V=1.OMV, d=1.Ocm, zw=l.Ocm and

a time step At=10-1s. This set corresponds to an "off resonance" situation

where the hierarchy 6vy>> 6vx, 6vz remains valid. We obtain first order har-
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monic motion at frequency kW v in the y-direction and a much smaller perturba-

tion 6vx across the gap. A second simulation (Fig.9 bottom) was produced for B =

9.05kG, V=1.OMV, d=1.Ocm, zw=1.Ocm, and At=10-1's, very close to the theoreti-

cal resonance 2kw o"o 0o. Here, the situation is reversed; 6v , 6vz> 6vy

and we see that the frequency of the motion across the gap is twice that of

the conventional undulatory motion. The anharmonicity in the y-direction is

produced by the perturbation of velocity along the flow itself.

Figure 10 is obtained by fixing E and z and varying B ; for each value
0 w0

of B 0, we plot the maximum value of 6v obtained after 2ns of simulation, with

a time step of At=10-'s and z =1.Ocm. The resonance occurs at 6.025kG for

E =0.5MV cm-1 in agreement with analytical predictions. One notes the presence
0

of a secondary peak at k v0 =Q 0/y0 . This peak is probably a higher order effect

which is not predicted analytically.

The aforementioned calculations and simulations refer to a tenuous beam

f=w p(x)/0 <<1. When f is not small, we can use Poisson's equation and Ampere's

theorem to take self-fields into account. We then find that the resonance

shifts and acquires a value given by'2

2k v = 4 (1-f2)1 (8)
w 0 YO

where in the general case v ,y and f are functions of position x within

the beam. For perfect Brillouin equilibrium (f=1) the resonance vanishes. How-

ever, perfect Brillouin equilibrium is probably never achieved in practice,

particularly not in the presence of a strong wiggler magnetic field, as in the

case in our experiments.

Dispersion Relation

In our model the electromagnetic wave perturbation is taken to vary in

the propagation direction z as exp(ikz-iwt). It is a transverse electromag-
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netic wave polarized with the electric fie-ld E along the x axis of the coordi-

nate system illustrated in Fig. 8. This choice of E-field polarization as-

sures coupling of the radiation field to the resonantly enhanced electron veloc-

ity component Sv x of Eq. (6). Thus, with the RF electric and magnetic fields

given by E=Ei and §=B , the particle equations of motion become

x = - eEO - eE + e(v + 6vz +wz) (B + B)ii 0-eE0 y

(9)

z - e(6v, +IWx) (By +)

where we have neglected terms associated with nonresonant motions that vary as

cos(kwz); w is the perturbed particle velocity due to the presence of the RF

fields. After some straightforward algebra, we obtain a third-order descrip-

tion of the dynamics of an electron in the presence of the radiation fields:

Y2

Y m (1 + f- v avz x

E E
eBw- e(E y + 2e -2 v w - y2 e 6vzw +-e6v BeB0wz Xo 0y C cz z y

y2 (10)

Y ( + - v 6vz =

B E E V
-e -Tw + 2e - 6v w + e -vzw, + e v E B

0

We now express the velocity perturbation w as a function of the RF fields.

We use Floquet's theorem, and express all quantities related to the radiation

fields as

X(z,t) = 'Z Xnexpri(knz - ot) kn = k + nkw (11)

Using the orthogonality of harmonic functions and the resonance condition, we

obtain R
6vz v 0 exp(i2kwz) + exp(-i2kwz)

(12)

6vx -iy v exp(i2kwz) - exp(-i2kwz) .
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After a considerable amount of algebra, one finds the soughtafter expressions

for w xn and wzn

Wx iD 2  -exn 2/y W + V2 R D~2  0 ~+~n2 k n
2 r 2 k

=ixn + +2 nlQ...i n+2 + +

k k

oon+2 n +w n+2 on+2 n . +

k
- qO/ o Qn+2 n+ aAn (13a)

_ n

w 2 e a
zn n- E £/Y' (+V 2 R Dz+[SnQn 2 % 2  H'2

zn = 0 xn Oo n/ 0 + 4 Dn+2 n 2n+2( n+2 n + 2O

k k

-q,/ 1 + -i+ S An + 0 /Y +2  +2  + QAn
0 0

0. n+2 n 2 (13b)

where q =eE /M C2 , An =(V/c 2 )(k /W); an=w-k v n(1+y -Y w/c±2q
0 0 0 2 2 n n /o n

D2 =1/W 2 ; W2  22_2
n n n o o n

The x-component of the wave equation relates the particle dynamics to the

RF electric field, namely

(k2 -W 2 /c2 )Exn oi 1xri (14)

where jx=-4n w +6nw +nvx) is the RF current density; n is the density pertur-

bation caused by the radiation field, and an the density perturbation associ-

ated with the resonant particle motion. Use of the continuity equation yields

1n = n (knwzn - iawxn)/On (15)

and

ay
an = nR 0' - 1}cos(2kwz) (16)

where a(x) defines the scale length of the electron density gradient in the

cathode-anode gap;
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)a(x) = (n(x)) (17)

Substituting Eqs. (13), (15), and (16) in Eq. (14) gives the dispersion

equation:

2R2

(k - c2 /c2) O sw2Ic2 W2  C 2

INnnp n+2 2 C2  o 4

where the coupling term C is

- - kn Q kn
C {in n+2 n+2 Y +o n O 0 n+2 n +y j]

00 0

+' Q k + q, kn +
-+ n Q+2 n+2An + 2 ow- Ttn+2 Yw+ Qo~nj

+iiL.+ ty -] ~ 2r qO +
V 0W 2kw a n+2 YO L Y~~O y n+2 nj Y2T02]3 +2yo 0 IO+" QQ Q +"O q %Q +}

+ +- 11 0 -+ o + n+ 0  0 2 .+1
- nWnj n+2 + on WQ n+2 YO n+2 YO YO nJ

(18)

on 0 k n 9
2Wyq2 n+2Qn - W Ln+2An + Y2w(19)

Despite the complexity of Eq. (18) its physical stucture can be readily

understood. The left-hand side describes the interacting waves. The right-

hand side is the wave coupling term which vanishes when the wiggler field B

goes to zero. We examine the structure of the waves for the lowest order in-

teraction n=0. Setting C=0 yields two waves

W = (k + 2kw)v + Q /y (20)
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which is a cyclotron-like beam mode3 ,5 1 3 upshifted in frequency by the pres-

ence of the wiggler; and an electromagnetic wave1 4 in the parallel plate wave-

guide filled with cold drifting electrons:

(- ky )2

k2c2  W 2  
2 (21)
(w-kvj -(s /y)

The interaction between these waves is illustrated schematically in Fig. 11,

showing two intersection points, one at high frequency w , the other at low

frequency, W~. Invoking the resonance condition 2kwv (S2/yo ) /1-f2, and

solving Eqs. (20) and (21), we find the radiation frequency:

= 2 kwc$ Y2A(l D) (22)

where

A = 1 + (1//f1-f2J and D = [- (f 2 /(1 + .'1-f2J 2  1

In the limit f 0, Eq. (22) reduces to:

4k c= y (1 ± (23)
w 0 0

which is similar to the radiation frequency of a conventional FEL. Since the

resonance condition requires that 2kw vo(SI /y )f2, we see that w increases

with Q and thus increases with B , in agreement with measurements (see Figs. 6

and 7). This is unlike the computations of Ref. 4 in which the electric

field of the wave is polarized so as to interact with the SVy oscillatory mo-

tion (which is not resonantly enhanced). One then finds that w decreases with

increasing B .

To find the instability growth rate one must compute the imaginary part

of the frequency from the full dispersion equation (18). A representative

calculation is shown in Fig. 12 for the case of a tenuous beam (f=O) with a

spatial gaussian profile n0 (x).

In the actual experiments described in section II the electron beam is
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dense and close to Brillouin equilibrium. If f(x) is known (or assumed), Eq.

(8) can be used to find the position xr of the resonant layer. We have chosen

f=0.8 which is close to Brillouin equilibrium. Then using the measured volt-

age-magnetic field characteristics shown plotted in Fig. 3 and allowing for

self-electric and magnetic fields, 15 '16 we compute the radiation frequency as

a function of the axial magnetic field B . The solid lines shown in Fig. 7

for N=12 and 24 represent the results of these calculations. The agreement

with experiment' is seen to be fairly good. We note that increasing N from 12

to 24 does not change the radiation frequency appreciably.

IV. DISCUSSION

Experiments show that the rippled field magnetron is an intense source of

coherent, narrow band radiation whose frequency can be tuned continuously by

varying the axial magnetic field. Several hundred kilowatts of millimeter

wave radiation has been observed in the frequency range from 25GHz to 50GHz.

The observed radiation frequency w increases linearly with applied mag-

netic field B0, and is almost independent of the wiggler wavenumber kw'. This

differs from what may be expected from a conventional FEL based on the coup-

ling of first order undulatory oscillations of the electrons with the radia-

tion field. Such models 4 predict that w scales- linearly with kw and de-

creases with increasing B0.

In this paper we present a theoretical model different from those men-

tioned above.

Here we invoke a second order resonance 2k v=(0/y )I1-(wP/0A )fl in the

electron motion which leads to radiation characteristics like those given by

Eq.(22) and illustrated in Fig. 7. It is not known why the first-order, non-

resonant FEL mode seen in other',8 circular FELs is not observed here.

Unfortunately, the aforementioned resonant interaction carries with it a

penalty, namely the radiation frequencies are not as high as one might have
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hoped. Consider, for example, a tenuous (f-+O) relativistic electron beam

(-*I). It then follows from Eqs. (8) and (23) that for the resonant interac-

tion, + z4oy , and the radiation frequency equals four times the nonrelativ-

istic cyclotron frequency. This is to be compared with the nonresonant FEL

radiation frequency given by wNR=2k cy2 and the relativistic cyclotron maser
1 7

frequency w =2y 2  . In most practi.cat systems, the two last named will exceed
c 0 0

wR'
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TABLE I. Summary of operating parameters of the rippled-field

magnetron.

Radius of cathode

Radius of anode

Length of anode

Voltage

Current

Pulse length

Axial magnetic field

5.22 cm

4.43 cm

6.0 cm

0.7-1.5

1-20

30

5-15

MV

kA

ns

kG

TABLE II. Summary of the samarium-cobalt bar magnet assembly.

Total number of magnets = 96

Magnet dimensions = 0.40x0.40x4.8 cm

Residual induction, Br = 9.0 kG

Periodicity z N Number of Magnets Field Amplitude B

(cm) per Period (kG)

1.26 24 2 0.68

2.53 12 4 1.96

N
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FIGURE CAPTIONS

Fig. 1. Schematic diagram of the rippled-field magnetron.

Fig. 2. Experimental arrangement.

Fig. 3. Typical current voltage characteristics as a function of the ex-

ternal magnetic field B 0 , for N=12.

Fig. 4. Total power emitted in the Ka-band range of frequencies; N=12.

Fig. 5. Spectral characteristics with and without wiggler, obtained with a

millimeter-wave grating spectrometer; N=12.

Fig. 6. Radiation frequency as a function of the external magnetic field B ,

for N=12. Open circles represent spectrometer measurements, and

solid dots are dispersive line measurements.

Fig. 7. Radiation frequency as a function of the external magnetic field B

. for N=12 and 24. The dots represent dispersive line measurements.

The lines are from theory (see section III).

Fig. 8. Planar version of the rippled-field magnetron.

Fig. 9. Computer simulation of the motion of an electron in the crossed-

field FEL static fields, far from resonance (top), and near reso-

nance (bottom). =l.Ocm, E =1.OMV cm-1. B =6.00kG (top), and

9.05kG (bottom); Bow=l.OkG.

Fig. 10. Computer simulation showing the resonance in particle velocity as a

function of the externally applied magnetic field B0. Z.=1.0cm,

E =0.5MV cm-'; B ow=.OkG.

Fig. 11. Schematic diagram of the dispersion relation of the interacting

waves.
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Fig. 12. Real and imaginary parts of the radiation frequency for the case of.

a tenuous beam at resonance with a gaussian profile n (x)=

no expL-((x-x )/6x)2]; f2(x )=0.01, R=1.0, 6x=0.25cm. The normal-

ized growth rate is in units of Im(w)/wP.
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