Logic and Logical Philosophy

Tomasz Skura

THE RM PARACONSISTENT REFUTATION SYSTEM

Abstract

The aim of this paper is to study the refutation system consisting of the refutation axiom $p \wedge \neg p \rightarrow q$ and the refutation rules: reverse substitution and reverse modus ponens (B / A, if $A \rightarrow B \in \mathbf{R M}$). It is shown that the refutation system is characteristic for the logic of the 3-element RM algebra.

Keywords: refutation systems, paraconsistent logic, relevance logic.

1. Introduction

A refutation system is an inference system consisting of some refutation axioms (which are non-valid formulas) and some refutation rules (which are inference rules preserving non-validity) (see [2]). Refutation systems can be regarded as alternative axiom systems capturing some intuitions about non-valid formulas as well as valid ones. It seems worth investigating such systems in paraconsistent logics, which are defined as non-classical logics rejecting the explosive law (E) :=p^ E p $\rightarrow q$ (cf. [3]). In this paper we study the refutation system consisting of the refutation axiom (E) and the refutation rules: reverse substitution and reverse modus ponens $(B / A$, where $A \rightarrow B \in \mathbf{R M})$. It is shown that this refutation system generates the set of formulas non-valid in the 3 -element $\mathbf{R M}$ algebra. The resulting paraconsistent logic (that is, the set of formulas non-refutable in this system) is simple (3-valued), natural (i.e. (E) is rejected and refutability is justified by derivability in $\mathbf{R M}$; a useful standard relevance logic), and maximal.

2. Preliminaries

Let FOR be the set of formulas generated from a set VAR $=\{p, q, \ldots\}$ of propositional variables by the connectives: $\neg, \wedge, \vee, \rightarrow$. We define

$$
A \equiv B:=(A \rightarrow B) \wedge(B \rightarrow A)
$$

RM is the set of formulas provable in the following axiom system.

Axioms:

$$
\begin{aligned}
& A \rightarrow A \\
& (A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C)) \\
& A \rightarrow((A \rightarrow B) \rightarrow B) \\
& (A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B) \\
& A \rightarrow(A \rightarrow A) \\
& A \wedge B \rightarrow A \\
& A \wedge B \rightarrow B \\
& ((A \rightarrow B) \wedge(A \rightarrow C)) \rightarrow(A \rightarrow B \wedge C) \\
& A \rightarrow A \vee B \\
& B \rightarrow A \vee B \\
& ((A \rightarrow C) \wedge(B \rightarrow C)) \rightarrow(A \vee B \rightarrow C) \\
& (A \wedge(B \vee C)) \rightarrow((A \wedge B) \vee C) \\
& (A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A) \\
& \neg \neg A \rightarrow A
\end{aligned}
$$

Rules:
(modus ponens) $\quad \frac{A \quad A \rightarrow B}{B}$
(adjunction) $\quad \frac{A \quad B}{A \wedge B}$
$\mathbf{R M}$ can be characterized by the matrix $\mathbf{M}=\langle\mathbb{Q}, \mathcal{D},-, \wedge, \vee, \rightarrow\rangle$ (see [1]), where \mathbb{Q} is the set of rational numbers, $\mathcal{D}:=\{x \in \mathbb{Q}: x \geqslant 0\}$, and

$$
\begin{aligned}
x \wedge y & :=\min (x, y), \\
x \vee y & :=\max (x, y), \\
x \rightarrow y & := \begin{cases}\max (-x, y) & \text { if } x \leqslant y, \\
\min (-x, y) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thus $\mathbf{R M}$ is the set of formulas valid in \mathbf{M}, that is, $A \in \mathbf{R M}$ iff $v(A) \in \mathcal{D}$ for every valuation v in \mathbf{M}.

We take for granted the following RM laws:
(1) $(A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C))$

$$
(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))
$$

$$
A \wedge B \equiv B \wedge A
$$

$$
A \vee B \equiv B \vee A
$$

(2) $(A \rightarrow(B \equiv C)) \rightarrow((A \rightarrow(C \equiv D)) \rightarrow(A \rightarrow(B \equiv D)))$

$$
(B \equiv C) \rightarrow(D \equiv D(B / C))
$$

(3) $(A \rightarrow(B \equiv C)) \rightarrow(A \rightarrow(D \equiv D(B / C)))$
where $D(B / C)$ results from D by replacing some occurrences of B by C.

3. Validity

Let $P:=p \wedge \neg p$ and $Q:=q \wedge \neg q$.
Lemma 1. The following formulas are in $\mathbf{R M}$:

$$
\begin{aligned}
& P \rightarrow(\neg Q \equiv \neg Q) \\
& P \rightarrow(\neg \neg Q \equiv Q) \\
& P \rightarrow(\neg P \equiv P) \\
& P \rightarrow(Q \wedge \neg Q \equiv Q) \\
& P \rightarrow(P \wedge Q \equiv Q) \\
& P \rightarrow(P \wedge \neg Q \equiv P) \\
& P \rightarrow(Q \vee \neg Q \equiv \neg Q) \\
& P \rightarrow(P \vee Q \equiv P) \\
& P \rightarrow(P \vee \neg Q \equiv \neg Q) \\
& P \rightarrow((Q \rightarrow Q) \equiv \neg Q) \\
& P \rightarrow((P \rightarrow P) \equiv P) \\
& P \rightarrow((\neg Q \rightarrow \neg Q) \equiv \neg Q) \\
& P \rightarrow((Q \rightarrow \neg Q) \equiv \neg Q) \\
& P \rightarrow((\neg Q \rightarrow Q) \equiv Q) \\
& P \rightarrow((P \rightarrow Q) \equiv Q)
\end{aligned}
$$

$$
\begin{aligned}
& P \rightarrow((Q \rightarrow P) \equiv \neg Q) \\
& P \rightarrow((P \rightarrow \neg Q) \equiv \neg Q) \\
& P \rightarrow((\neg Q \rightarrow P) \equiv Q)
\end{aligned}
$$

Proof. First we note the following simple facts. Let $x, y \in \mathbb{Q}$. We put

$$
X:=x \wedge-x, \quad Y:=y \wedge-y, \quad \text { and } \mathcal{Z}:=\{X,-X, Y,-Y\} .
$$

Then we have:
(I) $X \leqslant 0$ and $Y \leqslant 0$.
(II) If $a, b \in \mathcal{Z}$ then $-a, a \wedge b, a \vee b, a \rightarrow b \in \mathcal{Z}$.

Next we consider the above formulas. They are of the form

$$
P \rightarrow A(P, Q)
$$

Now let v be any valuation in \mathbf{M}. Then, by (II), we have
(*) $\quad v(A(P, Q)) \in\{v(P),-v(P), v(Q),-v(Q)\}$.
For v we consider two cases.
Case 1. $v(P) \leqslant v(Q)$. Then, by (I) and $(*)$, we get $v(P) \leqslant v(A(P, Q))$. Hence $v(P \rightarrow A(P, Q))=\max (-v(P), v(A(P, Q))) \geqslant 0$.

Case 2. $v(P)>v(Q)$. Then it is easy to check that
$(* *) \quad v(A(P, Q)) \in\{v(P),-v(P),-v(Q)\}$.
We give details only for the cases eighth, fourteenth, and eighteenth; the other ones being similar.
$v(P \vee Q \equiv P)=v(P \vee Q \rightarrow P) \wedge v(P \rightarrow P \vee Q)=v(P \rightarrow P) \wedge v(P \rightarrow P)=$ $\max (-v(P), v(P))=-v(P)$, because $v(P \vee Q)=v(P)$.
$v((\neg Q \rightarrow Q) \equiv Q)=v((\neg Q \rightarrow Q) \rightarrow Q) \wedge v(Q \rightarrow(\neg Q \rightarrow Q))=v(Q \rightarrow$
$Q) \wedge v(Q \rightarrow Q)=-v(Q)$, because $-v(Q)>v(Q)$.
$v((\neg Q \rightarrow P) \equiv Q)=v((\neg Q \rightarrow P) \rightarrow Q) \wedge v(Q \rightarrow(\neg Q \rightarrow P))=$ $v(Q \rightarrow Q) \wedge v(Q \rightarrow Q)=-v(Q)$, because $-v(Q)>v(P)$.

Therefore, by (I) and $(* *), v(P) \leqslant v(A(P, Q))$, and so $v(P \rightarrow A(P, Q))=$ $\max (v(-P), v(A(P, Q))) \geqslant 0$.

Thus, for any valuation v in \mathbf{M} we have $v(P) \leqslant v(A(P, Q))$, and so $v(P \rightarrow A(P, Q)) \geqslant 0$ which gives the result.

4. Refutability

Let $\mathbf{3}$ be the submatrix $\langle\{-1,0,1\},\{0,1\},-, \wedge, \vee, \rightarrow\rangle$ of \mathbf{M}. We put: $G_{-1}:=$ $Q, G_{0}:=P$, and $G_{1}:=\neg Q$. For any valuation v in $\mathbf{3}$, let s_{v} be the following substitution:

$$
\mathrm{s}_{v}(A)=G_{v(A)} \quad(\text { for any } A \in \mathrm{VAR})
$$

Lemma 2. For any $B \in \operatorname{FOR}$ we have $P \rightarrow\left(\mathrm{~s}_{v}(B) \equiv G_{v(B)}\right) \in \mathbf{R M}$.
Proof. By induction on the complexity of B.
Let $B \in \mathrm{VAR}$. Then this is true, because $\mathrm{s}_{v}(B)=G_{v(B)}$ and $v\left(\mathrm{~s}_{v}(B) \equiv\right.$ $\left.G_{v(B)}\right) \geqslant 0$.

Let $B \notin$ VAR. We assume that the lemma holds for formulas simpler than B. Then

$$
B \in\{\neg C, C \wedge D, C \vee D, C \rightarrow D\}
$$

and by the induction hypothesis we have

$$
\begin{aligned}
& P \rightarrow\left(\mathrm{~s}_{v}(C) \equiv G_{v(C)}\right) \in \mathbf{R M}, \\
& P \rightarrow\left(\mathrm{~s}_{v}(D) \equiv G_{v(D)}\right) \in \mathbf{R M} .
\end{aligned}
$$

Hence, by (3) and modus ponens, we get

$$
\begin{aligned}
& P \rightarrow\left(\neg \mathrm{~s}_{v}(C) \equiv \neg G_{v(C)}\right) \in \mathbf{R M}, \\
& P \rightarrow\left(\left(\mathrm{~s}_{v}(C) \otimes \mathrm{s}_{v}(D)\right) \equiv\left(G_{v(C)} \otimes G_{v(D)}\right)\right) \in \mathbf{R M}
\end{aligned}
$$

where $\otimes \in\{\wedge, \vee, \rightarrow\}$. Since by Lemma 1 we have

$$
\begin{aligned}
& P \rightarrow\left(\neg G_{v(C)} \equiv G_{v(\neg C)}\right) \in \mathbf{R M}, \\
& P \rightarrow\left(\left(G_{v(C)} \otimes G_{v(D)}\right) \equiv\left(G_{v(C \otimes D)}\right)\right) \in \mathbf{R M}
\end{aligned}
$$

by (2) and modus ponens we obtain

$$
P \rightarrow\left(\mathrm{~s}_{v}(B) \equiv G_{v(B)}\right) \in \mathbf{R M}
$$

as required.
We say that a formula is refutable iff it is derivable in the following refutation system.

Refutation axiom:
(E) $p \wedge \neg p \rightarrow q$

Refutation rules:
(reverse substitution) $B / A, \quad$ if B is a substitution instance of A.
(reverse modus ponens) $\quad B / A, \quad$ if $A \rightarrow B \in \mathbf{R M}$.
Theorem. A formula is refutable if and only if it is not valid in 3.
Proof. (\Rightarrow) This follows from the fact that (E) is not valid in $\mathbf{3}$ and the refutation rules preserve non-validity in 3.
(\Leftarrow) Assume that A is not valid in 3. Then $v(A)=-1$ for some valuation v in 3, so $G_{v(A)}=G_{-1}:=q \wedge \neg q$. By Lemma 2 we have

$$
P \rightarrow\left(\mathrm{~s}_{v}(A) \equiv q \wedge \neg q\right) \in \mathbf{R M}
$$

Hence

$$
P \rightarrow\left(\mathrm{~s}_{v}(A) \rightarrow q\right) \in \mathbf{R M}
$$

so, by (1) and modus ponens, we obtain

$$
\mathrm{s}_{v}(A) \rightarrow(p \wedge \neg p \rightarrow q) \in \mathbf{R M}
$$

Therefore $\mathrm{s}_{v}(A)$ is refutable, by reverse modus ponens and (E), and so A is refutable, by reverse substitution, which was to be shown.

References

[1] Dunn, J. M., "Algebraic completeness results for R-Mingle and its extensions", Journal of Symbolic Logic 35 (1970): 1-13.
[2] Łukasiewicz, J., Aristotle's Syllogistic from the Standpoint of Modern Formal Logic, Oxford, 1951.
[3] Skura, T., "Maximality and refutability", Notre Dame Journal of Formal Logic 45 (2004): 65-72.

Tomasz Skura
Institute of Philosophy
University of Zielona Góra,
Wojska Polskiego 71A
65-762 Zielona Góra, Poland
tskura@uz.zgora.pl

