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Will consumer wearable technology ever be adopted or accepted by the medical community?

Patients and practitioners regularly use digital technology (e.g., thermometers and glucose

monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the

United Kingdom report that patients arrive with suggestions for treatment based on online

search results [1]. However, consumer health wearables are predicted to become the next “Dr

Google.”One in six (15%) consumers in the United States currently uses wearable technology,

including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold

this year, that number is predicted to grow to 110 million in 2018 [2]. As the line between con-

sumer health wearables and medical devices begins to blur, it is now possible for a single wear-

able device to monitor a range of medical risk factors (Fig 1). Potentially, these devices could

give patients direct access to personal analytics that can contribute to their health, facilitate pre-

ventive care, and aid in the management of ongoing illness. However, how this new wearable

technology might best serve medicine remains unclear.

DoWearables Affect Behaviour?

Healthy Individuals
At present, wearables are more likely to be purchased by individuals who already lead a

healthy lifestyle and want to quantify their progress [2]. The majority of wearable manufactur-

ers (e.g., Fitbit, Jawbone, and Nike) stress the potential of their devices to become an “all-in-

one" platform for improving physical performance and positive habit formation. Wearable

Summary Points

• Consumer wearables can provide patients with personalized health data, which could

assist with self-diagnosis and behaviour change interventions.

• There are a number of concerns about the safety, reliability, and security of using con-

sumer wearables in health care.

• Practitioners and researchers should consider how these technological advances may

impact health care in the 21st century.
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manufacturers utilise a range of digital persuasive techniques and social influence strategies to

increase user engagement, including the gamification of activity with competitions and chal-

lenges, publication of visible feedback on performance utilising social influence principles, or

reinforcements in the form of virtual rewards for achievements. There is also a small, but grow-

ing, population of wearable users specifically interested in the concept of self-discovery via per-

sonal analytics—the Quantified Self (QS) movement [11]. A number of scientific and popular

publications describe methods and techniques for using consumer wearables as “self-hacking”

devices—to improve sleep, manage stress, or increase productivity [12]. But do these interven-

tions make people healthier?

Current empirical evidence is not supportive. Evidence for the effectiveness of QS methods

comes from single-subject reports of users describing their experiences. Subjective reports like

these cannot be treated as reliable scientific evidence. Very few longitudinal, randomised con-

trolled studies focus on the impact of wearable technology on healthy users’ behaviour. One

Fig 1. What can consumer wearables do?Heart rate can be measured with an oximeter built into a ring [3], muscle activity with an electromyographic
sensor embedded into clothing [4], stress with an electodermal sensor incorporated into a wristband [5], and physical activity or sleep patterns via an
accelerometer in a watch [6,7]. In addition, a female’s most fertile period can be identified with detailed body temperature tracking [8], while levels of mental
attention can be monitored with a small number of non-gelled electroencephalogram (EEG) electrodes [9]. Levels of social interaction (also known to affect
general well-being) can be monitored using proximity detections to others with Bluetooth- or Wi-Fi-enabled devices [10]. Consumer wearables can deliver
personalised, immediate, and goal-oriented feedback based on specific tracking data obtained via sensors and provide long lasting functionality without
requiring continual recharging. Their small form factor makes them easier to wear continuously. While smartphones are still required to process the incoming
data for most consumer wearables, it is conceivable that in the near future all processing functionality will be self contained.

doi:10.1371/journal.pmed.1001953.g001
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exception found that pedometers (and consultations) increased physical activity among older

people [13]. It remains unclear how similar interventions may benefit younger adults who are

regularly exposed to wearables that provide an ever-increasing stream of behavioural and phys-

iological feedback. Additionally, recent surveys showed that 32% of users stop wearing these

devices after six months, and 50% after one year [14]. Many wearables suffer from being a

“solution in search of a problem." In other words, they don’t add functional value that is

already expected from personal technology of that type, and they require too much effort,

which breaks the seamless user experience [15]. Poor implementation of user experience prin-

ciples [16] alongside the ad hoc design of user interfaces stems in part from the rapid nature of

development, which may also explain the lack of randomised trials. Those who market and

develop consumer level devices may underestimate the distance between designing a product

that appears to be associated with a healthy lifestyle and providing evidence to support this

underlying assumption. This is not merely a bureaucratic limitation, as even the best experts

are often unable to predict which novel interventions will show benefits when considered as

part of a randomised trial [17].

Patients with a Defined Illness or Comorbidity
How useful are consumer wearables as a patient-driven, “secondary" diagnostic tool? For

chronic conditions, wearables could effortlessly provide detailed longitudinal data in order to

monitor patients’ progress without involving more sophisticated, uncomfortable, and expen-

sive alternatives. For instance, it is possible to identify the severity of depressive symptoms

based on the number of conversations, amount of physical activity, and sleep duration using a

wearable wristband and smartphone app [18,19]. Sleep apnoea could be quickly diagnosed,

and sleep quality improved, with a lightweight wearable that measures heart rate, breathing

volume, and snoring (through tissue vibration) instead of a heavy polysomnograph [20]. Wear-

ables could also feed into a broader system of “predictive preventive diagnosis." For example, a

microanalysis of body movement data can be used to detect early symptoms of Parkinson dis-

ease [21]. Wearables could provide a platform for at-home management of long-term chronic

conditions. Stationary computerised solutions such as web-based services, electronic self-

reports, and feedback via emails already facilitate positive behaviour change for such medical

issues as obesity [22], anxiety [23], panic disorders [24], post-traumatic stress disorder (PTSD)

[25], and asthma [26]. However, those stationary computerised solutions already appear out of

date and are almost impossible to use by patients when they are away from their home com-

puter. Despite their widespread use, these solutions result in a high level of patient attrition

[27], which might be a result of requiring patients to delay self-report until they are next able to

use their home computer [28]. Wearables could address some of the limitations of other inter-

ventions by providing instant feedback and offer an individualistic approach while remaining

practical [11,15].

In spite of these promises, the actual use of consumer wearables within a clinical population

remains limited. The potential applications described above are still in the early stages of devel-

opment, have not been approved for medical use, and have so far been explored predominantly

within an academic research rather than a real-world context. Clinical studies to date that have

a closer resemblance to consumer wearables involve (1) pedometers and smartphone apps to

tackle a sedentary lifestyle and obesity and (2) home telemonitoring solutions for patients with

pulmonary conditions, diabetes, hypertension, and cardiovascular diseases.

The use of pedometers has been associated with significant increases in physical activity and

significant decreases in body mass index and blood pressure [29]. Smartphone apps have been

shown to complement interventions supporting weight loss [28,30] and increase physical
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activity [31]. However, interventions involving pedometers and smartphone apps across clini-

cal populations show no evidence of continued behavioural change beyond the duration of the

original intervention [29]. There are also inconclusive results regarding home telemonitoring.

Reviews illustrating the effects of telemonitoring on clinical outcomes (e.g., a decrease in emer-

gency visits, hospital admissions, and average hospital stay) are more favourable in pulmonary

and cardiac patients than in those suffering from diabetes and hypertension [32,33]. However,

a number of trials report no beneficial effect of self-monitoring on blood glucose [34], and sev-

eral demonstrate negative outcomes, including elevated levels of depression [35]. Aspects such

as quality of life, acceptability, and cost benefits are infrequently or incompletely reported in

telemonitoring trials [33,36], and existing reviews of remote monitoring have frequently been

criticised for their poor methodology [37].

Into the Cloud: Is Wearable-Generated Data Safe, Reliable, and
Secured?

This new technology raises additional questions concerning the impact on users’ health and well-

being. Currently, wearables exist within a “grey area” regarding user safety. The potential issue of

harm is largely absent from the current literature, but it is conceivable that people may become

over-reliant on automated systems that provide a false sense of security or fuel a self-driven mis-

diagnosis [38,39]. Patients could also suffer from negative consequences of excessive self-moni-

toring by finding it uncomfortable, intrusive, and unpleasant. For instance, several studies have

observed that type 2 diabetics who self-monitored their own blood glucose concentration did not

benefit from increased glycaemic control but rather found their disease more intrusive [35]. The

interaction between a wearable device and a patient is likely to be complex, and further research

needs to consider these in more detail. For example, an individual’s personality is likely to play a

key role in determining the perceived usefulness of a given device [40].

The reliability and validity of wearable devices is also concerning. Devices are marketed

under the premise that they will help improve general health and fitness, but the majority of

manufactures provide no empirical evidence to support the effectiveness of their products.

Recent comparisons between various wearables for tracking physical activity showed large vari-

ations in accuracy between different devices—with error margins of up to 25% [41,42]. This is

a serious discrepancy, and it echoes problems witnessed in the medical apps market. For

instance, a review in JAMA Dermatology showed that smartphone apps for melanoma detec-

tion have a 30% failure rate [43]. Lack of reliability is a serious obstacle that needs to be

addressed long before a device could be considered for any medical application.

Finally, for patients and medical practitioners, the privacy and security of personal data gen-

erated by consumer wearables remains problematic. Users who buy wearable devices today

often do not “own” their data. Instead, data may be collected and stored by the manufacturer

who sells the device. Being provided with only a summary of results extracted from these data

creates a rather odd paradox for the user—they own the device, but not the resulting data.

Some manufacturers charge users a monthly fee for access to their own raw data, which is regu-

larly sold to third-party agencies. Other companies are also willing to share a users’ location,

age, sex, email, height, weight, or “anonymised” Global Positioning System (GPS)-tracked

activities [44,45]. However, “anonymising” data via a simple distortion or removal of identify-

ing features does not provide adequate levels of anonymity and is not sufficient to prevent

identity fraud. Sophisticated algorithms can now cross-reference wearable-generated biometric

data with other “digital traces” of users’ behaviour. “Digital traces” of behaviour such as time of

activity and user location can reveal a person’s identity [46]. Research on “digital traces” from

other sources (e.g., social media) demonstrates that these can be alarmingly accurate when it
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comes to predicting personality [47] and risk-taking behaviours [48], two very individual and

personal traits. Furthermore, some wearable devices are easy to hack as a result of various com-

munication technologies that aid the transfer of data between wearables and smartphones [49].

This resonates with similar problems observed in wireless digital pacemakers and glucose

pumps, which were vulnerable to cyber-attacks in the past [50,51]. While the consequences of

hacks are reduced for noninvasive wearables, a well-coordinated cyber-attack could lead to

patient health data being compromised, lost, or distorted.

Moving Forward: What’s to Come for Wearables in Health Care?

What can make affordable, wearable technology a real asset for health care? One option is to

create a simple regulatory framework that doesn’t suppress innovation but helps wearable

devices become validated in the context of their health-oriented value. Such an approach was

recently discussed in The New England Journal of Medicine, but in relation to smartphone

health apps’ regulatory status in the US [52]. Authors pointed towards a risk-based classifica-

tion (e.g., administrative apps, health management apps, and medical apps) that “promotes

innovation, protects patient safety, and avoids regulatory duplication" (p. 375 of [52]). As part

of this model, the US Food and Drug Administration jurisdiction covers higher-risk medical

apps. The National Health Service in the UK adopts a similar pathway with their regulatory

framework for mobile apps, which can be classified as “medical devices” by the Medicines and

Healthcare Products Regulatory Agency [53]. Applied to a health-oriented wearable device,

such a solution could persuade the private sector to provide open access to their data collection

practices, analysis methodologies, and measurement concerns. This would address not only the

issue of wearables reliability but also secondary concerns relating to data storage and privacy.

Apple has recently announced a development of a ResearchKit—an open-source software

framework to create smartphone apps and to use wearables for medical research [54]. This is

widely perceived as an attempt to accelerate and standardise procedures for regulating Apple’s

apps alongside wearables as they apply to medical research. We envision that other smartphone

and wearable manufacturers will mirror this approach, therefore making it easier for medical

researchers to address issues of reliability, safety, and security of patient data. Combining such

standardised solutions created by manufacturers with the correct regulatory framework has the

potential to accelerate high-quality, large-scale randomised controlled trials in order to decon-

struct complex causal interactions and better understand how to make wearables safer and

more useful if they are to be adopted in health care.

Another way to address data reliability and behavioural usability issues is to reach the next

level in decoding “big data” from wearable devices. Right now, feedback systems built around

consumer health wearables are based on simple descriptive statistics—for example, average

weekly heart rate and level of activity. Simple summary statistics appear almost trivial given the

complex nature of the data that most wearables collect. The same criticism can also be applied

to the sociodemographic information recorded by users. The next step will be to move from

unsophisticated exploratory feedback to intelligent and personalised explanatory feedback

[55]. Interactive computing systems that already exist in smartphones such as Google Now,

Apple Siri, and Microsoft Cortana could be used to improve user experience and interaction

with wearable technology by making rich data outcomes and feedback more accessible and

intelligible [56]. Such systems will be further empowered by the “Internet of Things” (IoT)—a

pervasive network of interconnected sensors embedded in everyday spaces and objects that

communicate with wearable technology and provide an additional layer of information for

users or patients [57]. For example, the Withings system links multiple devices together,

including a wearable fitness tracker and sleep sensor placed under the mattress. A smart weight
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scale also records heart rate, body fat, and air quality, providing even more information about a

user’s daily health habits [58]. However, successful applications of “intelligent” computing and

the use of multiple consumer sensors requires a truly interdisciplinary approach in order to

decode “individual big data.” Computer and data scientists, who write such computational

algorithms, have to work closely with clinicians to accurately quantify various health condi-

tions and risk factors. Behavioural scientists and interface designers have to be on board to

facilitate and develop more personalised, intuitive, and user-friendly systems of behavioural

engagement and feedback. Those whose expertise lies in the design, manufacture, and market-

ing of consumer wearables should be mindful of the limitations that have plagued previous

medical and psychological interventions—specifically, the assumption that the impact of a

seemingly positive intervention can be assessed without randomised controlled trials.

Conclusion

While many champion wearables as data-rich devices that will revolutionise 21st century medi-

cine, it remains highly probable that, like many technological trends, these mass-marketed gad-

gets will drift into obscurity. However, given their continued popularity, particularly amongst

those who already maintain a watchful eye over their lifestyle, health practitioners may need to

prepare themselves for an increase in patients who bring wearable data to their next consulta-

tion. This may generate additional confusion and anxiety for both practitioner and patient.

More worryingly, the margin of error can be high when patients without medical training

attempt to attribute symptoms to a specific stream of data from devices that may themselves be

unreliable. Drawing a parallel with patient-obtained diagnoses via Google, less than 5% of sur-

veyed health care providers felt that any Internet self-diagnosis was helpful [1]. Alternatively, if

frameworks are in place allowing wearable devices to be integrated into health care systems,

this could, in turn, kick-start the development of validation programmes that would sit along-

side appropriate training for health care professionals. This knowledge and understanding

could then be disseminated to patients as validated devices become standardised, providing

both individual and aggregated data for patients, governments, and health care providers. Mov-

ing forward, practitioners and researchers should try to work together and open a constructive

dialogue on how to approach and accommodate these technological advances in a way that

ensures wearable technology can become a valuable asset for health care in the 21st century.
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