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Abstract

Background: The SR proteins comprise a family of essential, structurally related RNA binding proteins. The
complexity of their RNA targets and specificity of RNA recognition in vivo is not well understood. Here we use
iCLIP to globally analyze and compare the RNA binding properties of two SR proteins, SRSF3 and SRSF4, in murine
cells.

Results: SRSF3 and SRSF4 binding sites mapped to largely non-overlapping target genes, and in vivo consensus
binding motifs were distinct. Interactions with intronless and intron-containing mRNAs as well as non-coding RNAs
were detected. Surprisingly, both SR proteins bound to the 3’ ends of the majority of intronless histone transcripts,
implicating SRSF3 and SRSF4 in histone mRNA metabolism. In contrast, SRSF3 but not SRSF4 specifically bound
transcripts encoding numerous RNA binding proteins. Remarkably, SRSF3 was shown to modulate alternative
splicing of its own as well as three other transcripts encoding SR proteins. These SRSF3-mediated splicing events
led to downregulation of heterologous SR proteins via nonsense-mediated decay.

Conclusions: SRSF3 and SRSF4 display unique RNA binding properties underlying diverse cellular regulatory
mechanisms, with shared as well as unique coding and non-coding targets. Importantly, CLIP analysis led to the
discovery that SRSF3 cross-regulates the expression of other SR protein family members.

Background

Gene expression in metazoans is regulated at multiple

levels. While investigation of transcriptional regulation

by transcription factors has led to a deep understanding

of how DNA binding proteins direct RNA polymerases

to genes, regulation of RNA processing by RNA-binding

proteins is still enigmatic. Hundreds of proteins encoded

by metazoan genomes have RNA-binding capacity con-

ferred by specific protein structural domains, such as

RNA recognition motifs (RRMs), KH domains and zinc

fingers [1]. RNA-binding proteins can change gene

expression output at different steps of RNA metabolism,

including pre-mRNA splicing, polyadenylation, RNA

export, RNA stability, and translation. However, the in

vivo binding specificity and function(s) of most RNA-

binding proteins are not well understood.

SR proteins are a family of seven RNA-binding pro-

teins with a functional repertoire that has expanded to

many aspects of RNA metabolism [2,3]. They are con-

centrated in the nucleus, where they participate in pre-

mRNA splicing [4], yet nearly all SR proteins shuttle

between the nucleus and cytoplasm. SR protein shuttling

activity contributes to their roles in mRNA export, sta-

bility and translation [5,6]. SR proteins share a modular

structure of one or two RNA recognition motifs (RRMs)

at their amino terminus and an arginine-serine-rich RS

domain of variable length at the carboxyl terminus.

Both domains can directly contact RNA [7], although

the RRM appears to determine RNA-binding specificity

[5,8,9]. In vitro binding specificities have been deter-

mined for some SR protein family members [10,11],

which bind to 4- to 10-nucleotide long degenerate

sequences. Recently, in vivo crosslinking was used to
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define mRNA targets of SRSF1 (also called ASF/SF2);

this study identified thousands of SRSF1 target sites,

which resembled the sequences derived in vitro [12].

Mature mRNAs associated with SRSF3 (SRp20) and

SRSF4 (SRp75) were also recently identified and repre-

sent functionally distinct mitochondrial ribonucleopro-

teins (mRNPs) [13]. However, the latter analysis

provided information at the gene level and did not iden-

tify direct binding sites of SR proteins to RNA targets.

To understand the widespread functions of SR protein

family members, the identification of endogenous RNA

target sites is required. The development of ultraviolet

(UV) crosslinking and immunoprecipitation (CLIP) fol-

lowed by high-throughput sequencing has made possible

the identification of in vivo binding sites of RNA-bind-

ing proteins in a genome-wide manner [14]. Here we

used a modification of the CLIP protocol called iCLIP

[15], which allows high-resolution identification of

RNA-protein crosslink sites, to investigate the binding

specificity and endogenous RNA targets of SRSF3 and

SRSF4. We took advantage of our previously developed

tagging and stable expression system, in which an

enhanced green fluorescent protein (EGFP) tag is

inserted at the carboxyl terminus of the SR protein by

recombineering of bacterial artificial chromosomes

(BACs); due to co-regulation of the endogenous and sta-

bly integrated transgenes, the total level of SR protein

expression is unchanged in the diploid mouse P19 cells

used here [13]. Using the EGFP tag as a universal epi-

tope for iCLIP, we determined in vivo binding sites of

SRSF3 and SRSF4. Our analysis shows that SRSF3 and

SRSF4 bind to distinct sequences and target RNAs,

including non-coding RNAs (ncRNAs). The subsequent

analysis showed that SRSF3 or SRSF4 binding to these

sites conferred regulatory functions in several steps of

RNA metabolism in cells, supporting the widespread

contribution of SR proteins in gene expression

regulation.

Results

SRSF3 and SRSF4 bind distinct RNAs

We used the iCLIP method [15] to identify SRSF3 and

SRSF4 binding sites genome-wide in mouse P19 cells.

SRSF3 and SRSF4 were immunopurified via the EGFP

tag encoded on stable transgenes to allow direct com-

parison of the binding profiles of the two SR proteins

[13]. Previous analyses showed that the EGFP-tagged SR

proteins recapitulate interactions with nascent RNA and

functionally rescue the endogenous proteins [5,13]. Both

SRSF3-EGFP and SRSF4-EGFP were specifically and effi-

ciently immunopurified from cell extracts, and SR pro-

tein-RNA complexes were isolated after in vivo UV

crosslinking (Figure S1a, b in Additional file 1). No

RNA-protein complexes were detected in cells

expressing only nuclear EGFP (EGFP-nuclear localiza-

tion signal) or in the absence of UV crosslinking (Figure

S1b in Additional file 1). In each replicate experiment,

SRSF4 showed weaker signal intensity than SRSF3 (Fig-

ure S1b in Additional file 1), indicating either lower

crosslinking efficiency or fewer RNA targets.

Crosslinked, immunopurified RNA was digested to

lengths of 40 to 100 nucleotides, reverse transcribed and

prepared for next-generation sequencing [15] (Figure

S1c in Additional file 1). The resulting reads, referred to

as CLIP-tags throughout the manuscript, were aligned

to the mouse mm9 genome assembly. In total, iCLIP

produced 1,212,480 and 243,501 unique CLIP-tags for

SRSF3 and SRSF4, respectively (Table S1 in Additional

file 1). SRSF4 reproducibly yielded fewer sequence reads,

in agreement with the lower crosslinking levels observed

(Figure S1b in Additional file 1). The EGFP-nuclear

localization signal control iCLIP experiments performed

in parallel did not produce any detectable PCR products

and yielded a total of 2,611 CLIP-tags mapping to the

mouse genome. Because the SRSF3 and SRSF4 iCLIPs

generated 100- to 1,000-fold more CLIP-tags than the

control iCLIP, less than 1% of the detected CLIP-tags

could be due to nonspecific crosslinking.

As a first step towards analyzing the RNAs and RNA

regions bound by SRSF3 and SRSF4, crosslink sites were

identified by mapping to the first nucleotide upstream

of the start of each CLIP-tag, as previously described

[15]. We determined statistically significant SRSF3 and

SRSF4 crosslink sites (33,458 and 10,393, respectively),

and identified CLIP-tag clusters with a maximum spa-

cing of 15 nucleotides and containing a significant

CLIP-tag count when compared to randomized posi-

tions (false discovery rate < 0.05) [15-17]. To test

whether the iCLIP captured only the most highly

expressed genes, we compared the density of CLIP-tags

to our global gene expression data in P19 cells [13].

There was a slight positive correlation between the gene

expression level and the density of CLIP-tags within the

gene, yet CLIP-tags were identified in genes at the

whole range of gene expression (Figure S1d in Addi-

tional file 1).

Examination of SRSF3 and SRSF4 CLIP-tag clusters

indicated that multiple reads were detected in limited

RNA regions. The same transcript could display cross-

linking to both SR proteins, albeit in different regions of

the transcript, as exemplified by the NPM1 gene that

contained CLIP-tag clusters for both SRSF3 and SRSF4

mapping to distinct exons (Figure 1a). Also at the chro-

mosome level, a large proportion of the CLIP-tags and

clusters were non-overlapping (Figure 1a; Figure S2 in

Additional file 1). Significant crosslink sites were

detected in 2,304 genes for SRSF3 and 1,055 genes for

SRSF4, of which 83.3% and 83.2% were protein-coding,
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respectively. A list of genes with significant crosslink

sites is provided in Additional file 2. These numbers are

likely to be underestimates because our sequencing has

not reached saturation. In agreement with our recent

analysis showing that SRSF3 and SRSF4 associate with

distinct mRNAs [13], the identity of the target RNAs

bound by SRSF3 and SRSF4 only partially overlapped

(Figure 1b). An even smaller overlap between SRSF3

and SRSF4 CLIP-tag clusters, rather than genes, was

observed (compare Figure 1b and 1c), strongly

suggesting differential RNA-binding specificities of

SRSF3 and SRSF4.

Consensus binding motif of SRSF3 and SRSF4

The in vivo binding specificities of SRSF3 and SRSF4 are

unknown. The differences in the CLIP-tag cluster sites

suggested that each of the two SR proteins binds to a

distinct RNA sequence. To address this directly, we

used the data to derive in vivo binding motifs for SRSF3

and SRSF4 by analyzing enriched pentamer sequences

Figure 1 SRSF3 and SRSF4 CLIP-tags cluster to distinct positions in mouse RNAs. (a) NPM1 gene (green box) and the surrounding
approximately 3 MB region in chromosome 11 (black box) with SRSF3 and SRSF4 CLIP-tags and clusters. The numbers on the left represent the
number of CLIP-tags within the window. The sense strand is marked in blue and the antisense strand in orange. Note that the genes in the
antisense strand run from right to left. (b) Comparison of annotated genes with significant SRSF3 or SRSF4 crosslink sites (false discovery rate <
0.05). (c) Comparison of significant SRSF3 and SRSF4 CLIP-tag clusters (overlap of clusters ≥ 15 nucleotides).
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around the crosslink sites. To calculate a Z-score for

each pentamer, iCLIP positions were randomized within

the same regions. The pentamer enrichment analysis

showed that SRSF3 and SRSF4 identify distinct sequence

motifs (Figure 2). The top five pentamers for SRSF3

(Figure 2a) were in close agreement with the core

SELEX (systemic evolution of ligands by exponential

enrichment) motif determined in vitro [18,19]. SELEX

has not been performed on SRSF4; interestingly, the

SRSF4 top five pentamers (Figure 2b) were similar to

one sequence (GAAGGA) previously shown to be an

SRSF4 binding site in bovine papilloma virus pre-mRNA

[20]. The SRSF3 binding motif was CU-rich excluding

Gs, whereas SRSF4 bound to GA-rich sequences

excluding Cs (Figure 2d). These results are consistent

with the largely non-overlapping SRSF3 and SRSF4

crosslink sites and clusters (Figure 2c, and see above).

SRSF3 and SRSF4 bind to coding and non-coding RNAs

Which categories of RNA and which functional RNA

regions are bound by SR proteins? Analysis of the fre-

quency with which SRSF3 and SRSF4 CLIP-tags were

mapped to genes and gene regions revealed their com-

mon propensity to bind exons and introns in protein-

coding genes (Figure 3a; Table S3 in Additional file 1).

The high proportion of intronic CLIP-tags detected

clearly reflects the fact that mammalian introns are

much longer than exons; when the frequency of CLIP-

Figure 2 In vivo binding specificity of SRSF3 and SRSF4. (a, b) The frequency distribution of SRSF3 (a) and SRSF4 (b) pentamer Z-scores. The
Z-score was calculated relative to randomized genomic positions by shuffling the crosslink positions 100 times within the genes. Five pentamers
with highest Z-scores are shown. (c) Correlation of SRSF3 and SRSF4 pentamer Z-scores. The top five pentamers presented in (a, b) are marked
as larger light grey dots. (d) Consensus motifs were derived from the top pentamers shown in (a, b).
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tags was normalized to the length of the RNA region

(Figure 3b), both SRSF3 and SRSF4 CLIP-tags were

more highly enriched in exons than in introns. SR pro-

tein interactions with exons could reflect activities either

in pre-mRNA splicing or in mRNPs after splicing (see

below).

The highest density of CLIP-tags was detected in

ncRNAs (Figure 3b). Overall, 319 and 141 ncRNAs

had SRSF3 and SRSF4 CLIP-tag clusters, respectively.

The most abundant ncRNA classes with CLIP-tags

were long ncRNAs (lincRNAs) and small nucleolar

RNAs (snoRNAs) (Figure 4a). Similar to SRSF1 and

TDP-43 [12,21], SRSF3 and SRSF4 crosslinked to the

lincRNA MALAT1 (aka NEAT2; Figure S3a in Addi-

tional file 1) that is enriched in nuclear speckles [22].

In addition, another speckle-localized ncRNA, 7SK

[23], had abundant SRSF3 and SRSF4 CLIP-tag clusters

(data not shown). An especially large proportion of

ncRNAs with SRSF3 and SRSF4 crosslink sites

belonged to snoRNAs, a class of small RNAs that

guide RNA modifying enzymes [24]. Intriguingly, small

Cajal body-specific RNAs (scaRNAs), a subclass of

snoRNAs, were enriched in SRSF4 CLIP-tag clusters.

SR protein binding could not be correlated with

known elements within scaRNAs because the scaRNAs

identified included those with H/ACA boxes alone, C/

D boxes alone, and a combination of H/ACA and C/D

boxes. The specificity of SR protein binding to this

group of scaRNAs was investigated in two ways. First,

we asked whether binding was biased to any particular

region of the scaRNAs. Figure 4b shows that binding

sites were localized near scaRNA 3’ ends (Figure 4b;

Figure S3a in Additional file 1). Second, the CLIP-tag

clusters within the scaRNAs were used to determine a

consensus binding motif independent of the global

pentamer analysis. Multiple alignment of the CLIP-tag

cluster regions using the MEME (Multiple Em for

Motif Elicitation) algorithm identified a consensus

sequence element (Figure S3c in Additional file 1) that

was found in all scaRNAs with SRSF4 CLIP-tag clus-

ters. The motif was GA-rich, similar to the pentamer

motif determined for all crosslink sites with the excep-

tion that Cs were occasionally observed. This indepen-

dent derivation of a binding sequence similar to the

globally derived consensus indicates that SRSF4 bind-

ing to scaRNAs is specific.

Figure 3 Distribution of SRSF3 and SRSF4 CLIP-tags within RNA classes and transcript regions. (a) The proportion of CLIP-tags that
mapped to different RNAs relative to the total number of CLIP-tags. (b) The fold enrichment of CLIP-tag density (the number of CLIP-tags
divided by the length of each RNA feature) in different RNAs relative to the average CLIP-tag density in the genome.
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SRSF3 and SRSF4 bind to intronless histone mRNAs

SRSF3 and SRSF4 binding sites were found in intronless

protein-coding genes, likely reflecting SRSF3 and SRSF4

participation in regulatory events other than splicing. In

particular, SRSF3 and SRSF4 CLIP-tag clusters were

detected within histone genes: 73.8% of the mouse his-

tone genes annotated in [25] had SRSF3 clusters and

47.7% had SRSF4 clusters (Figure 5a; Figure S4a in

Additional file 1). This was also reflected in the enriched

Gene Ontology (GO) terms where categories related to

chromatin and nucleosome assembly were present

(Table S4 in Additional file 1). The SRSF3 and SRSF4

CLIP-tag clusters were located at the boundary between

ORF and 3’ UTR and/or within the 3’ UTR of histone

mRNAs (Figure 5b). The CLIP-tag clusters were located

just upstream of conserved stem-loops that occur 14 to

50 nucleotides downstream of the ORF (Figure 5a);

these stem loops specify the sites of endonucleolytic

cleavage of replication-dependent histone mRNAs and

therefore define their 3’ ends [26].

SRSF3 was previously shown to promote the export of

histone H2A reporter mRNAs via a 22-nucleotide trans-

port element within the coding region of H2A mRNAs,

to which SRSF3 bound and recruited the mRNA export

factor TAP [27,28]. In our study, however, most SRSF3

and SRSF4 CLIP-tag clusters in histone H2A family

mRNAs were found outside this 22-nucleotide transport

element (Figure 5a, b; Figure S4a in Additional file 1).

Furthermore, most SRSF3 and SRSF4 crosslink sites

were present in mRNAs of histone families other than

H2A, which do not contain the transport element (Addi-

tional file 2). Interestingly, SRSF3 and SRSF4 binding

Figure 4 ncRNAs with SRSF3 and SRSF4 crosslink sites. (a) The distribution of crosslink sites within the ncRNA subclasses. (b) The position of
the SRSF4 CLIP-tag clusters relative to the scaRNA 3’ end. ‘Other ncRNAs’ are processed transcripts with no known ORF or function.
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Figure 5 SRSF3 and SRSF4 bind to numerous intronless histone mRNAs at a consistent position. (a) SRSF3 and SRSF4 CLIP-tags and
clusters in HIST2H2BB and HIST1H2AB genes. Labels as in Figure 1a. The orange arrowheads mark the mRNA 3’ end cleavage site. (b) Mapping of
SRSF3 (left panel) and SRSF4 (right panel) crosslink sites to the ORF-3’ UTR boundary of histone mRNAs. The position 0 marked with a dotted
line represents the ORF-3’ UTR boundary. (c) Cytoplasmic levels of histone mRNAs associated with SRSF3 or SRSF4 determined by UV-RNA
immunoprecipitation and reverse transcription quantitative PCR. To prime the reverse transcription reactions, hexamers were used to detect total
and oligo-dT to detect polyadenylated histone mRNAs. Data are presented relative to the input sample. Mock is the non-immune control. *P <
0.05, **P < 0.01, ***P < 0.001 (Student’s unpaired t-test, n = 3-6). Error bars are standard deviation. IP, immunoprecipitation.
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sites identified here are similar to those reported in

another study that characterized export factor-binding

sites in histone mRNAs [29].

SR proteins also promote polyadenylation in some

contexts [30,31]. We found this intriguing in the context

of the histone mRNA targets because several recent stu-

dies have shown that a significant pool of histone

mRNAs undergo polyadenylation instead of 3’ end clea-

vage [32-36]. To validate the association of SRSF3 and

SRSF4 with histone mRNAs and to investigate polyade-

nylation, we adopted an RNA immunoprecipitation

(RIP) assay from UV crosslinked cell extracts (UV-RIP);

the immunoprecipitation was carried out from a cyto-

plasmic fraction in order to avoid contamination by

genomic DNA that would later influence results

obtained by reverse transcription quantitative PCR (RT-

qPCR) (Figure S4b in Additional file 1). Both total and

polyadenylated histone mRNA levels were measured in

the SRSF3 and SRSF4 immunoprecipitates, using either

random hexamers or oligo-dT as reverse primers. Figure

5c shows that both SR proteins immunoprecipitated his-

tone mRNAs significantly above mock immunoprecipi-

tates, irrespective of which reverse primer was used.

Compared to input, detection of histone mRNAs was

more robust when oligo-dT reverse primers were used,

suggesting that SRSF3 and SRSF4 preferentially bind

polyadenylated histone mRNAs. The detection of SRSF3

and SRSF4 bound to polyadenylated histone mRNAs in

the cytoplasmic fraction suggests that both SR proteins

may be involved in histone mRNA 3’ end formation,

export, and/or translation.

SRSF3 and SRSF4 make diverse contacts with exons and

introns

Because SR proteins are known to regulate pre-mRNA

splicing, we wondered whether the crosslink sites were

correlated with particular locations within introns and/

or exons. Data from in vitro studies suggest that SR pro-

teins bind pre-mRNAs primarily within exons and

thereby recruit spliceosomal components to adjacent 5’

and 3’ splice sites [37]. Therefore, crosslink sites were

mapped to exon-intron and intron-exon boundaries.

Variability in exon and intron length genome-wide leads

to an apparent abundance of CLIP-tags close to the

junctions (Figure S5a in Additional file 1). Therefore, we

established a normalization factor derived from the

length distribution of exons and introns to correct for

these differences (Figure S5b in Additional file 1). Map-

ping of normalized crosslink sites showed exonic enrich-

ment of SRSF3 and SRSF4 crosslink sites, which were

most pronounced within 100 nucleotides of both 5’ and

3’ splice sites (Figure 6a). Peaks of SRSF3 and SRSF4

binding approximately 70 nucleotides upstream of 5’

splice sites were more prominent than peaks observed

downstream of 3’ splice sites. Note that we did not map

sequences falling onto exon-exon junctions, which

explains the drop in crosslinking immediately upstream

of 5’ splice sites. Because SR proteins bind mRNA as

well as pre-mRNA, it seems logical that exon sequences

are overrepresented in the experimental data compared

to intron sequences. However, similar patterns of

enrichment in exons were observed when the pentamer

motifs alone were considered (Figure 2; Figure S5c in

Additional file 1), suggesting that the observed exon

bias reflects the distribution of binding sequences within

target RNAs. Interestingly, we noticed a peak of cross-

link sites approximately 30 nucleotides upstream of 3’

splice sites (Figure 6a). This corresponds to the approxi-

mate position of branch points in mammalian introns.

However, the actual position of the branch point varies

relative to the 3’ splice site, with the longest observed

distance of 400 nucleotides [38]. Therefore, crosslink

sites were mapped to predicted mouse branch points

[39]. This mapping indicated that SRSF3 and SRSF4

bind at or slightly downstream of the branch point

nucleotide (Figure 6b). In conclusion, SRSF3 and SRSF4

preferentially contact exonic sequences, especially

upstream of 5’ splice sites; they also interact with branch

points as suggested by two previous studies [7,40], con-

sistent with the model that SR proteins regulate splicing

by contacting pre-mRNA in different functional regions.

SRSF3: a regulator of splicing factors

The notion that different splicing factors might regulate

transcripts with similar functions, creating an expression

module regulated by splicing, has intrigued the field for

decades. We therefore asked about the functional iden-

tity of SRSF3 and SRSF4 protein-coding targets. Similar

to our previous findings by RIP-chip [13], GO analysis

of the protein-coding genes with significant SRSF3 and

SRSF4 crosslink sites revealed functions related to

nucleic acid binding and RNA processing as the most

enriched GO terms for both SRSF3 and SRSF4 (Table

S4 in Additional file 1). SRSF3 binding sites were espe-

cially enriched within genes encoding components of

RNP complexes, including splicing factors (Table S5 in

Additional file 1). SRSF3 crosslink sites were found

within the genes encoding other SR proteins, as well as

in proteins of heterogeneous nuclear ribonucleoprotein

complexes and components of the core splicing machin-

ery. SRSF3 is known to strictly regulate its own expres-

sion through an inclusion of a premature termination

codon (PTC)-containing cassette exon, which is referred

to as a ‘poison cassette exon’ because it leads to tran-

script degradation by nonsense-mediated decay (NMD)

[13,41]. Poison cassette exons occur in all SR protein

family members and are ultraconserved among species

[42,43]. The inclusion of the alternative cassette exon or
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Figure 6 SRSF3 and SRSF4 contact exons and introns. (a) SRSF3 and SRSF4 crosslink sites mapped around the 5’ and 3’ splice sites. The
position 0 (dotted line) represents the indicated 5’ or 3’ splice site; the y-axis represents normalized crosslink sites per 103 nucleotides. The
normalization is based on the length distribution of exons and introns (Figure S5 in Additional file 1). The data were smoothed using a Gaussian
window (half-width of the window = 5). (b) SRSF3 and SRSF4 crosslink sites mapped to predicted mouse branch points. The position 0 (dotted
line) represents the branch point nucleotide. Smoothing as in (a).
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intron retention leads to the introduction of a PTC in

the SR protein mRNA in every case. Indeed, SRSF3 and

SRSF4 CLIP-tag clusters were detected in the SRSF3

and SRSF4 autoregulatory cassette exons, respectively

(Figure 7a, top panel; Figure S6, bottom panel, in Addi-

tional file 1).

To date, it has been assumed that poison cassette

exons are recognized by the gene’s own protein product,

in an auto-regulatory feedback loop (see above). Intrigu-

ingly, the SRSF3 CLIP-tag clusters were also found in

the NMD-associated exons or introns of three heterolo-

gous SR protein-encoding genes, SRSF2, SRSF5 and

SRSF7 (Figure 7a; Figure S6 in Additional file 1). In con-

trast, SRSF4 CLIP-tag clusters were found only in the

poison cassette exon of its own pre-mRNA. We sought

to validate the specificity of these interactions by UV-

RIP. SRSF3 specifically immunoprecipitated SRSF2,

SRSF3, SRSF5 and SRSF7 (pre-)mRNAs, whereas SRSF4

only immunoprecipitated significant levels of its own

(pre-)mRNA (Figure 7b). These data validate the specifi-

city of SRSF3 interactions with heterologous transcripts

encoding SR protein family members in the manner

indicated by iCLIP; note that low recovery of some tran-

scripts may be due to the short half-lives of the bound,

PTC-containing messages.

The presence of SRSF3 CLIP-tag clusters in heterolo-

gous SR protein-encoding transcripts could indicate that

SRSF3 either positively or negatively regulates poison-

cassette exon usage. If so, we would predict that SRSF3

levels in cells should affect the alternative splicing and

ultimately expression levels of the three target SR pro-

tein transcripts identified. To test this directly, mini-

genes including the genomic regions around SRSF3

CLIP-tag clusters were constructed for SRSF2, SRSF3,

SRSF5 and SRSF7 (Figure 8a; Figure S7C in Additional

file 1). Efficient SRSF3 or SRSF4 protein over-expression

and knockdown was achieved by transfection of cDNA

expression constructs and RNA interference, respectively

(Figure S7a in Additional file 1). Under these conditions,

the splicing patterns of the minigene-encoded tran-

scripts were analyzed, using vector-specific primers for

RT-PCR. Figure 8a shows that over-expression of SRSF3

led to a marked increase in poison cassette exon inclu-

sion for both the SRSF3 and SRSF7 minigenes. Upon

SRSF3 knockdown, this pattern was reversed (Figure

S7b in Additional file 1). Similarly, SRSF3 over-expres-

sion led to alternative splicing changes for the SRSF2

and SRSF5 minigenes, leading to increased poison cas-

sette usage and/or intron retention (Figure S7c in Addi-

tional file 1). Importantly, SRSF4 over-expression or

knockdown did not detectably alter splicing patterns

(Figure 8a; Figure S7b, c in Additional file 1).

The alternative splicing events regulated by SRSF3

documented above predict that the transcripts regulated

by SRSF3 - namely SRSF3 itself as well as SRSF2, SRSF5

and SRSF7 - will undergo degradation through NMD

when SRSF3 is over-expressed. To test this, the NMD

pathway was inhibited by treating the cells with cyclo-

heximide (CHX) [44]. The use of CHX as a tool also

enabled us to investigate the alternative splicing out-

come of endogenous transcripts. Figure 8b shows that

CHX treatment leads to detection of the otherwise

highly unstable endogenous poison cassette exon-con-

taining SR protein transcripts that increase in abun-

dance upon SRSF3 over-expression. Another prediction

of these findings is that the steady-state levels of hetero-

logous SR protein transcripts will depend on SRSF3

levels. Through measurement of target mRNA levels by

RT-qPCR, we show that SRSF5 and SRSF7 mRNA levels

decrease significantly in cells over-expressing SRSF3

(Figure 8c). Upon CHX treatment, mRNA levels recov-

ered to those of the control (Figure S7d in Additional

file 1). Taken together, the data indicate that SRSF3 spe-

cifically binds not only its own but other SR protein

transcripts and the binding leads to alternative splicing

changes that increase the occurrence of PTCs, which in

turn target the expressed transcripts for degradation

through the NMD pathway. Thus, SRSF3 regulates the

expression of its own mRNA and the mRNAs encoding

three other SR protein family members (Figure 8d). This

cross-regulation by SRSF3 and the observation that

many other RNA binding proteins may similarly be

regulated by SRSF3 (Table S5 in Additional file 1) raises

the possibility that SRSF3 is a master regulator of the

transcriptome acting through a network of feedback

mechanisms.

Discussion

Here we used iCLIP to investigate the RNA-binding

landscape of two SR proteins, SRSF3 and SRSF4, in

mouse cells. The value of this study is enhanced by the

global comparison of RNA targets and binding sites for

two members of this prominent family of RNA binding

proteins with a variety of known roles in gene expres-

sion. Through detailed analysis of the transcripts and

transcript regions bound by SRSF3 and SRSF4, we pro-

vide evidence for previously unknown functions of these

highly conserved RNA binding proteins. Here we discuss

our findings in the context of five major conclusions.

First, SRSF3 and SRSF4 exhibit largely non-overlap-

ping binding sites and RNA targets, indicating that

SRSF3 and SRSF4 regulate specific sets of genes through

their interaction with different RNA sequences. This

finding is consistent with the previous finding that

SRSF3 and SRSF4 are present in non-overlapping

mRNPs in vivo [13], although the previous study did not

examine direct binding sites. The genome-wide CLIP

data provided large numbers of binding sites, enabling

Änkö et al. Genome Biology 2012, 13:R17
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us to derive consensus in vivo binding sequences. We

show that SRSF4 binds a consensus GA-rich sequence.

The CU-rich SRSF3 in vivo consensus binding sequence

is similar to that derived in vitro by SELEX [18,19],

indicating the validity of the use of SELEX to under-

stand binding specificity alone. However, bioinformatic

analysis of SELEX sequences does not permit the identi-

fication in vivo RNA targets because the shortness and

Figure 7 SRSF3 binds to poison cassette exons in SR proteins. (a) SRSF3 and SRSF4 CLIP-tags and clusters around the alternative cassette
exon of SRSF3 and SRSF7 genes. Labels as in Figure 1a. The zoom in represents the ultraconserved regions identified in [42,43]. Note that the
genes in the antisense strand run from right to left. (b) The enrichment of mRNAs encoding different SR protein family members after UV
crosslinking and SRSF3 or SRSF4 immunoprecipitation (IP). To prime the RT reactions, hexamers were used. Data are presented relative to the
input sample. IP is the specific immunoprecipitation and mock is the non-immune control. *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s unpaired
t-test, n = 3-6). Error bars are standard deviation.
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degeneracy of consensus sequences leads to over-repre-

sentation within the transcriptome [45]. The identifica-

tion of in vivo targets, accomplished here by CLIP,

allowed us to further investigate the identified RNA

classes and RNA regions bound.

Second, an important class of RNAs bound by both

SRSF3 and SRSF4 were ncRNAs. SRSF3 and SRSF4

crosslinked to multiple sites along the lincRNA

MALAT1, which is enriched in nuclear speckles and

interacts with a subset of SR proteins, including SRSF3

[22]. Other splicing factors localized in nuclear speckles,

such as TDP-43 and SRSF1, also bind to MALAT1

[12,21]; it appears, therefore, that MALAT1 interaction

is common among RNA-binding proteins in nuclear

speckles. Furthermore, SRSF3 and SRSF4 interacted

with 7SK, another ncRNA localized to speckles [23] but

not with the paraspeckle ncRNA component NEAT1

[46]. One especially overrepresented group of short

ncRNAs with SRSF3- and SRSF4-binding sites was

snoRNAs. We show that a subset of snoRNAs, the

Figure 8 SRSF3 controls the level of SR proteins through splicing regulation. (a) The splicing products of SRSF3 and SRSF7 minigenes
determined after 24-hour over-expression of SRSF3, SRSF4 or EGFP (control). The alternative exons are marked with light grey. (b) The splicing
products of endogenous SRSF3 and SRSF7 after inhibition of NMD by a 3-hour treatment with cycloheximide (CHX). (c) The expression level of
endogenous, mature SRSF2, SRSF5 and SRSF7 mRNAs upon EGFP, SRSF3 or SRSF4 overexpression (24 hours) as measured by RT-qPCR. *P < 0.05
(one-way ANOVA). Error bars are standard deviation. ACTB was used as the reference gene. (d) Schematic showing how SRSF3 controls the levels
of other SR protein family members through alternative splicing. The inclusion of a poison cassette exon harboring a premature termination
codon (PTC, red stop sign) leads to RNA degradation through NMD.

Änkö et al. Genome Biology 2012, 13:R17
http://genomebiology.com/2012/13/3/R17

Page 12 of 16



scaRNAs, are prominent targets of SRSF4 with binding

sites near their 3’ ends. SR proteins are likely required

for the splicing of all introns, including those containing

snoRNAs. The position of the snoRNAs, including scaR-

NAs, within the host intron is critical for snoRNA pro-

cessing, implying that the spliceosome is actively

involved in the release of snoRNAs from the debranched

intron [47]. It remains to be investigated whether SR

proteins are required for snoRNA processing from host

introns. An interesting possibility is that SR proteins

interact within the snoRNA-derived short RNAs and co-

regulate alternative splicing [48]. Because the functions

of many ncRNAs are currently poorly understood, it will

be interesting to determine whether ncRNAs have func-

tions as co-regulators of splicing.

Third, we provide evidence that SRSF3 and SRSF4

bind many intronless genes, further supporting their

role as regulators of gene expression independent of

pre-mRNA splicing [2]. Surprisingly, we show that

SRSF3 and SRSF4 display clusters of binding sites at the

ORF-3’ UTR junction of the vast majority of histone

mRNAs. This binding region was previously shown to

be important for the export of histone H2A mRNAs in

Xenopus oocytes [29]. UV-RIP experiments indicate that

both SR proteins bind preferentially to polyadenylated

histone mRNAs and that these mRNP complexes are

detectable in the cytoplasm. Replication-dependent his-

tone mRNAs are mainly processed by 3’ end cleavage

[26], and are exported from the nucleus via the stem

loop binding protein (SLBP) [32]. It was known that his-

tone mRNAs become polyadenylated when the 3’ end

cleavage machinery is compromised [26]. However,

recent high-throughput sequence analyses of human and

mouse mRNAs identified significant pools of polyadeny-

lated mRNAs encoding all four core histones even when

the 3’-end processing machinery is functional [35,36].

Thus, expression of polyadenylated histone mRNAs

appears to be physiologically important. If polyadeny-

lated histone transcripts fail to bind SLBP, they may

require SRSF3 and SRSF4 for export from the nucleus;

both SRSF3 and SRSF4 shuttle to the cytoplasm and

SRSF3 binds the mRNA export receptor TAP [5,28]. It

will be of interest to determine how SRSF3 and SRSF4

regulate histone mRNA 3’ end formation, export, or

both.

Fourth, intron-containing protein-coding transcripts

were a major class of SRSF3 and SRSF4 targets. SR pro-

teins are thought to bind primarily to exonic splicing

enhancers, where they influence recognition of adjacent

5’ and 3’ splice sites [49]. The pattern of binding to

exon-intron junctions resembles that observed for

SRSF1 [12]; abundant binding within the exon bodies

dropped sharply towards exon-intron boundaries. These

data agree with the current concept that SR proteins

promote adjacent splice site recognition. However, our

data show that neither SRSF3 nor SRSF4 binding is lim-

ited to exons; instead, a large number of binding sites

are found in introns and 3’ UTRs. Crosslinking to exo-

nic regions should be overrepresented in CLIP, owing to

the low abundance of pre-mRNA in living cells. It is

remarkable, therefore, that 65% of SRSF3 and 52% of

SRSF4 binding sites were located in introns. SRSF3 was

shown to regulate splicing by binding to an intronic

splicing enhancer [50], providing precedence for SRSF3

splicing regulatory function via intronic regulatory ele-

ments. Intriguingly, SRSF3 and SRSF4 binding was also

detected at and around branch-point sequences within

introns. In vitro studies suggested that SRSF1 is first

recruited to an exonic splicing enhancer and the RS

domain subsequently contacts the branch point [7,40].

The present study does not distinguish whether the

RRM or the RS domain of SRSF3 and/or SRSF4 binds

to the branchpoint. Although some correlation between

binding to the branch point and to the downstream

exon was observed, a strict requirement for binding to

both downstream exonic splicing enhancer and the

branch point was not detected. Therefore, SR proteins

may have exon-independent functions as proposed pre-

viously [51].

Finally, we have discovered that SRSF3 cross-regulates

the expression of other SR protein family members.

Autoregulation, in which SRSF1 and SRSF3 modulate

expression of their own messages via inclusion of a

PTC-containing exon, was previously known [41,52].

This activity has been attributed to ultraconserved

regions within alternative cassette exons and retained

introns that introduce a PTC in mRNAs encoding SR

proteins [42,43]. Here we identify SRSF3 binding sites in

the mRNAs encoding three additional members of the

SR protein family and show that short-term overexpres-

sion of SRSF3 led to robust effects on the splicing and

expression of four SR protein family members (SRSF2,

SRSF3, SRSF5, and SRSF7). This reveals an unexpected

role of SRSF3 in cross-regulating expression of other SR

protein family members (Figure 8d). SRSF3 binding sites

were also abundant in mRNAs encoding other splicing

factors and spliceosomal components. These data,

together with the observation that SRSF3 binds numer-

ous transcripts encoding RNA binding proteins, under-

score the notion that the splicing machinery is under

strict cellular control and indicate that SRSF3 is a key

regulator of RNA metabolism.

Conclusions

Our global analysis of SRSF3 and SRSF4 shows that

these SR proteins are multifunctional RNA binding pro-

teins interacting with distinct classes of RNA. Initially

identified as splicing factors, SRSF3 and SRSF4 regulate
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constitutive and alternative exons by binding to both

exonic and intronic positions. SRSF3 in particular seems

to function as a master regulator of splicing machinery

expression through its activities in alternative splicing.

However, SRSF3 and SRSF4 also interact with RNAs

that are not processed by the spliceosome, suggesting a

network of interactions that control cellular programs of

gene expression. In addition to the numerous functions

already assigned for SR proteins, interactions with differ-

ent RNA classes, including ncRNAs, implies that more

is yet to come.

Materials and methods

Cell culture and iCLIP

P19 cells were cultured as described [13]. For iCLIP,

P19 SRSF3-BAC or P19 SRSF4-BAC cells [13] were

irradiated with 100 mJ/cm2 UV light. The iCLIP was

performed as described [15]. Protein G Dynabeads

coupled with goat anti-GFP antibody (a kind gift from

D Drechsel, MPI-CBG, Dresden) were used for the

immunopurification. The recovered RNA was reverse

transcribed into cDNA. After size-purification and

amplification the cDNA was subjected to high-

throughput sequencing by Illumina Genome Analyser

II (single-end 32-nucleotide reads). The adapter oligo-

nucleotides, reverse transcription primers and primers

for amplification were as described [15]. A more

detailed description is in the Supplementary Methods

in Additional file 1.

Mapping of sequences to mouse genome and sequence

analysis

The sequences corresponding to an experiment were

identified by a defined barcode and random barcodes

were registered. The barcodes were removed before

mapping to the mouse mm9 sequence assembly using

Bowtie version 0.12.5. Two mismatches were allowed in

the mapping, and only CLIP-tags mapping to unique

positions were considered. For analysis of significant

crosslink sites, the iCLIP positions were randomized.

The randomization was done within co-transcribed

regions as described [17]. Ensembl59 annotation based

on the mouse mm9 genome assembly was used. The

statistical approach used to identify significant crosslink

sites and CLIP-tag clusters was as described [16,17].

Z-score analysis for enriched pentamers was per-

formed essentially as described [17]. Pentamers were

used because they are the longest motifs that could be

statically derived from the data. Because we noticed that

the inclusion of the actual crosslink nucleotide and the

positions immediately surrounding it always resulted in

a run of U nucleotides as the most enriched motif (data

not shown), we excluded the crosslink site from the ana-

lysis and thus avoided bias towards any nucleotide due

to differences in crosslinking efficiency. The positions of

the crosslinking nucleotide were extended by 30 nucleo-

tides in both directions. Only one occurrence of a pen-

tamer within the evaluated interval [(-30, -10), (10, 30)]

relative to each cross-link was counted and each occur-

rence of a crosslink site was weighted by 1.0. Reference

data were generated 100 times by random shuffling of

iCLIP crosslink positions within corresponding genome

segments (within same genes) and a Z-score was calcu-

lated relative to the randomized genomic positions. The

top five pentamers were used to calculate the binding

consensus motif [53].

Mapping of crosslink sites to exon-intron junctions and

branch points

Crosslink sites located within a maximum 600-nucleo-

tide window [-300,+300] around exon-intron boundaries

were mapped to these regions. Each occurrence of a

crosslink site was assigned to the closest exon-intron

boundary, counted as 1.0 and normalized by number of

junctions spanning the crosslink position. In the case of

exon-intron junctions, only the last half of the exon and

first half of the intron were used to obtain the distribu-

tion of exons and introns spanning each position rela-

tive to the boundary. Similarly, the last half of introns

and the first half of exons were used for intron-exon

junctions. Junctions where exons were shorter than 60

nucleotides or introns shorter than 200 nucleotides were

ignored (< 15% of all possible junctions). For branch

point RNA maps, we used computationally predicted

branch points from Corvelo et al. [39]. Only the best,

non-negative SVM scored branch point that resided in

the last half of intron was used. In case of ties, we used

the branch point closest to the intron-exon junction.

For normalization, only the last half of the intron was

used, and the branch point was at position zero. We

ignored introns shorter than 240 nucleotides and introns

where the branch point was closer than 20 nucleotides

to the intron-exon junction.

Minigene analysis

For the knockdown of SRSF3 or SRSF4, esiRNA sequences

described previously were used [13]. For the overexpres-

sion, human SRSF3 and SRSF4 cDNA were cloned into

pYFP-N2 and pEGFP-N3 vectors (Clontech), respectively.

To construct the minigenes, the region of interest was

PCR amplified from P19 genomic DNA and cloned into

pcDNA3 vector (Invitrogen). The plasmids carrying the

minigenes were co-transfected together with either SRSF3

or SRSF4 esiRNA or overexpression construct into P19

cells using Lipofectamine 2000 (Invitrogen). Empty vectors

or esiRNA targeting EGFP were used as controls. Twenty-

four hours post-transfection, total RNA was isolated using

acid phenol-chloroform extraction (Ambion). After

Änkö et al. Genome Biology 2012, 13:R17
http://genomebiology.com/2012/13/3/R17

Page 14 of 16



DNaseI treatment the RNA was reverse transcribed with

Superscript III (Invitrogen). The splicing patterns of mini-

genes were analyzed using vector-specific PCR primers.

To abrogate the nonsense-mediated decay pathway, P19

wt cells were treated with 300 μg/ml cycloheximide for 3

hours. Untreated samples were processed in parallel. Total

RNA was extracted and the samples treated as described

above. Gene-specific primers spanning the exons flanking

the PTC-containing cassette exon were used. Total expres-

sion of SRSF2, SRSF5 and SRSF7 was determined by RT-

qPCR using primers spanning an exon-exon junction.

ACTB was used as a reference gene to normalize for

cDNA synthesis efficiency. Primer sequences are available

upon request.

UV crosslinking and RNA immunoprecipitation

UV-crosslinked cells (see above) were harvested and the

cytoplasmic fraction was separated. The total cell pellet

was suspended in NET-2 buffer (50 mM Tris-HCl pH

7.4, 150 mM NaCl; 0.05% (v/v) Nonidet P-40) for wes-

tern blot analysis or Trizol (Invitrogen) for RNA isola-

tion. For the fractionation, the cell pellet was suspended

in hypotonic buffer (10 mM Hepes, pH 7.4; 10 mM

NaCl; 3 mM MgCl2; 0.3% (v/v) Nonidet P-40, RNase-

OUT; complete protein inhibitor cocktail), the nuclear

pellet was collected by centrifugation, and the superna-

tant was collected as the cytoplasmic faction. The cyto-

plasmic fraction was used as such or RNA was extracted

as above. Input, mock and immunoprecipitation samples

were independently reverse primed with either oligo-dT

or hexamer primers. Primers specific for individual his-

tone mRNAs were used for qPCR amplification;

POFUT1 was used as a reference gene for SRSF3 and

DTMYK for SRSF4 to normalize for cDNA synthesis

efficiency. Oligo-dT and hexamer samples were normal-

ized independently of each other to their respective

input. The primer sequences are available upon request.

Database accession

The sequencing data have been submitted to the Array

Express database [54], accession number E-MTAB-747.

Additional material

Additional file 1: Supplementary Information. Supplementary
Materials and methods, References, Figures S1 to S7 and Tables S1 and
S3 to S5.

Additional file 2: Supplementary Table S2. Genes with significant
SRSF3 or SRSF4 crosslink sites.
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