
The RISC-V Instruction Set Manual Volume II: Privileged
Architecture Version 1.7

Andrew Waterman
Yunsup Lee
Rimas Avizienis
David A. Patterson
Krste Asanović

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-49
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html

May 9, 2015



Copyright © 2015, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.



The RISC-V Instruction Set Manual
Volume II: Privileged Architecture

Privileged Architecture Version 1.7:
Document Version 1.7:

Warning! This draft specification will change before being accepted as
standard, so implementations made to this draft specification will likely not

conform to the future standard.

Andrew Waterman, Yunsup Lee, Rimas Avižienis, David Patterson, Krste Asanović
CS Division, EECS Department, University of California, Berkeley
{waterman|yunsup|rimas|pattrsn|krste}@eecs.berkeley.edu

May 9, 2015



2



Contents

1 Introduction 1

1.1 RISC-V Hardware Platform Terminology . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 RISC-V Privileged Software Stack Terminology . . . . . . . . . . . . . . . . . . . . . 2

1.3 Privilege Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Control and Status Registers (CSRs) 7

2.1 Instructions to access CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 CSR Address Mapping Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 CSR Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Machine-Level ISA 15

3.1 Machine-Level CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 CPU ID Register mcpuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Implementation ID Register mimpid . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Hart ID Register mhartid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 Machine Status Register (mstatus) . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 Privilege and Global Interrupt-Enable Stack in mstatus register . . . . . . . 18

3.1.6 Virtualization Management Field in mstatus Register . . . . . . . . . . . . . 19

3.1.7 Memory Privilege in mstatus Register . . . . . . . . . . . . . . . . . . . . . . 20

3.1.8 Extension Context Status in mstatus Register . . . . . . . . . . . . . . . . . 20

3.1.9 Machine Trap Vector Base Address Register (mtvec) . . . . . . . . . . . . . . 23

3.1.10 Machine Trap Delegation Register (mtdeleg) . . . . . . . . . . . . . . . . . . 24

3



4

3.1.11 Machine Interrupt Registers (mip and mie) . . . . . . . . . . . . . . . . . . . 25

3.1.12 Machine Timer Registers (mtime, mtimecmp) . . . . . . . . . . . . . . . . . . 26

3.1.13 Machine Scratch Register (mscratch) . . . . . . . . . . . . . . . . . . . . . . 27

3.1.14 Machine Exception Program Counter (mepc) . . . . . . . . . . . . . . . . . . 28

3.1.15 Machine Cause Register (mcause) . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.16 Machine Bad Address (mbadaddr) Register . . . . . . . . . . . . . . . . . . . 29

3.2 Machine-Mode Privileged Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Instructions to Change Privilege Level . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Trap Redirection Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Wait for Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Physical Memory Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Physical Memory Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Mbare addressing environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Base-and-Bound environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Mbb: Single Base-and-Bound registers (mbase, mbound) . . . . . . . . . . . . 33

3.6.2 Mbbid: Separate Instruction and Data Base-and-Bound registers . . . . . . . 34

4 Supervisor-Level ISA 37

4.1 Supervisor CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Supervisor Status Register (sstatus) . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Memory Privilege in sstatus Register . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Supervisor Interrupt Registers (sip and sie) . . . . . . . . . . . . . . . . . . 38

4.1.4 Supervisor Timer Registers (stime, stimecmp) . . . . . . . . . . . . . . . . . 39

4.1.5 Supervisor Scratch Register (sscratch) . . . . . . . . . . . . . . . . . . . . . 39

4.1.6 Supervisor Exception Program Counter (sepc) . . . . . . . . . . . . . . . . . 40

4.1.7 Supervisor Cause Register (scause) . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.8 Supervisor Bad Address (sbadaddr) Register . . . . . . . . . . . . . . . . . . 40

4.1.9 Supervisor Page-Table Base Register (sptbr) . . . . . . . . . . . . . . . . . . 41



5

4.1.10 Supervisor Address Space ID Register (sasid) . . . . . . . . . . . . . . . . . 42

4.2 Supervisor Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Supervisor Memory-Management Fence Instruction . . . . . . . . . . . . . . . 42

4.3 Supervisor Operation in Mbare Environment . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Supervisor Operation in Base and Bounds Environments . . . . . . . . . . . . . . . . 43

4.5 Sv32: Page-Based 32-bit Virtual-Memory Systems . . . . . . . . . . . . . . . . . . . 43

4.5.1 Addressing and Memory Protection . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.2 Virtual Address Translation Process . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Sv39: Page-Based 39-bit Virtual-Memory System . . . . . . . . . . . . . . . . . . . . 46

4.6.1 Addressing and Memory Protection . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Sv48: Page-Based 48-bit Virtual-Memory System . . . . . . . . . . . . . . . . . . . . 47

4.7.1 Addressing and Memory Protection . . . . . . . . . . . . . . . . . . . . . . . 47

5 Hypervisor-Level ISA 49

6 RISC-V Privileged Instruction Set Listings 51

7 History 53

7.1 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



6



Chapter 1

Introduction

This is a draft of the privileged architecture description document for RISC-V. This version does
not match our existing implementations. Feedback welcome. Changes will occur before the final
release.

This document describes the RISC-V privileged architecture, which covers all aspects of RISC-V
systems beyond the user-level ISA, including privileged instructions as well as additional function-
ality required for running operating systems and attaching external devices.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

We briefly note that the entire privileged-level design described in this document could be replaced
with an entirely different privileged-level design without changing the user-level ISA, and pos-
sibly without even changing the ABI. In particular, this privileged specification was designed to
run existing popular operating systems, and so embodies the conventional level-based protection
model. Alternate privileged specifications could embody other more flexible protection domain
models.

1.1 RISC-V Hardware Platform Terminology

A RISC-V hardware platform can contain one or more RISC-V-compatible processing cores to-
gether with other non-RISC-V-compatible cores, fixed-function accelerators, various physical mem-
ory structures, I/O devices, and an interconnect structure to allow the components to communicate.

A component is termed a core if it contains an independent instruction fetch unit. A RISC-V-
compatible core might support multiple RISC-V-compatible hardware threads, or harts, through
multithreading.

A RISC-V core might have additional specialized instruction set extensions or an added coprocessor.
We use the term coprocessor to refer to a unit that is attached to a RISC-V core and is mostly
sequenced by a RISC-V instruction stream, but which contains additional architectural state and
instruction set extensions, and possibly some limited autonomy relative to the primary RISC-V
instruction stream.

1



2 1.7: Volume II: RISC-V Privileged Architectures

We use the term accelerator to refer to either a non-programmable fixed-function unit or a core that
can operate autonomously but is specialized for certain tasks. In RISC-V systems, we expect many
programmable accelerators will be RISC-V-based cores with specialized instruction set extensions
and/or customized coprocessors. An important class of RISC-V accelerators are I/O accelerators,
which offload I/O processing tasks from the main application cores.

The system-level organization of a RISC-V hardware platform can range from a single-core micro-
controller to a many-thousand-node cluster of shared-memory manycore server nodes. Even small
systems-on-a-chip might be structured as a hierarchy of multicomputers and/or multiprocessors to
modularize development effort or to provide secure isolation between subsystems.

This document focuses on the privileged architecture visible to each hart (hardware thread) running
within a uniprocessor or a shared-memory multiprocessor.

1.2 RISC-V Privileged Software Stack Terminology

This section describes the terminology we use to describe components of the wide range of possible
privileged software stacks for RISC-V.

Figure 1.1 shows some of the possible software stacks that can be supported by the RISC-V archi-
tecture. The left-hand side shows a simple system that supports only a single application running
on an application execution environment (AEE). The application is coded to run with a particular
application binary interface (ABI). The ABI includes the supported user-level ISA plus a set of
ABI calls to interact with the AEE. The ABI hides details of the AEE from the application to al-
low greater flexibility in implementing the AEE. The same ABI could be implemented natively on
multiple different host OSs, or could be supported by a user-mode emulation environment running
on a machine with a different native ISA.

Application
ABI
AEE

Application
ABI

OS
SBI
SEE

Application
ABI

SBI
Hypervisor

Application
ABI

OS

Application
ABI

Application
ABI

OS

Application
ABI

SBI

HBI
HEE

Figure 1.1: Different implementation stacks supporting various forms of privileged execution.

Our graphical convention represents abstract interfaces using black boxes with white text, to
separate them from concrete instances of components implementing the interfaces.

The middle configuration shows a conventional operating system (OS) that can support multipro-
grammed execution of multiple applications. Each application communicates over an ABI with
the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary
interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of
SBI function calls. Using a single SBI across all SEE implementations allows a single OS binary



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 3

image to run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a
low-end hardware platform, or a hypervisor-provided virtual machine in a high-end server, or a
thin translation layer over a host operating system in an architecture simulation environment.

Most supervisor-level ISA definitions do not separate the SBI from the execution environment
and/or the hardware platform, complicating virtualization and bring-up of new hardware plat-
forms.

The rightmost configuration shows a virtual machine monitor configuration where multiple multi-
programmed OSs are supported by a single hypervisor. Each OS communicates via an SBI with
the hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execu-
tion environment (HEE) using a hypervisor binary interface (HBI), to isolate the hypervisor from
details of the hardware platform.

The various ABI, SBI, and HBIs are still a work-in-progress, but we anticipate the SBI and HBI
to support devices via virtualized device interfaces similar to virtio [3], and to support device
discovery. In this manner, only one set of device drivers need be written that can support any
OS or hypervisor, and which can also be shared with the boot environment.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE). We separate
the features required in a hardware platform from the execution environments using a hardware
abstraction layer (HAL), as shown in Figure 1.2. Note that a HAL is not necessarily present
in a RISC-V software stack, as an execution environment might be provided purely via software
emulation or might have been written directly to a given hardware platform without abstraction.

Later chapters provide details of proposed standard designs for RISC-V hardware platforms.

Application
ABI
AEE
HAL

Hardware

Application
ABI

OS
SBI
SEE

Application
ABI

HAL
Hardware

SBI
Hypervisor

Application
ABI

OS

Application
ABI

Application
ABI

OS

Application
ABI

SBI

HBI
HEE

Hardware
HAL

Figure 1.2: Hardware abstraction layers (HALs) abstract underlying hardware platforms from the
execution environments.



4 1.7: Volume II: RISC-V Privileged Architectures

1.3 Privilege Levels

At any time, a RISC-V hardware thread (hart) is running at some privilege level encoded as a mode
in one or more CSRs (control and status registers). Four RISC-V privilege levels are currently
defined as shown in Table 1.1.

Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Hypervisor H
3 11 Machine M

Table 1.1: RISC-V privilege levels.

Privilege levels are used to provide protection between different component of the software stack,
and attempts to perform operations not permitted by the current privilege mode will cause an
exception to be raised. These exceptions will normally cause traps into an underlying execution
environment or the HAL.

The machine level has the highest privileges and is the only mandatory privilege level for a RISC-V
hardware platform. Code run in machine-mode (M-mode) is inherently trusted, as it has low-level
access to the machine implementation. User-mode (U-mode) and supervisor-mode (S-mode) are
intended for conventional application and operating system usage respectively, while hypervisor-
mode (H-mode) is intended to support virtual machine monitors.

Each privilege level has a core set of privileged ISA extensions with optional extensions and variants.
For example, machine-mode supports several optional standard variants for address translation and
memory protection.

Although none are currently defined, future hypervisor-level ISA extensions will be added to
improve virtualization performance. One common feature to support hypervisors is to provide
a second level of translation and protection, from supervisor physical addresses to hypervisor
physical addresses.

Implementations might provide anywhere from 1 to 4 privilege modes trading off reduced isolation
for lower implementation cost, as shown in Table 1.2.

In the description, we try to separate the privilege level for which code is written, from the
privilege mode in which it runs, although the two are often tied. For example, a supervisor-
level operating system can run in supervisor-mode on a system with three privilege modes, but
can also run in user-mode under a classic virtual machine monitor on systems with two or
more privilege modes. In both cases, the same supervisor-level operating system binary code can
be used, coded to a supervisor-level SBI and hence expecting to be able to use supervisor-level
privileged instructions and CSRs. When running a guest OS in user mode, all supervisor-level
actions will be trapped and emulated by the SEE running in the higher-privilege level.

All hardware implementations must provide M-mode, as this is the only mode that has unfettered
access to the whole machine. The simplest RISC-V implementations may provide only M-mode,
though this will provide no protection against incorrect or malicious application code. Many RISC-
V implementations will also support at least user mode (U-mode) to protect the rest of the system



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 5

Number of levels Supported Modes

1 M
2 M, U
3 M, S, U
4 M, H, S, U

Table 1.2: Supported combinations of privilege modes.

from application code. Supervisor mode (S-mode) can be added to provide isolation between a
supervisor-level operating system and the SEE and HAL code. The hypervisor mode (H-mode) is
intended to provide isolation between a virtual machine monitor and a HEE and HAL running in
machine mode.

A hart normally runs application code in U-mode until some trap (e.g., a supervisor call or a timer
interrupt) forces a switch to a trap handler, which usually runs in a more privileged mode. The hart
will then execute the trap handler, which will eventually resume execution at or after the original
trapped instruction in U-mode. Traps that increase privilege level are termed vertical traps, while
traps that remain at the same privilege level are termed horizontal traps. The RISC-V privileged
architecture provides flexible routing of traps to different privilege layers.

Horizontal traps can be implemented as vertical traps that return control to a horizontal trap
handler in the less-privileged mode.



6 1.7: Volume II: RISC-V Privileged Architectures



Chapter 2

Control and Status Registers (CSRs)

The SYSTEM major opcode is used to encode all privileged instructions in the RISC-V ISA. These
can be divided into two main classes: those that atomically read-modify-write control and status
registers (CSRs), and all other privileged instructions. In this chapter, we describe instructions to
access the CSRs, as these are common to all privilege levels. The following chapters describe the
function of each of the CSRs according to privilege level, as well as the other privileged instructions
which are generally closely associated with a particular privilege level. Note that although CSRs
and instructions are associated with one privilege level, they are also accessible at all higher privilege
levels.

Placing all privileged instructions under a common major opcode and structure simplifies hard-
ware trap encoding and provision of virtualized execution environments.

In this draft version of the specification, many CSR registers contain fields whose
value is currently not used and set to zero or whose value currently only supports
a limited range of settings, but which might in future support an expanded range
of settings. In general, software should only write fields with supported values, and
hardware should only return specified default values. Prior to the final release of
the specification, these will be appropriately marked to indicate the exact behavior
required for a correct forward-compatible implementation.

2.1 Instructions to access CSRs

In addition to the user-level state described in Volume I of this manual, an implementation may
contain additional CSRs, accessible by some subset of the privilege levels. The following instructions
are provided to atomically read and modify CSRs. Instructions that manipulate CSRs might also
have other side effects.

7



8 1.7: Volume II: RISC-V Privileged Architectures

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
source/dest zimm[4:0] CSRRSI dest SYSTEM
source/dest zimm[4:0] CSRRCI dest SYSTEM

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the CSRs and
integer registers. CSRRW reads the old value of the CSR, zero-extends the value to XLEN bits,
then writes it to integer register rd. The initial value in rs1 is written to the CSR.

The CSRRS (Atomic Read and Set Bit in CSR) instruction reads the value of the CSR, zero-extends
the value to XLEN bits, and writes it to integer register rd. The initial value in integer register rs1
specifies bit positions to be set in the CSR. Any bit that is high in rs1 will cause the corresponding
bit to be set in the CSR, if that CSR bit is writable. Other bits in the CSR are unaffected (though
CSRs might have side effects when written).

The CSRRC (Atomic Read and Clear Bit in CSR) instruction reads the value of the CSR, zero-
extends the value to XLEN bits, and writes it to integer register rd. The initial value in integer
register rs1 specifies bit positions to be cleared in the CSR. Any bit that is high in rs1 will cause
the corresponding bit to be cleared in the CSR, if that CSR bit is writable. Other bits in the CSR
are unaffected.

For both CSRRS and CSRRC, if rs1=x0, then the instruction will not write to the CSR at all,
and so shall not cause any of the side effects that might otherwise occur on a CSR write. Note
that if rs1 specifies a register holding a zero value other than x0, the instruction will still write the
unmodified value back to the CSR.

The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC re-
spectively, except they update the CSR using an XLEN-bit value obtained by zero-extending a 5-bit
immediate (zimm[4:0]) field encoded in the rs1 field instead of a value from an integer register. If
the zimm[4:0] field is zero, then these instructions will not write to the CSR, and shall not cause
any of the side effects that might otherwise occur on a CSR write.

The assembler pseudo-instruction to read a CSR, CSRR rd, csr, is encoded as CSRRS rd, csr, x0.
The assembler pseudo-instruction to write a CSR, CSRW csr, rs1, is encoded as CSRRW x0, csr,
rs1, while CSRWI csr, zimm, is encoded as CSRRWI x0, csr, zimm.

Further assembler pseudo-instructions are defined to set and clear bits in the CSR when the old
value is not required: CSRS/CSRC csr, rs1; CSRSI/CSRCI csr, zimm.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 9

2.2 CSR Address Mapping Conventions

The standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
By convention, the upper 4 bits of the CSR address (csr[11:8]) are used to encode the read and
write accessibility of the CSRs according to privilege level as shown in Table 2.1. The top two bits
(csr[11:10]) indicate whether the register is read/write (00, 01, or 10) or read-only (11). The next
two bits (csr[9:8]) indicate the lowest privilege level that can access the CSR (00 for user, and 01

for supervisor).

The CSR address convention uses the upper bits of the CSR address to encode default access
privileges. This simplifies error checking in the hardware and provides a larger CSR space, but
does constrain the mapping of CSRs into the address space.

Implementations might allow a more-privileged level to trap otherwise permitted CSR ac-
cesses by a less-privileged level to allow these accesses to be intercepted. This change should be
transparent to the less-privileged software.

Attempts to access a non-existent CSR raise an illegal instruction exception. Attempts to access a
CSR without appropriate privilege level or to write a read-only register also raise illegal instruction
exceptions. A read/write register might also contain some bits that are read-only, in which case
writes to the read-only bits are ignored.

Table 2.1 also indicates the convention to allocate CSR addresses between standard and non-
standard uses. The CSR addresses reserved for non-standard uses will not be redefined by future
standard extensions. The shadow addresses are reserved to provide a read-write address via which
a higher privilege level can modify a register that is read-only at a lower privilege level. Note that
if one privilege level has already allocated a read/write shadow address, then any higher privilege
level can use the same CSR address for read/write access to the same register.

Effective virtualization requires that as many instructions run natively as possible inside a virtu-
alized environment, while any privileged accesses trap to the virtual machine monitor [1]. CSRs
that are read-only at some lower privilege level are shadowed into separate CSR addresses if they
are made read-write at a higher privilege level. This avoids trapping permitted lower-privilege
accesses while still causing traps on illegal accesses.

2.3 CSR Listing

Tables 2.2–2.5 lists the CSRs that have currently been allocated CSR addresses. The timers,
counters, and floating-point CSRs are the only standard user-level CSRs currently defined. The
other registers are used by privileged code, as descrbed in the following chapters. Note that not all
registers are required on all implementations.



10 1.7: Volume II: RISC-V Privileged Architectures

CSR Address Hex Use and Accessibility
[11:10] [9:8] [7:6]

User CSRs

00 00 XX 0x000-0x0FF Standard read/write
01 00 XX 0x400-0x4FF Standard read/write
10 00 XX 0x800-0x8FF Non-standard read/write
11 00 00-10 0xC00-0xCBF Standard read-only
11 00 11 0xCC0-0xCFF Non-standard read-only

Supervisor CSRs

00 01 XX 0x100-0x1FF Standard read/write
01 01 0X 0x500-0x57F Standard read/write
01 01 1X 0x580-0x5FF Non-standard read/write
10 01 00-10 0x900-0x9BF Standard read/write shadows
10 01 11 0x9C0-0x9FF Non-standard read/write shadows
11 01 00-10 0xD00-0xDBF Standard read-only
11 01 11 0xDC0-0xDFF Non-standard read-only

Hypervisor CSRs

00 10 XX 0x200-0x2FF Standard read/write
01 10 0X 0x600-0x67F Standard read/write
01 10 1X 0x680-0x6FF Non-standard read/write
10 10 00-10 0xA00-0xABF Standard read/write shadows
10 10 11 0xAC0-0xAFF Non-standard read/write shadows
11 10 00-10 0xE00-0xEBF Standard read-only
11 10 11 0xEC0-0xEFF Non-standard read-only

Machine CSRs

00 11 XX 0x300-0x3FF Standard read/write
01 11 0X 0x700-0x77F Standard read/write
01 11 1X 0x780-0x7FF Non-standard read/write
10 11 00-10 0xB00-0xBBF Standard read/write shadows
10 11 11 0xBC0-0xBFF Non-standard read/write shadows
11 11 00-10 0xF00-0xFBF Standard read-only
11 11 11 0xFC0-0xFFF Non-standard read-only

Table 2.1: Allocation of RISC-V CSR address ranges.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 11

Number Privilege Name Description

User Floating-Point CSRs

0x001 URW fflags Floating-Point Accrued Exceptions.
0x002 URW frm Floating-Point Dynamic Rounding Mode.
0x003 URW fcsr Floating-Point Control and Status Register (frm + fflags).

User Counter/Timers

0xC00 URO cycle Cycle counter for RDCYCLE instruction.
0xC01 URO time Timer for RDTIME instruction.
0xC02 URO instret Instructions-retired counter for RDINSTRET instruction.
0xC80 URO cycleh Upper 32 bits of cycle, RV32I only.
0xC81 URO timeh Upper 32 bits of time, RV32I only.
0xC82 URO instreth Upper 32 bits of instret, RV32I only.

Table 2.2: Currently allocated RISC-V user-level CSR addresses.

Number Privilege Name Description

Supervisor Trap Setup

0x100 SRW sstatus Supervisor status register.
0x101 SRW stvec Supervisor trap handler base address.
0x104 SRW sie Supervisor interrupt-enable register.
0x121 SRW stimecmp Wall-clock timer compare value.

Supervisor Timer

0xD01 SRO stime Supervisor wall-clock time register.
0xD81 SRO stimeh Upper 32 bits of stime, RV32I only.

Supervisor Trap Handling

0x140 SRW sscratch Scratch register for supervisor trap handlers.
0x141 SRW sepc Supervisor exception program counter.
0xD42 SRO scause Supervisor trap cause.
0xD43 SRO sbadaddr Supervisor bad address.
0x144 SRW sip Supervisor interrupt pending.

Supervisor Protection and Translation

0x180 SRW sptbr Page-table base register.
0x181 SRW sasid Address-space ID.

Supervisor Read/Write Shadow of User Read-Only registers

0x900 SRW cyclew Cycle counter for RDCYCLE instruction.
0x901 SRW timew Timer for RDTIME instruction.
0x902 SRW instretw Instructions-retired counter for RDINSTRET instruction.
0x980 SRW cyclehw Upper 32 bits of cycle, RV32I only.
0x981 SRW timehw Upper 32 bits of time, RV32I only.
0x982 SRW instrethw Upper 32 bits of instret, RV32I only.

Table 2.3: Currently allocated RISC-V supervisor-level CSR addresses.



12 1.7: Volume II: RISC-V Privileged Architectures

Number Privilege Name Description

Hypervisor Trap Setup

0x200 HRW hstatus Hypervisor status register.
0x201 HRW htvec Hypervisor trap handler base address.
0x202 HRW htdeleg Hypervisor trap delegation register.
0x221 HRW htimecmp Hypervisor wall-clock timer compare value.

Hypervisor Timer

0xE01 HRO htime Hypervisor wall-clock time register.
0xE81 HRO htimeh Upper 32 bits of htime, RV32I only.

Hypervisor Trap Handling

0x240 HRW hscratch Scratch register for hypervisor trap handlers.
0x241 HRW hepc Hypervisor exception program counter.
0x242 HRW hcause Hypervisor trap cause.
0x243 HRW hbadaddr Hypervisor bad address.

Hypervisor Protection and Translation

0x28X TBD TBD TBD.

Hypervisor Read/Write Shadow of Supervisor Read-Only Registers

0xA01 HRW stimew Supervisor wall-clock timer.
0xA81 HRW stimehw Upper 32 bits of supervisor wall-clock timer, RV32I only.

Table 2.4: Currently allocated RISC-V hypervisor-level CSR addresses.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 13

Number Privilege Name Description

Machine Information Registers

0xF00 MRO mcpuid CPU description.
0xF01 MRO mimpid Vendor ID and version number.
0xF10 MRO mhartid Hardware thread ID.

Machine Trap Setup

0x300 MRW mstatus Machine status register.
0x301 MRW mtvec Machine trap-handler base address.
0x302 MRW mtdeleg Machine trap delegation register.
0x304 MRW mie Machine interrupt-enable register.
0x321 MRW mtimecmp Machine wall-clock timer compare value.

Machine Timers and Counters

0x701 MRW mtime Machine wall-clock time.
0x741 MRW mtimeh Upper 32 bits of mtime, RV32I only.

Machine Trap Handling

0x340 MRW mscratch Scratch register for machine trap handlers.
0x341 MRW mepc Machine exception program counter.
0x342 MRW mcause Machine trap cause.
0x343 MRW mbadaddr Machine bad address.
0x344 MRW mip Machine interrupt pending.

Machine Protection and Translation

0x380 MRW mbase Base register.
0x381 MRW mbound Bound register.
0x382 MRW mibase Instruction base register.
0x383 MRW mibound Instruction bound register.
0x384 MRW mdbase Data base register.
0x385 MRW mdbound Data bound register.

Machine Read-Write Shadow of Hypervisor Read-Only Registers

0xB01 MRW htimew Hypervisor wall-clock timer.
0xB81 MRW htimehw Upper 32 bits of hypervisor wall-clock timer, RV32I only.

Machine Host-Target Interface (Non-Standard Berkeley Extension)

0x780 MRW mtohost Output register to host.
0x781 MRW mfromhost Input register from host.

Table 2.5: Currently allocated RISC-V machine-level CSR addresses.



14 1.7: Volume II: RISC-V Privileged Architectures



Chapter 3

Machine-Level ISA

This chapter describes the machine-level operations available in machine-mode (M-mode), which is
the highest privilege mode in a RISC-V system. M-mode is the only mandatory privilege mode in a
RISC-V hardware implementation. M-mode is used for low-level access to a hardware platform and
is the first mode entered at power-on reset. M-mode can also be used to implement features that
are too difficult or expensive to implement in hardware directly. The RISC-V machine-level ISA
contains a common core that is extended depending on which other privilege levels are supported
and other details of the hardware implementation.

3.1 Machine-Level CSRs

In addition to the machine-level CSRs described in this section, M-mode code can access all CSRs
at lower privilege levels.

3.1.1 CPU ID Register mcpuid

The mcpuid register is an XLEN-bit read-only register containing information regarding the capa-
bilities of the CPU implementation. This register must be readable in any implementation, but a
value of zero can be returned to indicate the CPU ID feature has not been implemented, requiring
that CPU capabilities be determined through a separate non-standard mechanism.

XLEN-1 XLEN-2 XLEN-3 26 25 0

Base 0 Extensions

2 XLEN-28 26

Figure 3.1: Machine CPU ID register (mcpuid).

The Base field encodes the native base integer ISA as shown in Table 3.1. For implementations that
support multiple ISA variants, the Base field always describes the widest supported ISA variant as
this is the ISA mode entered in machine-mode at reset.

The base can be quickly ascertained using branches on the sign of the returned mcpuid value,

15



16 1.7: Volume II: RISC-V Privileged Architectures

Value Description

0 RV32I
1 RV32E
2 RV64I
3 RV128I

Table 3.1: Encoding of Base field in mcpuid

and possibly a shift left by one and a second branch on the sign. These checks can be written in
assembly code without knowing the register width (XLEN) of the machine.

The Extensions field encodes the presence of the standard extensions, with a single bit per letter
of the alphabet (bit 0 encodes presence of extension “A” , bit 1 encodes presence of extension “B”,
through to bit 25 which encodes presence of the future “Z” standard extension). The “I” bit will
be set for RV32I, RV64I, RV128I base ISAs, and the “E” bit will be set for RV32E.

The “U”,“S”, and “H” bits will be set if there is support for user, supervisor, and hypervisor
privilege modes respectively.

The “X” bit will be set if there are any non-standard extensions.

The mcpuid register exposes a rudimentary catalog of CPU features to machine-mode code. More
extensive information can be obtained in machine mode by probing other machine registers, and
possibly examining ROM storage in the system as part of the boot process.

We require that lower privilege levels execute environment calls instead of reading CPU
registers to determine features available at each privilege level. This enables virtualization layers
to alter the ISA observed at any level, and supports a much richer command interface without
burdening hardware designs.

3.1.2 Implementation ID Register mimpid

The mimpid provides a unique encoding of the source and version of the processor implementation.
This register must be readable in any implementation, but a value of 0 can be returned to indicate
that the data fields are not implemented.

XLEN-1 16 15 0

Implementation Source

XLEN-16 16

Figure 3.2: Machine Implementation ID register (mimpid).

The 16-bit Source field is used to describe the origin of the processor design and is divided into
two categories: open-source repos and proprietary implementations. Values 0x0001–0x7FFE are
reserved for open-source projects, while values 0x8001–0xFFFE are reserved for closed-source im-
plementations. Values 0x7FFF and 0xFFFF are reserved for future expansion. Value 0x8000 is
reserved to indicate an anonymous source, which can be used during development before a Source
ID is allocated.

Current allocated values for Source are shown in Table 3.2.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 17

Source value Description

0x0000 CPU ID unimplemented
0x0001 UC Berkeley Rocket repo
0x0002–0x7FFE Reserved for open-source repos
0x7FFF Reserved for extension
0x8000 Reserved for anonymous source
0x8001–0xFFFE Reserved for proprietary implementations
0xFFFF Reserved for extension

Table 3.2: Encoding of Source field in mimpid

The remaining XLEN-16 bits of the mimpid register are available to encode the implementation
details of the design, including microarchitecture type and version number. The format of this field
is left to the provider of the Source, but will be printed by standard tools as a hexadecimal string
without leading zeros, so the Implementation value should be right-justified with subfields aligned
on nibble boundaries to ease human readability.

The mimpid value should reflect the design of the RISC-V processor itself and not any surrounding
system. Separate mechanisms should be used to encode outer system details.

The intent is for the open-source ID to represent the repo around which development occurs
rather than a particular organization. The convention adopted within the Implementation field
can be used to segregate branches of the design, including by organization. Commercial fabrica-
tions of open-source designs should (and might be required by the license to) retain the original
ID. This will aid in reducing fragmentation and tool support costs, as well as provide attribution.
Open-source IDs should only be allocated to released, functioning open-source projects, and will
likely be administered by a forthcoming foundation. Commercial IDs will likely be allocated by a
forthcoming trade association.

3.1.3 Hart ID Register mhartid

The mhartid register is an XLEN-bit read-only register containing the integer ID of the hardware
thread running the code. This register must be readable in any implementation. Hart IDs might
not necessarily be numbered contiguously in a multiprocessor system, but at least one hart must
have a hart ID of zero.

XLEN-1 0

Hart ID

XLEN

Figure 3.3: Hart ID register (mhartid).

In certain cases, we must ensure exactly one hart runs some code (e.g., at reset), and so require
one hart to have a known hart ID of zero.

We do not use CSRs or privileged instructions to convey other information about the organization
of the underlying hardware platform, as this would require an unbounded extensible mechanism
and must include non-RISC-V cores and slave devices. The system developer must provide a
means for machine-mode code to interrogate the platform and discover the system structure.



18 1.7: Volume II: RISC-V Privileged Architectures

3.1.4 Machine Status Register (mstatus)

The mstatus register is an XLEN-bit read/write register formatted as shown in Figure 3.4. The
mstatus register keeps track of and controls the hart’s current operating state. Restricted views of
the mstatus register appear as the hstatus and sstatus registers in the H and S privilege-level
ISAs respectively.

XLEN-1 XLEN-2 22 21 17 16

SD 0 VM[4:0] MPRV

1 XLEN-23 5 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS[1:0] FS[1:0] PRV3[1:0] IE3 PRV2[1:0] IE2 PRV1[1:0] IE1 PRV[1:0] IE

2 2 2 1 2 1 2 1 2 1

Figure 3.4: Machine-mode status register (mstatus).

3.1.5 Privilege and Global Interrupt-Enable Stack in mstatus register

The PRV[1:0] field stores the current privilege mode of the hart, encoded as shown in Table 1.1. If
the implementation provides only M-mode, then these two bits are hard-wired to binary 11.

The IE bit indicates whether interrupts are enabled for the current privilege mode (1=Enabled,
0=Disabled), and is primarily used to disable interrupts to ensure atomicity with respect to in-
terrupt handlers at the current privilege level. When a hart is running in a given privilege mode,
interrupts for higher privilege modes are always enabled while interrupts for lower privilege modes
are always disabled. Higher-privilege-level code can use separate per-interrupt enable bits to disable
selected interrupts before ceding control to a lower privilege level.

The active IE bit is located in bit 0 to allow it to be atomically set or cleared using a single CSR
instruction.

To support nested traps, a stack of PRV and IE bits is provided, the depth of which is equal
to the number of supported privilege modes, where PRV0 is the active privilege mode PRV (i.e.,
PRV0–PRVN for N privilege modes), except if the implementation only supports machine mode in
which case the stack is two deep and all PRV fields are hardwired to 11. When a trap is taken, the
stack is pushed to the left and PRV is set to the privilege mode of the activated trap handler with
IE=0. On a return from the trap handler (using an ERET instruction), the stack is popped to the
right and the leftmost entry (PRVN) is set to the lowest-supported privilege mode with interrupts
enabled (i.e., on a machine with only M mode, PRV1=M and IE1=1, while on machines with two
or more modes, PRVN=U and IEN=1 on return from a trap handler). In normal operation, the
stack should contain monotonically increasing privilege modes from left to right (oldest to newest).

For lower privilege modes, any trap (synchronous or asynchronous) is usually taken at a higher
privilege mode with interrupts disabled. The higher-level trap handler will either service the trap
and return using the stacked information, or, if not returning immediately to the interrupted
context, will save the privilege stack before reenabling interrupts, so only a single stack entry per
lower privilege mode is required.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 19

We considered adding an additional level to the privilege stack for implementations with
multiple privilege levels, to allow M-mode software to generate traps without saving and restoring
the mstatus register. However, current M-mode software that might generate exceptions does
not seem to benefit from this feature. For example, when emulating missing hardware features
using M-mode software, the mstatus register is typically manipulated for other reasons (e.g., to
set the MPRV bit). Saving and restoring the privilege stack can be folded into such actions at no
cost.

If M-mode software wishes to enable interrupts, then saving and restoring the privilege stack
can similarly be folded into the interrupt enable/disable sequence.

When the stack is popped, the lowest-supported privilege mode with interrupts enabled is added
to the bottom of stack to help catch errors that cause invalid entries to be popped off the stack.

PRV fields need only be able to store supported privilege modes.

If the machine provides only U and M modes, then only a single hardware storage bit is required
to represent either 00 or 11. However, software should only write valid values to these fields to
preserve compatibility.

3.1.6 Virtualization Management Field in mstatus Register

The virtualization management field VM[4:0] indicates the currently active scheme for virtualiza-
tion, including virtual memory translation and protection. Table 3.3 shows the currently defined
virtualization schemes. Only the Mbare mode is mandatory for a RISC-V hardware implementa-
tion. The Mbare, Mbb, and Mbbid schemes are described in Sections 3.5–3.6, while the page-based
virtual memory schemes are described in later chapters.

Each setting of the VM field defines operation at all supported privilege levels, and the behavior
of some VM settings might differ depending on the privilege levels supported in hardware.

Value Abbreviation Modes Required Description

0 Mbare M No translation or protection.
1 Mbb M, U Single base-and-bound.
2 Mbbid M, U Separate instruction and data base-and-bound.

3–7 Reserved

8 Sv32 M, S, U Page-based 32-bit virtual addressing.
9 Sv39 M, S, U Page-based 39-bit virtual addressing.

10 Sv48 M, S, U Page-based 48-bit virtual addressing.
11 Sv57 M, S, U Reserved for page-based 57-bit virtual addressing.
12 Sv64 M, S, U Reserved for page-based 64-bit virtual addressing.

13–31 Reserved

Table 3.3: Encoding of virtualization management field VM[4:0].

Mbare corresponds to no memory management or translation, and so all effective addresses regard-
less of privilege mode are treated as machine physical addresses. Mbare is the mode entered at
reset.



20 1.7: Volume II: RISC-V Privileged Architectures

Mbb is a base-and-bounds architectures for systems with at least two privilege levels (U and M).
Mbb is suited for systems that require low-overhead translation and protection for user-mode code,
and that do not require demand-paged virtual memory (swapping is supported). A variant Mbbid
provides separate address and data segments to allow an execute-only code segment to be shared
between processes.

Sv32 is a page-based virtual-memory architecture for RV32 systems providing a 32-bit virtual
address space designed to support modern supervisor-level operating systems, including Unix-based
systems.

Sv39 and Sv48 are page-based virtual-memory architectures for RV64 systems providing a 39-bit
or 48-bit virtual address space respectively to support modern supervisor-level operating systems,
including Unix-based systems.

Sv32, Sv39, and Sv48 require implementations to support M, S, and U privilege levels. If H-mode
is also present, additional operations are defined for hypervisor-level code to support multiple
supervisor-level virtual machines. Hypervisor-mode support for virtual machines has not yet been
defined.

The existing Sv39 and Sv48 schemes can be readily extended to Sv57 and Sv64 virtual address
widths. Sv52, Sv60, Sv68, and Sv76 virtual address space widths are tentatively planned for
RV128 systems, where virtual address widths under 68 bits are intended for applications requiring
128-bit integer arithmetic but not larger address spaces.

Our current definition of the virtualization management schemes only supports the same base
architecture at every privilege level. Variants of the virtualization schemes can be defined to
support narrow widths at lower-privilege levels, e.g., to run RV32 code on an RV64 system.

3.1.7 Memory Privilege in mstatus Register

The MPRV bit modifies the privilege level at which loads and stores execute. When MPRV=0,
translation and protection behave as normal. When MPRV=1, data memory addresses are trans-
lated and protected as though PRV were set to the current value of the PRV1 field. Instruction
address-translation and protection are unaffected.

When an exception occurs, MPRV is reset to 0.

The MPRV mechanism was conceived to improve the efficiency of M-mode routines that emulate
missing hardware features, e.g., misaligned loads and stores.

3.1.8 Extension Context Status in mstatus Register

Supporting substantial extensions is one of the primary goals of RISC-V, and hence we define a
standard interface to allow unchanged privileged-mode code, particularly a supervisor-level OS, to
support arbitrary user-mode state extensions.

The FS[1:0] and XS[1:0] read/write fields are used to reduce the cost of context save and restore by
setting and tracking the current state of the floating-point unit and any other user-mode extension



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 21

respectively. The FS field encodes the status of the floating-point unit, including the CSR fcsr

and floating-point data registers f0–f31, while the XS field encodes the status of any additional
user-mode extension and associated state. The SD bit is a read-only bit that summarizes whether
either the FS field or XS field encodes a dirty state that will require saving extended user context
to memory. In systems without a floating-point unit, the FS field is hardwired to zero, and in
systems without additional user extensions requiring new state, the XS field is hardwired to zero.
If both XS and FS are hardwired to zero, then SD is also always zero.

The FS and XS fields use the same status encoding as shown in Table 3.4, with the four possible
status values being Off, Initial, Clean, and Dirty.

Status Meaning

0 Off
1 Initial
2 Clean
3 Dirty

Table 3.4: Encoding of FS[1:0] and XS[1:0] status fields.

To date, there are no standard extensions that define additional state beyond the floating-point
CSR and data registers.

When the status is set to Off, any instruction that attempts to read or write the corresponding
state will cause an exception. When the status is Initial, the corresponding state should have an
initial constant value. When the status is Clean, the corresponding state is potentially different
from the initial value, but matches the last value stored on a context swap. When the status is
Dirty, the corresponding state has potentially been modified since the last context save.

During a context save, the responsible privileged code need only write out the corresponding state
if its status is Dirty, and can then reset the status to Clean. During a context restore, the context
need only be loaded from memory if the status is Clean (it should never be Dirty at restore). If
the status is Initial, the context must be set to an initial constant value on context restore to avoid
a security hole, but this can be done without accessing memory. For example, the floating-point
registers can all be initialized to the immediate value 0.

The FS and XS fields are set by privileged code when resuming a user context, and are read by the
privileged code before saving the context. The status fields will also be updated during execution
of instructions, regardless of privilege mode.

Extensions to the user-mode ISA often include additional user-mode state, and this state can be
considerably larger than the base integer registers. The extensions might only be used for some
applications, or might only be needed for short phases within a single application. To improve
performance, the user-mode extension can define additional instructions to allow user-mode software
to return the unit to an initial state or even to turn off the unit.

For example, a coprocessor might require to be configured before use and can be “unconfigured”
after use. The unconfigured state would be represented as the Initial state for context save. If the
same application remains running between the unconfigure and the next configure (which would
set status to Dirty), there is no need to actually reinitialize the state at the unconfigure instruction,



22 1.7: Volume II: RISC-V Privileged Architectures

as all state is local to the user process, i.e., the Initial state may only cause the coprocessor state
to be initialized to a constant value at context restore, not at every unconfigure.

Executing a user-mode instruction to disable a unit and place it into the Off state will cause an
illegal instruction exception to be raised if any subsequent instruction tries to use the unit before
it is turned back on. A user-mode instruction to turn a unit on must also ensure the unit’s state is
properly initialized, as the unit might have been used by another context meantime.

Table 3.5 shows all the possible state transitions for the FS or XS status bits. Note that the standard
floating-point extensions do not support user-mode unconfigure or disable/enable instructions.

Current State Off Initial Clean Dirty
Action

At context save in privileged code

Save state? No No No Yes
Next state Off Initial Clean Clean

At context restore in privileged code

Restore state? No Yes, to initial Yes, from memory N/A
Next state Off Initial Clean N/A

Execute instruction to read state

Action? Exception Execute Execute Execute
Next state Off Initial Clean Dirty

Execute instruction to modify state, including configuration

Action? Exception Execute Execute Execute
Next state Off Dirty Dirty Dirty

Execute instruction to unconfigure unit

Action? Exception Execute Execute Execute
Next state Off Initial Initial Initial

Execute instruction to disable unit

Action? Execute Execute Execute Execute
Next state Off Off Off Off

Execute instruction to enable unit

Action? Execute Execute Execute Execute
Next state Initial Initial Initial Initial

Table 3.5: Encoding of FS[1:0] and XS[1:0] status fields.

Standard privileged instructions to initialize, save, and restore extension state are provided to
insulate privileged code from details of the added extension state by treating the state as an
opaque object.

Many coprocessor extensions are only used in limited contexts that allows software to safely
unconfigure or even disable units when done. This reduces the context-switch overhead of large
stateful coprocessors.

We separate out floating-point state from other extension state, as when a floating-point
unit is present the floating-point registers are part of the standard calling convention, and so
user-mode software cannot know when it is safe to disable the floating-point unit.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 23

The XS field provides a summary of all added extension state, but additional microarchitectural
bits might be maintained in the extension to further reduce context save and restore overhead.

The SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e.,
SD=((FS==11) OR (XS==11))). This allows privileged code to quickly determine when no addi-
tional context save is required beyond the integer register set and PC.

The floating-point unit state is always initialized, saved, and restored using standard instructions
(F, D, and/or Q), and privileged code must be aware of FLEN to determine the appropriate space
to reserve for each f register.

In a supervisor-level OS, any additional user-mode state should be initialized, saved, and re-
stored using SBI calls that treats the additional context as an opaque object of a fixed maximum
size. The implementation of the SBI initialize, save, and restore calls might require additional
implementation-dependent privileged instructions to initialize, save, and restore microarchitectural
state inside a coprocessor.

All privileged modes share a single copy of the FS and XS bits. In a system with more than one
privileged mode, supervisor mode would normally use the FS and XS bits directly to record the
status with respect to the supervisor-level saved context. Other more-privileged active modes must
be more conservative in saving and restoring the extension state in their corresponding version of
the context, but can rely on the Off state to avoid save and restore, and the Initial state to avoid
saving the state.

In any reasonable use case, the number of context switches between user and supervisor level
should far outweigh the number of context switches to other privilege levels. Note that coproces-
sors should not require their context to be saved and restored to service asynchronous interrupts,
unless the interrupt results in a user-level context swap.

3.1.9 Machine Trap Vector Base Address Register (mtvec)

The mtvec register is an XLEN-bit read/write register that holds the base address of the M-mode
trap vector.

XLEN-1 2 1 0

Trap Vector Base Address 0

XLEN-2 2

Figure 3.5: Machine trap vector base address register (mtvec).

The mtvec register must always be implemented, but can contain a hard-wired read-only value.
Two standard values, 0xF...FFE00 and 0x0...00100, are specified for high and low locations of
the trap vector respectively, and one of these should be present in mtvec after reset. The standard
reset vector is either 0xF...FFF00 or 0x0...0200 for high and low locations of the trap vector
respectively.

The mtvec register can be implemented as a read/write register to support a variable trap vector
base address. The number of writable bits in the mtvec register can vary by implementation, but



24 1.7: Volume II: RISC-V Privileged Architectures

Address Handler

High Trap Vector Addresses

0xF...FE00 Trap from user-mode
0xF...FE40 Trap from supervisor-mode
0xF...FE80 Trap from hypervisor-mode
0xF...FEC0 Trap from machine-mode
0xF...FEFC Non-maskable interrupt(s)
0xF...FF00 Reset vector

Low Trap Vector Addresses

0x100 Trap from user-mode
0x140 Trap from supervisor-mode
0x180 Trap from hypervisor-mode
0x1C0 Trap from machine-mode
0x1FC Non-maskable interrupt(s)
0x200 Reset vector

Table 3.6: Standard locations of M-mode trap vector addresses at either high or low memory
locations.

the two standard values above must be supported if any bits are writable. The value in the mtvec

register must always be aligned on a 4-byte boundary (low two bits are always zero). The sign bit
should always be writable if any bits are writable, and the sign must be extended down from the
sign bit to the next writable bit. The value returned by reading a variable mtvec register should
always match the value used to generate the PC base address when handling traps.

A trap in privilege level P causes a jump to the address mtvec + P×0x40. Non-maskable interrupts
cause a jump to address mtvec + 0xFC. Additional trap vector entry points can be defined by
implementations to allow more rapid identification and service of certain trap causes.

We allow for considerable flexibility in implementation of the trap vector base address. On the
one hand we do not wish to burden low-end implementations with a large number of state bits,
but on the other hand, we wish to allow flexibility for larger systems. Different system contexts
can mandate high or low locations of reset and trap handling code and so we support both as
standard hard-wired vectors.

3.1.10 Machine Trap Delegation Register (mtdeleg)

By default, all traps at any privilege level are handled in machine mode, though a machine-mode
handler can quickly redirect traps back to the appropriate level using mrts and mrth instructions
(Section 3.2.2). To increase performance, implementations can provide individual read/write bits
within mtdeleg to indicate that certain traps should be processed directly by a lower privilege level.

The machine trap delegation register (mtdeleg) is an XLEN-bit read/write register that must be
implemented, but which can contain a read-only value of zero, indicating that hardware will always
direct all traps to machine mode.

If a hypervisor mode is present, a set bit in mtdeleg register will delegate any corresponding trap in
U-mode, S-mode, or H-mode to the H-mode trap handler. H-mode may in turn set corresponding



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 25

XLEN-1 16 15 0

Interrupts Synchronous Exceptions

XLEN-16 16

Figure 3.6: Machine Trap Delegation Register mtdeleg.

bits in the htdeleg register to delegate traps that occur in S-mode or U-mode to the S-mode trap
handler.

If only a supervisor mode is present, then setting a bit in mtdeleg will delegate any corresponding
trap in S-mode or U-mode to the S-mode trap handler.

If neither hypervisor nor supervisor modes are implemented, the mtdeleg register should be hard-
wired to zero.

An implementation can choose to subset the delegatable traps, with the supported delegatable bits
found by writing one to every bit location, then reading back the value in mtdeleg to see which bit
positions hold a one.

The low 16 bits of mtdeleg has a bit position allocated for every synchronous exception shown in
Table 3.7, with the index of the bit position equal to the value returned in the mcause register (i.e.,
setting bit 8 allows user-mode environment calls to be delegated to a lower-privilege trap handler).

Bits 16 and above hold trap delegation bits for individual interrupts, with the layout of bits matching
those in the mip register shifted left by 16 bits (i.e., STIP interrupt delegation control is located in
bit 21 of mtdeleg).

3.1.11 Machine Interrupt Registers (mip and mie)

The mip register is an XLEN-bit read/write register containing information on pending interrupts,
while mie is the corresponding XLEN-bit read/write register containing interrupt enable bits. Only
the lower bits corresponding to software interrupts (SSIP, HSIP, MSIP) in mip are writable through
this CSR address, while the remaining bits are read-only. Restricted views of the mip and mie reg-
isters appear as the hip/hie and sip/sie registers in the H and S privilege-level ISAs respectively.

XLEN-1 8 7 6 5 4 3 2 1 0

0 MTIP HTIP STIP 0 MSIP HSIP SSIP 0

XLEN-8 1 1 1 1 1 1 1 1

Figure 3.7: Machine interrupt-pending register (mip).

XLEN-1 8 7 6 5 4 3 2 1 0

0 MTIE HTIE STIE 0 MSIE HSIE SSIE 0

XLEN-8 1 1 1 1 1 1 1 1

Figure 3.8: Machine interrupt-enable register (mie).

Space has been reserved for possibly adding user-level software interrupts in the future.



26 1.7: Volume II: RISC-V Privileged Architectures

The MTIP, HTIP, STIP bits correspond to timer interrupt-pending bits for supervisor, hypervisor,
and machine timer interrupts respectively, and are cleared by writing to the mtimecmp, htimecmp,
or stimecmp register respectively.

For each supported non-user privilege mode there is a separate timer interrupt-enable bit, named
MTIE, HTIE, STIE for M-mode, H-mode, and S-mode timer interrupts respectively. If a privilege
mode is not supported, the associated interrupt-enable bit is hardwired to zero.

Space has been reserved for possibly adding user-level timer interrupts in the future.

Each of the supported non-user privilege levels has a separate software interrupt-pending bit (MSIP,
HSIP, SSIP), which can be both read and written by CSR accesses from code running on the local
hart at the associated or any higher privilege level. If a privilege level is not supported, the
associated software interrupt-pending bit is hardwired to zero. The machine-level MSIP bits can
also be written by accesses from remote harts to provide machine-mode interprocessor interrupts.
Interprocessor interrupts for lower privilege levels are implemented through SBI or HBI calls to the
SEE or HEE respectively, which might ultimately result in a machine-mode write to the receiving
hart’s MSIP bit.

The software interrupt for a given privilege level is disabled if the relevant SIE bit in the mie is clear
or if the global IE bit in the mstatus register is clear when the hart is executing in that privilege
mode, or if the hart is executing at a higher privilege mode.

We only allow a hart to directly write its own HSIP and SSIP bits when running in hypervisor
or supervisor mode, as other hypervisor-level or supervisor-level harts might be virtualized and
possibly descheduled by higher privilege levels. We rely on SBI and HBI calls to provide inter-
processor interrupts for this reason. Machine-mode harts are not virtualized and can directly
interrupt other harts by setting their MSIP bits, typically using uncached writes to memory-
mapped control registers, possibly inside a global interrupt controller on the hardware platform.

Implementations might add additional machine-level interrupt sources to these registers.

The non-maskable interrupt is not made visible via the mip register as its presence is implictly
known when executing the NMI trap handler.

3.1.12 Machine Timer Registers (mtime, mtimecmp)

M-mode includes a timer facility provided by the mtimecmp register together with the real-time
counter mtime. The hardware platform must provide a facility for determining the timebase of
mtime, which must run at a constant frequency.

The mtimecmp register has 32-bit precision on all RV32, RV64, and RV128 systems. A timer
interrupt is posted when the low 32 bits of the mtime register match the value in the low 32 bits
of the mtimecmp register. The interrupt remains posted until it is cleared by writing the mtimecmp

register. The interrupt will only be taken if interrupts are enabled and the MTIE bit is set in the
mie register.

The timer facility is defined to use wall-clock time rather than a cycle counter to support modern



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 27

XLEN-1 0

mtime

XLEN

Figure 3.9: Machine time register.

31 0

mtimecmp

32

Figure 3.10: Machine time compare register.

processors that run with a highly variable clock frequency to save energy through dynamic voltage
and frequency scaling. Simple fixed-frequency systems can use a single clock for both cycle
counting and wall-clock time.

True real-time clocks (RTCs) are relatively expensive to provide (requiring a crystal or
MEMS oscillator), and have to run even when the rest of system is powered down, so usually
there is only one in a system. Given an underlying real-time clock (RTC), we can implement
any of the virtual timers by storing delta values in static (i.e., non-incrementing) registers. On
a store to mtime, the implementation will actually read the RTC, subtract the current RTC value
from the desired mtime value, and store the difference in the mtime register for each hart. When
mtime is read, the underlying RTC is read again, and the stored delta in mtime is added to form
the result returned by the instruction. The same approach can be used for the various wall-clock
timers at each privilege level, and to calculate correct timer compare values.

One issue in variable-frequency systems is that the real-time clock (RTC) and the compare
registers will usually be held in a separate clock domain from the processor, and so accesses to
the register and the interrupt signals will incur the latency of a clock-domain crossing.

3.1.13 Machine Scratch Register (mscratch)

The mscratch register is an XLEN-bit read/write register dedicated for use by machine mode.
Typically, it is used to hold a pointer to a machine-mode hart-local context space and swapped
with a user register upon entry to an M-mode trap handler.

XLEN-1 0

mscratch

XLEN

Figure 3.11: Machine-mode scratch register.

The MIPS ISA allocated two user registers (k0/k1) for use by the operating system. Although
the MIPS scheme provides a fast and simple implementation, it also reduces available user
registers, and does not scale to further privilege levels, or nested traps. It can also require both
registers are cleared before returning to user level to avoid a potential security hole and to provide
deterministic debugging behavior.

The RISC-V user ISA was designed to support many possible privileged system environments
and so we did not want to infect the user-level ISA with any OS-dependent features. The RISC-
V CSR swap instructions can quickly save/restore values to the mscratch register. Unlike the
MIPS design, the OS can rely on holding a value in the mscratch register while the user context
is running.



28 1.7: Volume II: RISC-V Privileged Architectures

For hard real-time systems, some systems use a more complex register banking scheme to
map separate interrupt-context register banks into the architectural register namespace to provide
very low latency interrupt handling. We are exploring a different approach for hard real-time
systems that instead provides multiple complete register contexts, to reduce software complexity
and improve performance.

3.1.14 Machine Exception Program Counter (mepc)

mepc is an XLEN-bit read/write register formatted as shown in Figure 3.12. The low bit of mepc
(mepc[0]) is always zero. On implementations that do not support instruction-set extensions with
16-bit instruction alignment, the two low bits (mepc[1:0]) are always zero.

The mepc register can never hold a PC value that would cause an instruction-address-misaligned
exception.

When a trap is taken, mepc is written with the virtual address of the instruction that encountered
the exception.

XLEN-1 0

mepc

XLEN

Figure 3.12: Machine exception program counter register.

3.1.15 Machine Cause Register (mcause)

The mcause register is an XLEN-bit read-write register formatted as shown in Figure 3.13. The
Interrupt bit is set if the exception was caused by an interrupt. The Exception Code field contains
a code identifying the last exception. The center bits will read zero,and should be written with zero
to support future expansion of the Exception Code field. Table 3.7 lists the possible machine-level
exception codes.

XLEN-1 XLEN-2 4 3 0

Interrupt 0 Exception Code

1 XLEN-5 4

Figure 3.13: Machine Cause register mcause.

We do not distinguish privileged instruction exceptions from illegal opcode exceptions. This sim-
plifies the architecture and also hides details of what higher-privilege instructions are supported
by an implementation. The privilege level servicing the trap can implement a policy on whether
these need to be distinguished, and if so, whether a given opcode should be treated as illegal or
privileged.

Interrupts can be separated from other traps with a single branch on the sign of the mcause

register value. A single shift left can remove the interrupt bit and scale the exception codes to
index into a trap vector table.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 29

Interrupt Exception Code Description

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Environment call from H-mode
0 11 Environment call from M-mode
0 ≥12 Reserved

1 0 Software interrupt
1 1 Timer interrupt
1 ≥2 Reserved

Table 3.7: Machine cause register (mcause) values.

3.1.16 Machine Bad Address (mbadaddr) Register

mbadaddr is an XLEN-bit read-write register formatted as shown in Figure 3.14. When an
instruction-fetch address-misaligned exception, or instruction-fetch access exception, or load or
store address-misaligned exception, or load or store access exception occurs, mbadaddr is written
with the faulting address. The value in mbadaddr is undefined for other exceptions.

XLEN-1 0

mbadaddr

XLEN

Figure 3.14: Machine bad address register.

For instruction-fetch access faults on RISC-V systems with variable-length instructions, mbadaddr
will point to the portion of the instruction that caused the fault while mepc will point to the
beginning of the instruction.

3.2 Machine-Mode Privileged Instructions

3.2.1 Instructions to Change Privilege Level

Instructions to change privilege level are encoded under the PRIV minor opcode. ECALL (Envi-
ronment Call) and EBREAK (Environment Breakpoint) are available at all privilege levels, while
ERET (Environment Return) is only available at privilege levels S, H, and M.



30 1.7: Volume II: RISC-V Privileged Architectures

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
ECALL 0 PRIV 0 SYSTEM

EBREAK 0 PRIV 0 SYSTEM
ERET 0 PRIV 0 SYSTEM

The ECALL instruction is used to make a request to a higher privilege level. The binary interface
to the execution environment will define how parameters for the request are passed, but usually
these will be in defined locations in the integer register file. Executing an ECALL instruction causes
an Environment Call exception.

We have renamed SCALL in the user ISA to ECALL to make it more general. This renaming
does not change the opcode encoding or the functionality fo the user-mode instruction, but will
require a change to assembler/disassembler to support the new name.

The EBREAK instruction is used by debuggers to cause control to be transferred back to the
debugging environment. Executing an EBREAK instruction causes a Breakpoint exception.

The standard does not allow unused bits in the EBREAK encoding to be used to encode debugging
information as this is better kept in a hash table indexed by the appropriate epc register.

After handling a trap, the ERET instruction is used to return to the privilege level at which the
trap occurred. In addition to manipulating the privilege stack as described in Section 3.1.5, ERET
sets the pc to the value stored in the Xepc register, where X is the privilege mode (S, H, or M) in
which the ERET instruction was executed.

3.2.2 Trap Redirection Instructions

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
MRTS 0 PRIV 0 SYSTEM
MRTH 0 PRIV 0 SYSTEM

The MRTS (Machine Redirect Trap to Supervisor) instruction delegates the handling of a trap from
M-mode to S-mode. MRTS changes the privilege mode to S and sets the pc to the supervisor’s
trap handler, which is stored in the stvec register. Additionally, the values in the mepc, mcause,
and mbadaddr registers are copied to the sepc, scause, and sbadaddr registers, respectively.

The MRTH (Machine Redirect Trap to Hypervisor) instruction is defined analogously, but trans-
fers control to htvec in H-mode. mepc, mcause, and mbadaddr are copied to hepc, hcause, and
hbadaddr, respectively.

Simple implementations may direct all traps to an M-mode trap handler, even those destined for



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 31

a lower-privilege mode. The trap-redirection instructions allow the M-mode handler to quickly
transfer control to the lower-privilege mode’s trap handler.

Opcode space has been reserved for the HRTS instruction, which would redirect a trap from
H-mode to S-mode. To facilitate horizontal user-mode traps, we have also reserved space for
MRTU, HRTU, and SRTU instructions.

3.2.3 Wait for Interrupt

The Wait for Interrupt instruction (WFI) provides a hint to the implementation that the current
hart can be stalled until an interrupt might need servicing. Execution of the WFI instruction can
also be used to inform the hardware platform that suitable interrupts should be routed to this hart.
WFI is available at the S, H, and M privilege levels.

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
WFI 0 PRIV 0 SYSTEM

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt
exception will be taken on the following instruction, i.e., execution resumes in the trap handler and
mepc = pc + 4.

The following instruction takes the interrupt exception and trap, so that a simple return from
the trap handler will execute code after the WFI instruction.

The WFI instruction is just a hint, and a legal implementation is to implement WFI as a NOP.

If the implementation does not stall the hart on execution of the instruction, then the interrupt
will be taken on some instruction in the idle loop containing the WFI, and on a simple return
from the handler, the idle loop will resume execution.

Interrupts can be disabled when the WFI instruction is executed, but the hart must resume execu-
tion if any interrupts (enabled or not) are pending, or become pending while the hart is stalled. If
any masked interrupt is or becomes pending, execution will resume at pc + 4, and software must
determine what action to take for any pending interrupt.

By allowing wakeup when interrupts are disabled, an alternate entry point to an interrupt handler
can be called that does not require saving the current context, as the current context can be saved
or discarded before the WFI is executed.

The mip, hip, sip registers can be interrogated to determine the presence of any interrupt
in machine, hypervisor, or supervisor mode respectively.

As implementations are free to implement WFI as a NOP, software must explicitly check
for any relevant pending but disabled interrupts in the code following an WFI, and should loop
back to the WFI if no suitable interrupt was detected.

The same “wait-for-event” template might be used for possible future extensions that wait on
memory locations changing, or message arrival.



32 1.7: Volume II: RISC-V Privileged Architectures

3.3 Physical Memory Attributes

Access to system physical memory is mediated by machine mode. Because the layout of the physical
memory space is highly system dependent, this section describes the overall approach of specifying
attributes for each physical address range rather than specific details for a given hardware platform.

The physical memory map for a complete system includes various memory regions and various
memory-mapped control registers. Some memory regions might not exist, some might be read
only, some might not support subword or even subblock accesses, some might not support atomic
operations, and some might not support cache coherence. Similarly, memory-mapped control reg-
isters vary in their supported access widths, and whether read and write accesses have associated
side effects.

While many systems specify such attributes in the virtual memory page tables, this injects platform-
specific information into a virtualized layer and can cause system errors unless attributes are cor-
rectly initialized in each page-table entry for each platform physical memory region. In addition,
the available page sizes might not be optimal for specifying attributes in the physical memory space.

For RISC-V, we separate out specification of machine physical memory attributes into a separate
custom hardware structure. In many cases, the attributes are known at system design time for
each physical address region, and can be hard-wired into the memory datapath of each RISC-V
processor of the system. Alternatively, machine-level control registers can be provided to specify
these attributes at a granularity appropriate to each region on the platform (for example, if an
on-chip SRAM can be flexibly divided between cacheable and uncacheable uses). These attributes
will be applied to any access to the physical memory region, including accesses that have undergone
virtual to physical memory translation.

To aid in system debugging, we strongly recommend that RISC-V processors trap illegal physical
memory accesses precisely at the core, instead of reporting them as imprecise machine check errors
from the memory subsystem.

3.4 Physical Memory Access Control

To contain faults and support secure processing, it is desirable to limit the physical addresses
accessible by a lower-privilege context running on a hart. Similar to the physical memory attributes
described in the previous section, a RISC-V system should provide per-hart control registers to allow
physical memory access privileges (read, write, execute) to be specified for each physical memory
space. The granularity of the access control settings can be varied for different physical memory
address spaces on the hardware platform, and certain region’s privileges can be hardwired.

These machine-mode physical memory access controls are applied for all accesses when the hart is
running in U, S, or H modes, and for load and stores when the hart is running in M mode with
the MPRV bit set in the mstatus register. As with the physical address attributes described in the
previous section, illegal physical memory accesses should be trapped precisely.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 33

3.5 Mbare addressing environment

The Mbare environment is selected at reset or can be entered at any time by writing the VM field
in the mstatus register.

In the Mbare environment all virtual addresses are converted with no translation into physical
addresses, with truncation of any excess high order bits. The physical memory attributes and
access controls described in the previous sections can be used to constrain accesses.

3.6 Base-and-Bound environments

This section describes the Mbb virtualization environment, which provides a base-and-bound trans-
lation and protection scheme. There are two variants of base-and-bound, Mbb and Mbbid, depend-
ing on whether there is a single base-and-bound (Mbb) or separate base-and-bounds for instruction
fetches and data accesses (Mbbid). This simple translation and protection scheme has the advan-
tage of low complexity and deterministic high performance, as there are never any TLB misses
during operation.

3.6.1 Mbb: Single Base-and-Bound registers (mbase, mbound)

XLEN-1 0

mbase

mbound

XLEN

Figure 3.15: Single Base-and-Bound Registers.

The simpler Mbb system has a single base mbase and single bound mbound register. Mbb is enabled
by writing the value 1 to the VM field in the mstatus register.

The base-and-bound registers define a contiguous virtual-address segment beginning at virtual
address 0 with a length given in bytes by the value in mbound. This virtual address segment is
mapped to a contiguous physical address segment starting at the physical address given in the
mbase register.

When Mbb is in operation, all lower-privilege mode (U, S, H) instruction-fetch addresses and data
addresses are translated by adding the value of mbase to the virtual address to obtain the physical
address. Simultaneously, the virtual address is compared against the value in the bound register.
An address fault exception is generated if the virtual address is equal to or greater than the virtual
address limit held in the mbound register.

Machine-mode instruction fetch and data accesses are not translated or checked in Mbb (except for
loads and stores when the MPRV bit is set in mstatus), so machine-mode effective addresses are
treated as physical addresses.



34 1.7: Volume II: RISC-V Privileged Architectures

3.6.2 Mbbid: Separate Instruction and Data Base-and-Bound registers

XLEN-1 0

mibase

mibound

mdbase

mdbound

XLEN

Figure 3.16: Separate instruction and data base-and-bound registers.

The Mbbid scheme separates the virtual address segments for instruction fetches and data accesses
to allow a single physical instruction segment to be shared by two or more user-level virtual address
spaces while a separate data segment is allocated to each. Mbbid is enabled by writing 2 to the
VM field of mstatus register.

The split instruction and data base-and-bounds scheme was famously used on Cray supercom-
puters, where it avoids most runtime overheads related to translation and protection provided
the segments fit in physical memory.

The mibase and mibound registers define the physical start address and length of the instruction
segment respectively, while mdbase and mdbound specify the physical start address and length of
the data segment respectively.

The data virtual address segment begins at address 0, while the instruction virtual address segment
begins half way through the virtual address space, at an address given by a leading 1 following by
XLEN-1 trailing zeros (e.g., 0x8000 0000 for 32-bit address space systems). The virtual addresses
of lower privilege-mode instruction fetches are first checked to ensure their high bit is set; if not,
an exception is generated. The high bit is subsequently treated as zero when adding the base to
the virtual address and when checking the bound.

The data and instruction virtual address segments should not overlap, and we felt it more im-
portant to preserve the potential of zero page data accesses (using a 12-bit offset from register
x0) than to support instruction entry points using JALR with x0. In particular, a single JAL
can directly access all of a 2 MiB code segment.

To simplify linking, the instruction virtual address segment start address should be constant
independent of the length of the complete binary. Placing at the midpoint of virtual memory
minimizes the circuitry needed to separate the two segments.

Systems that provide Mbbid must also provide Mbb. Writes to the CSR addresses corresponding
to mbase should write the same value to mibase & mdbase, and writes to mbound should write the
same value to mibound & mdbound to provide compatible behavior. Reads of mbase should return
the value in mdbase and reads of mbound should return the value in mdbound. When VM is set to
Mbb, instruction fetches no longer check the high bit of the virtual address, and no longer reset
the high bit to zero before adding base and checking bound.

While the split scheme allows a single physical instruction segment to be shared across multiple
user process instances, it also effectively prevents the instruction segment from being written by
the user program (data stores are translated separately) and prevents execution of instructions
from the data segment (instruction fetches are translated separately). These restrictions can
prevent some forms of security attack.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 35

On the other hand, many modern programming systems require, or benefit from, some form
of runtime-generated code, and so these should use the simpler Mbb mode with a single segment,
which is partly why supporting this mode is required if providing Mbbid.



36 1.7: Volume II: RISC-V Privileged Architectures



Chapter 4

Supervisor-Level ISA

This chapter describes the RISC-V supervisor-level architecture, which contains a common core
that is used with various supervisor-level address translation and protection schemes. Supervisor-
mode always operates inside a virtual memory scheme defined by the VM field in the machine-mode
mstatus register. Supervisor-level code is written to a given VM scheme, and cannot change the
VM scheme in use.

Supervisor-level code relies on a supervisor execution environment to initialize the environment and
enter the supervisor code at an entry point defined by the system binary interface (SBI). The SBI
also defines function entry points that provide supervisor environment services for supervisor-level
code.

Supervisor mode is deliberately restricted in terms of interactions with underlying physical hard-
ware, such as physical memory and device interrupts, to support clean virtualization. A more
conventional virtualization-unfriendly operating system can be ported by using M-mode to ini-
tially map physical memory into the supervisor virtual memory address space, and by delegating
device interrupts to S-mode.

4.1 Supervisor CSRs

A number of CSRs are provided for the supervisor.

The supervisor should only view CSR state that should be visible to a supervisor-level operating
system. In particular, there is no information about the existence (or non-existence) of higher
privilege levels (hypervisor or machine) visible in the CSRs accessible by the supervisor. Ad-
ditional CSRs, visible only to the higher-privilege levels, will encode if a processor is currently
executing in a privilege level greater than supervisor level.

Many supervisor CSRs are a subset of the equivalent machine-mode CSR, and the machine-
mode chapter should be read first to help understand the supervisor-level CSR descriptions.

37



38 1.7: Volume II: RISC-V Privileged Architectures

4.1.1 Supervisor Status Register (sstatus)

The sstatus register is an XLEN-bit read/write register formatted as shown in Figure 4.1. The
sstatus register keeps track of the processor’s current operating state.

XLEN-1 XLEN-2 17 16 15 14 13 12 11 5 4 3 2 1 0

SD 0 MPRV XS[1:0] FS[1:0] 0 PS PIE 0 IE

1 XLEN-18 1 2 2 7 1 1 2 1

Figure 4.1: Supervisor-mode status Register.

The PS bit indicates the privilege level at which a hart was executing before entering supervisor
mode. When a trap is taken, PS is set to 0 if the trap originated from user mode, or 1 otherwise.
When an ERET instruction (see Section 3.2.1) is executed to return from the trap handler, the
privilege level is set to user mode if the PS bit is 0, or supervisor mode if the PS bit is 1.

The IE bit enables or disables all interrupts in supervisor mode. When IE is clear, interrupts are
not taken while in supervisor mode. When the hart is running in user-mode, the value in IE is
ignored, and supervisor-level interrupts are enabled. The supervisor can disable indivdual interrupt
sources using the sie register.

The PIE bit indicates whether interrupts were enabled before entering supervisor mode. When a
trap is taken, PIE is set to IE and IE is set to 0. When an ERET instruction is executed, IE is set
to PIE.

4.1.2 Memory Privilege in sstatus Register

The MPRV bit modifies the privilege level at which loads and stores execute. When MPRV=0,
memory is protected as normal. When MPRV=1, data memory is protected as though the current
privilege level were given by the PS bit (i.e., user level when PS=0, or supervisor level when PS=1).
Instruction memory protection is unaffected by the setting of the MPRV bit.

When an exception occurs, MPRV is reset to 0.

The MPRV mechanism allows supervisor software to reference memory on behalf of the user
without inadvertently accessing memory protected from the user.

4.1.3 Supervisor Interrupt Registers (sip and sie)

The sip register is an XLEN-bit read/write register containing information on pending interrupts,
while sie is the corresponding XLEN-bit read/write register containing interrupt enable bits.

Two types of interrupts are defined: software interrupts and timer interrupts. A software interrupt
is triggered on the current hart by writing 1 to its software interrupt-pending (SSIP) bit in the sip

register. A pending software interrupt can be cleared by writing 0 to the SSIP bit in sip. All other
bits in the sip register are read-only. Software interrupts are disabled when the software interrupt
enable (SSIE) bit in the sie register is clear.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 39

Interprocessor interrupts are sent to other harts by means of SBI calls, which will ultimately cause
the SSIP bit to be set in the recipient hart’s sip register.

A timer interrupt is pending if the STIP bit in the sip register is set. Timer interrupts are disabled
when the STIE bit in the sie register is clear. A pending timer interrupt is cleared by writing the
stimecmp register.

XLEN-1 6 5 4 2 1 0

0 STIP 0 SSIP 0

XLEN-6 1 3 1 1

Figure 4.2: Supervisor interrupt-pending register (sip).

XLEN-1 6 5 4 2 1 0

0 STIE 0 SSIE 0

XLEN-6 1 3 1 1

Figure 4.3: Supervisor interrupt-enable register (sie).

4.1.4 Supervisor Timer Registers (stime, stimecmp)

Supervisor mode includes a timer facility provided by the stimecmp register together with the
real-time counter stime (stime is the supervisor read/write version of the user read-only time

register). The SBI must provide a facility for determining the timebase of stime, which must run
at a constant frequency.

The stimecmp register has 32-bit precision on all RV32, RV64, and RV128 systems. A timer
interrupt is posted when the low 32 bits of the stime register match the value in the low 32 bits
of the stimecmp register. The interrupt remains posted until it is cleared by writing the stimecmp

register. The interrupt will only be taken if the interrupts are enabled and the STIE bit is set in
the sie register.

XLEN-1 0

stime

XLEN

Figure 4.4: Supervisor time register.

31 0

stimecmp

32

Figure 4.5: Supervisor time compare register.

4.1.5 Supervisor Scratch Register (sscratch)

The sscratch register is an XLEN-bit read/write register, dedicated for use by the supervisor.
Typically, sscratch is used to hold a pointer to the hart-local supervisor context while the hart is



40 1.7: Volume II: RISC-V Privileged Architectures

executing user code. At the beginning of a trap handler, sscratch is swapped with a user register
to provide an initial working register.

XLEN-1 0

sscratch

XLEN

Figure 4.6: Supervisor Scratch Register.

4.1.6 Supervisor Exception Program Counter (sepc)

sepc is an XLEN-bit read/write register formatted as shown in Figure 4.7. The low bit of sepc
(sepc[0]) is always zero. On implementations that do not support instruction-set extensions with
16-bit instruction alignment, the two low bits (sepc[1:0]) are always zero.

When a trap is taken, sepc is written with the virtual address of the instruction that encountered
the exception.

XLEN-1 0

sepc

XLEN

Figure 4.7: Supervisor exception program counter register.

4.1.7 Supervisor Cause Register (scause)

The scause register is an XLEN-bit read-only register formatted as shown in Figure 4.8. The
Interrupt bit is set if the exception was caused by an interrupt. The Exception Code field contains
a code identifying the last exception. Table 4.1 lists the possible exception codes for the current
supervisor ISAs.

XLEN-1 XLEN-2 4 3 0

Interrupt 0 Exception Code

1 XLEN-5 4

Figure 4.8: Supervisor Cause register.

4.1.8 Supervisor Bad Address (sbadaddr) Register

sbadaddr is an XLEN-bit read-only register formatted as shown in Figure 4.9. When an instruc-
tion fetch address-misaligned exception, or instruction fetch access exception, or AMO address-
misaligned exception, or load or store access exception occurs, sbadaddr is written with the faulting
address. The value in sbadaddr is undefined for other exceptions.

For instruction fetch access faults on RISC-V systems with variable-length instructions, sbadaddr
will point to the portion of the instruction that caused the fault while sepc will point to the
beginning of the instruction.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 41

Interrupt Exception Code Description

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Reserved
0 5 Load access fault
0 6 AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call
0 ≥9 Reserved

1 0 Software interrupt
1 1 Timer interrupt
1 ≥2 Reserved

Table 4.1: Supervisor cause register (scause) values.

XLEN-1 0

sbadaddr

XLEN

Figure 4.9: Supervisor bad address register.

4.1.9 Supervisor Page-Table Base Register (sptbr)

The sptbr register is an XLEN-bit read/write register formatted as shown in Figure 4.10. The
sptbr is only present on system supporting paged virtual-memory systems. This register holds
the supervisor physical address of the current root page table, which must be aligned to a 4 KiB
boundary.

XLEN-1 12 11 0

base 0

XLEN-12 12

Figure 4.10: Supervisor Page-Table Base Register sptbr.

For many applications, the choice of page size has a substantial performance impact. A large
page size increases TLB reach and loosens the associativity constraints on virtually-indexed,
physically-tagged caches. At the same time, large pages exacerbate internal fragmentation, wast-
ing physical memory and possibly cache capacity.

After much deliberation, we have settled on a conventional page size of 4 KiB for both RV32
and RV64. We expect this decision to ease the porting of low-level runtime software and device
drivers. The TLB reach problem is ameliorated by transparent superpage support in modern
operating systems [2]. Additionally, multi-level TLB hierarchies are quite inexpensive relative to
the multi-level cache hierarchies whose address space they map.



42 1.7: Volume II: RISC-V Privileged Architectures

4.1.10 Supervisor Address Space ID Register (sasid)

The sasid register is an ASIDLEN-bit read/write register formatted as shown in Figure 4.11, and
is only present on systems supporting paged virtual memory. This register specifies the current
address space to facilitate address-translation fences on a per-address-space basis. The SBI should
provide a way to obtain ASIDLEN, which is implementation-defined and may be zero if ASIDs are
not supported.

ASIDLEN-1 0

sasid

ASIDLEN

Figure 4.11: Supervisor Address-Space ID Register.

4.2 Supervisor Instructions

In addition to the ECALL, ERET, and EBREAK instructions defined in Section 3.2.1, one new
supervisor-level instruction is provided.

4.2.1 Supervisor Memory-Management Fence Instruction

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
SFENCE.VM vaddr PRIV 0 SYSTEM

The supervisor memory-management fence instruction SFENCE.VM is used to synchronize updates
to in-memory memory-management data structures with current execution. The SFENCE.VM
instruction guarantees that any updates to in-memory memory-management data structures (e.g.,
page tables) will take effect for future instructions executed by this RISC-V thread.

The SFENCE.VM is used to flush any local hardware caches related to address translation. It
is specified as a fence rather than a TLB flush to provide cleaner semantics with respect to
which instructions are affected by the flush operation and to support a wider variety of dynamic
caching structures and memory-management schemes. SFENCE.VM is also used by higher
privilege levels to synchronize page table writes and the address translation hardware.

Note the instruction has no effect on the translations of other RISC-V threads, which must be
notified separately. One approach is to use 1) a local data fence to ensure local writes are visible
globally, then 2) an interprocessor interrupt to the other thread, then 3) a local SFENCE.VM
in the interrupt handler of the remote thread, and finally 4) signal back to originating thread
that operation is complete. This is, of course, the RISC-V analog to a TLB shootdown. Alter-
natively, implementations might provide direct hardware support for remote TLB invalidation.
TLB shootdowns are handled by an SBI call to hide implementation details.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 43

The behavior of SFENCE.VM depends on the current value of the sasid register. If sasid is
nonzero, SFENCE.VM takes effect only for address translations in the current address space. If
sasid is zero, SFENCE.VM affects address translations for all address spaces. In this case, it also
affects global mappings, which are described in Section 4.5.1.

The register operand rs1 contains an optional virtual address argument. If rs1=x0, the fence affects
all virtual address translations. For the common case that the translation data structures have only
been modified for a single address mapping (e.g., one page), rs1 can specify a virtual address within
that mapping to effect a translation fence for that mapping only.

Simpler implementations can ignore the ASID value in sasid and the virtual address in rs1 and
always perform a global fence.

4.3 Supervisor Operation in Mbare Environment

When the Mbare environment is selected in the VM field of mstatus (Section 3.1.6), supervisor-
mode virtual addresses are truncated and mapped directly to supervisor-mode physical addresses.
Supervisor physical addresses are then checked using any physical memory protection structures
(Sections 3.3–3.4), before being directly converted to machine-level physical addresses.

4.4 Supervisor Operation in Base and Bounds Environments

When Mbb or Mbbid are selected in the VM field of mstatus (Section 3.1.6), supervisor-mode
virtual addresses are translated and checked according to the appropriate machine-level base and
bound registers. The resulting supervisor-level physical addresses are then checked using any phys-
ical memory protection structures (Sections 3.3–3.4), before being directly converted to machine-
level physical addresses.

4.5 Sv32: Page-Based 32-bit Virtual-Memory Systems

When Sv32 is written to the VM field in the mstatus register, the supervisor operates in a 32-
bit paged virtual-memory system. Sv32 is supported on RV32 systems and is designed to include
mechanisms sufficient for supporting modern Unix-based operating systems.

The initial RISC-V paged virtual-memory architectures have been designed as straightforward
implementations to support existing operating systems. We have architected page table layouts
to support a hardware page-table walker. Software TLB refills are a performance bottleneck on
high-performance system, and are especially troublesome with decoupled specialized coprocessors.
An implementation can choose to implement software TLB refills using a machine-mode trap
handler as an extension to M-mode.



44 1.7: Volume II: RISC-V Privileged Architectures

4.5.1 Addressing and Memory Protection

Sv32 implementations support a 32-bit virtual address space, divided into 4 KiB pages. An Sv32
virtual address is partitioned into a virtual page number (VPN) and page offset, as shown in
Figure 4.12. When Sv32 virtual memory mode is selected in the VM field of the mstatus register,
supervisor virtual addresses are translated into supervisor physical addresses via a two-level page
table. The 20-bit VPN is translated into a 22-bit physical page number (PPN), while the 12-bit
page offset is untranslated. The resulting supervisor-level physical addresses are then checked using
any physical memory protection structures (Sections 3.3–3.4), before being directly converted to
machine-level physical addresses.

31 22 21 12 11 0

VPN[1] VPN[0] page offset

10 10 12

Figure 4.12: Sv32 virtual address.

33 22 21 12 11 0

PPN[1] PPN[0] page offset

12 10 12

Figure 4.13: Sv32 physical address.

31 20 19 10 9 7 6 5 4 1 0

PPN[1] PPN[0] Reserved for software D R Type V

12 10 3 1 1 4 1

Figure 4.14: Sv32 page table entry.

Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical address of the root
page table is stored in the sptbr register.

The PTE format for Sv32 is shown in Figures 4.14. The V bit indicates whether the PTE is valid;
if it is 0, bits 31–1 of the PTE are don’t-cares and may be used freely by software. Otherwise, the
Type field indicates whether the PTE is a pointer to the next level of the page table or a leaf PTE.
If it is the latter, the Type field also encodes the access permissions. Table 4.2 details the Type
field encodings.

An alternative PTE format that orthogonalizes supervisor and user permissions would be easier
to explain but would require more bits to encode. This would reduce the amount of physical
memory that can be addressed with a 32-bit PTE.

Supervisor page mappings may be marked global in the Type field. Global mappings are those that
exist in all address spaces. For non-leaf PTEs, the global setting implies that all mappings in the
subsequent levels of the page table are global. Note that failing to mark a global mapping as global
merely reduces performance, whereas marking a non-global mapping as global is an error.

Global mappings were devised to reduce the cost of context switches. They need not be flushed
from an implementation’s address translation caches when an SFENCE.VM instruction is exe-
cuted with a nonzero sasid value.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 45

Supervisor User

Type Meaning Global R W X R W X

0 Pointer to next level of page table.
—

1 Pointer to next level of page table—global mapping. •
2 Supervisor read-only, user read-execute page. • • •
3 Supervisor read-write, user read-write-execute page. • • • • •
4 Supervisor and user read-only page. • •
5 Supervisor and user read-write page. • • • •
6 Supervisor and user read-execute page. • • • •
7 Supervisor and user read-write-execute page. • • • • • •
8 Supervisor read-only page. •
9 Supervisor read-write page. • •

10 Supervisor read-execute page. • •
11 Supervisor read-write-execute page. • • •
12 Supervisor read-only page—global mapping. • •
13 Supervisor read-write page—global mapping. • • •
14 Supervisor read-execute page—global mapping. • • •
15 Supervisor read-write-execute page—global mapping. • • • •

Table 4.2: Encoding of PTE Type field.

Each leaf PTE maintains a referenced (R) and dirty (D) bit. When a virtual page is read, written,
or fetched from, the implementation sets the R bit in the corresponding PTE. When a virtual page
is written, the implementation additionally sets the D bit in the corresponding PTE. The access
that causes the R and/or D bit to be set must not appear to precede the update of the PTE.
Furthermore, the PTE must be updated atomically with respect to other writes to the PTE.

The R and D bits are never cleared by the implementation. If the supervisor software does not
rely on referenced and/or dirty bits, e.g. if it does not swap pages to secondary storage, it should
always set them to 1 in the PTE. The implementation can then avoid issuing memory accesses
to set the bits.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv32 supports 4 MiB megapages.
A megapage must be virtually and physically aligned to a 4 MiB boundary.

4.5.2 Virtual Address Translation Process

A virtual address va is translated into a physical address pa as follows:

1. Let a be the value of the sptbr register, and let i = LEVELS−1. (For Sv32, LEVELS equals
2.)

2. Let pte be the value of the PTE at address a + va.vpn[i]× PTESIZE. (For Sv32, PTESIZE
equals 4.)

3. If pte.v = 0, stop and signal an address error.



46 1.7: Volume II: RISC-V Privileged Architectures

4. Otherwise, pte.v = 1. If pte.type ≥ 2, continue to step 5. Otherwise, this PTE is a pointer
to the next level of the page table. Let i = i− 1. If i < 0, stop and signal an address error.
Otherwise, let a = pte.ppn×PAGESIZE and go to step 2. (For Sv32, PAGESIZE equals 212.)

5. A leaf PTE has been found. Determine if the requested memory access is allowed by the
pte.type field. If not, stop and signal an address error. Otherwise, the translation is successful.
Set pte.r to 1, and, if the memory access is a store, set pte.d to 1. The translated physical
address is given as follows:

• pa.pgoff = va.pgoff.

• If i > 0, then this is a superpage translation and pa.ppn[i− 1 : 0] = va.vpn[i− 1 : 0].

• pa.ppn[LEVELS− 1 : i] = pte.ppn[LEVELS− 1 : i].

4.6 Sv39: Page-Based 39-bit Virtual-Memory System

This section describes a simple paged virtual-memory system designed for RV64 systems, which
supports 39-bit virtual address spaces. The design of Sv39 follows the overall scheme of Sv32, and
this section details only the differences between the schemes.

4.6.1 Addressing and Memory Protection

Sv39 implementations support a 39-bit virtual address space, divided into 4 KiB pages. An Sv39
address is partitioned as shown in Figure 4.15. Load and store effective addresses, which are 64
bits, must have bits 63–39 all equal to bit 38, or else an address exception will occur. The 27-bit
VPN is translated into a 38-bit PPN via a three-level page table, while the 12-bit page offset is
untranslated.

38 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] page offset

9 9 9 12

Figure 4.15: Sv39 virtual address.

49 30 29 21 20 12 11 0

PPN[2] PPN[1] PPN[0] page offset

20 9 9 12

Figure 4.16: Sv39 physical address.

63 48 47 28 27 19 18 10 9 7 6 5 4 1 0

Reserved PPN[2] PPN[1] PPN[0] Reserved for SW D R Type V

16 20 9 9 3 1 1 4 1

Figure 4.17: Sv39 page table entry.

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical address of the root
page table is stored in the sptbr register.



Copyright (c) 2010–2015, The Regents of the University of California. All rights reserved. 47

The PTE format for Sv39 is shown in Figure 4.17. Bits 9–0 have the same meaning as for Sv32.
Bits 63–48 are reserved for future use and must be zeroed by software for forward compatibility.

We reserved several PTE bits for a possible extension that improves support for sparse address
spaces by allowing page-table levels to be skipped, reducing memory usage and TLB refill latency.
These reserved bits may also be used to facilitate research experimentation. The cost is reducing
the physical address space, but 1 PiB is presently ample. If at some point it no longer suffices,
the reserved bits that remain unallocated could be used to expand the physical address space.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv39 supports 2 MiB megapages
and 1 GiB gigapages, each of which must be virtually and physically aligned to a boundary equal
to its size.

The algorithm for virtual-to-physical address translation is the same as in Section 4.5.2, except
LEVELS equals 3 and PTESIZE equals 8.

4.7 Sv48: Page-Based 48-bit Virtual-Memory System

This section describes a simple paged virtual-memory system designed for RV64 systems, which
supports 48-bit virtual address spaces. Sv48 is intended for systems for which a 39-bit virtual
address space is insufficient. It closely follows the design of Sv39, simply adding an additional level
of page table, and so this chapter only details the differences between the two schemes.

Implementations that support Sv48 should also support Sv39.

We specified two virtual memory systems for RV64 to relieve the tension between providing a
large address space and minimizing address-translation cost. For many systems, 512 GiB of
virtual-address space is ample, and so Sv39 suffices. Sv48 increases the virtual address space
to 256 TiB but increases the physical memory capacity dedicated to page tables, the latency of
page-table traversals, and the size of hardware structures that store virtual addresses.

Systems that support Sv48 can also support Sv39 at essentially no cost, and so should do so
to support supervisor software that assumes Sv39.

4.7.1 Addressing and Memory Protection

Sv48 implementations support a 48-bit virtual address space, divided into 4 KiB pages. An Sv48
address is partitioned as shown in Figure 4.18. Load and store effective addresses, which are 64
bits, must have bits 63–48 all equal to bit 47, or else an address exception will occur. The 36-bit
VPN is translated into a 38-bit PPN via a four-level page table, while the 12-bit page offset is
untranslated.

47 39 38 30 29 21 20 12 11 0

VPN[3] VPN[2] VPN[1] VPN[0] page offset

9 9 9 9 12

Figure 4.18: Sv48 virtual address.



48 1.7: Volume II: RISC-V Privileged Architectures

49 39 38 30 29 21 20 12 11 0

PPN[3] PPN[2] PPN[1] PPN[0] page offset

11 9 9 9 12

Figure 4.19: Sv48 physical address.

63 48 47 37 36 28 27 19 18 10 9 7 6 5 4 1 0

Reserved PPN[3] PPN[2] PPN[1] PPN[0] Reserved for SW D R Type V

16 11 9 9 9 3 1 1 4 1

Figure 4.20: Sv48 page table entry.

The PTE format for Sv48 is shown in Figure 4.20. Bits 9–0 have the same meaning as for Sv32. Any
level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv48 supports 2 MiB megapages,
1 GiB gigapages, and 512 GiB terapages, each of which must be virtually and physically aligned to
a boundary equal to its size.

The algorithm for virtual-to-physical address translation is the same as in Section 4.5.2, except
LEVELS equals 4 and PTESIZE equals 8.



Chapter 5

Hypervisor-Level ISA

This chapter is a placeholder for a future RISC-V hypervisor-level common core specification.

The privileged architecture is designed to simplify the use of classic virtualization techniques,
where a guest OS is run at user-level, as the few privileged instructions can be easily detected
and trapped.

49



50 1.7: Volume II: RISC-V Privileged Architectures



Chapter 6

RISC-V Privileged Instruction Set
Listings

This chapter presents instruction set listings for all instructions defined in the RISC-V Privileged
Architecture.

51



52 1.7: Volume II: RISC-V Privileged Architectures

31 27 26 25 24 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode I-type

Instructions to Access CSRs
csr rs1 001 rd 1110011 CSRRW rd,csr,rs1
csr rs1 010 rd 1110011 CSRRS rd,csr,rs1
csr rs1 011 rd 1110011 CSRRC rd,csr,rs1
csr zimm 101 rd 1110011 CSRRWI rd,csr,imm
csr zimm 110 rd 1110011 CSRRSI rd,csr,imm
csr zimm 111 rd 1110011 CSRRCI rd,csr,imm

Instructions to Change Privilege Level
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK
000100000000 00000 000 00000 1110011 ERET

Trap-Redirection Instructions
001100000101 00000 000 00000 1110011 MRTS
001100000110 00000 000 00000 1110011 MRTH
001000000101 00000 000 00000 1110011 HRTS

Interrupt-Management Instructions
000100000010 00000 000 00000 1110011 WFI

Memory-Management Instructions
000100000001 rs1 000 00000 1110011 SFENCE.VM rs1

Table 6.1: RISC-V Privileged Instructions



Chapter 7

History

Acknowledgements

Thanks to Christopher Celio, David Chisnall, Palmer Dabbelt, Matt Thomas, and Albert Ou for
feedback on the privileged specification.

7.1 Funding

Development of the RISC-V architecture and implementations has been partially funded by the
following sponsors.

• Par Lab: Research supported by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional
support came from Par Lab affiliates Nokia, NVIDIA, Oracle, and Samsung.

• Project Isis: DoE Award DE-SC0003624.

• ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. DARPA POEM
program Award HR0011-11-C-0100. The Center for Future Architectures Research (C-FAR),
a STARnet center funded by the Semiconductor Research Corporation. Additional sup-
port from ASPIRE industrial sponsor, Intel, and ASPIRE affiliates, Google, Huawei, Nokia,
NVIDIA, Oracle, and Samsung.

The content of this paper does not necessarily reflect the position or the policy of the US government
and no official endorsement should be inferred.

53



54 1.7: Volume II: RISC-V Privileged Architectures



Bibliography

[1] Robert P. Goldberg. Survey of virtual machine research. Computer, 7(6):34–45, June 1974.

[2] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical, transparent operating
system support for superpages. SIGOPS Oper. Syst. Rev., 36(SI):89–104, December 2002.

[3] Rusty Russell. Virtio: Towards a de-facto standard for virtual I/O devices. SIGOPS Oper.
Syst. Rev., 42(5):95–103, July 2008.

55


	Introduction
	RISC-V Hardware Platform Terminology
	RISC-V Privileged Software Stack Terminology
	Privilege Levels

	Control and Status Registers (CSRs)
	Instructions to access CSRs
	CSR Address Mapping Conventions
	CSR Listing

	Machine-Level ISA
	Machine-Level CSRs
	CPU ID Register mcpuid
	Implementation ID Register mimpid
	Hart ID Register mhartid
	Machine Status Register (mstatus)
	Privilege and Global Interrupt-Enable Stack in mstatus register
	Virtualization Management Field in mstatus Register
	Memory Privilege in mstatus Register
	Extension Context Status in mstatus Register
	Machine Trap Vector Base Address Register (mtvec)
	Machine Trap Delegation Register (mtdeleg)
	Machine Interrupt Registers (mip and mie)
	Machine Timer Registers (mtime, mtimecmp)
	Machine Scratch Register (mscratch)
	Machine Exception Program Counter (mepc)
	Machine Cause Register (mcause)
	Machine Bad Address (mbadaddr) Register

	Machine-Mode Privileged Instructions
	Instructions to Change Privilege Level
	Trap Redirection Instructions
	Wait for Interrupt

	Physical Memory Attributes
	Physical Memory Access Control
	Mbare addressing environment
	Base-and-Bound environments
	Mbb: Single Base-and-Bound registers (mbase, mbound)
	Mbbid: Separate Instruction and Data Base-and-Bound registers


	Supervisor-Level ISA
	Supervisor CSRs
	Supervisor Status Register (sstatus)
	Memory Privilege in sstatus Register
	Supervisor Interrupt Registers (sip and sie)
	Supervisor Timer Registers (stime, stimecmp)
	Supervisor Scratch Register (sscratch)
	Supervisor Exception Program Counter (sepc)
	Supervisor Cause Register (scause)
	Supervisor Bad Address (sbadaddr) Register
	Supervisor Page-Table Base Register (sptbr)
	Supervisor Address Space ID Register (sasid)

	Supervisor Instructions
	Supervisor Memory-Management Fence Instruction

	Supervisor Operation in Mbare Environment
	Supervisor Operation in Base and Bounds Environments
	Sv32: Page-Based 32-bit Virtual-Memory Systems
	Addressing and Memory Protection
	Virtual Address Translation Process

	Sv39: Page-Based 39-bit Virtual-Memory System
	Addressing and Memory Protection

	Sv48: Page-Based 48-bit Virtual-Memory System
	Addressing and Memory Protection


	Hypervisor-Level ISA
	RISC-V Privileged Instruction Set Listings
	History
	Funding


