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The Risk-Adjusted Carbon Price* 

 

By TON S. VAN DEN BREMER and FREDERICK VAN DER PLOEG 

 

 

Abstract 

A popular model of economy and climate change has logarithmic preferences and 

damages proportional to the carbon stock in which case the certainty-equivalent 

carbon price is optimal. We allow for different aversions to risk and intertemporal 

fluctuations, convex damages, uncertainties in economic growth, atmospheric 

carbon, climate sensitivity and damages, correlated risks, and distributions that are 

skewed in the longer run to capture climate feedbacks. We derive a non-certainty-

equivalent rule for the carbon price, which incorporates precautionary, risk-

insurance and risk-exposure, and climate beta effects to deal with future economic 

and climatic risks. We interpret these effects with a calibrated DSGE model. 
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Climate policy must take account of the highly uncertain nature of the impact of the 

atmospheric carbon stock on global mean temperature, of temperature on damages 

to aggregate output and the highly uncertain nature of future GDP. These 

uncertainties are in large part due to the long timescales over which today’s 

emissions impact global warming and cause economic damage, but their impact is 

also affected by skewness of the probability distributions underlying climate 

uncertainties. To optimally internalize the global warming externality, the price of 

carbon must be set to the social cost of carbon (SCC),1 defined as the expected 

present discounted value of all marginal damages to current and future aggregate 

production resulting from emitting one ton of CO2 today.  

Our objective is to establish how precautionary and insurance motives affect the 

optimal risk-adjusted SCC in dynamic stochastic general equilibrium (DSGE). 

Golosov et al. (2014) provide a pioneering analysis of the optimal SCC in DSGE. 

Their bold assumptions2 give a simple rule for the SCC that is proportional to world 

GDP. However, as they assume logarithmic preferences, economic growth 

uncertainty does not affect the optimal SCC (Traeger, 2017). We generalize their 

rule for non-unitary elasticities of intertemporal substitution and coefficient of 

relative risk aversion, generalized convex damages, uncertainty in the rate of 

economic growth, carbon stock, climate sensitivity and damages, and skewness and 

mean reversion in the distributions governing climate sensitivity and damage 

uncertainties. For this purpose, we adapt a DSGE model of endogenous growth with 

investment adjustment costs due to Pindyck and Wang (2014) to climate change. 

                                                           
1 The first best is sustained in a decentralized market economy if the price of carbon is set to the 
optimal SCC, either via a carbon tax or a competitive permissions market, provided that the global 
warming externality is the only market failure. From now on, we will use the optimal (risk-adjusted) 
carbon price and the SCC interchangeably. 
2 These assumptions are logarithmic preferences, a Cobb-Douglas production function, 100% 
depreciation of capital in each period, and global warming damages either linear in the atmospheric 
carbon stock if in the utility function or total factor productivity exponential in the atmospheric 
carbon stock if in the production function. 
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Motivated by our search for a tractable rule for the SCC, we use power functions to 

represent the convex dependence of damages on temperature and the concave 

dependence of temperature on the carbon stock. Furthermore, by using a power-

function transformation of a normal variate displaying a variance that grows in 

time,3 we capture the significant right-skew evident in the equilibrium climate 

sensitivity, but not in the transient climate response, whilst capturing the difference 

in time scales on which these apply. Although we capture skewness4, we 

deliberately avoid fat tails and thus Weitzman’s (2009) ‘dismal theorem’.   

We obtain the following insights. First, using scaling and analysis of the key non-

dimensional quantities of our model, we identify global warming damages as share 

of world GDP as the only “small” quantity in which to perform a perturbation 

analysis (cf. Judd, 1996, 1998; Judd and Guu, 2001).5 The corresponding optimal 

price (our Result 1) takes account of an array of uncorrelated and correlated 

economic, climate and damage risks and can conveniently be evaluated through 

numerical evaluation of a multi-dimensional integral instead of numerically solving 

Hamilton-Jacobi-Bellman equations. 

Second, by examining only the leading-order effects of various uncertainties, we 

obtain a leading-order closed-form rule for the optimal SCC, which is proportional 

to world GDP.  This rule is especially simple if the concavity of the temperature-

carbon stock relationship is balanced out by the convexity of the damage-

temperature relationship so that reduced-form damages are proportional to the 

atmospheric carbon stock (our Result 2).6  For a convex dependence of damages on 

                                                           
3 Specifically, we use an Ornstein-Uhlenbeck process. 
4 Martin (2013) uses the cumulant generating function to deal with higher moments in the process 
for the rate of economic growth when analyzing the effects of rare disasters on asset pricing. Pindyck 
and Wang (2013) also consider skewness and kurtosis of financial markets to model rare disasters. 
5 See Bender and Orszag (1999) for an exposition of these techniques for scientists and engineers. 
6 The factor of proportionality between the price and GDP depends on ethical factors 
(intergenerational inequality aversion, risk aversion and the rate of impatience), economic factors 
(the rate of growth of the world economy, its volatility and damages to final production from climate 
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the carbon stock, correction factors can be applied to Result 2 in the form of simple, 

one-dimensional deterministic integrals (see Result 2 in Appendix A).  

From these results, we find that precaution about uncertain economic growth 

outcomes demands a reduction in the risk-adjusted discount rate and a higher 

optimal risk-adjusted SCC, especially if risk aversion is high, prudence is high and 

economic growth is volatile. A positive risk-insurance term acts to increase the risk-

adjusted discount rate and increasingly so for more risk aversion and larger 

economic growth volatility.7 Provided intergenerational inequality aversion 

exceeds one, the discount rate is adjusted upwards with positive economic growth 

and downwards with more volatile growth prospects. The risk-adjusted SCC is 

adjusted downwards with rising economic affluence and upwards with riskier 

growth prospects. The correction for climate sensitivity uncertainty depends on the 

combination of the skewness of its equilibrium probability distribution, the (non-

climatic) risk-adjusted discount rate and, crucially, on the time scale on which the 

skew equilibrium probability distribution is reached. 

If future damages and GDP are correlated, there is an effect additional to the built-

in climate beta of one associated with damages being proportional to GDP. If the 

correlation is positive, this additional “climate-damages beta” is positive. This 

occurs if a positive climate damage shock (with negative consequences for GDP) 

is associated with higher economic growth, not through the proportionality of 

damages to GDP but through the correlation of GDP with the underlying stochastic 

processes for climate and damages. We show that provided the coefficient of 

relative risk aversion is greater than one, the risk insurance effect dominates the risk 

                                                           

change) and geophysical factors (the share of emissions that stays permanently up in the atmosphere 
and the rate of decay of atmospheric carbon). 
7 If the elasticity of damages with respect to GDP is not unity, the risk insurance premium is 
multiplied by this elasticity (cf. Dietz et al., 2018). The case of additive damages corresponds to a 
zero elasticity, in which case there is no risk insurance premium and thus no upward adjustment of 
the price of carbon due to the insurance effect.     
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exposure effect and the optimal carbon price is then reduced (cf. Sandmark and 

Vennemo, 2007; Daniel et al., 2015). Typically, damages are proportional to GDP 

and thus the climate-damage beta (close to) one as in Dietz et al. (2018). The latter 

analyse a “climate beta”, which corresponds to an amalgam of the disaggregated 

climate betas in our model: the built-in climate beta of one associated with the 

proportionality of damages to GDP and the terms resulting from the correlations of 

our stochastic processes for climate and damage uncertainties with GDP. 

Third, we calibrate our model and decompose the optimal SCC into a deterministic 

part and parts to deal with uncertain economic growth, carbon stock, climate 

sensitivity and damages. We thus analyze how ethical discounting, aversion to risk 

and intertemporal fluctuations, convex damages, skewness of climate sensitivity, 

and correlated risks affect the components of the optimal risk-adjusted SCC. We 

find that climate sensitivity and economic growth uncertainties have substantial 

quantitative impacts on the carbon price, but carbon stock uncertainty has a 

negligible impact. Climate damage uncertainty is large. Nevertheless, if its 

distribution is not skewed, it has no effect on the optimal risk-adjusted SCC. 

Bretschger and Vinogradova (2018) also analytically examine climate policy in a 

stochastic environment but focus on the effect of Poisson shocks. Hambel et al. 

(2017) study numerically the effect of level and growth damages and also separate 

risk aversion from intertemporal substitution. Jensen and Traeger (2016) show 

analytically the effect of climate sensitivity on the risk premium in the price of 

carbon and how this depends on prudence in utility and on the convexity of 

marginal damages. Although they abstract from a skewed climate sensitivity, they 

offer an interesting analysis of Bayesian learning of damages. Traeger (2017) puts 

forward a new IAM with a remarkably detailed climate system and a wide range of 

objective and epistemological uncertainties, uses cumulant generating functions 

after transforming to a model that is linear in states with additively separable 
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controls, and shows analytically how the risk-adjusted carbon price depends on the 

uncertainties. None of these studies analyzes the effects of climate betas.8 

Lemoine (2017) shows that climate sensitivity, damage, consumption, and 

temperature uncertainties double the optimal SCC, and that the risk insurance effect 

dominates the risk exposure effect on the optimal SCC if the coefficient of relative 

risk aversion is greater than one. In the same vain, we find that the sign of the effects 

of climate betas on the risk-adjusted SCC depends on whether risk aversion exceeds 

one. However, we give explicit analytical expressions for the SCC. Our approach 

differs in three other ways. First, we separate the effects of risk aversion and 

intertemporal substitution, which is crucial in an analysis of the impact of economic 

and climatic risks on the SCC. Second, we use a fully specified DSGE model rather 

than an exogenous stochastic process for consumption growth. Third, we allow for 

skewness and mean reversion in the distributions of climate sensitivity and damages 

and for more convex damage functions. 

Section I introduces our model. Section II derives the optimal SCC under 

uncertainty (Result 1). Section III makes additional approximations to derive a 

closed-form rule for the optimal risk-adjusted SCC (Result 2 and Result 2 in 

Appendix A). Section IV discusses the calibration of our model. Section V provides 

                                                           
8 Earlier work on the effect of uncertainty on the SCC in the IAM developed by Nordhaus (2008) 
uses Monte Carlo simulations (e.g., Ackerman and Stanton, 2012; Dietz and Stern, 2015), but this 
assumes that uncertainty is resolved before the first time period and can give misleading results 
(Crost and Traeger, 2013). Stochastic dynamic programming algorithms do not have this problem, 
but face limits due to the curse of dimensionality. Recent progress has, however, been impressive. 
Traeger (2014a) applies stochastic dynamic programming to a 4-state abridged version of DICE. 
Jensen and Traeger (2014) have Epstein-Zin preferences and study numerically the effect of long-
term growth uncertainty. There has also been progress in deriving numerically the optimal SCC 
when there are tipping risks related to a wide range of catastrophes (e.g., Lemoine and Traeger, 
2014; 2016; Lontzek et al., 2015; Cai et al., 2016). Lemoine and Rudik (2017) review the numerical 
literatures on recursive assessment and Monte Carlo evaluation of climate policy under uncertainty, 
and discuss the importance of learning. Separately, several theoretical contributions have examined 
the effects of economic growth uncertainty on the optimal discount rate to use for long-term 
investment projects (e.g., Gollier, 2012; Traeger, 2014b). 
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our estimates for the optimal risk-adjusted SCC, including a quantification of the 

four stochastic determinants and possible climate betas, sensitivity to parameter 

choice and accuracy of our rule for the risk-adjusted SCC. Section VI concludes.  

 

I. A DSGE Model of Global Warming and the Economy 

We use a continuous-time macroeconomic DSGE model with endogenous AK 

growth model and capital and fossil fuel use as production factors. Fossil fuel use 

leads to carbon emissions, global warming and damages to aggregate output. We 

allow for four types of uncertainty: to the growth rate of the economy, the stock of 

atmospheric carbon, the climate sensitivity, and to global warming damages. We 

distinguish aversion to risk from aversion to intertemporal or intergenerational 

differences, so that the coefficient of relative risk aversion,  = CRRA   0, need 

not equal the inverse of the elasticity of intertemporal substitution IES. 

Alternatively, CRRA need not equal the coefficient of relative intergenerational 

inequality aversion, IIA = 1/EIS =    0. We thus use the continuous-time version 

of Epstein-Zin (1989) and Kreps-Porteus (1978) recursive preferences following 

Duffie and Epstein (1992) with the recursive aggregator ( , )f C J  a function of both 

consumption C  and the value function ,J  and the rate of pure time preference 

denoted by  > 0, so that the representative consumer maximizes 

(2.1)  ( ), ( )
t

tJ E f C s J s ds

 
  

 
  with     

  

1
1 1

1
1

1
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The aggregate capital stock is accumulated according to the stochastic equation  

(2.2) 1

21
   with   ( , ) ,( , )

2
K

I
dK dt KdW I K I KI K

K
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where K denotes the aggregate capital stock, I aggregate investment, 0   the 

depreciation rate of physical capital, and 0   the cost parameter for adjusting 

investment. 9,10 Adjustment costs are quadratic and homogenous of degree one in 

capital and investment. Capital is subject to continuous geometric shocks with 

relative volatility ,
K

  and 1W  denotes a Wiener process. Investment is given by 

,I Y C bF    where Y is aggregate production, F fossil fuel use, and b  the 

production cost of fossil fuel. Fossil reserves are abundant, and fossil fuel is 

supplied inelastically at fixed cost. The final goods production function is Cobb-

Douglas with constant returns to scale, so 
1  with 0 1,Y AK F

      where 

*(1 )A A D   is total factor productivity (
*

A ) net of warming damages 
*.DA  

Damages as share of pre-damages aggregate output D  increase in the global mean 

temperature relative to pre-industrial .T  We use the power-function specification  

(2.3) 
11( , ) ( / )    with   1   and   1,T

T
D T T T 

          

where the stochastic variable   captures the uncertain nature of damages for a 

given temperature. The term T is added to ensure that (2.3) is independent of units. 

Henceforth, we define temperature in degrees Celsius and set o1 C.T   Damages 

are a convex function of temperature, which requires / 0.
TT TT

TD D   11 To allow 

for potential skewness in the impact of damage shocks, we take a power-function 

transformation of   with 0   and specify a symmetric distribution for   itself. 

                                                           
9 In an AK growth model, shocks to the capital stock and shocks to productivity are equivalent. To 
avoid an extra state, we introduce volatility directly in the capital accumulation equation (cf. Pindyck 
and Wang, 2013). 
10 Sacrificing formality for ease of presentation, we will first introduce the separate evolution 
equations for the four stochastic variables before introducing the covariance matrix of the vector of 
these four variables. 
11 We let subscripts denote partial derivatives. 
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The absolute value of the atmospheric carbon stock is denoted by .S  We define 

the part associated with man-made emissions E  as the difference between the 

current value ( S ) and the pre-industrial carbon stock, ,PIS  so that .PIE S S   We 

let temperature and damages depend on ,E  not .S  Annual carbon emissions from 

fossil fuel use F  are exp( ),F gt  where exp( )gt  is the emission intensity per unit 

of fossil fuel used (F, measured in GtC/year), which in accordance with balanced 

growth we set to decline at the endogenous economic growth rate .g  A proportion 

0 1   of fossil fuel emissions ends up in the atmosphere. Atmospheric carbon 

decays at the rate 0.  12 The dynamics of the carbon stock is given by13 

 (2.4) 2)( ,g

E

t
d Fe EE dWdt      

where 2W  denotes a second Wiener process, so that the atmospheric carbon stock is 

described by an Arithmetic Brownian motion with absolute volatility 0.
E

   Note 

that (2.4) ensures that the carbon stock returns to its pre-industrial value in absence 

of emissions. We have for temperature 

(2.5) 
11( , ) ( / )    with   1   and   1,E

PI E
TT E E S 

          

where the stochastic variable   captures the uncertain nature of temperature for a 

given carbon stock. As in (2.3), 
o1 C.T   The parameter   allows us to introduce 

skewness in the impact of stochastic shocks on temperature, and we specify   

itself to have a symmetric distribution. We allow for the effect of lags via  the time-

                                                           
12 One could allow for a permanent reservoir and one (Golosov et al., 2014), two (Gerlagh and Liski, 
2018) or three (Millar et al., 2017) temporary reservoirs of atmospheric carbon. We show in section 
IV that our “1-box” model reproduces historical atmospheric carbon stocks relatively well. 
13 Note that (2.4) can theoretically lead to negative carbon stocks, but this is very unlikely. 
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varying dynamics of the stochastic process for the random variable . 14 

Temperature is a concave function of the carbon stock, so that / 0.
EE EE

ET T   15 

The climate sensitivity is defined as the temperature increase from doubling the 

carbon stock from its pre-industrial level; hence, it is 
1

2 ( , )
PI

T T E S      and 

depends on the stochastic climate sensitivity parameter .  Its normalized skewness 

      3/2*

2 2 2skew skew / varT T T is given to leading-order by  *

2skew T   

3 )/(    (see Appendix F), from which it is evident that skewness is  driven by 

what we thus call the skewness parameter   and the coefficient of variation of 

/ .     Combining equations (2.3) and (2.5), we get reduced-form damages 

(2.6) 
1 11( , , ) ( / )    with   .TET

PI T T T
D E E S   

                

The parameter 
ET E T E T

        captures the combined effect of the concave 

relationship between temperature and the carbon stock ( 0
E

  ) and the convex 

relationship between damages and temperature ( 0
T
  ). It can thus be positive or 

negative depending on whether the latter effect dominates the former or not. We 

refer to 0
ET

   as proportional (cf. Golosov et al., 2014) and 0ET   as convex 

(reduced-form) damages. The parameter T  captures the joint effect of the convex 

relationship between temperature and climate sensitivity parameter ( 0  ) and 

the convex relationship between damages and temperature ( 0
T
  ). This parameter 

is higher if the distribution of climate shocks is more skewed (higher  ). From 

                                                           
14 We thus include the potential effects of temperature lags due to ocean heating, which are important 
for estimates of the long-run climate sensitivity (e.g., Roe and Bauman, 2011) (see section IV). 
15 Temperature is often explained by a logarithmic function of the carbon stock (Arrhenius, 1896). 
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(2.6) total factor productivity and aggregate output decreases in the carbon stock 

and the shocks to climate sensitivity and damages: 

(2.7)  1 111 *( , , )  with   ( , , ) 1 ( / ) .TET

PI
Y A E K F A E A E S               

Finally, the uncertainty in the climate sensitivity and damage parameters are driven 

by two mean-reverting stochastic Ornstein-Uhlenbeck processes with means   

and ,  coefficients of mean reversion  and ,    and volatilities  and ,    so16 

(2.8) 3( )dtd dW           and   4( ) ,dt dd W         

where 3 4 and W W  are two Wiener processes. Together with 
1

T    in (2.5), the 

first Ornstein-Uhlenbeck process in (2.8) captures the two essential features of the 

climate sensitivity distribution. First, the transformation 
1  

 of the symmetrically 

distributed   allows for positive skewness of the equilibrium climate sensitivity 

for 0  . Second, uncertainty associated with temperature increases with time, 

reaching a steady state associated with the equilibrium climate sensitivity and its 

variance and skewness. We calibrate the properties of the equilibrium climate 

sensitivity to the steady-state variance (  2 2 21 exp( 2 ) 2 2t             

as 1t  ), so that 1   becomes the e-folding time17 over which this steady-

                                                           
16 For independent stochastic processes, (2.8) has solution 0( ) (1 )

t t
t e e        

( )

3
0

( ),
t t s
e dW s


   and similarly for the stochastic process for .  The random variables ( )t  and 

( )t  are normally distributed with time-varying moments: 
2~ ( )( ) ,t      and 

2~ ( )( ) ,t     . Mean and variance of ( )t  are 0 (1 )
t t

e e 


       and 

 2 2 1 exp( 2 ) 2t         with stationary limits    and  2 2 2     .  

17 This is the time it takes for an exponentially growing quantity to increase by a factor e = 2.71828. 
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state is reached. The vector of all four states can be described by one multi-variate 

Ornstein-Uhlenbeck process: 

(2.9)   ,
t

d dd t  α ν μ Sx Wx  

where  , , , ,
T

dk dE d dd  x   0logk K K  and  denotes the elementwise 

product of two vectors. The growth rates of this process are 

(2.10) 
  21

, , 0, 0 .
2

1
T

t gt

K

E
Fe

dt K

dK
  

  
 

α  

The vector of mean reversion rates and the vector of means of this process are 

(2.11) (0, , , )T

   ν    and   (0,0, , ) .T μ   

The covariance matrix 
T

SS  of the components of this multivariate process is 

(2.12) 

2

2

2

2

1
,

KEK E

E E E E

K K K K K

KE K E ET T

K K E

K

E

EK

t

E

E
t

d
d

d

   

   

       

       

         
         
         
         

 
 
       
  
 

x x SS  

where , , , , , ,
ij

i j i j K E     denote the partial correlation coefficients.  

 

II. Asymptotic Solutions for the Optimal Risk-Adjusted Price of Carbon 

The optimal solution under uncertainty satisfies the Hamilton-Jacobi-Bellman 

equation corresponding to the recursive utility specification (2.1) which is 

(3.1)    
,

1
max , , , , 0,,

C F
t

f C J dJ t K EE
dt
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where    1
t

dt E dJ  is Ito’s differential operator applied to ,J   which depends on 

time and the four states. Using 
1( , , , , ) ( , , ),I C F K E A E K F C bF

         and 

applying Ito’s calculus to (3.2) gives 

(3.2) 

   

2 2 2 2

,

2

max , ( , , , , ), ( )

1 1 1 1
( ) ( )

2 2 2 2

,

0.

E

KK K EE E

K

gt

K t
C

E K E K K K K E E

E E

F

KE K K E

E

f C J J I C F K J Fe E

J J J K J J J

J K J

E K J

K J K J

J J

       

     

    

  

 

  

         



          

    



 

 

 

    

 





 

 






  

By differentiating (3.2) with respect to the forward-looking variables C  and ,F  we 

obtain the optimality conditions    11 ( , )
C K I

f C J I KJ
 

 

     (using (2.1)) 

and  (1 ) / ,gt
Y F b Pe     where the optimal risk-adjusted SCC is defined  by 

/ ( , ) 0.E K IJP J I K    Although solving our problem as a command 

optimum, the solution corresponds to the outcome in a decentralized market 

economy provided carbon emissions are priced at an amount equal to the SCC and 

that there are no other externalities or market failures. Henceforth, we will therefore 

use the price of carbon and the SCC interchangeably, and we denote these by .P   

A. Transforming to non-dimensional form and scaling 

Closed-form analytical solutions to the stochastic dynamic optimal control problem 

(3.1)-(3.2) are not available. Solving this numerically by approximating the value 

function and its derivatives in 5-dimensional (time and the four states) space is 

challenging due to the curse of dimensionality and will not give the insight into the 

mechanisms that determine the stochastic markup of the optimal price of carbon we 

seek. Instead, we first examine the system for small parameter(s) by transforming 

to non-dimensional form, then pursue an asymptotic expansion in the thus identified 
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small parameter(s) and only consider leading-order. Out of all the non-dimensional 

groups (see Appendix B), we identify one group to be small:  

(3.3)   1

0

1 1

0( , /, ,) ET T

PI
D E E S

      
 

   

where 0E  denotes the difference between the absolute value of the atmospheric 

carbon stock at 0t   ( 0S ) and the pre-industrial carbon stock .
PI

S  The non-

dimensional group  becomes the small parameter of our asymptotic expansion, 

whereas the effects of the other non-dimensional groups are initially analyzed 

without approximation. The quantity  represents the share of climate damages in 

total GDP (when climate damage and sensitivity parameters are at their 

equilibrium values and the atmospheric carbon stock at its initial value). It is 

typically only a few percentage points and stays well below 10% even at high 

temperatures (see section IV.C). In the perturbation solutions below, we consider 

terms up to first order in . The resulting error scales with 2 0.01,  which is 

small even for the large value of 0.1 , and we deem this to be more than 

sufficient for accurately estimating the optimal risk-adjusted SCC.  

B. Perturbation expansion 

To solve our problem, we perform a perturbation expansion18 in the small parameter

. At each order n, the problem is linear in the value function ( ) ,n
J  but remains 

fully nonlinear in the states, thus retaining risk-aversion and prudence properties 

without approximation. Mathematically, at each order n, the problem is of the form 

( ) ,nn
L J      where L is a linear differential operator in the states and the 

nonlinear forcing  is formed from products or derivatives of lower-order solutions 

                                                           
18 We emphasize we do not perform a Taylor-series expansion in the state variables around their 
steady states, as this requires an excessive number of terms due to the large number of states and 
derivatives needed to capture risk aversion and prudence. 
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(in n), so that the order of the forcing thus obtained (from products or derivatives) 

is also ( )n
O . We choose the following truncated series solution and restrict our 

attention to zeroth- and first-order terms in  only, as denoted by the superscripts 

(3.4)   

 
 
 

(0) (1)

(0) (1)

(0) (1

2

2

2)

, , , , , ( , , ) , , , , , ( , , ))

, , , , , ( , , ) ,

( ) ( ( ),

( ) , , , , ( , , ))

, , , , ,

( ( ),

( ( , , ) , , , ,) ( ) (, ( ), ) .,

O

O

J K E t J K D E J K E t D E

F K E t F K D E F K E t D E

C K E t C K D E C K E t D E O

       

       

       

  

  

  

  

The small parameter appears both as small parameter of the series solution and 

as the multiple-scales parameter in front of the dependence on damages. We let 

total factor productivity be a slowly-varying power-law function of the climate-

related variables E ,   and  : higher derivatives required to model rapid variation 

are thus automatically ignored at leading order. The zeroth-order value function 

inherits the properties of the production function (2.7). We then find a consistent 

leading-order estimate of the SCC from the zeroth and first-order value function: 

(3.5)  (0) (1) (0) (0)( ) .
E E K

P J J i J    

In the limit 0,  climate has no effect, we retain only the zeroth-order solution, 

and our model reduces to an AK model for which a closed-form solution is available 

(cf. Pindyck and Wang, 2013). Our derivation of the zeroth-order solution is given 

in Appendix C with the solution for (0)
J  given by (C2) (written in terms of the non-

dimensional variables introduced in Appendix B). The only difference with 

Pindyck and Wang (2013) is that ours depends slowly on the climate variables, as 

determined by the implicit equation for optimal investment (C7) and the 

dependence of the marginal productivity of capital therein on climate damages. We 

proceed to derive the first-order solution in Appendix D with the solution for (1)
J  

given by (D3.14)19. The first-order value function captures changes to the economy 

                                                           
19 We only show the solution for (1)

E
J  as this is needed to evaluate the SCC. 
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resulting not from climate-induced changes to the marginal productivity of capital 

(as captured by (0)
J ’s slow dependence the climate-related states), but from direct 

damages to the economy arising from the three climate-related states. 

C. Perturbation solutions 

Combining the zeroth- and first-order solutions, we get the following result. 

Result 1: The optimal risk-adjusted SCC is (cf. (C3.19)): 

(3.6) 
  20

11* 1

 , , ( , , , , )
1 ( ),

ET ET

P
E Y K E t

P O
r E K  

    
 


 

  
   

 
 

where     , , ,1,
E

D E D E      denotes what we call the flow damage 

coefficient, the zeroth-order return on capital corrected for growth is 

(3.7) 
2* (0) (0) (0)( 1)( ,/ 2)
K

r r g g          

and (0)
r and 

(0)
g  are the leading-order expected rates of return on investment and 

economic growth. Furthermore, we have  

(3.8) 
 ( , , , , )

r s t

t

t

eE K E s sd  


  

   
 
 with  * (0) 2( 1 ( ) ,) / 2Kr r i        

2 2iK i      and .i I K  The scaled forcing in (3.8) is 

(3.9) 
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where  
1 ET    and 

1 .        
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The optimal risk-adjusted SCC in Result 1 is proportional to world GDP and 

depends directly on the stock of atmospheric carbon through the function 

( , , )E   . It depends on preferences (,  and ), geophysical parameters (,  

and  ), and the properties of the stochastic processes driving the shocks to GDP, 

the carbon stock, climate sensitivity and damages. It is evident from Result 1 that 

the optimal risk-adjusted SCC does not depend directly on the share of fossil fuel 

in value added or the cost of fossil fuel because of the Cobb-Douglas nature of the 

production function (2.7). Neither does it depend on adjustment costs for physical 

capital or the depreciation rate of physical capital. It does depend on the growth-

corrected return on capital *
r  (3.7), which to leading-order can be approximated by 

its value in the absence of climate policy ( 0P  ). Similarly, the investment rate 

and growth rate of GDP can, to leading-order, be approximated by their values in 

the absence of climate policy (cf. (C7)):  

(3.10) 
(0) (0) (0 2

0

)( 1) ( )
1

2
KK P

i q iY    


     
 

 
  

 
  

with  
0

1 1

( , , ) (1 ) /
K P

Y A E b


    




  and  (0) (0) (0)
2

(0)2 ( ).g i i i       

These follow from the Keynes-Ramsey rule and the capital accumulation equation 

and subsequently give the price of capital, Tobin’s q, as ( ) 1/ '( ).q i i  The 

expected return on investment (0)
r  equals the sum of the risk-free rate, denoted by 

(0)0)

f

2(

r (1 ) / 2,
K

gr         and the risk premium 
2 .
K

  

Result 1 indicates that the absolute error in our expression for the optimal risk-

adjusted SCC is 
2( )O  and that the error as fraction of the SCC (itself an ( )O

quantity) is ( ).O  Consistently, we ignore the slow dependence of the discount rate 

on the atmospheric carbon stock, via the marginal productivity of capital, when 
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evaluating the discounting integral in (3.8). As 0,  the optimal SCC in Result 1 

becomes exact. Generally, a closed-form solution to the time integral and the 

expectations operator over the four stochastic states in (3.8) is unavailable, so that 

Result 1 must be evaluated numerically. This requires five-dimensional numerical 

integration over the probability space corresponding to the four states and with 

respect to time.20 Although such high-dimensional numerical integration is less 

challenging and computationally demanding than numerical solution of the partial 

differential equations describing the value function, we can still make considerable 

analytical headway while introducing only minimal quantitative errors. To do so, 

we consider only the leading-order effects of uncertainty in section III. In section 

V.E we demonstrate the numerical accuracy of the resulting tractable rules by 

comparing them with the numerically exact evaluation of Result 1. 

 

III. The Optimal Risk-Adjusted SCC: Leading-Order Effects of Uncertainty 

To obtain closed-form solutions for the risk-adjusted SCC described by the multi-

dimensional integral (3.8) in Result 1, we make two additional assumptions. First, 

we only consider up to leading-order terms in the climatic and damage uncertainties 

2

  and 
2

  and their covariance terms, including with the capital stock 

(assumption I) . Second, the stochastic climate sensitivity and climate damage 

parameters are initially at their equilibrium values ( 0 0
ˆ 1     and 0 0̂    

1 ) (assumption II). Appendix E implements these assumptions to Result 1 to give 

Result 2 in Appendix A. Here we present the case with proportional reduced-form 

damages, normally distributed damage uncertainty and no carbon stock volatility.  

                                                           
20 If the processes are independent, the integrals over the probability space of states can be evaluated 
independently.   
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Result 2: If 0,
ET

   0   and 0,
E

   the leading-order optimal SCC is 

(4.1) 

2

0
K CCC

 ( )1
1 1

2
( )

2
P

T T

Y
P

rr


 



  
 



 

       





 

with CK CC( 1) (1 ) , 1( )
K K

T TK
r r r

     
 

   

        
  

  



 

              

and the discount rate corrected for economic growth, economic growth uncertainty 

and atmospheric decay  is 
(0) 2( 1

1

2
)( .)Kr g            

Result 2 in Appendix A allows for convex damages, skewed damage uncertainty 

and carbon stock volatility. This leaves the structure of (4.1) intact, but includes 

correction factors that modify the magnitude of terms, but not the interpretation. 

A. The optimal SCC in the absence of economic and climate uncertainty 

Without uncertainty, Result 2 gives  
0

 /
P

P E Y r


  with  

(0)( 1)r g      for the deterministic optimal SCC. This expression has the 

same geophysical ( and ), economic (Y and g), damage () and ethical ( and ) 

determinants as those found in macro models of growth and climate change with 

Ramsey instead of AK growth. More patience (lower ), wealthier future 

generations (higher 
(0)

g  for 1  ), and lower intergenerational inequality aversion 

(lower ) curb the discount rate and push up the SCC. Rising affluence (higher g(0)) 

pushes up the discount rate, especially if intergenerational inequality aversion is 

large, and thus reduces the appetite of current generations for ambitious climate 

policy (the 
(0)

g  term in r ). Also, with damages proportional to GDP, rising 

affluence implies a higher growth of damages and a lower growth-corrected 

discount rate (the 
(0)

g  term in r ), which increases the optimal SCC. Higher 
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economic activity (Y) and a higher flow damage coefficient () also push up the 

SCC. A smaller fraction of emissions that goes into the atmosphere (smaller  ) 

and faster rate of decay of atmospheric carbon (higher  ) depress the SCC.  

B. Economic growth uncertainty and the climate beta 

Including economic, but not climatic uncertainty, Result 2 gives 

 
0

 /
P

P E Y r


  but now with the risk-adjusted discount rate 

(0 2)( 1)( .2)
K

r g       The estimate of future economic growth is thus 

reduced to take account of its uncertain nature with risk aversion .  If the rising-

affluence dominates the growing-damages effect, growth uncertainty depresses the 

discount rate and pushes up the risk-adjusted SCC. We decompose the effects on 

the risk-adjusted discount rate as follows: 

(4.2)  
(0) (0) 2 2

time impatience decay atmospheric carbonrising affluence growing damages insurance
prudence

1
(1 ) .

2
K Kr g g             

The first three terms were discussed in section III.A. The prudence term is 

proportional to the coefficients of relative prudence CRP 1 ,   and risk aversion 

, and to economic growth uncertainty (cf. Leland, 1968; Kimball, 1990). The 

insurance term stems from the perfect correlation between damages and GDP, 

because damages in our model are proportional to GDP. The insurance term acts to 

increase the optimal discount and reduce the optimal risk-adjusted SCC, reflecting 

that positive shocks to damages are associated with positive shocks to GDP and 

thus less harmful to welfare. This corresponds to a “built-in” climate beta of one.21 

For 1  , the prudence term is dominant, the optimal discount rate reduces, and the 

                                                           
21 Dietz et al. (2018) use Monte Carlo simulations of DICE (Nordhaus, 2008) and find that the 
climate beta is close to one if damages are proportional to GDP, but closer to zero if damages are 
additive. Our section III.D analyzes correlated risks and climate betas more generally. 
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optimal risk-adjusted carbon price increases with growth uncertainty, and vice-

versa for 1.   If utility is logarithmic as in Golosov et al. (2014), 1    and 

,r     so that uncertainty about the rate of economic growth does not have 

any impact on the risk-adjusted SCC (cf. Golosov et al., 2014).  

If damages are additive and do not rise in proportion to GDP, the correction to the 

discount rate only consists of the prudence term. More generally, if 0 1
D

   

denotes the elasticity of damages with respect to GDP, the growth-corrected, risk-

adjusted discount rate becomes (Svensen and Traeger, 2014): 

(4.3) 
(0) 21

( ) (1 2 ) .
2

D D Kr g               

If the elasticity of damages with respect to GDP is 1/ 2,
D

   the effect of growing 

damages is halved for 1   (cf. 
(0)

D
g  in (4.3)). A smaller elasticity of damages 

with respect to GDP acts to decrease the insurance term and thus induces a lower 

risk-adjusted discount rate and higher carbon price. Whether GDP uncertainty 

increases the carbon price depends on whether the coefficient of relative prudence 

exceeds twice the elasticity of damages with respect to GDP: CRP 1 2 D    

(Jensen and Traeger, 2014, their equation (9)). With multiplicative damages as in 

Results 1 and 2 ( 1
D

  ), this condition reduces to 1.   

We have abstracted from long-run risk in economic growth (Bansal and Yaron, 

2004).22 It has been shown numerically that including this long-run risk pushes up 

the optimal risk-adjusted SCC by a factor 2 or 3 if aversion to risk exceeds aversion 

to intertemporal fluctuations (Bansal et al., 2016).  

                                                           
22 Epstein et al. (2014) argue that long-run risk and a preference of early resolution of uncertainty 
implies that the timing premium needed to calibrate asset returns is implausibly high (20-30%).  
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C. Climate and damage uncertainties 

The climate sensitivity risk correction 2( )((1/ 2) 1 / /) 2( )
T T

r         in 

(4.1) depends on ,
T TT          which combines the generally convex 

dependence of temperature on the normally distributed climate sensitivity 

parameter ( 0,   cf. (2.5)) and the generally convex dependence of damages on 

temperature ( 0T  ). The former captures the (positive) skewness of the 

(equilibrium) climate sensitivity distribution. The climate sensitivity uncertainty 

correction is thus positive and larger for a more convex damage function, a more 

(positively) skewed climate sensitivity distribution, a lower rate of mean reversion, 

greater uncertainty of climate sensitivity, and if the growth-corrected discount rate 

is smaller (higher , ,
T    lower ,   higher   and lower r ). There is no 

corresponding damage uncertainty correction in Result 2, which is consequence of 

damage uncertainty being normally distributed (i.e., 0  ). 

D. Climate betas: correlated climate, damage and economic growth risks 

The term in Result 2 correcting for correlations between climate and damage risks, 

on the one hand, and economic risks, on the other hand, can be rewritten as  

(4.4)    2( 1) 1 ,1
CK K T

K K

r r

 
 

 

   
 

  
  


    

  
  

where /  and /
K K K K K K                denote the climate-sensitivity 

and climate-damage beta, respectively. These climate betas measure the normalized 

correlation with shocks to the rate of economic growth in direct analogy with the 

definition of beta in asset pricing theory (e.g., Lucas, 1978; Breeden, 1979).23 The 

                                                           
23 Consistent with our perturbation scheme, the volatility of total GDP is given to leading order by 
the volatility of the capital stock neglecting the effect of climate damages and thus the carbon stock, 
climate sensitivity and damage uncertainties.  
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sign of (4.4) depends on whether relative risk aversion  exceeds one or not, i.e., 

on whether the risk-insurance effect dominates the risk-exposure effect or not (cf. 

Lemoine, 2017). If climate sensitivity and economic growth are positively 

correlated ( 0
K  ), the risk-insurance effect pushes down the risk-adjusted SCC, 

and more so if relative risk aversion is high, climate sensitivity displays less mean 

reversion, and the climate-sensitivity beta is large (high ,  low   high K ). 

Furthermore, the factor (1 )
T  reflects the increase in the (co-) variance resulting 

from the power-law dependence of damages on the climate sensitivity parameter 

. . The risk-insurance effect is greater for a more convex damage functions (high  

T
 ) and a more skew climate sensitivity (high  ), but remains non-zero even for a 

symmetric climate sensitivity distribution and linear damages ( 0
T   ). The 

risk-exposure effect acts in the opposite direction: if the climate sensitivity 

parameter   (and temperature) is high and 0,
K   the adverse effects (on GDP) 

are amplified due to the multiplicative nature of damages, requiring a rise in the 

carbon price. The risk-insurance effect dominates the risk-exposure effect if 1.    

Finally, the term CC ( )(1 )
T

r                 in Result 2 captures 

the correlation between climate sensitivity and damage uncertainty: risk aversion  

plays no role as there is no insurance possibility via the economic growth channel. 

If climate sensitivity uncertainty and damage uncertainty are positively correlated, 

this term is positive and thus the risk-adjusted SCC is pushed upwards. 

E. Special case: logarithmic preferences 

With logarithmic preferences and proportional reduced-form damages, 1    

and 0
ET

   (cf. Golosov et al., 2014), we have CK 0   and Result 2 becomes 
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(4.5) 0
) (1

1
( / )

(
2

)
2

( .1 )P
T T

Y
P

  
  

  

     
   

      

  

             


  

Hence, economic growth uncertainty and the climate betas do not affect the optimal 

risk-adjusted SCC, but climatic uncertainty and correlated risks for climate 

sensitivity and damage uncertainty do. 

 

IV. Calibration 

Table 1 summarizes the details of our calibration with further details in Appendix 

F. To calibrate the non-climatic part of our model to match historical asset returns, 

we follow Pindyck and Wang (2013) but abstract from catastrophic shocks to 

economic growth (see Appendices F.1 and F.2). We note that carbon stock volatility 

is extremely small.24 By setting  0.5
E

    and 1,
T
   we have proportional 

reduced-form damages with 0
ET

  (see Appendices F.3 and F.4). By setting 

1.5,
T
    we have convex reduced-form damages with 0.25.ET   We let damage 

uncertainty be normally distributed, so 0,   with mean   and standard 

deviation  calibrated to the estimates surveyed in Tol (2009) and associate these 

with the steady-state distribution, so    and 
2 2 2      (see Appendix F.5), 

setting  20%/year. The flow damage coefficient (1 )
E

D D    with   and 

  set to our base case values is approximately constant at 2.6% GDP/TtC for 

proportional damages but starts at 3.2% of GDP/TtC and then rises with global 

                                                           
24 Using the same dataset, but considering a Geometric Brownian Motion for the atmospheric carbon 
concentrations above pre-industrial level instead of the Arithmetic Brownian Motion considered 
here, Hambel et al. (2017) find a much larger volatility of 0.78 %/year1/2. Estimating this volatility, 
we find 1.4, 0.5 and 0.2 %/year1/2 for the periods 1800-2004, 1900-2004 and 1959-2004. This large 
variation of volatility with time suggest that historical volatility in the atmospheric carbon 
concentrations is better described by an Arithmetic Brownian Motion, as in (2.4). 
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warming for convex damages. For comparison, Golosov et al. (2014) have  = 

3.64% GDP/TtC, which includes a markup for tipping risk. 

TABLE 1 – SUMMARY OF THE BASE CASE CALIBRATION 

Rate of impatience  = 5.75%/year  

Intertemporal substitution (inverse of 
intergenerational inequality aversion) 

EIS = 1/ IIA=1/ = 0.67 

Attitudes to risk RRA = η = 4.32 

World economy A* = 0.113 /year, GDP = $75 trillion/year, g(0) = 2.0 %/year 

Investment and adjustment cost (0) (0)

0 0/I Y  = 24.3%, i(0) = 2.75%/year,  = 0.28%/year,  = 

12.3 year 

Asset volatility and returns 
K = 12.13%/year1/2, (0)

r = 7.16%/year,  
(0)

rfr  = 0.80%/year,   

(0)(0)

rfr r   = 
2

K  = 6.36%/year   

Share of fossil fuel in value added 

Production cost of fossil fuel 

1   = 6.6% 

b = $5.4×102 /tC 

Pre-industrial and 2015 (t = 0) carbon stocks 

Stochastic carbon stock dynamics 

Concavity temperature function 

EPI = 596 GtC, S0 = 854 GtC, E0 = 258 GtC, 

 = 1.0,   = 0.66%/year,  
E  = 0.31 GtC/year1/2 

E = 0.5 

Convexity and mean reversion damages 

Mean and standard deviation of damage 
uncertainty 

0,      20%/year 

Proportional damages: T = 1,
32.2 ,10
 31.6 10

    

Convex damages: T = 1.5, 
31.6 ,10
 31.0 10

     

Flow impact global warming damages Proportional damages: 0 = 2.63% GDP/TtC  

Convex damages: 0 = 3.16% GDP/TtC 

Distribution of the ECS 1.9,   0.95,  1/2=11%/year , 0.66 %/year, 

0.59,   2.2T   and 3.0 for proportional and convex 

damages, respectively 

Distribution of the TCR 1.75,   0.38,  1/2=4.5%/year , 0,   0,   

1.0T   and 1.5 for proportional and convex damages 
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The equilibrium climate sensitivity (ECS) is defined as the equilibrium change in 

annual mean global temperature following a doubling of the atmospheric carbon 

stock relative to pre-industrial levels. From (2.5) the climate sensitivity is 

1

2 ( , ) ,
PI

T T E E       where   is normally distributed with mean    and 

standard deviation ,  and   is chosen to match the skewness of the climate 

sensitivity 2 .T  We fit the distribution of 2T  to a range of estimates for the ECS, 

thereby getting close to the thin-tailed Gamma distribution of Pindyck (2012). This 

yields  2 3.0°C,E T    2

2var 4.5°CT   and  2

3skew 10°CT  , indicating a right-

skewed equilibrium distribution. We estimate the rate at which this skew 

equilibrium distribution is reached at   0.66%/year, capturing that the ECS and 

its associated skewness occurs on time scales of a few centuries. For comparison, 

we also fit the non-skew transient climate response (TCR), which is defined as the 

change in annual mean global temperature at the time of doubling following a linear 

increase in the carbon stock (IPCC, 2013). Matching information from Figure 10.20 

and Chapter 10 of IPCC (2013), we obtain  2 1.75°C,E T    2

2var 0.15°CT   and 

 2skew 0,T   indicating a mean TCR of 1.75 °C  and a normal (non-skew) 

distribution. Table 2 compares our ECS and TCR calibrations. The skewness, 

despite being a long-run feature only, is the most important driver of the risk-

adjusted SCC, and we adopt the ECS calibration in our base case (Appendix F.6). 

TABLE 2 – TWO WAYS OF CALIBRATING CLIMATE SENSITIVITY 

 ECS (steady state) TCR (after 70 years) 

 2E T  3.0 °C 1.75 °C 

 2var T  4.5 °C2 0.15 °C2 

 2skew T  10 °C3 0 

 *

2skew T  1.0 0 
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V. Quantification of Effects of Economic and Climatic Risks on Optimal SCC 

Table 3 gives the deterministic and the risk-adjusted SCC25 for the two ways of 

calibrating climate sensitivity. The effect of atmospheric carbon stock uncertainty 

is identically zero or numerically negligible with, respectively, proportional and 

convex reduced-form damages. The markup for climate sensitivity uncertainty on 

the deterministic optimal carbon price varies from 2% for the TCR calibration and 

22% for the ECS calibration for proportional damages or 3% (TCR) and 37% (ECS) 

for the convex variant. The ECS calibration leads to a larger upward adjustment of 

the price due to the marked skewness of the distribution in the ECS, which is not 

present in the distribution of the TCR.26 The deterministic SCC for the TCR is also 

much lower due to the lower temperature rise associated with this climate 

sensitivity and the lower curvature of the flow damage coefficient.27 

TABLE 3 – EFFECTS OF RISK ON THE OPTIMAL SCC 

Damages Proportional Convex 

Carbon price ($/tCO2) 
base 
case 

TCR     
base 
case 

TCR     

Deterministic carbon price 7.27 3.13 7.27 9.38 3.28 9.38 

due to economic growth uncertainty  1.99 0.86 1.99 2.11 0.74 2.11 

due to carbon stock uncertainty  0.00 0.00 0.00 0.00 0.00 0.00 

due to climate sensitivity uncertainty 1.56 0.05 8.45 3.46 0.09 17.93 

due to climate damage uncertainty 0 0 0 0 0 0 

Total risk-adjusted carbon price 

(Total risk markup) 

(Climate risk markup) 

10.81 

(49%) 

(22%) 

4.04 

(29%) 

(2%) 

17.70 

(144%) 

(116%) 

14.96 

(59%) 

(37%) 

4.11 

(25%) 

(3%) 

29.43 

(214%) 

(191%) 

                                                           
25 We use Result 2 and refer to the definitions of  r  and other variables to Appendix A.  
26 If we calibrate the climate sensitivity to the transient response to cumulative emissions (see 
Appendix F.6.2), we obtain for the case of proportional damages a deterministic SCC of $4.13/tCO2 
and markups for economic and climatic risk of 30% and 6%, respectively, thus leading to a risk-
adjusted carbon price of 5.71/tCO2.  
27 For the TCR calibration, 0 is 1.13% (proportional) or 1.11% of GDP/TtC (convex damages). 



27 

 

Although the damage specification of Nordhaus (2008) is associated with a 

curvature that is approximately constant at 1T  , corresponding to our 

proportional damages case ( ET 0), the curvature of the specification by 

Ackerman and Stanton (2012) increases rapidly after approximately 1 °C of 

warming to a value of 4. The effect of the degree of convexity T  is considerable, 

as illustrated by the increase of the markup from 22% to 37% between T  1.0 and 

T  1.5. An even greater convexity of the generally poorly understood and ad-hoc 

damage function is not inconceivable. 

The magnitude of the markup for the uncertain nature of the skew equilibrium 

climate sensitivity is determined by the time scale over which the equilibrium is 

reached. In our base case calibration, we have an e-folding time of 21 1. 105    

years, whereas Ricke and Caldeira (2014) argue that temperature rises very quickly, 

on the time scale of a decade, after a (small) carbon impulse. An upper limit to the 

climate sensitivity uncertainty correction corresponds to the limit ,   in 

which the skew equilibrium sensitivity can be thought to arrive instantaneously 

following emissions. This gives total risk-adjusted carbon prices of $17.70 and 

$29.43 per ton of CO2 and climate risk markups of 116% and 191%, for 

proportional and convex damages, respectively. Although climate damages are 

subject to considerable uncertainty, there seems no evidence for non-zero skewness, 

resulting in no correction to the optimal carbon price. The main effect of climate 

damage uncertainty is through correlation with GDP, as discussed in section V.B.  

A. Economic determinants of the optimal carbon price 

Table 4 shows the effects of preferences and economic growth on the risk-adjusted 

SCC and its stochastic drivers. We use the more convex damage variant and the 

ECS calibration as a base. We recall that the optimal discount rate in the absence 
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of stochastic climate corrections is 
(0) 2 2) (1( 1)( )

ETK
r g          

(from Result 2 in Appendix A). It is evident that RRA =  has a large downward 

effect on the discount rate and upward effect on the SCC if economic uncertainty 

is high (and 1  ). If RRA is 10 instead of 4.32 (base case), we obtain a much 

higher economic uncertainty correction of $7.46 per ton of CO2. The correction for 

climate uncertainty as a share of the deterministic SCC more than doubles. The total 

risk markup is much higher: 157% instead of 59% (second column). A higher 

aversion to intergenerational inequality, e.g., an IIA of 3 instead of 1.5, pushes 

down the deterministic SCC from $9.38 to $6.57 per ton of CO2, but pushes up the 

correction for economic uncertainty from $2.11 to $9.77 per ton of CO2 (third 

column), but less so if economic uncertainty is lower (fourth column). For an IIA 

of 3, the correction for climate sensitivity uncertainty is pushed up from $3.46 to 

$6.53 per ton of CO2, the risk markup to 248%, and the risk-adjusted SCC becomes 

$22.87 per ton of CO2.  

TABLE 4 –IMPACT OF RRA, IIA AND CORRELATED RISKS 

Carbon price ($/tCO2) 

(ECS calibration) 

base 
case 

RRA 

 = 10 

IIA  

= 3 

Annual 

K = 

 1.5% 

“Climate  

Beta”  

D = 0.5 

“Climate  

Beta”  

K = 0.5 

  

= 

 0.5 

Deterministic  9.38 9.38 6.57 9.38 9.38 9.38 9.38 

due to economic growth 
uncertainty  

2.11 7.46 9.77 0.02 14.67 2.11 2.11 

due to climate sensitivity 
uncertainty 

3.46 7.30 6.53 2.33 13.13 3.46 3.46 

due to climate damage 

uncertainty 
0 0 0 0 0 3.73 2.04 

Total risk-adjusted  

(Total risk markup) 

(Climate risk markup) 

14.96 

(59%) 

(37%) 

24.14 

(157%) 

(78%) 

22.87 

(248%) 

(100%) 

11.74 

(25%) 

(25%) 

37.18 

(296%) 

(140%) 

11.23 

(20%) 

(-3%) 

17.00 

(81%) 

(59%) 
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Our calibration is based on historical asset returns. If instead, we calibrate based on 

historical GDP, a much smaller annual volatility of 1.5% is appropriate (cf. Hambel, 

et al., 2017). Hence, the correction for economic growth uncertainty shrinks from 

$2.11 to a mere $0.02 per ton of CO2. As a result of the smaller downward 

correction of the discount rate, the correction to allow for the risk of climate 

sensitivity uncertainty is cut from $3.46 to $2.33 per ton of CO2 (fourth column) 

due to an increase in the growth-corrected discount rate .r  The risk-adjusted SCC 

drops from $14.96 to $11.74 per ton of CO2, corresponding to a total risk markup 

of only 25% instead of 59%.  

The coefficient of relative risk aversion RRA has a large effect in our base case 

calibration, which is due to the large volatility of asset returns. For the much smaller 

volatility of historical GDP of 1.5%, the correction for economic growth 

uncertainty only increases from $0.02 to $0.05 per ton of CO2 as RRA is increased 

to 10 (not shown in Table 4). This accords with Crost and Traeger (2013), 

Ackerman et al. (2013) and Hambel et al. (2017), who all use a small value for 

economic uncertainty and find that RRA only has a small and that IIA has a large 

effect on the risk-adjusted SCC (which follows from our growth-corrected discount 

rate 
(0) 2 2) (1( 1)( )

ETK
r g         ).  

B. Climate betas 

If damages are not proportional to world GDP, but instead the elasticity of damages 

with respect to world GDP is only a half, we can compute the effect of setting the 

“climate beta” D  to 0.5 instead of 1 using the ad-hoc modification (4.6). Since 

damage shocks are no longer automatically insured against by their direct 

proportionality with GDP, the optimal growth-corrected discount rate r  drops, as 

reflected by a much larger correction for uncertain economic growth (we keep the 

deterministic price fixed). Because of the lower discount rate, the climate sensitivity 
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uncertainty correction rises significantly. The risk-adjusted SCC thus increases to 

$37.18 per tCO2 corresponding to a very large risk markup of 296% (Table 4, fifth 

column). A more direct approach to the climate beta is to consider the correlation 

structure of the uncertain processes themselves. For example, if we set K = 0.5 to 

capture that adverse damage shocks in the future are more likely if economic growth 

is high, the SCC must be adjusted downwards by $3.73 per tCO2 due to the 

dominance of the insurance effect for RRA 1  (Table 4, sixth column). 

Alternatively, if we set  = 0.5 to capture that an adverse future climate sensitivity 

shock might be associated with an adverse future damage shock, the SCC is pushed 

up by $2.04 per tCO2 (seventh column). Given the very small carbon stock 

uncertainty, the effects of ,
EK E   and E  are negligible. 

C. Comparison with other calibrations 

Table 5 compares our base case results to common alternatives, which rely on 

ethical arguments to use much lower discount rates than derived from asset market 

returns (e.g., Gollier, 2018).28 In contrast to the base case, we assume a low 

economic growth volatility of 1.5 %/year1/2, based on GDP instead of asset return 

volatility, for all alternative calibrations in Table 5 except those in bold. We adopt 

the calibration based on the ECS and proportional damages for all alternative 

calibrations except for Stern. As all corrections for damage and carbon stock 

uncertainty are zero or negligible, we do not show these rows. Golosov et al. (2014) 

(GHKT) adopt logarithmic utility, IIA = RRA = 1, and  = 1.5% per year. From 

(3.7) then, neither the expected rate of growth nor the uncertainty of the future rate 

of economic growth influences the optimal SCC. The growth-corrected discount 

                                                           
28 To analyse this properly, the government should maximize expected welfare using low ethically 
motivated discount rates, subject to the constraints of the decentralized market economy calibrated 
to higher asset returns. The optimal carbon price will then typically fall short of the social cost of 
carbon (Belfiori, 2017; Barrage, 2018).  
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rate r  is only 2.16% instead of 5.82% per year, and thus the deterministic SCC is 

almost fourfold under GHKT. Since the discount rate is so much lower, the 

adjustments for climate risk are 5-6 times higher, but less so if expressed as share 

of the deterministic price. The risk-adjusted SCC under GHKT is more than three 

times as high as in our base ($33.55 instead of $10.81 per tCO2). 

TABLE 5 – COMPARISONS WITH OTHER CALIBRATIONS 

 

Carbon price ($/tCO2) 

base case 

1T   

base case 

1.5T   

GHKT 

1T   

Gollier 

1T   

Nordhaus 

1T   

Stern 

1T   

Stern 

1T   

Stern 

1.5T   

Stern 

1.5T   

Deterministic  7.27 9.38 24.91 20.23 17.58 32.41 32.41 46.97 46.97 

due to economic 
growth uncertainty  

1.99 2.11 0 0.17 0.04 0.14 13.19 0.13 6.52 

due to climate 
sensitivity uncertainty 

1.56 3.46 8.64 6.22 4.86 13.21 22.01 34.66 44.33 

Total risk-adjusted 

(Total risk markup) 

(Climate risk markup) 

10.81 

(49%) 

(22%) 

14.96 

(59%) 

(37%) 

33.55 

(35%) 

(35%) 

26.62 

(32%) 

(31%) 

22.49 

(28%) 

(28%) 

45.77 

(41%) 

(41%) 

67.62 

(109%) 

(68%) 

81.76 

(74%) 

(74%) 

97.82 

(108%) 

(94%) 

Key:  The base case has proportional damages, ECS calibration and annual economic 
volatility of 12.1%. GHKT is based on Golosov et al. (2014) and has IIA = RRA 

= 1 and  = 1.5%/year. Gollier (2012) has IIA = RRA = 2,  = 0. Nordhaus (2008) 

has IIA = RRA = 1.45 and   = 1.5%/year. Stern (2007) has IIA = RRA = 1.45 and 

 = 0.1 %/year. The last two columns have convex damages with 1.5.T   The 

columns in bold use an annual asset volatility of 12.1%. 

Gollier (2012) focuses on the risk-adjusted discount rate. He suggests using RRA 

= IIA = 2 and  = 0, so that r  becomes 2.64% per year. As this is more than for 

GHKT, but less than for our base case, the deterministic SCC is higher than for the 

base but lower than for GHKT. Intergenerational inequality aversion (IIA) now 

exceeds one. Thus, there is a positive adjustment for the carbon price to take 

account of uncertain economic growth, but it is small given that volatility is 

calculated from GDP instead of asset returns. The adjustment for climate sensitivity 
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uncertainty is approximately 4 times higher than for the base case due to the low 

discount rate. The risk-adjusted SCC is much higher, but less than under GHKT. 

The integrated assessment model DICE developed by Nordhaus (2008) has IIA = 

RRA = 1.45,  = 1.5% per year and thus a growth-corrected discount rate r  of 

3.05% per year ( 1
T
  ). As a result, the deterministic SCC, the correction for 

climate sensitivity risk and the fully risk-adjusted SCC are lower than under Gollier 

and GHKT, but higher than for the base case. The final four columns change the 

discount rate to a much lower value, as may be justified on ethical grounds (cf. 

Stern, 2007). Setting  = 0.1% per year and keeping IIA = RRA = 1.45 gives a risk-

adjusted discount rate r  of 1.65% per year, which gives a risk-adjusted SCC of 

$45.77 per tCO2, as illustrated in the first of these four columns. Focusing on the 

Stern variant, the next column in bold indicates that, if economic volatility is 

calculated from asset returns instead of GDP, both the correction for economic 

growth uncertainty and, due to the lower risk-adjusted discount rate, the correction 

for climate sensitivity uncertainty rise substantially. As a result, the risk-adjusted 

SCC is pushed up from $45.77 to $67.62 per tCO2. The last two columns show a 

more realistic version of the Stern variant, namely with convex damages. These 

boost the deterministic SCC from $32.41 to $46.97 per tCO2. And the risk-adjusted 

SCC from $45.77 to $81.76 per tCO2 if economic volatility is calibrated from GDP 

and from $67.62 to $97.82 per tCO2 if it is calibrated based on asset returns. 

D. Accuracy of the tractable rule for the optimal risk-adjusted carbon price 

To assess the accuracy of the approximations made in Result 2 and 2 used in Tables 

3-5, we evaluate Result 1 numerically (see Appendix G for details). For all possible 

calibrations considered, the error is small (less than 2.6% for convex damages but 

less than 0.3% for proportional damages). Crucially, the effect of ignoring carbon 
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stock uncertainty arising from uncertain future emissions in Result 2 (see Appendix 

A) is negligibly small. 

 

VI. Conclusions 

Using asymptotic methods, we have derived a tractable rule for the optimal risk-

adjusted SCC under a range of economic and climatic uncertainties allowing for the 

convexity of global warming damages and the skewness of shocks to the climate 

sensitivity and global warming damages, and the time scales on which they arise. 

This gives insight into the ethical determinants and the stochastic economic and 

geophysical drivers of the optimal carbon price and is a very good approximation 

to our more fundamental result, which only requires that climate damages are a 

small percentage of world GDP (say, less than 10%). Our rule offers a powerful 

analytical complement to insights that could hitherto only be derived from 

numerical solutions of systems of stochastic differential equations. 

With damages proportional to the carbon stock, our optimal SCC is also 

proportional to world GDP. However, if damages are convex, the proportion rises 

over time as global warming increases. The rate used to discount marginal damages 

must be corrected for the various economic, climate and damage risks. The risk-

adjusted SCC increases in risk aversion but decreases in intergenerational 

inequality aversion. The effect of risk aversion is quantitatively much smaller. If 

the elasticity of damages with respect to world GDP is less than one, the climate 

beta is less than one and the risk-adjusted SCC is higher.  

Taking account of uncertainty in the carbon stock dynamics leads to negligible 

adjustment of the optimal SCC. Uncertain climate sensitivity does act to increase 

the SCC significantly, especially if allowance is made for the skewness of the 

equilibrium climate sensitivity distribution. Crucially, only the equilibrium climate 



34 

 

sensitivity is associated with significant skewness, and the role this plays in 

determining the optimal SCC depends strongly on the time horizon over which this 

equilibrium is reached. Taking account of the uncertainty about the economic 

impact of damages does not affect the optimal SCC, unless this distribution is skew, 

for which we have not found a-priori evidence.  

Furthermore, our solutions allow insight into the origins of the overall climate beta 

by allowing for correlated risks in the economic growth rate, the carbon stock, the 

climate sensitivity and damages. The risk-adjusted SCC is pushed up if stochastic 

shocks to the climate sensitivity or the climate damage parameter are negatively 

correlated with shocks to the future rate of economic growth, provided the degree 

of risk aversion exceeds one. If shocks to damages are negatively correlated with 

stochastic shocks to the future rate of economic growth, the corresponding climate 

beta shows by how much more carbon should be priced. The directions of these 

effects reverse if the risk-exposure effect dominates the risk-insurance effect, i.e., 

if the coefficient of relative risk aversion is less than one. These effects do not 

depend on intergenerational inequality aversion and they do not impact the optimal 

SCC if risk aversion equals one. 

Our quantitative results suggest that with convex damages the markups on the 

deterministic SCC for economic and climate sensitivity uncertainties are 22% and 

37%, respectively, giving a risk-adjusted SCC of $15/tCO2. However, if the 

elasticity of damages from global warming with respect to world GDP is ½ instead 

of 1, these markups are 156% and 140%, respectively. The SCC thus more than 

doubles to $37/tCO2 as world GDP acts less as insurance. If the correlation 

coefficient between economic and damage uncertainties is ½, capturing that adverse 

damage shocks in the future are more likely if economic growth is high, the SCC 

needs to be adjusted downwards by $4 per tCO2. But if the correlation coefficient 

for climate sensitivity and damage uncertainties is ½, the climatic risk markup rises 
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(as the coefficient of relative risk aversion exceeds 1 in our calibration) from 37% 

to 59%. If a low ethical instead of a market-based discount rate is used as in Stern 

(2007), the deterministic SCC rises to $47/tCO2, the economic and climatic risk 

markups are 14% and 94%, respectively, and the risk-adjusted SCC becomes 

$98/tCO2. However, if economic volatility is calibrated to the lower volatility of 

GDP instead of asset returns, the economic and climatic risk markups are negligibly 

small and 74%, respectively, and the risk-adjusted SCC is still as high as $82/tCO2. 

Future investigations should be directed at obtaining robust empirical estimates of 

the climate betas, a largely uncharted territory. Other areas for future research are 

to extend our analytical approach to the optimal risk-adjusted price of carbon to 

include compound Poisson shocks to climate sensitivity (e.g., Hambel et al., 

2017) or for richer positive feedback processes in the uptake of atmospheric 

carbon due to the CO2 absorption capacity of the oceans declining with 

temperature (Millar et al., 2016). Each of these extensions would push up the 

optimal price of carbon, as would the risk of tipping points (e.g., Lemoine and 

Traeger, 2014, 2016; Lontzek et al., 2016; Cai et al., 2016; van der Ploeg and de 

Zeeuw, 2018). Finally, mean reversion in the stochastic process for the rate of 

economic growth and a downward-sloping term structure with risk aversion 

exceeding aversion to intertemporal fluctuations (Gollier and Mahul, 2017) and 

compound Poisson shocks to capture catastrophic shocks to total factor 

productivity (cf. Bretschger and Vinogradova, 2018; Bansal et al., 2016) also push 

up the optimal risk-adjusted SCC. Future work will employ asymptotic methods 

to identify tractable leading-order solutions for these circumstances.  
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Appendix A: Risk-Adjusted Carbon Price with Convex Reduced-Form Damages  

We can generalize Result 2 to convex reduced-form damages, skewed damage uncertainty 

and carbon stock uncertainty (see Appendix E for the derivation). The resulting rule 

includes additional correction factors, which can be evaluated as simple, one-dimensional 

integrals along a business-as-usual path. The only additional assumption is that the future 

atmospheric carbon stock does not inherit any of the uncertainty from new emissions 

through their dependence on the stochastic capital stock (cf. (E2.3)), which is only 

associated with a very small error, as evident from section V.D and Appendix G. 

Result 2: In general ( 0, 0ET     and 0E  ), the leading-order optimal SCC is: 

(A1) 
  (0)

0
 

1 ,P

ET CK CCEE

E Y F
P

rr E
 

 


 
 

         
 

  

where we redefine ( 20) 1
( 1) ( )( ) 1

2
EK Tr g          to include a more general 

dependence on , 
2( 1) Kr r       , and (0)

F  is shorthand for optimal fossil fuel use 

without climate policy,  
1

(0)
1

(1 ) ,F b A K   to the zeroth order of approximation. 

The deterministic correction factor for future emissions and 0ET   is 

(A2) 
1

0

(1 )
exp( ) exp( ) ) ( ) ,

1 (1 )
( ETET

ET

r
r s r s s

r r
e s d










        
    

where 
(0)( ) 1 ( )(exp( ) 1)e s F E s      captures new emissions and s  is the dummy 

variable of integration. We also have the corrections for uncertainty in the carbon stock, 

climate sensitivity and damages, which are now multiplied by new correction factors 
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The correction for correlated climate and economic risks is 
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The correction for correlated climate sensitivity and damage risks is 

(A6) 
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where   is already defined in (A4) and we do not show E  and E .       
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Due to the very small magnitude of 
(0)2

0E g  (see section IV), we can ignore all terms 

involving atmospheric carbon stock volatility, as their contributions to the risk-adjusted 

SCC are negligible in which case 0
EE

   and (A5) and (A6) simplify to: 

(A5) CK ( 1) (1 ) ( )1
K K

T KK K
r r

   
   

 

     
  

 
   

 
         

  and 

(A6)  CC 1 1( ) .T
r

  
  

 

   
 

 
 

 
    

There are three differences compared to the simpler Result 2. First, convexity of reduced-

form damages ( 0ET  ) pushes up the deterministic SCC though the deterministic 

correction factor 0   in (A2), but also boosts the discount rate 

(0)( 1) 1( )ETr g       . The net effect is ambiguous, but positive for small decay 

rates of atmospheric carbon. Second, our power-function specification for damages (2.6) 

gives  2 11/( ) (1 ) ( / ) ET

ET EE P T PIIE E SS
      to leading-order in our small parameter. 

With convex damages ( 0ET  ), the flow damage coefficient thus rises with the stock of 

atmospheric carbon. The time path for the carbon price is then steeper than that of world 

GDP. Third, there is a climate damage uncertainty correction 

2(1/ 2) 1 / / 2( )( ) ( )r              in (A4), which adjusts the SCC upwards if 

the probability density function of damage shocks is right-skewed ( 0  ). The upward 

adjustment is larger if damages are more uncertain and right-skewed, display less mean 

reversion, and if the growth-corrected discount rate is smaller (higher , ,    lower ,  

and lower r ). This correction is separate from the negative effect on the risk-adjusted 

carbon price of the risk insurance term 
2

K , resulting from damages being proportional to 

GDP (as discussed in section III.B). Finally, the correction factors  for , ,ij i j     which 

appear in Result 2 are unity for proportional damages ( 0ET  ), but are greater than unity 

for convex damages ( 0ET  ) and capture the contribution by new emissions  
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Appendix B: Transformation to Non-Dimensional Form (For Online Publication) 

We define the non-dimensional variables 

(B1) 
0

0 0 0 0 0 0

ˆ ˆˆ ˆ ˆ ˆˆ, , , , , , , ,
K E F C I

K E F C I t g t
K E F C C C

  
 


           and 

0

1

0
ˆ / ( ) ,J g J C

  

where zero subscripts refer to initial values ( 0t  ), except for     00 0

11

1F A E b K   

and 0 0 0C g K , so that all hatted quantities are  1O  initially, assuming  0 1O    and 

 0 1O   . We define  0 0g g E E   to be the growth rate of the economy without 

additional climate change, 
0g   and  

0 ,i i g where / .i I K  The Hamilton-Jacobi-

Bellman equation (3.2) becomes in non-dimensional terms 
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where 1ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ( , ˆ)I FY bF C A E K bF C
        , 0

ˆ /Y Y C  and 
2

ˆ(1 / 2)i i     . 

The resulting non-dimensional expressions are 
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with   1 1

0 0 0
ˆ ˆ ˆ, ( , ) .A E A E F g K

      Damages and total factor productivity become 

(B4) 
1 1 1ˆˆ ˆ ˆˆ ˆ( , , ) ETTD E E

 
     
     and 

1 1* *
1

(1 ) (1ˆ ˆ ˆˆ ),ˆˆ ETTA A D A E
 

          



45 

 

where the damage fraction D̂ D  is already non-dimensional,  * * 1 1

0 0 0Â A F g K
    and 

the final non-dimensional parameter is 

(B5) 
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0
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S

 


 

 


   
 
 

  

The first-order conditions of (B2) with respect to Ĉ  and F̂  are, respectively, 
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  and 
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where we have defined the SCC in non-dimensional terms as 
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and use (B7) to write the production function as 
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Appendix C: Derivation of Zeroth-Order Solution (For Online Publication) 

In non-dimensional terms, the truncated series solutions for the value function and the 

forward-looking control variables (3.4) is given by 
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At (1)O  the Hamilton-Jacobi-Bellman equation (B2) can be written as 

(C2) 
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ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ 0,E EEE EJ E J                 

 

where we have substituted for the  forward-looking variables Ĉ  and F̂  at (1)O  from (B6) 

and (B7) and we have used 

(C3) 
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dt

  . 

In (C2)-(C3), 
(0)

î  is the (constant) optimally chosen investment rate. Equation (C2) has a 

power-law solution of the form 
(0)

1

0 ,ˆJ K
   and following some manipulation we obtain 
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From the first-order condition (B6), we obtain 
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(0(0) )ˆ ˆˆC c K  with 
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i
   


 

    






 


, 

where    ˆ ˆ1q i i   denotes Tobin’s ,q  the price of capital in consumption terms.29  

We can thus write the value function (C4) as 

                                                           

29 The value of the capital stock is ˆqK , or dimensionally qK , where ˆ ˆ1/ '( ) 1 ( )q i i     is already 

a fraction and is left unchanged by the scaling (cf. ˆˆi i  ).  
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(C6)    
1
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1
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1
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Substituting in for F̂  from the optimality condition (B7) and for Ŷ  from (B9), we obtain 

from ˆˆˆ ˆ ˆ :I Y C bF     

(C7) 
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    denotes the marginal 

productivity of capital net of depreciation.30 Equation (C7) implicitly defines the optimally 

chosen investment rate 
(0)ˆ .i  From (C3), the leading-order endogenous growth rate of 

capital and hence of consumption is given by 
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      and   hence  (0) (0)ˆ ˆˆ 1.g i   

In equilibrium, the marginal propensity to consume 
(0)(0)ˆ ˆc q  equals the expected return on 

investment (0)
r̂  minus the growth rate of the economy

(0)ˆ .g  In turn, the expected return on 

investment equals the sum of the risk-free rate 
(0)

rfr̂  and the risk premium 
(0)ˆ .r  Hence, 

(0)(0) (0) (0) (0) (0) (0)

rf
ˆ ˆ ˆ ˆ ˆ ˆ ˆc q r g r r g       and with a risk premium of 

(0) 2ˆ ˆ
Kr    in the 

absence of any climate risk at zeroth-order, the risk-free rate is: 
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(0) (0) 2

rf
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Although (0)
ˆ

ˆ
E

J  can be computed from (C6), a consistent leading-order estimate of the 

optimal SCC also requires (1)
ˆ

ˆ
E

J  and thus the next order in the perturbation expansion, i.e., 
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30 Dimensionally, we have 
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mpk mpk 0
ˆ .r r g  
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Appendix D: Derivation of First-Order Solution (For Online Publication) 

D.1. Solution to multi-variate Ornstein-Uhlenbeck process  

We define  0
ˆ log /k k K K  , so the vector of all four states   ˆ ˆˆ ˆ, , ,

T

dk dE d dd  x  

can be described by one multi-variate Ornstein-Uhlenbeck process (2.9), which is given 

in non-dimensional terms by 

(D1.1)   ˆ .tdtd d  ν x μ Sx α W  

The growth rate vector (2.10), relevant to the capital and atmospheric carbon stock 

processes only, is given in non-dimensional terms by 

(D1.2) 
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α  

the mean reversion rate vector by  ˆ0, , ,
T

   ν , the vector of means by 

(0,0,1,1) ,
T

Tμ  and the covariance matrix 
T

SS  has the form 
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x x SS  

We begin by integrating the multi-variate Ornstein-Uhlenbeck process (D1.1), including 

only terms at zeroth order, so that the coefficients are constant and a closed-form solution 

is available. Specifically, 
(0)

(0)

1
1

2
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1ˆ ˆ ˆˆ ˆ ˆ( ) 2, ,0,0 ,ˆ

T

Ki A K
b


   

 
 
 
 

  
 

α  where we have 

relied on the solution for K̂  from the zeroth-order problem (cf. (C8)). The slow dependence 

of productivity Â  on the states Ê , ̂   and ̂  can be neglected when integrating with 
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respect to time, consistent with the multiple-scales nature of our perturbation expansion. 

For constant coefficients, (D1.1) can be integrated to give: 

(D1.4)      
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D.2. Evolution equations for K̂  and Ê  

We consider the expected evolution equations of the states K̂  and Ê  at ( )O  and (1)O , 

respectively. At this order, we have for the expected evolution of ˆ :K  

(D2.1) 
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ˆ(0) (1) (0) (1)
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where the first identity makes use of the identity (1) (1) (0) (1) (0)ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ ( )I I I K I i      at 

( ).O  We further note from ˆ ˆˆ ˆ ˆI Y bF C    that 
(1) (1)ˆˆ ,I C   since production net of fossil 

fuel costs is unaffected by the SCC in our formulation: 
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(D2.2) 
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The identity in (D2.2) relies on the Cobb-Douglas nature of the production function. The 

third identity in (D2.1) follows from a Taylor-series expansion of ˆ ,C  given by (B6), with 

respect to the small parameter  (about 0 ): 
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Noting that 
(1) (1)ˆ ˆ ,i c   we can rearrange this linear equation to give 
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which is used in the third identity in (D2.1). For ˆ ,E  we have at (1) :O  
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D.3. The Hamilton-Jacobi-Bellman equation 

Substituting for the forward-looking variables Ĉ  from (A6) and  F̂  from (B7), the 

Hamilton-Jacobi-Bellman equation (B2) becomes at ( ) :O  

(D3.1) 
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where we have used the identity ˆ ˆ ˆk K K     (chain rule), we substituted the evolution 

equations for K̂  at subsequent orders  ((C3) and (D2.1)) and Ê  at zeroth-order (D2.5), 

and defined    * *ˆ ˆ ˆ ˆ,f f C JJ   with Ĉ  optimally chosen. From (2.1) and (B6),  *
f̂ J  is 

(D3.2)     ˆ

1

*

1

1
1 1

(1ˆ ˆ ˆ ˆ)ˆ)
1

ˆˆ( .
1K

f i J J J

  
     

 





  



 

 

A Taylor-series expansion for  *
f̂ J  in  (about 0 ) gives 

(D3.3)  
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ˆ ˆ ˆ
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1 1K
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where we have substituted for 
(1) (1)ˆ ˆi c   from (C2.4) and used the identity: 

(D3.4) 
   (0) (0) (0)

ˆ
(0) (0

1 1

( )

1
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0
ˆ

(1 )ˆ ˆ ˆˆ( )
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Substituting from (D3.2), two of the terms in (D3.1) simplify to 
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(D3.5)  
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E dK
d

i c J
t
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Using (D3.5), (D3.1) can be rewritten as a forced equation: 

(D3.6)  
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where the forcing is defined as 

(D3.7) 
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ˆ
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To obtain derivatives of the zeroth-order value function with respect to ˆ ˆ,E   and ˆ,  we 

first differentiate with respect to the marginal productivity of capital (0)

mpk
ˆ ,r  which depends 

on these three variables (via the chain rule of differentiation). From (C6), we obtain: 

(D3.8)  
(0)

(0)
(0) (0)

(0) (0) (0)(0)
mpk mpk

ˆˆ ˆ ˆ( ) 1ˆ 1 .ˆ ˆˆ ˆ ˆ( )

J i i
J

r c ri

  


 
  
 

   
   

 
 

Since the Investment rate is implicitly defined, we get from (C7) by implicit differentiation:  

(D3.9) 

(0)

(0) (0) (0) (0)
mpk

ˆ 1
.ˆ ˆˆ ˆˆ ˆ ( )) / (

i

r c i i  
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Combining (D3.8) and (D3.9), we obtain  

(D3.10)       
1

1
(0) (0)

1(0)
(0) 1 1 1

(0) (0)

mpk

ˆ 1 ˆˆ ˆˆ ˆ( )
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J i c K
r c

    
      

  


.  

Using the chain rule of differentiation, we find the individual terms that contribute to the 

forcing (D3.7): 
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and similarly for derivatives with respect to ̂  and ˆ,  as well as cross-derivatives. From 

the zeroth-order solution     11
(0)

mpk
ˆˆ ˆ 1 ˆˆ ˆˆ , , ( )r A E b

 
    


   and the non-

dimensional total factor productivity (B4) we obtain 
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(D3.12b)  
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(D3.12d)  
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where have used the following short-hands  1ˆ ˆ(ˆ ) T     and  1ˆ ˆˆ ( ) ,


 


   so 

1 ˆˆ ˆ ˆˆ( ) ( ).ˆETD E
     Equations (D3.11) and (D3.12) can be substituted into (D3.7): 
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Because we are ultimately interested in (1)
ˆ

ˆ
E

J  for the computation of the social cost of 

carbon, we first differentiate (D3.6) with respect to Ê  and seek a solution for (1)
ˆ

ˆ
E

J  of the 

form  (1)
ˆ 1

ˆˆ ˆ ˆ ˆ ˆˆ(1 , , , , )ETE
J K E t     , which gives (from (D3.6)):31 

(D3.14)     (1)
ˆ 1

1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ ˆˆ( , , , , ) ( , , , , )ˆ1 ,ET tE
dJ K E t r E K E t

dt
                

where we have introduced the effective discount rate 

                                                           

31 Dimensionally, we have 
11 1

0 0
ˆTETE K
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The scaled forcing is defined by32 
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Equation (D3.14) has the closed-form solution: 
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We can now compute the SCC according to   (0)
(0) (1) (0)
ˆ ˆ ˆ

ˆ ˆ ˆ ) ˆ(ˆ
E E K

iP J J J   
: 
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where we introduced 
* (0) (0)ˆ ˆ ˆr r g . Dimensionally, (D3.19) corresponds to Result 1. 

 

 

 

                                                           

32 Dimensionally, we have 
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Appendix E: Leading-Order Effects of Uncertainty (For Online Publication) 

Following the additional assumptions outlined at the start of section III, this appendix 

derives closed-form solutions for the optimal risk-adjusted SCC based on Result 1.  

E.1. Carbon stock dynamics 

The expected value of the carbon stock is governed by the differential equation (D2.5) with 

solution 

(E1.1)  *ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( )exp( ) ( ) 1 exp( ) / ( )exp( ) ( ),tE E s E t s K t s E t s e t                  

where  
1 1

* ˆ ˆˆ ˆ (1 ) b A     , ˆˆ ˆs s t    and * ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 1 ( ( ) ( ))(exp( ) 1) .e s K t E t s      

Dimensionally, we define 
*  so that 

(0) *
F K  , where   does not have units and 

*  

has units of TtC/$year. We can then obtain   1* 1A b


    or  * *

0 0 0 .ˆ gK E     

E.2. Leading-order forcing  

To identify leading-order terms only, we expand in ˆ ˆ ˆ ,      ˆ ˆ ˆ      and

 tE E E E    with the corresponding covariance matrix given by (D1.5) (assumption 

II). We begin by considering terms that only involve capital stock uncertainty, which can 

be evaluated without further approximation. The probability density function for time ˆ,s  

but with the expectation operator evaluated at time ˆ,t  is 

(E2.1) 2

2
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where (0) 2ˆ ˆˆ ˆ( ) 2.k Ki     Combining with the discount factor in (D3.18) and an 

additional factor accounting for the decay of the atmospheric carbon stock, we have without 

further approximation 

(E2.2) 
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where we have introduced the new short-hands 

* (0) (0)(1 ) ˆ ˆˆ )ˆ (1ˆ ˆ
ET ETr r r g          and 

0 0 2) 2( ) ( ˆ ˆˆ ˆ ˆ ( ˆ (ˆ1 1 ) ˆ) K ET Kr r g r               and note the use of alternative star 

symbols to denote rates corrected for atmospheric carbon stock decay. To leading order, 

we have for the terms involving the carbon stock: 
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where we let the subscript on 
2

 denote the relevant elements of the covariance matrix Σ  

(D.1.5) and we have ignored any contributions to uncertainty from new emissions through 

their dependence on uncertain future GDP. The following terms make a contribution to the 

forcing (D3.17): ˆ, ,   ˆˆ ) , ,ˆ(   
     ˆ( ,ˆ )     ˆ ˆ   and ˆ ˆ .

  

Keeping only those terms contributing at leading order, we have 

(E2.4a)    

 
2

1 4

2

4
ˆ

ˆ1 ˆˆ ˆ( ) 1 ( ) ( ),
ˆ2

ˆ1 ˆˆ ˆ( ) ( ) ( ) ( ) ( ),
ˆ2

1

1 1 1

T

T

t T T

t T T T T

E O

E O





 
   



 
      



   


     


 

  

            
               

 

(E2.4b)    
 

2

1 4
ˆ

21

ˆ ˆ

1

( ) 1

ˆ
ˆˆ ˆˆ ˆ( ) ( ) ( ),

ˆ

ˆˆ ˆ ( ) ( ),

T

T

t T T

t T T

E O

E O





 
     




    

     


   


            

     

  

  

 

 

 



58 

 

(E2.5a)   
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where all the terms have been evaluated be at their equilibrium values, namely ˆ 1   and 

1,   so that 1   and, an assumption that will be made henceforth (assumption I). Using 

(E2.2)-(E2.5), we now consider the terms in the forcing (D3.17) consecutively and let the 

subscript indices correspond to the sequence of terms in (D3.17) (left to right). To consider 

the covariance terms in the forcing (D3.17), we also expand in  (0) 2ˆ ˆ ˆ ˆ ˆˆ( ) 2Kk k i t      

and only consider deviations from the zeroth-order mean consistent with our search for 

leading-order terms only. Considering the forcing terms in (D3.17) consecutively, the 

following terms arise:  
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where elements of the covariance matrix have been substituted from (D1.5). 

E.3. Leading-order solution 

Combining all the leading-order terms in the forcing equation (E2.9)-(E2.21) and 

substituting into (D3.19), we obtain after considerable manipulation  
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and the correction factors are given by 
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and we do not explicitly give the correction factors for the terms involving carbon stock 

uncertainty, as these terms are negligibly small. 

Dimensionally, (E3.1) together with (E3.2) and (E3.3) gives, using the definitions 

summarized in (A.1) and (A.3) and (0)*

0 0
ˆ / )ˆ (K F g E  ), Result 2 stated in Appendix A. 

This generalizes Result 2 to convex reduced-form damages, non-zero carbon stock 

volatility and potentially skewed damage uncertainty.  
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Appendix F: Calibration (For Online Publication) 

F.1. Asset returns, risk aversion and intertemporal substitution 

To calibrate the non-climatic part of our model to match historical asset returns, we follow 

the calibration of Pindyck and Wang (2013), but ignore the effect of catastrophic shocks 

considered by these authors.33,34 Using monthly asset data from the S&P 500 for the period 

1947-2008, we obtain an annual return on assets (capital gains plus dividends) of 
(0)

r 

7.2%/year with annual volatility of K  12%. For a return on safe assets of 0.80 %/year 

based on the annualized monthly return on 3-months T-bills, we obtain a risk premium of 

(0) (0) (0)

rfr r r   6.4%/year and calibrate the coefficient of relative risk aversion as    

4.3 (cf. ) 2(0

Kr  ). Taking the growth rate to be equal to the historical growth rate of 

(0)
g   2.0%/year, the equation 

(0)(0) 2

rf (1 ) 2Kr g        (cf. (B9)) defines the 

combinations of  and   that are consistent with historical asset returns. Setting the 

coefficient of elasticity of intertemporal substitution EIS 2 / 3 , we obtain 
1EIS   1.5 

and thus a rate of time preference is  = 5.8%/year.  

E.2. Productivity, fossil fuel, adjustment costs and the depreciation rate 

To calibrate total factor productivity, we consider the production function in the absence 

of climate damage that can be obtained by setting 0P   (i.e. at zeroth order), namely 

                                                           
33 Pindyck and Wang (2013) use Poisson shocks to capture small risks of large disasters (cf. Barro, 
2016) and thus match skewness and kurtosis of asset returns. These shocks are responsible for 
approximately 1%-point of the risk premium. We furthermore calibrate the zeroth-order or non-
climatic part of our model based on historical GDP data, which may have included the (small) effects 
of climate in reality.  
34 The alternative is to calibrate our AK model to the observed volatility of consumption or output 
(cf. Gollier, 2012), which are generally much less volatile than capital (asset returns). Because the 
volatilities of capital, consumption and output are equal to the volatility of capital in an AK model, 
this alternative calibration gives a much lower volatility and, consequently, a higher coefficient of 
relative risk aversion to match the equity premium (see also the discussion in Pindyck and Wang, 
2013). Historical data for the growth rate of world GDP for 1961-2015 imply an annual volatility of 

K = 1.5 % and thus a much higher value of risk aversion of  = 2.8 210  for an equity premium 

of 6.4 %/year. Kocherlota (1996) obtains K   3.6%/year from US annual consumption growth 

during 1889-1978, which gives  = 49.  



65 

 

*(0)
Y A K  with  (1 )/* 1/ (1 ) /A A b

      (cf. (A9)). Pindyck and Wang (2013) use 

empirical estimates of the physical, human and intangible capital stocks and find 

* 0.113A  /year, which we adopt. Based on emissions of (0)
0F  9.1 GtC/year in 2015, 

energy costs making up a share 1   6.6 % of world GDP at $75 trillion/year, we obtain 

an estimate of the cost of fossil fuel of 
(0)(0)

0 0

2(1 $5.) 4 10b Y F     /tC.35 From this, 

we estimate the gross marginal productivity of capital 
(0)

0

* 0.106K
t

Y A


  /year.36 Using 

Pindyck and Wang’s (2013) consumption-investment ratio 
(0) (0)

c i  2.84 and the identity 

(0) (0* ) ,A c i   we obtain initial values of 
(0)

c   7.84%/year and 
(0)

i  2.76%/year. 

Using 
(0) (0) (0) (0)( )c r gq     1.51 and 

(0) (0) 1(1 )q i   , we obtain for the adjustment-

cost parameter  = 12.2 year. Finally, we find the depreciation rate that is consistent with 

the assumed rate of economic growth: 
(0) 0 (0)2( )( ) 2 0.30i i g     %/year. 

E.3. Atmospheric carbon stock and uncertainty 

We calibrate our stylized carbon stock model (2.4) to the Law Dome Ice Core 2000-year 

data set and historical emissions. The first column of Figure F1 shows maximum-likelihood 

estimates of the two parameters of our simple atmospheric carbon stock model (2.4) for 

different time periods, from which it is evident that estimates displaying a certain linear 

relationship between    and   are of comparable likelihood.37 These loci of maximum 

                                                           
35 We estimate the share of energy costs from data for energy use and energy costs from BP 
Statistical Review of World Energy 2017. Data for emissions are obtained from the same source 
available online at https://www.bp.com/en/global/corporate/energy-economics/statistical-review-
of-world-energy.html. Our estimate of energy costs as a percentage of GDP is in good agreement 
with data from the U.S. Energy Information Administration available online at 
https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0105.  
36 This is in line with Caselli and Feyrer (2007), who estimate annual marginal products of capital 
of 8.5% for rich countries and 6.9% for poor countries, and an observed annual risk premium of 5-
7%. They use a depreciation rate of 6.0% to calculate the capital stock from investment, include the 
share of reproducible capital rather than the share of total capital, account for differences in prices 
between capital and consumption goods and correct for inflation. 
37Annual data from the Law Dome firn and ice core records and the Cape Grim record are available 
online at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt.This data is 
based on spline fits to different dataset with different spline windows across time reflecting changes 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0105
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt


66 

 

likelihood are shown separately in Figure F2, with the overall maximum denoted by a red 

circle and corresponding values given in Table F.1.  

TABLE F.1 – ATMOSPHERIC CARBON STOCK CALIBRATION 

Time    [%/year]  1/2 [GtC year ]E  1/2
0  [% year ]E S  1/2

0  [% year ]E E  

1750-2004 1.0 0.66 0.31 0.036 0.12 

1800-2004 0.75 0.00 0.26 0.029 0.10 

1900-2004 0.59 0.00 0.21 0.025 0.081 

1959-2004 0.79 0.91 0.23 0.027 0.089 

 

The remaining columns in Figure F.1 show the predicted and observed rate of change of 

the atmospheric carbon stock (second column), the predicted and observed atmospheric 

carbon stock (third column) and the remaining variability (fourth column).38 For our base 

case, we set  = 1.0 and  = 0.66%/year. Figure F.1 indicates that our simple model (2.4) 

captures the observed variation in the atmospheric carbon stock reasonably well, including 

for very long time periods. The final column in Table F.1 shows our estimates of the 

volatility as a percentage of the initial carbon stock, from which it is evident that the 

stochastic carbon stock correction to the optimal carbon price (4.1a) will be extremely 

small.39 

 

                                                           

in the temporal resolution of the data. The discrete nature of the fitted data is evident for the early 
years. Annual carbon emissions from fossil fuel consumption and cement production are available 
online at http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html. 
38 By setting φ = 0, we can estimate the fraction   of emissions that stays in the atmosphere 
forever, whilst the remainder is instantaneously absorbed by the oceans and other carbon sinks. 
Calibrating to this data, we find μ = 0.68, 0.64, 0.56 and 0.43 for the periods 1750-2004, 1800-
2004, 1900-2004 and 1959-2004, respectively. Performing a similar analysis, Le Quéré et al. 
(2009) find that, between 1959 and 2008, 43% of each year's CO2 emissions remained in the 
atmosphere on average. 
39 We set the initial atmospheric carbon concentration at 0t   to 

0S   401 ppm of CO2 (May 

2015), corresponding to 0.854 TtC or 3.13 TtCO2, and the pre-industrial atmospheric carbon 
concentration to 280 ppm CO2, 0.596 TtC or 2.19 TtCO2, so that 

0E  121 ppm CO2, 0.258 TtC or 

0.94 TtCO2. Updated and historical values can be found online at 
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. We use the conversion factors: 1 ppm of 
CO2 corresponds to 2.13 GtC and 1 GtC corresponds to 3.664 GtCO2. 

http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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FIGURE F.1. ATMOSPHERIC CARBON STOCK CALIBRATION 
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FIGURE F.2. LOCI OF BEST FIT OF TMOSPHERIC STOCK CALIBRATION 

F.4. Calibration of the curvature of the temperature-carbon stock relationship 

It is common to assume a logarithmic relationship between temperature and atmospheric 

carbon stock (Nordhaus, 2008; Golosov et al., 2014; Hambel et al., 2016), thus introducing 

concavity. In our model, the normalized curvature of the temperature relationship (2.5) is 

constant: ( , ) ( , )E EE EET E T E   . The radiative law for global mean temperature, 

 ln( / ) / ln(2) ln ( ) / / ln(2)PI PI PIT S S E S S    (Arrhenius, 1854)40 gives 

/ ( ).E PIE E S     If we evaluate (2.5) at double (quadruple) the pre-industrial stock  

PIE S  ( 3 PIE S ), we obtain 0.50E    ( 0.75E   ).41 For 0S  0.854 TtC or 0E 

0.258 TtC (given PIS  0.596 TtC), we obtain 0.30.E    Alternatively, using the 

simulations reported in Allen et al. (2009) 42 for the peak CO2-induced warming as a 

function of cumulative emissions shown in Figure F.3, which we take to be equivalent to 

                                                           
40 In their table 6.2, IPCC (2001) propose a logarithmic relationship for radiative forcing as a 
function CO2, also given in IPCC (1990, chapter 2, where original sources are cited), among two 
other non-logarithmic, but generally concave parametrizations. IPCC (1990, chapter 2, page 51) 
note that for “low/moderate/high concentrations, the form   is well approximated by a linear/square-
root/logarithmic dependence”, where the limit of validity of the logarithmic calibration is said to be 
1000 ppm. For other greenhouse gases alternative parametrizations are proposed: a square-root 
dependence for methane and a linear dependence for halocarbons. 
41 Whereas the normalized curvature of Arrhenius’s (1854) logarithmic radiative law with respect 
to the atmospheric carbon stock S, namely ( ) ( )

SS S
ST S T S   is constant and equal to -1, this limit is 

only reached for large carbon stock in our case, in which ( , ) ( , ).
EE EE

ET E T E     
42 The black crosses are digitized from the white crosses in Figure 2 of Allen et al. (2009) 
corresponding to their best fit.  
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the transient climate response to cumulative emissions (TCRE), we estimate the curvature 

of our temperature-carbon stock relationship to be 0.45.E    We set 0.50E   for our 

base case calibration. 

 

FIGURE F.3. TEMPERATURE-CARBON STOCK RELATIONSHIP FOR THE TCRE 

F.5. Climate damages and climate damage uncertainty 

The empirical distribution function corresponding to the 10 damages estimates at T  2.5 

oC reported by Tol (2009) is plotted in Figure F.4. We use the 14 damages estimates 

reported by Tol (2009) to estimate the mean   and the 10 damages estimates for T  2.5 

oC to estimate the standard deviation   for three values of 1T   namely 0.5, 1 and 1.5 

and report the results in Figure F.5 and Table F.2.  

  
(a) CUMULATIVE DENSITY at T  2.5 oC              (b) CURVATURE 

FIGURE F.4. ASPECTS OF THE CLIMATE DAMAGE CALIBTRATION  
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TABLE F.2 – CLIMATE DAMAGE CALIBRATION 

 Concave 

damages 

Proportional 

damages 

Convex 

damages 

T  0.50 1.0 1.5 

ET   0.25 0 0.25 

  3.1
310  2.2

310  1.6
310  

  2.6
310  1.6

310  1.0
310  

   0.83 0.76 0.66 

 

With 0.5E   , we thus have concave damages ( 0.5T  , 0.25ET   ), proportional 

damages ( 1T  , 0ET  ) and convex damages ( 1.5T  , 0.25ET  ), emphasizing their 

dependence on the carbon stock. Figure F.4(b) also shows the curvature 

( ) ( )T TD T D T     of three commonly used damage specifications by Nordhaus (2008), 

Ackerman and Stanton (2012) and Weitzman (2012) (A&S (2012)), and by DICE2013R, 

the last also based on the survey by Tol (2009):43  

(F1) 

 
 

 

2

2 6 6.76

2

5.021

1 1 1 0.00284 Nordhaus (2008),

( ) 1 1 1 0.00245 A&S (2012),

1 1 1 0.002131 DICE20
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13R.

T

T

D T T

T



  
  

 





 

The grey arrows in Figure 3 correspond to the ranges of damage estimates of Dietz and 

Stern (2008): 0.5-2% of GDP for T  3°C, 1-5% for T  4°C, and 1-8% for T  5°C (also 

used by Pindyck (2012)).44Finally, we discuss the implications for the flow damage 

coefficient     , , ,1,ED E D E     ,  the constant of proportionality between 

the optimal carbon price and GDP in Results 2 and 3. Figure F.6 shows its value as 

function of the atmospheric carbon stock, with the values of   and   set to their mean 

                                                           
43 These damage functions turn from convex to concave at 10.8oC, 5.8oC and 12.5oC, respectively. 
Our power-law damage function has constant curvature making assessment of the effects of 
uncertainty more straightforward. 
44 Nordhaus and Sztorc (2013) also report a range of 1-5% of GDP at 4oC. 
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values   and  for the three values of T  considered in Figure F.5 and Table F.2. We 

set the values of    and   corresponding to the ECS, our base case (cf. Table 1). 

 

FIGURE F.5. CLIMATE CALIBRATION 

 

The solid line in Figure F.6 shows that / () ) )( '( 1E D E D   is approximately constant at 

2.6% GDP/TtC for proportional damages ( 1, 0T ET   ). For convex damages                      (

1.5, 0.25T ET   ) the flow damage coefficient starts at 3.1% GDP/TtC and then rises 

gradually with increasing emissions. With concave damages ( 0.5, 0.25T ET    ), the 

flow damage coefficient starts at 2.1% of GDP/TtC and then gradually falls with increasing 

emissions. With convex (concave) damages, the optimal carbon price rises faster (slower) 
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than GDP in our model. Golosov et al. (2014), on the other hand, have a constant flow 

damage coefficient of  = 3.64% of GDP/TtC, which includes a markup for tipping risk.45  

 

FIGURE F.6. FLOW DAMAGE COEFFICIENT ( )E  

E.6. Climate sensitivity and uncertainty 

We consider three measures of the climate sensitivity: the equilibrium climate sensitivity 

(ECS), the transient climate response (TCR), and the transient climate response to 

cumulative carbon emissions (TCRE), where the latter is defined as the change in annual 

mean global temperature per unit of cumulated carbon emissions in a scenario with 

continuing emissions.46 Let   be normally distributed with mean    and standard 

deviation .
47 The parameter   is chosen to match the potentially positively-skewed 

probability density functions of the climate sensitivity 2T  described by 

(F2)    2

1 1

2
1

2

2 2 2exp
1

; , ,
2

/ .2
1

Tf T T T



 


 

    
 

  
 

 
   

     
 


   

  

                                                           
45 Without tipping risk,  = 2.38% GDP/TtC, as shown in Figure F.6. 
46 For low to medium estimates of climate sensitivity, the TCRE is nearly identical to the peak 
climate response to cumulative carbon emissions (IPCC, 2013). 
47 Since the power-law transformation 

1

2T    does not allow negative values of , we should 

use a truncated normal distribution with zero probabilities for negative values of . In practice, these 
probabilities are negligibly small without truncation and we ignore this complexity, further 
motivated by our consideration of leading-order terms (5.2a-d). As a result, there is a small 
probability atom at T2 = 0oC in Figure F.4a (2.6 %), which we ignore. 
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Unlike for fat-tailed distributions, which typically have algebraically-decaying tails, all 

moments of (F2) are defined due to its exponential tail (for 1   ), so that Weitzman’s 

(2009) ‘dismal theorem’ does not apply. Positive values of   result in a positively-skewed 

(non-Gaussian) distribution with more probability mass at high temperatures. Leading-

order central moments of climate sensitivity can be obtained from performing Taylor-series 

expansions of 
1

2T    about its mean  : 

(F2a)   1 4

2

2(1 )(
1

)1 ( ,
2

/ )E T O
            

 
    

(F2b)      2(1 )2 42 2

2 2 2 (1 )var ( / ) ( ),T E T E T O
           


  

(F2c)      3(1 )3 6

2 2

3

2

41 ( )skew 3 ( ) / ( ),T E T E T O
             


   

(F2d)       3/2* 3

2 2 2skew skew / var 3 / ( ).( )T T T O          

We fit this distribution to the ECS, TCR and TCRE, respectively. Table F.3 reports the 

results. 

Table F.3 – THREE WAYS OF CALIBRATING CLIMATE SENSITIVITY 

 ECS TCR TCRE 

 2E T  3.0°C 1.75°C 1.9°C 

 2var T  4.5°C2 0.15°C2 0.11°C2 

 2skew T  10°C3 0 0.0071°C3 

 *

2skew T  1.0 0 0.19 

  1.9 1.75 1.5 

  0.95 0.38 0.17 

  11%/year1/2 4.5%/year1/2 - 

  0.66%/year  0   

  0.59 0 0.57 

T  ( 0.5)T   1.4 0.5 1.4 

T  ( 1.0)T   2.2 1.0 2.1 

T  ( 1.5)T   3.0 1.5 2.9 
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F.6.1. Climate sensitivity and uncertainty for the ECS 

To calibrate (F.2) for the ECS, we compare to the (thin-tailed) Gamma distribution 

proposed by Pindyck (2012), who considers a three-parameter Gamma distribution:48  

(F3)        2

2 2,P

1

2
(

;
)

, , ,
P

P P P

r

rP

T P P P

P

T

Pf T r T e
r

 
    


   

where 
1

0
( ) Pr s

Pr s e ds
      is the Gamma function, and the mean, variance and skewness 

are ,P P Pr    
2

P Pr   and 
32 ,P Pr   respectively. For sufficiently large temperatures, the 

tail in (F.3) always decays exponentially, so that all moments are defined. By fitting a thin-

tailed Gamma distribution to a mean of 3oC, and 5% and 1% exceedance probabilities 

corresponding to 7oC and 10oC, respectively, Pindyck (2012) obtains a variance and 

skewness of 4.5 and 9.8. We fit the mean, variance and skewness of (F2) to Pindyck’s 

(2012) values and obtain   1.9,   0.95 and 0.59  . Figure F.7 compares 

Pindyck’s (2012) distribution (F3) and our fitted distribution (F2). The mean features of 

Pindyck’s (2012) skewed, but thin-tailed distribution Gamma distribution, notably its high-

temperature tail, are captured well by our probability distribution. It can readily be verified 

that (F2a)-(F2d) provide very accurate approximations to the first three moments.49 Also 

shown in Figure F.7 is the fat-tailed distribution proposed by Roe and Baker (2007).  

By setting  2 1T T     to reflect a standard linear feedback process, the fat-tailed 

distribution of Roe and Baker (2007) can be obtained by transformation of the normally 

distributed process : 50 

                                                           
48 Pindyck (2012) proposes a three-parameter gamma distribution, which allows for non-zero 
probability of negative temperature change. In his calibration, this probability is 2.3%. We do not 
allow for negative temperatures. We use the same parameter symbols as Pindyck (2012) and let 
subscript P denote symbols relevant to this equation only.   
49 The mean (oC), variance (oC2) and skewness (oC3) are, respectively: 3.0, 4.5 and 9.8 (Pindyck, 
2012); 3.5, 4.5 and 10 (our fit) and 3.0, 4.8 and 9.7 (leading-order approximations (E2a), (E2b) and 
(E2c)). 
50 Roe and Baker (2007) use f instead of  to denote the underlying normally distributed process.  
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where we no longer automatically set 1T  oC. The slowly decaying tail causes all its 

moments, including mean and variance, to diverge, and the distribution can be said to be 

truly fat-tailed.  For the Roe and Baker (2007) distribution (F.4), we rely on the calibration 

by Newbold and Daigneault (2009), who calibrate to exceedance probabilities of 1.2oC 

(95%), 2.4oC (50%) and 7.5oC (5%) by setting RBT  2.04, ,RB  0.14, ,RB  0.39. As 

our intention here is not to illustrate the dismal effect of fat tails, we proceed in the 

following completely ad-hoc fashion. To avoid unbounded moments, we truncate the 

probability distribution at 10oC to obtain a mean of 2.6oC, a variance of 2.1oC2, a skewness 

of 6.8oC3 and thus a standardized skewness of 2.3. We fit our distribution to these moments 

and obtain P  1.0, 
63.9 10P

   and 
51.5 10P   . The red dashed line in Figure F.7 

illustrates that our distribution (F.2) cannot meaningfully reproduce the tat tails of Roe and 

Baker (2007). Nevertheless, both distributions are within the consensus range of IPCC 

(2013), who conclude that the equilibrium climate sensitivity is “extremely unlikely” (0-5 

%) <1 oC, “likely” (66-100 %) 1.5-4.5oC and “very unlikely” (0-10 %) >6oC.51 

Crucially, the equilibrium sensitivity distribution is not reached instantaneously. From the 

data in Figure F.8 (taken from IPCC, 2001)52, we estimate a coefficient of mean reversion 

of    0.66%/year in the scenario where CO2 is doubled and 0.91%/year if CO2 is 

quadrupled. We calibrate the ECS distribution to the large-time (or fast-mean-reversion) 

                                                           
51 Summing up the information presented in its Figure 10.20 and Chapter 10. The percentages in 
brackets correspond to the probabilities IPCC (2013) assigns to the respective measures of 
likelihood.  
52 We use data from the AOGCM simulation GFDL_R15_a reported in Figure 9.1 of IPCC (2001). 
More recent reports no longer include the simple scenario’s 2xCO2 and 4xCO2, making direct 

estimation of   harder. The order of magnitude of our estimate of the coefficient of mean reversion 

agrees with more recent model runs (see IPCC, 2013, Box 12.2). In reality, the response to small 
emissions is much faster and on a decadal scale (Ricke and Caldeira, 2014) than the response to 
larger emissions (Zickfeld and Herrington, 2015), reflecting non-linearity in the system, which is 
not captured by our Ornstein-Uhlenbeck process.  
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limit 2      of our Ornstein-Uhlenbeck process, relevant for the ECS (cf. 

  1 exp 2 2t          generally). Adopting   0.66%/year and using the 

value of   reported in Table 2, the fast-mean-reversion limit gives   11%/year1/2. 

(a) PROBABILITY DENSITY FUNCTION (b) EXCEEDANCE PROBABILITY 

 
FIGURE F.7. EQUILIBRIUM CLIMATE SENSITIVITY DISTRIBUTION 

 

 

FIGURE F.8. EQUILIBRIUM CLIMATE DYNAMICS AND MEAN REVERSION 
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F.6.2. Climate sensitivity uncertainty based on the TCR and TCRE 

To calibrate (F2) for the TCR, we use information from Figure 10.20 and Chapter 10 of 

IPCC (2013), indicating that the TCR is “likely” (66-100%) between 1.0oC and 2.5oC and 

“extremely unlikely” (0-5%) to be greater than 3oC. Since there is no evidence for skewness 

in the TCR distribution, we set 0.    We let the interval 1-2.5oC correspond to the 95% 

confidence interval of a normal distribution with mean 1.75oC, giving 0.38.   Using 

the small-time (or slow-mean-reversion) limit ,t    relevant for the TCR, and a 

period of 70 years required for doubling the atmosphere carbon stock with a rate of increase 

of 1.0%/year, we estimate a volatility of   4.5%/year1/2.53 

To calibrate (5.2) for the TCRE, we use the 5-95% ranges reported in IPCC (2013): 0.7-

2.0oC/TtC (Gillett et al., 2013), 1.0-2.1oC/TtC (Matthews et al., 2009) and 1.4-2.5oC/TtC 

(Allen et al., 2009). Using the values in Allen et al. (2009), who also report a best-guess of 

1.9oC/TtC, we find a slightly positively-skewed distribution with 1.5,  0.17      and 

0.57.  54  To reflect the transient nature of the response, we set   , so that the 

large-time limit, in which volatility reaches a steady state, is instantaneously reached. To 

apply our model to the TCRE, one would set   = 1 and  = 0, so that emissions stay in the 

atmosphere forever.55 

                                                           
53 With the large-time limit 2      and the value   0.95 for the ECS, we have an 

alternative way to compute mean reversion implied by the difference in volatilities of the TCR and 

ECS. We obtain 
2(0.045 / 0.95) / 2 0.11   %/year, which is much smaller than the value of 

0.66  %/year. 

54 We set the best guess of 1.9 oC/TtC to equal the temperature that is most likely (
2 2

0
T

f T   ) 

and use the 5% and 95% exceedance probabilities to fit our distribution (5.1). We thus set 

   1
1 (0.596) 0.75E

T
    oC with E = -0.45 and calibrate at E = 1 GtC, noting the non-linear 

dependence of T on E that is retained.  
55 The TCRE depends on the TCR and the cumulative airborne fraction (CAF), defined as the ratio 
of the increased mass of CO2 in the atmosphere to cumulative CO2 emissions. The CAF is equivalent 

to our . Zickfeld et al. (2013) estimate values of the CAF to the time of CO2 doubling of 0.4-0.7, 
which are in line with some of the values in Table F.1 for shorter time periods. 
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Appendix G: Accuracy of Results 2 and  2 (For Online Publication) 

Result 1 is evaluated numerically by discretization in time before evaluating the 

expectation operator numerically exactly and summing up the discounted contributions of 

every time step. Whereas the stochastic processes for   and   are autonomous, the 

stochastic process for K  remains autonomous in Result 1, and all three have 

(independent) probability distributions available in closed form, the probability distribution 

of E  at any time period in the future must combine all uncertain emissions (proportional 

to K ) before that time. As the time integral of a Geometric Brownian motion does not 

have a closed-form solution, we update the probability distribution function of E  every 

time step with the stochastic emissions and the decay in that period according to the 

differential equation for E and project on a fixed grid for E  to enable transfer of the 

probability density function between time periods. Of course, the validity of Result 1 itself 

still relies on the parameter  being small. Consistent with our perturbation scheme, all 

our optimal risk-adjusted carbon prices in Results 1 and 2 or 2 are evaluated along the 

business-as-usual path for which 0.P  We assess the accuracy of Result 2 (or its 

special case Result 2) for our base line calibration and for the Gollier calibration (  

2,   0%/year and K   1.5%/year1/2), as its lower discount rate r compared to our 

base case calibration makes for a more demanding test on the accuracy of Result 2. Three 

factors determine the accuracy of Result 2, as discussed below. 

 Table G.1 – ACCURACY OF RESULT 2 AND 2 COMPARED TO RESULT 1 

 Base case calibration Gollier calibration 

Proportional 

damages 

Convex 

damages 

Proportional 

damages 

Convex 

damages 

Error due to discretization 0.3% 1.0% 0.3% 2.6% 

Error due to deterministic 

carbon stock 

0.0% 0.0% 0% 0.1% 

Error due to truncation of 

climate sensitivity distribution 

0.1% 1.0% 0.2% 2.3% 

First, the small error due to discretization (in the states and t) associated with the evaluation 

of Result 1 on a grid with step size E = 0.5 GtC and t = 1 year can be estimated from 
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grid convergence of Result 1. Second, we ignore any uncertainty in the atmospheric carbon 

stock that arises because of the uncertain nature of future economic growth and thus of 

future emissions. For our base case calibration with flat damages ( 0ET  ), the stochastic 

nature of E does not lead to a change in the net present value of expected damages and thus 

the carbon price is unchanged. For convex damages ( 0ET  ), the effect remains 

negligibly small. Third, in Result 2 we only consider leading-order terms in the climate 

sensitivity uncertainty. To obtain an upper limit to the error associated with this, we 

numerically evaluate the expectation of 
1 T 

 in the steady-state limit of the equilibrium 

sensitivity calibration and compare to the leading-order approximation used in Result 2,  

1
[ ]TE   

1 2(1 (1 )( / ) )T

T T


          . We obtain a relative error of 

0.8% and 7.2%  for 0ET   (proportional damages) and 0.25ET   (convex damages), 

respectively. Due to discounting over the horizon over which the climate sensitivity reaches 

its steady state, only part of this error manifests itself in the final estimate of the SSC, as is 

evident from Table G.1.  




