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Abstract

Lysosome-related organelles comprise a diverse group of cell type-specific, membrane-bound 

subcellular organelles that derive at least in part from the endolysosomal system but that have 

unique contents, morphology, and functions to support specific physiological roles. They include 

melanosomes that provide pigment to our eyes and skin, alpha and dense granules in platelets and 

lytic granules in cytotoxic T cells and natural killer cells that release effectors to regulate 

hemostasis and immunity, and distinct classes of lamellar bodies in lung epithelial cells and 

keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or 

secretion of subsets of lysosome-related organelles are dysfunctional or entirely absent in a 

number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak 

syndromes. This review provides a comprehensive overview of lysosome-related organelles in 

humans and model organisms and presents our current understanding of how the products of genes 

that are defective in heritable diseases impact their formation, motility and ultimate secretion.
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Introduction

The endolysosomal system in metazoans consists of a complex web of interconnected 

compartments and membranes that, in all cell types, serve an astoundingly large array of 

functions including nutrient uptake, metabolic control, signaling, pathogen destruction, 
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innate immunity, and others.1,2 The endolysosomal system is highly plastic, allowing 

specific cell types to adapt it to serve their special needs. For example, phagocytic cells 

coopt the recycling endosomal system to provide the membrane needed to engulf large 

particles3,4, polarized cells diversify the endosomal system to accommodate sorting among 

topologically distinct plasma membrane domains5, and adipocytes and muscle cells adapt 

recycling endosomes to generate reservoirs from which glucose transporters can be rapidly 

deployed to the plasma membrane upon insulin signaling.6-8

Research over the last 15-20 years has revolutionized our understanding of endosomal 

system adaptation towards a distinct end - the formation of cell type-specific organelles 

known as lysosome-related organelles (LROs).9-11 LROs are named as such because of their 

primary derivation from the endosomal system, their variable content of lysosomal proteins, 

and often an acidic phase during their life cycle – requiring the activity of the vacuolar 

ATPase.12 However, they encompass a broad array of structures with distinct morphologies 

and functions that are unique to the physiology of their host cell (Table 1, Figure 1).9,10 

These structural and functional features are conferred by the unique cell type-specific 

contents of each LRO, which are specifically sorted to nascent LROs during their formation. 

While some LROs, such as immature cytolytic granules of resting cytotoxic T cells (CTLs), 

double as the host’s lysosomes13 (T cell activation induces granule maturation by fusion 

with recycling endosomes14), others such as melanosomes, Weibel-Palade bodies and 

platelet dense and alpha granules coexist with bona fide endolysosomes in their particular 

cell type.15,16 The host cell types for the latter LRO class therefore require a dedicated 

system(s) by which LRO contents are segregated from cargoes destined to classical 

endolysosomes. In addition, most (if not all) LROs are regulated secretory organelles, and 

secretion at the proper time is critical for LRO function. For example, the contents of 

cytolytic granules must only be directed towards a target cell following immune recognition, 

and contents of platelet alpha and dense granules must only be released upon platelet 

activation at sites of vascular damage. Thus, proper regulation of the biogenesis, 

maintenance/protection from degradation, and secretion of LROs is necessary for normal 

physiological function.

Progress in understanding both the formation and secretion of LROs has been greatly 

accelerated by the study of syndromic human genetic disorders – and their animal models – 

in which these processes are disrupted in many LRO-generating cell types. Biogenetic 

disorders include the Hermansky-Pudlak syndromes (HPS), Chediak-Higashi syndrome 

(CHS), the arthrogryposis, renal dysfunction and cholestasis (ARC) syndromes, and gray 

platelet syndrome (GPS). Secretory disorders include the Griscelli syndromes (GS) and 

familial hemophagocytic lymphohistiocytosis (FLH) types 3-5. Each of these monogenic 

disorders impacts the function of a group of LROsa, resulting in loss of function in such 

diverse physiological systems as immunity, neurology, pigmentation, hemostasis, and others. 

For example, oculocutaneous albinism and excessive bleeding and bruising in HPS patients 

are due to impaired biogenesis of pigment cell melanosomes and platelet dense granules, 

respectively.17,18

aGPS is unique among these syndromes in that it appears to impact only alpha granule biogenesis in megakaryocytes and platelets.

Bowman et al. Page 2

Traffic. Author manuscript; available in PMC 2020 June 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Over the last 10-15 years, functional analyses of HPS genes and their products in particular 

have enlightened molecular pathways required for content delivery and function of 

melanosomes, dense granules, lung lamellar bodies, and several organelles in innate and 

adaptive immune cell types. This review will focus primarily on the roles of HPS gene 

products and their associated proteins in LRO biogenesis at the level of human disease, 

model organisms, and cell culture systems. We will briefly touch upon how the other 

syndromic diseases mentioned above are similarly providing new insights into LRO 

biogenesis, positioning and secretion, and then provide some perspectives on future studies.

LROs vs. secretory granules and secretory lysosomes

How are LROs defined and distinguished from classical secretory granules? Most experts 

agree that LROs derive a substantial component of their contents from the endolysosomal 

system, including either late endosomes, early endosomes, or both (Figure 2). By contrast, 

secretory granules derive most of their contents from the Golgi complex. However, the line 

between LROs and classical secretory granules can be blurred. For example, Weibel-Palade 

bodies - cigar-shaped regulated secretory organelles in endothelial cells that package and 

store von Willebrand factor (vWF) for stimulated secretion – have long been considered 

LROs10, but immature Weibel-Palade bodies bearing polymerized vWF bud directly from 

the trans Golgi network19 and later fuse with endosomal membranes bearing CD63 and P-

selectin.20 By contrast, large dense core granules have long been considered classical 

secretory granules but have some features of LROs, such as the requirement for complexes 

that are defective in several HPS subtypes for their proper formation21-23 and the recruitment 

of ectopically expressed LRO cargos.24 In this review, we define LROs broadly as cell type-

specific organelles for which at least some functionally or structurally significant 

components derive from the endolysosomal system, and/or for which their biogenesis, 

motility or secretion requires effectors that are disrupted in LRO diseases described here 

(HPS, GPS, GS, ARC or FLH) or their homologues in model systems (Table 1). This 

inclusive definition would encompass organelles such as cytolytic granules that have been 

referred to as “secretory lysosomes”25,26, but would exclude actual lysosomes (which can 

also be secreted under some conditions but which are not cell type-specific27,28). Note that 

this definition might also encompass certain types of synaptic vesicles in neurons (Table 1), 

but due to the complexity of the neuronal system we have chosen not to cover this topic 

extensively in this review.

The Hermansky-Pudlak syndromes

HPS is a group of syndromic disorders characterized in all cases by varying degrees of 

oculocutaneous albinism, with concomitant visual impairment and susceptibility to skin 

cancer, and by excessive bleeding and bruising that can, under some conditions such as 

childbirth or surgery, become life-threatening.29 HPS is rare in the general population 

(incidence estimated at 1:1,000,000), but is particularly prevalent in certain populations due 

to founder effects; for example, HPS1 is estimated to afflict ~1:1800 individuals in Puerto 

Rico.29 Albinism reflects defects in the biogenesis of melanosomes in melanocytes of the 

skin, hair and choroid of the eye and in pigment epithelial cells of the retina, iris and ciliary 

body of the eye. Bleeding and bruising reflects absence of detectable dense granules in 
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platelets. Patients with the most common HPS subtypes (HPS1 and HPS4) additionally 

suffer from a progressive lung fibrosis that is typically lethal without a lung transplant within 

the 4th or 5th decade of life. The primary insult responsible for lung fibrosis appears to be 

defects in the biogenesis of lamellar bodies, which are LROs in alveolar type II (AT2) cells 

responsible for surfactant synthesis and secretion.30-32 Consequent inflammatory sequelae, 

which likely result from reduced surfactant levels, initiate and expand the fibrotic response.
33,34 A subset of HPS1 and 4 patients also suffer from granulomatous colitis (a type of 

inflammatory bowel disease), the etiology of which is currently unknown. HPS2 and HPS10 

patients also suffer from lung disease35,36, but additionally suffer from recurrent bacterial 

and viral infections due to impaired immune responses.36-40 The molecular basis for the 

impaired immune response will be discussed later in this review.

HPS can be caused by inactivating mutations in any of at least 10 different genes in humans. 

All of these genes encode subunits of four obligate multi-subunit protein complexes: adaptor 

protein-3 (AP-3) and the biogenesis of lysosome-related organelles complex (BLOC)-1, −2 

and −3 (Table 2, highlighted in gray, yellow, green and blue). LRO biogenesis in model 

organisms is also disrupted by mutations in the same genes and in genes encoding additional 

BLOC-1 subunits, as well as additional genes; these include genes encoding the Rab GTPase 

targets of BLOC-3 function (RAB32 and RAB38) and subunits of the homotypic fusion and 

vacuole protein sorting (HOPS) and the class c core vacuole/endosome tethering (CORVET) 

complexes (Table 2; HOPS/CORVET subunits highlighted in orange). The phenotype in 

mice with BLOC or AP-3 subunit mutations is remarkably similar to that of HPS patients. In 

almost all cases, disease results from nonsense mutations that ablate production of an intact 

subunit and that thereby (1) disrupt formation of the entire complex with which the subunit 

is associated, and (2) destabilize the remaining subunits. For example, mutations in HPS4 

destabilize both HPS4 and HPS1 and result in a loss of BLOC-3 function.41 A substantial 

fraction of HPS patients lack identifiable mutations within these 10 genes, suggesting that 

mutations in additional genes may also cause the disease.29

As discussed further below, the protein complexes that are disrupted in HPS each participate 

in a discrete step of membrane trafficking required for LRO biogenesis or for additional 

functions in cell types that lack LROs (Figure 3). Not all steps appear to be equally required 

for minimally functional LRO biogenesis in each cell type, resulting in the differences in the 

disease spectrum of patients with mutations in distinct HPS genes. However, the disease 

spectrum is nearly identical in patients with mutations in different components of the same 

protein complex - e.g. the disease spectrum in HPS3, HPS5 and HPS6 patients, all with 

mutations in BLOC-2 subunits, is very similar.42-44 For this reason, HPS is best understood 

in the context of BLOC-1, BLOC-2, BLOC-3 or AP-3 disease rather than in the context of 

each individual gene product.

Model systems for LRO biogenesis

Rodents.

The laboratory mouse has been perhaps the most informative for the study of HPS and LRO 

biogenesis, in large measure due to both (1) the similarity of HPS disease in humans to the 

phenotype of orthologous mutations in mice45,46, and (2) the availability of models for all 
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HPS subtypes. The latter reflects the impact of HPS on mouse coat color and the ease with 

which spontaneous coat color mutants can be detected and propagated.47,48 Such 

spontaneous mutations have given rise to at least 15 HPS models in the mouse including 

correlates of all of the human HPS variants and mutants in genes encoding two additional 

BLOC-1 subunits (Muted49,50 and Cappuccino51), the HOPS/ CORVET subunit VPS33A52, 

the Rab geranylgeranyltransferase II subunit RGGTA53, and the plasma membrane cysteine/

glutamate transporter SLC7A11.54 In addition, the Chocolate mouse bears a mutation in 

Rab38 and has pigmentation and lung defects – but curiously no platelet defect.55-57 By 

contrast, the Ruby mutation in Rab38 in Fawn-hooded and Tester-Moriyama rats is 

associated with classical hypopigmentation, bleeding diathesis and lung dysfunction.58,59 

Notably, immortalized melanocyte cell lines60,61 from each of the mouse HPS models (see 

http://www.sgul.ac.uk/depts/anatomy/pages/Dot/Cell%20bank%20holdings.htm) and 

engineered HPS models in an AT2 cell line62 provide excellent tools for analyses of cell 

type-specific effects of HPS subtypes.

Zebrafish.

The zebrafish Danio rerio harbors a number of unique LROs, including melanosomes in skin 

melanophores and retinal pigment epithelia, notochord vacuoles, and lamellar body-like 

surfactant storage organelles at the caudal tip epithelium of the swimbladder. Melanophores 

are epidermal cells in fish and amphibians that, like melanocytes in mammals, generate 

melanosomes in which melanin is synthesized. However, unlike mammalian melanocytes, 

they respond more rapidly to external stimuli either by accumulating pigment granules in the 

cell center or by dispersing them to the cell periphery.63,64 The retinal pigment epithelia in 

zebrafish is structured similarly to that in mammals and also harbors melanosomes, and 

defects in their melanization are easy to spot even in embryos. Zebrafish and mammals share 

most of the genes known to regulate melanosome biogenesis and motility, and altered 

pigmentation has been observed in zebrafish with mutations in genes encoding subunits of 

BLOC-1, BLOC-2, and HOPS65-69, as well as an unidentified gene in the fade mutant.70 

Mutations in numerous additional pigment cell-specific genes, such as PMEL (responsible 

for the amyloid matrix upon which melanins deposit in melanosomes) and SLC24A5 (a 

transporter that is defective in oculocutaneous albinism type 6) have also been identified in 

zebrafish, but will not be discussed further here.

The notochord vacuole is a fluid-filled organelle that takes up most of the volume of the 

inner cells at the center of the notochord and that provides rigidity to the notochord during 

development. As for other LROs, notochord vacuole biogenesis and maintenance require the 

HOPS complex, the small GTPase RAB32A, and the vacuolar proton-ATPase71, as well as 

the homologue of the mammalian lysosomal scavenger receptor LIMP2/ SCARB2.72 The 

swimbladder is an air-filled organ that inflates and deflates to regulate buoyancy, and is a 

valued model system for lung development and surfactant formation. Mutations in the 

BLOC-1 and BORC subunit, BLOS1, result in a defective swimbladder. This appears to 

reflect a requirement for BLOS1 in activating a transcriptional network for the surfactant 

system, which is critical to swimbladder function.65 It is not clear whether this reflects a 

primary defect in BLOC-1, BORC or both (see discussion of BLOC-1 and BORC below).
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Xenopus tropicalis.

X. tropicalis harbors retinal pigment epithelia and melanophores similar to those in 

zebrafish. Recent identification of an HPS6 (BLOC-2 subunit) mutant with reduced 

pigmentation in the retina and body suggests that this organism may provide another model 

for LRO biogenesis.73

Drosophila melanogaster.

The D. melanogaster eye (as for eyes of other insects) consists of approximately 800 

individual units called ommatidia, within which pigment granules are generated in primary 

pigment cells near the cornea and secondary pigment cells that surround the retinular cells 

along the length of the ommatidia.74 These cells make two classes of pigment: brown 

ommochrome and red pteridines. Defects in the formation of pigment granules lead to 

changes in eye color from the normal brownish red to a variety of colors. Eye color mutants 

in D. melanogaster have been described for over a century, and many reflect mutations in 

conserved genes required for pigment granule biogenesis. For example, mutations in any of 

the four subunits of AP-375-79 result in a similar phenotype with a reduction in the number 

and size of the pigment granules and loss of both ommochrome and pteridine pigments. 

RNAi depletion of BLOC-1 subunits80, the pink mutation in the orthologue to the HPS5 

subunit of BLOC-281, the lightoid mutation in a Rab32/38 orthologue and the claret 

mutation in its putative guanine nucleotide exchange factor82, and mutations in the Vps16, 

Vps33, Vps18 and Vps41 subunits of HOPS83-87 all cause altered eye color due to 

malformation of pigment granules. The availability of these models allows for relatively 

easy testing of genetic interactions among these and other genes. For example, pigmentation 

defects due to BLOC-1 deficiency could be partially offset by overexpression of Rab11, a 

Rab GTPase that controls endosomal recycling.80

D. melanogaster and other insects may have additional LROs in other tissues. The zinc 

concentration in zinc storage granules of principal cells in the Malpighian tubules, the major 

zinc reservoir in D. melanogaster, is sensitive to mutations in genes encoding subunits of 

AP-3, BLOC-2, and HOPS as well as the Rab32/38 orthologue lightoid88, suggesting that 

the zinc storage granules are LROs. In addition, the mucin-containing glue granules of larval 

salivary glands have features of LROs and are sensitive to mutations in the AP-3-associated 

type II phosphatidylinositol-4-kinase and in AP-1, a complex similar to AP-3.89,90

Caenorhabditis elegans.

Gut granules in C. elegans - and likely in other nematodes - are LROs that are sites of fat 

storage in intestinal cells and contain birefringent, autofluorescent material.91,92 The 

accumulation of this material requires a number of gut granule membrane proteins, 

including the ABC transporters PGP-292, MRP4 (a homologue of mammalian MRP4 that 

might localize to platelet dense granules) and WHT-2.93 Like many LROs in mammalian 

cells, gut granules contain some lysosomal membrane proteins and co-exist with lysosomes.
91 Proper gut granule formation requires homologues to components of the mammalian HPS 

complexes AP-3, BLOC-1 and HOPS, as well as the RAB32/38 family member, 

GLO-1.91,94,95
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The biogenesis of gut granules in C. elegans and of LROs such as melanosomes in mammals 

share striking features but a few intriguing differences. Like for melanosomes in 

melanocytes, distinct cargoes show differential requirements for BLOC-1 and AP-3 for 

sorting to gut granules.95 Moreover, a homologue of the LYST (Lysosomal Trafficking 

regulator) protein that is deficient in CHS, LYST-1, is required for proper gut granule 

morphogenesis, although the effects of lyst-1(−) mutations (increased number but smaller 

gut granules) are opposite to that observed for LROs from CHS models.96 On the other 

hand, in C. elegans lacking BLOC-1 subunits, gut granule cargoes are mislocalized to the 

plasma membrane and lysosomes rather than primarily to early endosomes like in BLOC-1-

deficient melanocytes.95 In addition, the BORC subunit, KXD1, which is partially required 

for melanosome and platelet dense granule biogenesis, is not required for gut granule 

formation. However, another gene product with a similar KxDL motif may function in gut 

granule formation95, suggesting that differential protein components in different cell types, 

tissues, or organisms may function in the biogenesis of distinct LROs.

Dictyostelium discoideum.

The slime mold D. discoideum is a simple eukaryote with a small genome and well-

developed secretory and endocytic pathways.97 Because it is highly phagocytic and easy to 

manipulate genetically, D. discoideum has been used as a model system to dissect lysosomal 

secretion defects such as those in CHS.98 D. discoideum harbor LROs called post-lysosomes 

that are equivalent to secretory lysosomes in mammalian cells and that undergo regulated 

secretion in response to stimuli such as starvation. Post-lysosomes derive from classical 

lysosomes that are accessed by internalized extracellular material, are enriched in the 

vacuolar proton ATPase, and are highly acidic.99 Over time, however, they lose their acidity 

and mature into post-lysosomes that can be stimulated to fuse with the plasma membrane, 

releasing undigested material to the extracellular space.100 The post-lysosomes are 

distinguished from traditional lysosomes by their neutral pH, absence of vacuolar proton 

ATPase99,101, enrichment in cargoes P80 (a transmembrane protein that mediates copper 

transport)102 and AmtA (Ammonium transporter A)103, and association with cytoskeleton 

markers such as vacuolin104, coronin104-106, WASH105, and F-actin.104,107 The biogenesis 

of post-lysosomes in D. discoideum shares similarities with the biogenesis of mammalian 

LROs. For example, D. discoideum cells require AP-3 for post-lysosome secretion, for 

proper endosomal recycling of membrane proteins, and for endosomal sorting of the 

vSNARE, VAMP7.108-110 More strikingly, D. discoideum has served as an outstanding 

model to understand the function of LYST. Two LYST homologues, lvsA and lvsB, regulate 

the endocytic pathway at different stages. lvsA is necessary for the proper organization of 

the early endocytic and phagocytic system and for phagocytosis, whereas lvsB is necessary 

for the maturation of post-lysosomes; lvsB mutants have fewer, larger post-lysosomes that 

are more acidic and constitutively secrete lysosomal enzymes. There is debate as to whether 

this reflects a role for lvsB in negatively regulating fusion of post-lysosomes with early 

endosomes or in supporting transfer of endocytosed material from lysosomes to post-

lysosomes.111-113 Supporting the former, lvsB appears to dampen Rab14 function in 

lysosomal fusion. The D. discoidium Rab14 homologue - which is normally restricted to 

lysosomes - was also present in post-lysosomes in lvsB mutant cells, and expression of a 

dominant negative Rab14 suppressed the lvsB phenotype.114,115 These observations support 
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the notion that lvsB and LYST function to prevent fusion among endolysosomal organelles 

and LROs.

Tetrahymena thermophila.

The ciliated protist T. thermophila harbors a secretory organelle called the mucocyst, which 

stores mucins in paracrystalline arrays that are secreted in response to extracellular stimuli.
116,117 Mucocysts have some functional similarities to dense core secretory vesicles in 

animals, and mucocyst formation requires effectors that are similar to components required 

for mammalian lysosome and LRO biogenesis. For example, cargo sorting to mucocysts and 

consequent mucocyst formation, maturation, and secretion require SOR4 (a Vps10/sortillin 

family member)118, AP-3119 and the Qa SNARE protein, STX7L, a homologue of the 

mammalian Syntaxins 7 and 13 that are involved in lysosome and LRO formation, 

respectively.119 Mucocyst formation also requires some components of the T. thermophila 

CORVET complex120, which in other organisms shares its core subunits with HOPS. 

Interestingly, HOPS-specific subunits of yeast and mammalian HOPS and CORVET 

complexes were lost during evolution to T. thermophila, whereas genes encoding the 

CORVET VPS8 subunit expanded to six paralogs. One of these paralogs is required for 

mucocyst formation and colocalizes with the Rab7 late endosome/lysosome marker, rather 

than endosomes like CORVET120, suggesting that the specificity of these complexes for 

different organelles has changed throughout evolution.

Bombyx mori.

If LROs are defined by the requirement for HPS-associated protein complexes, the silkworm 

appears to have two LROs. The B. mori larval integument is opaque due to the presence of 

urate granules, and impairment of urate granule biogenesis results in translucency. B. mori 

larvae with mutations in subunits of the HPS-associated BLOC-1 and BLOC-2 are 

translucent121-124, suggesting that these granules are LROs. In addition, riboflavin 

accumulation in needle-like granules in the Malpighian tubules has been observed to be 

reduced in mutants with translucent skin, including mutants in BLOC1 and BLOC2 subunits 

and in ABC transporters w-3 and Bm-brown that are homologous to the Drosophila white 

gene125 and brown gene126, respectively. These organelles and their control by BLOC-1 

subunits are conserved in other silkworms such as Samia ricini.127

HPS-associated protein complexes

AP-3.

The heterotetrameric adaptor proteins (AP) are a family of related complexes that function 

as coats for sorting of integral membrane protein cargoes within the endomembrane system. 

They engage and accumulate cargoes on a source membrane by binding to sorting signals 

located in the cargo cytoplasmic domains, and recruit an outer coat and/or other accessory 

proteins to generate transport carriers that facilitate cargo delivery to their destinations. Five 

AP complexes are known128; AP-1, AP-2 and at least a cohort of AP-3 employ clathrin as an 

outer coat, while AP-4 and AP-5 do not. AP-2 primarily functions at the plasma membrane 

and plays an important role in clathrin-mediated endocytosis, whereas the other APs mediate 

trafficking among the TGN and endolysosomal compartments.128-130 Genetic analyses in 
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multiple organisms show that AP-3 plays a unique role in cargo sorting to LROs, and 

mutations in the genes encoding two AP-3 subunits in humans cause rare forms of HPS 

(Table 2).131,132

AP-3 subunits—AP-3, like the other APs, is a stable heterotetramer and consists of the 

four adaptin subunits δ, β3, μ3, and σ3.133 The genes that encode these subunits are highly 

conserved throughout eukaryotic evolution with orthologues from yeast to humans.
133,134,135,136 In mammals, each of the β3, μ3, and σ3 subunits has two variants. The δ, β3A 

and μ3A subunits are ubiquitously expressed in most/all tissues and cells, and assemble with 

either of the ubiquitously expressed and functionally redundant σ3A or σ3B subunits to 

form the AP-3A complex.137 Expression of the β3B and μ3B subunits is restricted to 

neuronal cells, forming (with δ and either σ3A or σ3B) the neuronal AP-3B complex that 

functions in cargo sorting to synaptic vesicles.138 Mutations in the genes encoding the 

ubiquitous δ or β3A subunit in humans lead to HPS10 or HPS2, respectively, and mutations 

in orthologous subunits in numerous model organisms lead to defects in LRO biogenesis 

and, in some cases, in cargo sorting to lysosomes.36,139 Indeed, the identification of 

mutations in the AP3B1 gene (encoding β3A) in HPS2 and the pearl mouse, and in the Ap3d 

gene (encoding δ) in the mocha mouse represented the first link between HPS and defective 

membrane trafficking in the endolysosomal system in mammals.131,132,140

AP-3 is a coat protein.—Although the yeast AP-3 appears to function in protein sorting 

from the Golgi141 and initial observations suggested a similar function for mammalian 

AP-3142,143, it is now well-accepted that AP-3 functions primarily from early endosomes in 

mammals.144,145 AP-3 is recruited to membranes at least in part by association with the 

small GTPase Arf1142,146,147 and possibly phosphatidylinositol-3-phosphate.148 The μ3A 

subunit of AP-3 recognizes tyrosine-based sorting signals in the cytoplasmic domain of 

cargo proteins destined for lysosomes or LROs149,150, while the interface of the σ and δ 
subunit hemicomplex binds to dileucine-based sorting signals151-153; the corresponding 

components of AP-1 and AP-2 recognize similar signals, with some complex-specific 

preferences based on sequence and context.135,149,154,155 Like AP-1 and AP-2, AP-3 

associates with clathrin and is enriched in clathrin-coated buds on endosomes.144,145,147,156 

This cohort of AP-3 is necessary for transport of specific cargoes to late endosomes or 

lysosomes in cells that lack LROs and to melanosomes in melanocytes.144,145 Unlike AP-1 

and AP-2, however, AP-3 is not enriched in clathrin-coated vesicle fractions from cells142, 

and a β3A chain lacking a clathrin binding site is able to fully restore AP-3 function in 

diverting LAMP1 from the plasma membrane.157 While these data can be explained by a 

weak association with clathrin mediated by multiple binding sites, a pool of membrane-

associated AP-3 lacking clathrin is readily detectable by microscopy142-145, and acute 

depletion of clathrin light chains did not disrupt AP-3 vesicle formation in PC12 cells.158 

This suggests that AP-3 might function in both clathrin-dependent and -independent 

pathways.

AP-3-dependent cargo sorting in LRO biogenesis.—The function of AP-3 in LRO 

biogenesis is best exemplified by its role in protein sorting to maturing melanosomes (Figure 

3, step 1). A critical cargo for AP-3 in pigment cells is tyrosinase (TYR), an integral 
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membrane protein that catalyzes the limiting steps in melanin synthesis. TYR bears a di-

leucine-based sorting signal in its C-terminal cytoplasmic domain that is necessary for 

transport to maturing melanosomes (or to lysosomes upon ectopic expression in other cell 

types24,159,160) and is capable of binding AP-3 as well as AP-1 and AP-2.145,161 TYR is 

enriched in early endosome-derived vesicles that are coated with AP-3 and clathrin, and is 

depleted from melanosomes and enriched in late endosomes and lysosomes of AP-3-

deficient melanocytes from HPS-2 patients or pearl mice.145,162 These data suggest that 

TYR is sorted by AP-3 from early endosomes into vesicles destined for melanosomes 

(Figure 3). Intriguingly, a superficially similar dileucine-based sorting signal in another 

melanosomal protein, TYR related protein 1 (TYRP1)163, does not engage AP-3 and TYRP1 

is not as grossly missorted in AP-3-deficient melanocytes.145,162 Moreover, a small cohort 

of TYR is properly sorted to melanosomes in AP-3-deficient melanocytes, likely by 

engaging with AP-1.145,164 This suggests that there are multiple pathways by which cargoes 

are sorted to melanosomes, including AP-3-dependent and -independent pathways (Figure 

3). Lastly, a cohort of AP-3 interacts physically with BLOC-1165,166, which – as discussed 

further below – is essential for a second cargo transport pathway. In neurons, BLOC-1 and 

AP-3 appear to function largely in tandem to sort specific cargoes into synaptic 

vesicles138,166, and accordingly, melanosome sorting of another pigment cell-specific 

protein, OCA2, requires both AP-3 and BLOC-1.154,167 This implies a potential dual role 

for AP-3 in multiple sorting pathways in melanocytes.

AP-3 functions in cargo sorting not only for melanosome biogenesis, but also for the 

formation of other LROs. In model organisms, AP-3 is required for the generation of gut 

granules in C. elegans91, mucocysts in T. thermophila119, post-lysosomes in D. 

discoideum109, and eye pigment granules in D. melanogaster77,143. In mammals, AP-3 plays 

an essential role in sorting cargoes such as the zinc transporter ZnT-3, the GABA transporter 

and SNARE proteins into synaptic vesicles in neurons.132,138,168,169 Consequently, animals 

or individuals lacking both AP-3A and AP-3B (e.g. by loss of the δ chain in mocha mice or 

HPS10 patients) suffer from neuronal deficiencies.36,169-171 Excessive bleeding and bruising 

due to platelet storage pool deficiency, which results from defective or absent dense granules 

in platelets, is also associated with loss of AP-3 in HPS2 and 10 and their mouse 

models172,173, but relevant cargos have not yet been identified.

AP-3 function in the lung and hematopoietic cells.—Besides albinism and 

excessive bleeding, HPS2 patients uniquely suffer from a number of additional serious 

symptoms. Like patients with BLOC-3 disease, HPS2 patients suffer from interstitial lung 

disease and pulmonary fibrosis, likely due to an initial defect in the maturation of lamellar 

bodies in AT2 cells.30,33,174-176 To date, one AP-3-dependent cargo of lamellar bodies has 

been identified: PRDX6, a non-integral membrane member of the peroxiredoxin family of 

redox proteins, which is targeted to lamellar bodies in association with the AP-3 engaged 

transmembrane protein LIMPII/SCARB2.177 Additional AP-3-dependent lamellar body 

cargoes are likely to exist. AP-3-deficient patients and the pearl and mocha mouse models 

also suffer from recurrent bacterial and viral infections36,39,40,173,178-181 due to critical roles 

of AP-3 in various immune responses. Increased susceptibility to viral infections likely 

reflects impaired natural killer cell and cytolytic T cell activity due to defective polarization 
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and decreased perforin content of cytolytic granules36,37,39, as well as impaired type I 

interferon responses from plasmacytoid dendritic cells (pDCs) due to a failure to deliver 

viral nucleotide sensing toll-like receptors, TLR7 and TLR9, to a signaling LRO in these 

cells (Table 1).182,183 AP-3 controls a different TLR trafficking step in conventional DCs 

(cDCs), facilitating the recruitment of TLR4 and likely other TLRs to maturing phagosomes 

following uptake of bacteria and other large particles. Reduced TLR recruitment to 

phagosomes in AP-3-deficient mice and HPS2 patients results in impaired proinflammatory 

signaling by bacterial stimuli and reduced antigen presentation of phagocytosed antigens to 

CD4+ T cells, with consequent skewing of CD4+ T cell responses toward the Th2 lineage 

and altered cDC maturation and chemokine responses.184,185 Additionally, AP-3 plays a role 

in dampening autophagic responses to pathogenic bacteria in cDCs. This has an important 

impact on clearance of inflammasomes, which are large cytoplasmic complexes that are 

assembled following a variety of cytoplasmic inflammatory stimuli and consist of many 

copies of nucleotide binding domain leucine rich repeat containing proteins (NLRs), 

inflammatory caspases, and the scaffold protein ASC. Inflammasomes process pro-IL-1 

family cytokines to their mature form. Inflammasomes in AP-3-deficient cDCs are more 

rapidly consumed by autophagy than in control cDCs, leading to impaired inflammasome 

activity, consequent reduced local IL-1β and IL-18 secretion, and increased susceptibility of 

AP-3-deficient mice to pathogenic bacterial infection.186 AP-3 also regulates the trafficking 

of CD1b (in humans) and CD1d (in mice) to lysosomal compartments to acquire glycolipid 

antigens. Consequently, presentation of glycolipid antigens to NKT cells is impaired and 

NKT cell numbers are reduced in HPS2 patients and mouse models, also contributing to 

susceptibility to certain bacterial infections.181,187-189 Lastly, cyclic neutropenia has been 

observed in HPS2 patients and a dog model of AP-3 deficiency, and sorting of neutrophil 

elastase to primary granules and proper processing to the mature form require AP-3.190,191 

Whether this reflects a direct interaction of a cytoplasmic sequence on a transmembrane 

form of elastase as proposed190 or an effect of AP-3 on a transmembrane carrier of elastase, 

as for PRDX6 in lung AT2 cells, remains unclear.

BLOC-1.

BLOC-1 subunits and HPS models.—BLOC-1 contains eight subunits: BLOS1, 

BLOS2, BLOS3192,193, cappucino51,194, muted50, pallidin50,195,196, snapin193,197, and 

dysbindin.198-200 The human gene names for each subunit are referred to as BLOC1S1-8. 

Each of the subunits is small (136 to 351 amino acids) and lacks obvious homology domains 

other than predicted short coiled coil regions. Mutations in the genes that encode dysbindin, 

BLOS3 and pallidin have been identified in patients with HPS subtypes HPS7, HPS8 and 

HPS9, respectively.200-208 These patients tend to have mild HPS disease with no obvious 

immunologic or lung impairment. Five HPS mouse models exist49,193,194,209-211 and are the 

most severely hypopigmented of the HPS models212 (by contrast, skin and hair pigmentation 

in human HPS7-9 patients is less obvious than in other HPS variants). BLOC-1 homologues 

have also been described in non-mammalian model organisms. Gut granule formation in C. 

elegans and synaptic vesicle recycling in D. melanogaster neurons require BLOC-180,95,213, 

and in the silkworm, Bombyx mori, a mutation in the muted ortholog causes translucent 

larval skin.124 In addition, in zebrafish BLOS1 regulates formation of melanophore and 

iridiphore pigment organelles and surfactant storage organelles in the swimbladder.65 
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Interestingly, the BLOS1, BLOS2 and snapin subunits are shared with the distinct BLOC 

One Related Complex (BORC)214, which will be briefly discussed later. Some of the effects 

of mutations in the genes encoding these subunits might reflect defects in BLOC-1, BORC, 

or both.

BLOC-1 function in cargo transport carrier formation.—The role of BLOC-1 in 

LRO biogenesis has been most clearly elucidated in cultured melanocytes from mouse HPS 

models. BLOC-1 is required to deliver a cohort of transmembrane protein cargoes that are 

involved in melanin synthesis, including TYRP1, OCA2, ATP7A and a small subset of TYR, 

from early endosomes to melanosomes via tubular transport carriers154,164,165,215,216 (Figure 

3, step 2). These transport carriers have features of recycling endosomes164,217-219, and 

BLOC-1 regulates the formation of similar tubular carriers for endosomal recycling in HeLa 

cells.217,218 The fact that these carriers in melanocytes are co-opted specifically for 

melanosome cargo delivery suggests that they reflect a cell type specialization of the 

recycling endosomal machinery, perhaps through regulation by as yet undefined cell type-

specific components such as Rab proteins. Because TYR is primarily trafficked to 

melanosomes via a separate AP-3-dependent vesicular pathway145,162,215,216, TYR is only 

mildly mislocalized in BLOC-1 deficient melanocytes. However, TYR activity in 

melanosomes is essentially absent in BLOC-1-deficient cells due at least in part to depletion 

of ATP7A, an ATP-dependent copper transporter that is required for import of the essential 

TYR cofactor copper into melanosomes216, and of OCA2, a pigment cell-specific chloride 

channel that is required to neutralize acidic early stage melanosomes, both of which are 

prerequisites for TYR activity.154,220 Similarly, BLOC-1 physically interacts with ATP7A 

and affects copper homeostasis in neuronal cells.221 A third set of cargoes, MART1 and 

dopachrome tautomerase (DCT), are delivered directly to melanosomes from the Golgi 

apparatus through a BLOC-1- and AP-3-independent but RAB6-dependent pathway222 

(Figure 3, step 3). BLOC-1 is ubiquitously expressed, and roles for BLOC-1 in endosomal 

trafficking have been identified in other cell types. For example, in HeLa cells BLOC-1 

facilitates transferrin cycling through classical recycling endosomes218, and in neurons 

BLOC-1 and AP-3 collaborate to mediate cycling of cargoes between endosomes and 

synaptic vesicles and may differentially regulate synaptic vesicle trafficking in different 

brain regions.138,166,170,223

BLOC-1 and cytoskeletal interactions.—BLOC-1 localizes to and is required for 

formation of the endosomal tubular transport carriers that fuse with melanosomes to deliver 

cargo164,165,218,224 (Figure 3). Negative stain EM structures of recombinant BLOC-1 

suggest that BLOC-1 subunits form a flexible linear chain225, which could be consistent 

with BLOC-1 interactions with curved, tubulating membranes. In melanocytes and HeLa 

cells, BLOC-1 associates with the kinesin-3 motor, KIF13A, perhaps linking membrane 

tubules to the microtubule cytoskeleton, and promotes actin rearrangements to stabilize and 

elongate tubules, and in HeLa cells (but perhaps not in melanocytes) to sever them.217,218 

Some of these interactions may be coordinated by the small GTPase RAB22.226 Consistent 

with a role for BLOC-1 in regulating the actin cytoskeleton, comparative proteomic analyses 

of brains from wild-type or BLOC-1-deficient mice suggest that loss of BLOC-1 function 

results in depletion of the actin nucleation complex, Arp2/3, and that this interaction is 
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important for actin dynamics in HEK293 cells and neuronal plasticity at D. melanogaster 

synapses.227 Similarly, BLOC-1 interacts with the WASH complex, an Arp2/3 activator, to 

regulate endosomal sorting of phosphatidylinositol-4-kinase type IIɑ (PI4KIIɑ) in several 

cell types.228 Together, these data suggest a role for BLOC-1 in linking cargo sorting to the 

actin and microtubule cytoskeletons with potential implications for neuronal function. 

Indeed, BLOC-1-deficient mice with an inactivating dysbindin mutation show defects in the 

kinetics of neurotransmitter release229, and several studies have suggested that variations in 

the genes encoding dysbindin and other BLOC-1 subunits correlate with increased 

schizophrenia risk in humans, although others dispute this conclusion.230-232

BLOC-1 and SNARE interactions.—In addition to its role in regulating the 

cytoskeleton, BLOC-1 might also regulate SNARE-mediated membrane fusion in an as yet 

undefined way. The pallidin subunit interacts with the endosomal Qa t-SNARE subunit, 

syntaxin 13196,199, and snapin interacts with the Qbc t-SNARE subunit, SNAP25.197,199,233 

Interestingly, syntaxin 13 labels the tubular endosomal transport carriers through which 

melanosomal cargoes are delivered.218,219 Furthermore, the endolysosomal R-SNARE, 

VAMP7 (a.k.a. TI-VAMP – the vSNARE required for fusion of BLOC-1-dependent tubules 

with melanosomes224) – localizes to AP-3-containing vesicles in neuronal cells in a 

BLOC-1-dependent manner166, suggesting a wider role for BLOC-1 in SNARE sorting. In 

addition to these direct effects on SNARE proteins, the dysbindin subunit of BLOC-1 can 

bind directly to N-ethylmaleimide-sensitive factor (NSF) to regulate neuronal activity.213 

How these different binding events are coordinated is not yet understood.

BLOC-1 vs. BORC.—Three BLOC-1 subunits, BLOS1, BLOS2, and snapin, were 

recently identified as members of a separate complex called BORC. BORC also contains 

five additional subunits: KXD1, myrlysin, lyspersin, diaskedin, and MEF2BNB214; the 

human genes encoding the five BORC-specific subunits are named BORCS4-8. BORC 

functions on lysosomes, where it facilitates lysosome motility on distinct microtubule tracks 

toward the cell periphery by recruiting the Ras-like GTPase, ARL8. Active ARL8, via the 

adaptor SKIP, then recruits the KIF5B-containing kinesin-1 or the KIF1A-containing 

kinesin-3 microtubule motors.214,234 Interestingly, BORC also interacts with the Ragulator, 

a lysosomal complex that controls mTORC1 activation and downstream autophagy 

induction in response to low amino acid levels. The Ragulator-BORC interaction suppresses 

BORC and kinesin-mediated movement of lysosomes, causing sequestration of lysosomes at 

the perinuclear region in response to low nutrient levels.235,236 BORC also regulates fusion 

of lysosomes with autophagosomes, and is required for autophagosome transport and 

clearance in distal axons.237,238 Consistent with this, BORC regulates axonal transport of 

synaptic vesicle precursors in C. elegans, also in an Arl8-dependent manner.239 Moreover, a 

mouse mutant in the gene encoding the diaskedin subunit causes axonal dystrophy, motor 

defects, and early death in mice, suggesting a role for BORC-dependent lysosome transport 

in proper motor neuron function.240 Whether BORC controls LRO positioning, functions, or 

effector localization is not known, although gene targeting of the KXD1 subunit was 

reported to produce mild melanosome and platelet dense granule defects.241
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The facts that BORC and BLOC-1 share three subunits and that BORC was only recently 

discovered have caused some confusion in the literature regarding the function of each 

complex. For example, knockout of the gene encoding snapin disrupts retrograde transport 

of synaptic vesicles, endosomes, and late endosomes, and impairs lysosomal function in 

neurons of embryonic mice.242-245 Expression of dynein-binding mutants of snapin cause 

synaptic vesicles to be trapped in synaptic terminals.246 Further, depletion of BLOS1 

impairs lysosomal degradation of the epidermal growth factor receptor (EGFR).247 These 

functional requirements for snapin and BLOS1 were attributed in part to BLOC-1, but are 

more likely attributable to the role of BORC in lysosome motility and function. Of note, 

while functional gene knockouts of BLOC-1-specific subunits are tolerated in all animal 

systems analyzed, knockout of shared BLOC-1/BORC subunits BLOS1, BLOS2 or snapin 

or of the BORC-specific BORCS7 subunit are embryonic or perinatal lethal in mice or 

zebrafish65,240,242,247,248 (but not in C. elegans239, and curiously, knockout of the BORC-

specific KXD1 gene is tolerated in mice241). Also confusing is the relationship of BORC 

and BLOC-1 to a yeast complex referred to as BLOC-1.249 Yeast BLOC-1 was identified by 

bioinformatics analysis of S. cerevisiae proteins and consists of homologues of BLOS1, 

snapin and cappuccino, as well as three other alpha helical, coiled-coil proteins similar in 

size to mammalian BLOC-1 subunits, Vab2b, YGL079Wp, and YKL061Wp.250 

YKL061Wp and Vab2b have homologues only in fungi, but YGL079Wp contains a KxDL 

(Lys-x-Asp-Leu) domain and is a homologue of the mammalian BORC subunit, KxDL.250 

The yeast BLOC-1 localizes to endosomes, and depletion of its subunits caused 

redistribution of yeast Rab5, Vps21, from endosomes to the vacuole, but did not affect 

sorting of AP-3 cargo.249 Therefore, it is unclear if this complex corresponds to mammalian 

BLOC-1, BORC, or a hybrid complex.

BLOC-2.

BLOC-2 subunits and HPS models.—BLOC-2 is comprised of three large subunits, 

HPS3, HPS5, and HPS6, the genes for which are mutated in corresponding HPS variants and 

mouse models of the disease.251-255 HPS patients with BLOC-2 mutations tend to have a 

mild form of the disease with no lung or immune involvement, although bleeding tendency 

can be severe.42-44,256 Genes encoding BLOC-2 subunits are conserved in vertebrates, and 

the Xenopus tropicalis HPS6 homologue is required for normal melanophore and iridophore 

formation.73 Additionally, a Drosophila HPS5 homologue is required for normal eye 

pigmentation.81,257 BLOC-2 mouse mutants have milder hypopigmentation phenotypes than 

BLOC-1 mutant mice, and choroidal melanosomes are aberrantly clustered.172,252,253,255 

Excessive bleeding in BLOC-2-deficient mice and HPS patients might be exacerbated by 

defects in the maturation and secretion of Weibel-Palade bodies in endothelial cells.258,259 

Upon endothelial cell damage, vWF is released from Weibel-Palade bodies into long strings 

that capture platelets in the blood circulation260; hence, the combined defects in endothelial 

vWF packaging and release and in platelet dense granule formation and release may impact 

bleeding susceptibility more in BLOC-2 mutants than in other HPS variants.

BLOC-2 function in tubular cargo transport carrier targeting.—The molecular 

function of BLOC-2 during LRO biogenesis is incompletely known, but is best understood 

in the context of melanosome maturation. Like BLOC-1, BLOC-2 in melanocytic cells 
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localizes to tubular endosomes, and a cohort of BLOC-1 and BLOC-2 physically interact165, 

suggesting that BLOC-1 and BLOC-2 function in the same pathway. Consistently, BLOC-2 

influences the melanosomal delivery of BLOC-1-dependent cargoes, including TYRP1, 

OCA2, ATP7A, and a cohort of TYR, from early endosomes in mouse melanocytes165,219 

(Figure 3, step 2), and labeling patterns for TYRP1 and TYR are altered in melanocytes 

from patients with HPS3, 5 or 6.44,261-263 The cargoes are not uniformly trapped in early 

endosomes, however, and rather are widely distributed among endosomal compartments, 

melanosomes, the Golgi and the plasma membrane.215,219 Dynamic analyses of endosomal 

transport in BLOC-2-deficient mouse melanocytes support a role for BLOC-2 in directing 

the BLOC-1-dependent endosomal tubules specifically to maturing melanosomes (Figure 3). 

Live cell imaging analyses show that BLOC-2 is required for melanosome-destined tubular 

carriers to make stable contacts with maturing melanosomes; in the absence of BLOC-2 

these tubules form at the same rate, but they are shorter-lived, make fewer contacts with 

melanosomes, and the contacts they make are of shorter duration.219 As a consequence, 

BLOC-1-dependent cargoes enter the recycling endosome-like tubules, but are delivered to 

classical targets of such endosomes – the Golgi and the plasma membrane – resulting in 

increased cycling through these organelles.219 Whether BLOC-2 functions in a similar 

capacity in other cell types is not yet known.

How BLOC-2 promotes the contact of recycling endosomal tubules with melanosomes is 

unknown, but might reflect either a classical membrane tethering function264 or a stabilizing 

function for the membrane tubules along microtubules or with the KIF13A kinesin-3 motor. 

Consistently, pull-down experiments suggest that the stalk domain of KIF13A might interact 

with BLOC-2, perhaps in association with RAB22.226 When overexpressed in HEK293 

cells, the HPS6 subunit was found to coprecipitate with the dynactin p150glued subunit265, 

but it is not clear if this reflects a physiological function of intact BLOC-2. Moreover, 

depletion of HPS6 in HeLa cells or fibroblasts associated with lysosomal dispersal265, 

contrary to the effects on the remaining pigment granules in BLOC-2-deficient melanocytes.
219 Clearly, more work needs to be done to resolve the molecular mechanism underlying 

BLOC-2 function.

BLOC-3, RAB32 and RAB38.

BLOC-3 subunits, activity, and HPS models.—BLOC-3 is a two-subunit complex 

consisting of the products of the HPS1 and HPS4 genes41,266,267. HPS1 and HPS4 have 

limited homology to the MON1 and CCZ1 subunits of the guanine nucleotide exchange 

factor (GEF) for the small GTPase, RAB7.268,269 Accordingly, Gerendopoulos et al. found 

that BLOC-3 has GEF activity for two highly related small GTPases, RAB32 and 

RAB38270, that had been previously implicated in the biogenesis of melanosomes271-273, 

platelet dense granules274,275, AT2 lamellar bodies59,276, D. melanogaster eye pigment 

granules82,277 and C. elegans gut granules.91,94 Indeed, Rab38 mutations underlie the 

pigmentation and vision defects in chocolate mice55,56,273 and an HPS-like disorder in 

Fawn-hooded and Tester Moriyama rats.58,278 Depletion of HPS1 or HPS4 in melanocytic 

cells resulted in mislocalization270 or cytoplasmic displacement224 of RAB32 and/or 

RAB38-GFP, and Hps1 gene knockout in an AT2 cell line resulted in RAB38 

mislocalization62, suggesting that BLOC-3 is the major GEF for RAB32/RAB38 in these 
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cell types. Interestingly, in C. elegans the RAB7 and RAB32 homologues are activated by 

different GEFs that share the same CCZ1 subunit but distinct MON1 orthologues and that 

function respectively in lysosome and gut granule (LRO) biogenesis.94,279

BLOC-3 and RAB38/32 function in melanosome biogenesis.—A cellular function 

for BLOC-3 and its target Rabs has been best characterized in melanocytes. Depletion of 

both RAB32 and RAB38 from melanocytes led to mislocalization of melanosome cargoes 

such as TYRP1 and TYR271, and the data suggested that RAB32 and RAB38 function 

largely redundantly in this system. Consistent with a role in forward trafficking to 

melanosomes, immunofluorescence and immunoelectron microscopy analyses of 

endogenous or epitope-tagged RAB32 and RAB38 isoforms suggested that these Rab 

proteins localize largely to melanosomes, as well as to tubulovesicular structures in 

proximity to melanosomes and the Golgi.224,270-272 Such a function in cargo trafficking to 

melanosomes would explain how HPS1 and HPS4 patients suffer from oculocutaneous 

albinism, and how depletion of HPS1, HPS4 or RAB32 from a human melanoma cell line 

resulted in a loss of pigmentation.270 However, unlike AP-3, BLOC-1 and BLOC-2, 

BLOC-3 is not absolutely required for pigmentation in mice. For example, pale ear and light 

ear mice that bear inactivating mutations in Hps1 and Hps4, respectively, have – as the name 

suggests – pigment dilution in the skin and eyes but not in the hair.280 Indeed, melanosomes 

in melanocytes from the hair bulb or choroid of these mice are normally pigmented and 

enlarged281-283, as are those in immortalized melanocytes from these lines224, whereas 

melanosomes in the retinal pigment epithelia and interfollicular melanocytes of the skin are 

small, poorly melanized, and largely depleted.282-284 The intact pigmentation and 

enlargement of melanosomes in some pigment cell types lacking BLOC-3 are inconsistent 

with a primary requisite function in anterograde cargo transport to melanosomes.

Rather, BLOC-3 and its target Rabs seem to play a primary role in retrograde transport from 

melanosomes224 (Figure 3, step 4). Melanosomes from “wild-type” black mice emit short, 

motile tubules that are enriched in VAMP7, a vesicular SNARE fusion protein required for 

BLOC-1-dependent anterograde cargo traffic.224,285 These tubules are also enriched in 

RAB38 and its effector, VARP224, a scaffolding protein that engages VAMP7 and plays a 

role in melanosome biogenesis286 (Figure 3, step 4). RAB38 and VARP recruitment to 

melanosomes - and consequent formation of the VAMP7-containing tubules - is drastically 

reduced in BLOC-3-deficient pale ear or light ear melanocytes, despite only a minor 

reduction in melanosome components.224 These data suggest that RAB38 and BLOC-3 

function directly in recycling from melanosomes and perhaps not in anterograde traffic via 

the BLOC-1- or AP-3-dependent pathways. The large melanosome phenotype might result 

from the accumulation of uninhibited VAMP7 on melanosomes, driving dysregulated fusion 

with other melanosomes and perhaps with autophagosomes and/or lysosomes.287-290 By 

contrast, hypopigmentation in other BLOC-3-deficient melanocytes might reflect the loss of 

VAMP7 recycling. We speculate that the ultimate destinations for the retrograde VAMP7-

containing tubules are early endosomes; if this is true, then the failure to recycle VAMP7 in 

some cells might deplete VAMP7 from early endosomes, the source of anterograde cargoes, 

and thus secondarily impair anterograde transport. A differential requirement for this 

recycling pathway to supply endosomal VAMP7 might therefore explain the differing 
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phenotypes in distinct pigment cell types in pale ear and light ear mice and in HPS1 and 4 

patients.

RAB32 and RAB38 might have additional functions in melanocytes. Both Rab proteins have 

been shown to associate physically with AP-3, AP-1 and BLOC-2 in melanocyte extracts272, 

suggesting potential roles in anterograde trafficking. Another effector of both Rabs is 

Myosin Vc, knockdown of which also impacts anterograde trafficking of melanosome 

cargoes in a human melanoma line.291 Moreover, depletion of RAB32 alone or of Myosin 

Vc results in destabilization of DCT272,291, a cargo of a distinct RAB6-dependent trafficking 

pathway from the TGN/Golgi to melanosomes222, suggesting that RAB32 might specifically 

tether RAB6-dependent cargo carriers to melanosomes in an anterograde pathway. It is 

possible that RAB32 and/or RAB38 coordinate traffic into and out of melanosomes, such 

that retrograde tubules emanate only at sites of input from one or more of the anterograde 

routes. This would provide a homeostatic mechanism to maintain a constant amount of 

melanosome limiting membrane, accounting for the maintenance of melanosome size during 

maturation. Interestingly, another myosin, Myosin VI, functions in collaboration with the 

branched actin regulators WASH and Arp2/3 in severing retrograde tubules from 

melanosomes. As a consequence, melanocytes depleted of Myosin VI are impaired in 

pigment transfer to keratinocytes, perhaps due to a lack of maturation.292 Whether Myosin 

VI is recruited to melanosomes by RAB32 or RAB38 is not yet known; if so, it might 

suggest that BLOC-3 and its target Rabs facilitate melanosome maturation to a secretory 

organelle in epidermal melanocytes.

BLOC-3 and RAB32/38 function in the lung.—Precise pathway functions for 

BLOC-3 or RAB32/38 in other cell types are less clear. BLOC-3 and RAB38 play critical 

functions in the maturation of lamellar bodies in AT2 cells, but how is not known. RAB38 

localizes to lamellar bodies in AT2 cells276, and AT2 cells lacking either RAB38 or BLOC-3 

subunits have greatly enlarged lamellar bodies with altered surfactant contents.32,59,276 A 

long-term consequence of this effect on AT2 cells in HPS1 and HPS4 patients is a 

progressive lung fibrosis that is typically lethal in the 5th decade of life.29 Modeling of the 

disease in double Hps1/AP3b1-deficient mice31,176 – and more recently in single Hps1- or 

Ap3b1-deficient mice treated with bleomycin30,174 – indicates that the affected lung 

epithelium hypersecretes nitric oxide synthase and the chemokine MCP-1.31,34 Both of these 

factors activate alveolar macrophages to hypersecrete additional chemokines, inflammatory 

cytokines and TGFβ, all of which contribute to AT2 apoptosis and fibrotic macrophage 

infiltration.33,34,174 Increased circulating levels of galectin-3 and of chitinase 3-like-1 

protein, a cytokine that stimulates fibroproliferative repair in the lung, also contribute to 

enhanced fibrosis and AT2 apoptosis.293,294 The molecular mechanisms by which BLOC-3 

or its target Rabs might enhance chemokine secretion by AT2 cells are not clear, but recent 

development of an HPS1 model in an AT2 cell line that recapitulates phenotypes of primary 

AT2 cells, including increased MCP-1 production62, will likely accelerate discovery in this 

area.

BLOC-3 and RAB32/38 function in inflammation.—Although the primary effect of 

BLOC-3 and RAB32 in lung fibrosis (at least in mouse models) is mediated by AT2 cells174, 
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their depletion impacts macrophages and monocytes directly in their ability to restrict 

bacterial infections. RAB32 is highly expressed in macrophages and monocytes295, and both 

RAB32 and RAB38 accumulate on phagosomes or vacuoles harboring several pathogenic 

bacteria following phagocytosis.296-298 Intriguingly, RAB32 and RAB38 are targets of a 

bacterial effector protease, GtgE, secreted into the cytosol of infected macrophages by the 

type III secretion system of Salmonella Typhimurium, a pathogen of both mice and humans. 

S. typhi, a related pathogen, lacks GtgE and is thus unable to establish a productive infection 

in wild-type mice but effectively infects Hps4-deficient mice.297 S. Typhimurium also 

secretes a RAB32 GAP, and loss of both the protease and the GAP impairs virulence in 

wild-type but not Hps4-deficient mice.299 The mechanism by which this restriction occurs is 

not clear, but overexpression of a dominant negative form of RAB32 in a macrophage cell 

line impaired the recruitment of cathepsin D to latex bead phagosomes296, suggesting a 

possible role for RAB32 in facilitating phagosome/lysosome fusion in this cell type.

In addition to oculocutaneous albinism, bleeding diathesis and lung fibrosis, a subset of 

HPS1 and HPS4 patients (~20-30%) suffer from a debilitating form of inflammatory bowel 

disease, referred to as granulomatous colitis.29 The incidence of this symptom does not 

appear to be related to genotype and likely reflects heightened sensitivity of HPS1 and 4 

patients to an environmental trigger. The cellular and molecular basis for this susceptibility 

is not yet known, but might reflect a unique role for BLOC-3 and RAB32/38 in epithelial 

cells or secretory cells of the gut. Alternatively or additionally, since heritable forms of 

inflammatory bowel syndrome are often associated with innate immune defects300,301, the 

impact of BLOC-3 and RAB32 in macrophages and monocytes might underlie the 

susceptibility. Consistent with the latter, conditional knockout of Rab32 in CD11c+ cells 

(dendritic cells, monocytes and other innate immune cells) causes increased susceptibility to 

dextran sodium sulfate-induced colitis and enhanced production of proinflammatory 

cytokines and chemokines.302 It will be important to validate this finding in the human 

system and to determine if the inflammatory response underlies the susceptibility to colitis 

in HPS1 and 4 patients.

HOPS and CORVET.

HOPS and CORVET subunits and model systems.

The HOPS and CORVET complexes play critical roles in membrane tethering and fusion 

within the early endosomal and endolysosomal pathways, respectively.303-307 Both 

complexes contain the class c core complex (VPS-C) comprised of VPS11, VPS16, VPS18 

and VPS33A.303-305,308,309 Complex specificity is dictated by the CORVET-specific 

subunits VPS3 and VPS8305 and the HOPS-specific subunits VPS39 and VPS41.308,309 The 

genes encoding all HOPS and CORVET subunits are highly conserved across species310,311 

with a few exceptions. Of the two complexes, HOPS has been better studied in both yeast 

and higher eukaryotic model systems. HOPS functions to bind and tether apposing 

membranes through interactions between its HOPS-specific subunits and either ras-like 

GTPases or adaptor proteins.312-314

The HOPS subunits were initially discovered in screens to identify genetic mutants that 

interfered with protein sorting to the vacuole (vacuole protein sorting or vps mutants) in the 
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yeast, Saccharomyces cerevisiae.315,316 Null mutations in the genes encoding any of the four 

VPS-C subunits, Vps11p, Vps16p, Vps18p, or Vps33p, were sufficient to cause major 

defects resulting in loss of recognizable vacuoles, an accumulation of small vesicular 

structures, and decreased processing of vacuolar proteins.315-317 Unsurprisingly, most 

studies of HOPS and CORVET that have been done in yeast as null mutations are lethal in 

higher eukaryotes.85,86,306,318 However, many interesting questions about the functions of 

HOPS and CORVET have been raised by studying hypomorphic alleles of subunit genes. In 

particular, several HOPS or CORVET subunit mutations cause LRO defects in Drosophila, 

C. elegans, Tetrahymena or vertebrate models52,84-87,91,94,120,306,319,320, suggesting a 

possible specific role for VPS-C in LRO biogenesis.

HOPS and CORVET function as endosomal tethers and SNARE regulators.

The architecture of the HOPS complex has been most clearly defined using single particle 

negative stain electron microscopy analysis of HOPS purified from yeast. These studies 

reveal a seahorse shape with a large head region, a smaller tail region321, and the HOPS-

specific subunits Vps39p and Vps41p at either end, thereby providing a model of how HOPS 

facilitates tethering of apposing membranes.321,322 In yeast models, Vps39p and Vps41p 

both tether membranes through direct interactions with the RAB7 homologue.308,309,322,323 

By contrast, mammalian VPS39 and VPS41 have not been shown to directly engage RAB7, 

but rather bind to late endosomes, lysosomes, and autophagosomes through the adaptor 

proteins RILP313 and PLEKHM1312 and the small GTPase ARL8b.312 Accordingly, 

knockdown of VPS-C subunits in mammalian cells results in endosome-lysosome and 

autophagosome-lysosome fusion defects307,324,325, and a point mutation in VPS11 appears 

to cause an autosomal recessive form of leukoencephalopathy associated with dysfunctional 

autophagosome: lysosome fusion.326

Whereas the major role of the VPS-C proteins VPS11, VPS16A, and VPS18 seems to be in 

organizing the complex for tethering function321,323,327, core protein VPS33A is a member 

of the Sec1/Munc18 (SM) family of proteins308,327-331; hence, it binds syntaxin family 

SNAREs328,332, facilitates SNARE complex assembly in order to overcome the energy 

barrier for membrane fusion329,330,333, and protects SNARE complexes from premature 

disassembly.334 Upon VPS41- and VPS39-dependent membrane tethering, VPS33A binds 

lysosomal and autophagosomal SNARES307 to catalyze SNARE complex formation and 

fusion; it is as yet unclear whether VPS33A can bind a single syntaxin t-SNARE or prefers 

3- and/or 4-helical SNARE bundles.321,328,335,336 Structural models suggest how VPS33A 

binds t- and v-SNAREs.330,331 Overlapping data on the structure of C. thermophilum Vps33 

with the syntaxin/Qa-SNARE orthologue Vam3 bound to domain 1 or with the v-SNARE 

Nyv1 bound to domain 3a suggest that both SNAREs can bind simultaneously, aligning the 

two SNAREs such that they are in register to form a partially zippered SNARE pair.330 

Vps33 mutations that are predicted to impact SNARE binding disrupt proper fusion and 

maturation in the yeast endolysosomal pathway330, demonstrating that SNARE binding is 

critical for Vps33p function. Specifically, Vps33 mutations along the predicted v-SNARE 

binding region reduced v-SNARE binding and induced accumulation of small vacuoles, 

whereas introduction of a Vps33 deletion predicted to disrupt both v-SNARE and t-SNARE 
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binding phenocopied complete loss of Vps33p expression.330 Thus, binding to both 

vSNARE and tSNARE appears to be critical for VPS33 function.

HOPS and CORVET functions in LRO biogenesis.

A number of HOPS subunit mutations in animal models cause HPS-like phenotypes, 

implicating HOPS in LRO biogenesis. In C. elegans, knockdown or mutation of HOPS 

subunits results in a loss of gut granules.91,94 Null mutations in vps18 and vps11 in 

zebrafish319 and medaka320, respectively, cause hypopigmentation due to fewer 

melanosomes in epidermal and retinal pigment epithelia, suggesting a role for VPS-C in the 

biogenesis of melanosomes. In D. melanogaster, HOPS subunit genes – including those 

encoding homologs of VPS1885, VPS4187, VPS16A83,84 and VPS33A85,306,337 – are among 

the granule group of genes that function in the formation of eye pigment granules.83,85,87 

Deletion or loss of function alleles of the VPS1885,86, VPS4187, or VPS33A306 homologs 

are lethal as these genes are required for normal trafficking to lysosomes; however, 

hypomorphic alleles and clonal knockouts of these genes or the VPS16A homolog in the eye 

cause changes in eye color due to defective protein trafficking to pigment granules.
83,84,306,338 Flies with eye-specific knockdowns of HOPS subunits have strong retinal 

degeneration characterized by defective trafficking to lysosomes, aberrant autophagosome 

accumulation, and loss of Type I and Type II pigment granules.84,306,338 Interestingly, null 

mutations of Syntaxin 17, encoding the autophagosomal SNARE conserved in flies and 

mammals, result in an accumulation of autophagosomes339 but no change in eye color338, 

suggesting that the LRO defect in HOPS mutants is not a consequence of defective 

autophagosome-lysosome fusion and must involve a distinct tSNARE.

VPS33A mutations and HPS.

The mouse model buff (bf) most closely links a HOPS subunit mutation to HPS.52 Buff mice 

harbor a point mutation in Vps33a, and have an autosomal recessive phenotype that is 

similar to other mouse HPS models characterized by coat hypopigmentation52,340, decreased 

melanosome number and size in the RPE52, and prolonged bleeding times associated with 

decreased ATP secretion and dense granule count in platelets.52,172 The causative mutation, 

a missense mutation of a conserved residue of VPS33A (D251E)52,340, lies in a region 

predicted to interact with the v-SNARE – most likely VAMP7.327 Therefore, the HPS 

phenotypes observed may be due to altered v-SNARE binding to VPS33A, impairing the 

ability of CORVET and HOPS to properly couple tethering and SM activity in the 

biogenesis of melanosomes and platelet dense granules. However, whether the coat color 

defect reflects a defect in melanosome biogenesis per sé is not completely clear. Two reports 

suggest that cultured or in situ buff melanocytes are hypopigmented and harbor more 

immature melanosomes52,341, whereas another report suggests that cultured buff 

melanocytes are normally pigmented.342 Hypopigmentation in the eye is also only 

partial52,340,343, perhaps reflecting the hypomorphic nature of the buff mutation. 

Interestingly, fusiform vesicles (FVs) - a secretory granule-like putative LRO found in 

urothelium - accumulate as multivesicular bodies in buff mice344, suggesting a possible role 

for VPS33A in their trafficking or maturation as well.
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Several groups have attempted to uncover the effect of the buff mutation on VPS33A 

function.328,345 Unlike vps33 null mutations, introduction of an orthologous bf mutation in 

yeast Vps33p (D300E) has no effect on growth rate, vacuole morphology, or protein 

trafficking to vacuoles.328 However, a more dramatic change at this residue, D300G, causes 

Vps33p mislocalization, zinc-dependent growth defects at non-permissive temperatures, and 

partial defects in protein trafficking to the vacuole.328 These data support an important 

function for this conserved residue and suggest that its mutagenesis might impact function 

under specific conditions. Zhen and Wei proposed that the buff mutation increases the 

affinity of VPS33A for v-SNAREs, hypothesizing that this decreases the rate of v-SNARE 

release and disrupts fusion by limiting the concentrations of available VPS33A and v-

SNARE.345 However, additional work is needed to validate these conclusions and to 

understand the full effect of the buff mutation on VPS33A function and its role in LRO 

biogenesis.

Several human disease variants of VPS33A have been reported but not carefully studied. 

Suzuki et al report one HPS patient with no mutations in HPS1, HPS2, HPS3, and HPS4 but 

a mutation in VPS33A resulting in a I256L replacement52, which falls within domain 3a 

adjacent to D251; in fact, the buff mutation is predicted to disrupt the normal interaction 

between D251 and I256.327 However, it is unclear if the conservative I256L replacement is 

causative for the disease, and verification of this or other VPS33A mutations in HPS patients 

has not been reported. Another homozygous VPS33A mutation – R498W, predicted within 

the VPS16-interacting region of VPS33A – was identified in patients with systemic effects 

that appear to stem from lysosomal dysfunction346,347, but these patients showed no obvious 

signs of HPS. The mechanisms underlying the different functional effects of distinct 

VPS33A mutations warrant further experimental attention.

Additional disorders of LRO biogenesis, secretion and motility

Chediak-Higashi syndrome.

Like HPS, CHS is characterized by a variable, often mild oculocutaneous albinism and 

excessive bleeding and bruising. However, the major symptom is immune system 

dysregulation that often leads to a lethal hemophagocytic lymphohistiocytosis (HLH) in an 

“accelerated phase” due to impaired cytotoxic T cell and NK cell activity and consequent 

lymphoproliferation and hyperinflammation.348 Surviving patients suffer from a late-onset 

neurological impairment.349 The symptoms reflect defects in lysosome and phagosome 

maturation350, concomitant with the formation of giant enlarged lysosomes and LROs that 

cannot be secreted.351,352 The defective gene, LYST or CHS1, encodes a ~4000 amino acid 

protein with several identifiable protein domains including BEACH, pleckstrin homology, 

WD40 repeats, perilipin-like, lectin-like, and HEAT/Armadillo-like repeats.353-358 LYST is 

thought to either promote fission of endolysosomal organelles or prevent their 

fusion115,359,360, as the giant organelles in cytotoxic T cells, NK cells and other cell types 

from CHS patients or its beige mouse model contain markers of both late endosomes/ 

lysosomes and early endosomes.361,362 However, the mechanism by which LYST does so is 

not yet clear. In a Dictyostelium model, the LYST orthologue LvsB appears to function by 

antagonizing homotypic lysosomal fusion mediated by RAB14.115 Accordingly, knock 
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down of RAB14 in a human LYST-deficient NK cell line restored normal lytic granule 

number, size and agonist-stimulated secretion.363 The latter study also suggested that the 

large size of the granules in LYST-deficient NK cells impeded their secretion through the 

cortical actin network at the immunological synapse, and that granule secretion in these cells 

was normalized by actin depolymerization.363 LYST also plays a role in phagolysosomal 

maturation, resulting in defective TRIF/TRAM-dependent signaling by toll-like receptors 3 

and 4 in LYST-deficient macrophages and dendritic cells and consequent impaired innate 

immune responses to bacterial pathogens.350 Similarly, the D. melanogaster LYST 

orthologue prevents fusion of incompletely matured phagosomes.364 LYST’s enormous size 

has impeded mechanistic analysis of its mode of action, but analyses of cells from an 

increasing cohort of identified patients with missense mutations might provide key insights 

into the function of specific domains.362

Arthrogryposis, renal dysfunction, and cholestasis syndrome (ARC).

Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is a heritable autosomal 

recessive multisystem disorder characterized by arthrogryposis (congenital joint 

contracture), kidney tubule acidosis, cholestasis (failure of the liver to secrete bile), bleeding 

diathesis, and failure to thrive, among other characteristics.365-368 Most patients do not 

survive past their first year due to metabolic decompensation, recurrent infections, and/or 

uncontrolled bleeding.367,369 ARC is caused by loss-of-function mutations in the genes 

encoding either VPS33B or VIPAR (a.k.a. VPS16B or SPE-39).367,368,370-376 Like 

VPS33A, VPS33B is a homolog of yeast Vps33p and is an SM protein.310,377 However, 

VPS33A and B are functionally distinct and cannot compensate for each other.306,378 

Moreover, neither VPS33B nor VIPAR is incorporated into the CORVET or HOPS 

complexes.84,324,327,379 Instead, VPS33B and VIPAR together form the class c homologs in 

endosome-vesicle interaction (CHEVI) complex.84,324,327,374,379,380 Data from C. 

elegans381,382, D. melanogaster376,383, and zebrafish372,374 with null alleles, mice with loss-

of-function mutations369,383-385, and ARC patient samples370,373,374,386 indicate that the 

CHEVI complex functions in specific, context-dependent trafficking pathways that differ 

among specialized cell types. For example, the cholestasis observed in ARC patients likely 

reflects a role for the CHEVI complex in apical recycling in polarized epithelial cells.
370,374,384 Resident membrane proteins in hepatocytes that are continuously recycled to 

apical membranes via apical recycling endosomes (e.g. bile salt export pump and claudin-1) 

are mislocalized throughout the plasma membrane in CHEVI-deficient cells, but other 

resident apical membrane proteins that do not undergo recycling (e.g. multiple drug 

resistance-associated protein 2) are not.370,374,384 In other cell types, the CHEVI complex 

functions in the biogenesis and/or trafficking of LROs such as platelet α-granules369,371,386 

and skin lamellar bodies373,385, explaining the excessive bleeding and ichthyosis, 

respectively, in ARC patients. In Drosophila hemocytes and mammalian macrophages, the 

CHEVI complex is necessary for the fusion of phagosomes with lysosomes during 

phagosome maturation and for clearance of internalized toll-like receptors from 

endosomes376,383; the latter underlies hyperstimulation of inflammatory signaling in 

VPS33B-deficient cells.383 Lastly, in C. elegans, the CHEVI subunit orthologues are 

required for formation of an LRO in spermatocytes called the membranous organelle.381,382 

How CHEVI regulates these events is not entirely clear, but a recent report on the VPS33B 
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protein interactome provides some potential clues.379 Specifically, VPS33B interacts with 

CCDC22, a member of the CCC complex that functions together with the WASH complex 

to effect endosomal recycling387, and with VPS53, a subunit of the Golgi-associated 

retrograde protein (GARP) complex and endosome-associated recycling complex 

(EARP)380, both of which function as tethers during endosomal recycling. Overall, these 

studies suggest that the CHEVI complex functions in context-dependent, tissue-specific 

endosomal trafficking pathways, perhaps by regulating endosomal recycling.

Gray platelet syndrome.

GPS is a heritable disorder in which platelets from hematoxylin stained blood smears appear 

gray because they lack contents in their alpha granules.388 This is accompanied by 

macrothrombocytopenia and typically mild but occasionally severe excessive bleeding and 

bruising. Most GPS patients389 bear loss-of-function mutations in the gene encoding 

NBEAL2, a ~2800 amino acid protein with many of the same structural features as LYST, 

the causative agent of CHS.390-392 Mice lacking a functional NBEAL2 gene phenocopy the 

human disease.393-395 Like for LYST, a molecular understanding of NBEAL2 function is 

lacking. A recent study identified several potential binding partners for the NBEAL2 

BEACH domain including the putative ER exit site regulator SEC16A, the scaffolding 

protein VAC14 for the phosphatidylinositol-3-phosphate 5-kinase and phosphatase, and the 

RAC1/CDC42 GTPase exchange factor DOCK7396, suggesting potential roles in late 

endosomal maturation required for alpha granule biogenesis397 and/or for actin-dependent 

signaling processes. Intriguingly, RAC1 has been implicated in platelet spreading and 

secretion of factors stored in alpha granules398-401, although many of these studies rely on 

inhibitors with potential off-target effects.402

Griscelli syndrome.

GS types 1-3 and the corresponding mouse mutants reflect defects in the three components 

of a complex required for melanosome positioning within skin melanocytes: the 

unconventional myosin Va (MYOVA), the Rab GTPase RAB27A, and a linker between 

them, melanophilin (MLPH).403 RAB27A associates directly with mature melanosomes and, 

via the linker MLPH, engages a melanocyte-specific spliced isoform of MYOVA to allow 

for peripheral melanosome capture and motility on actin filaments.404-411 Consequently, 

melanocytes deficient in any of these components accumulate melanosomes near the 

microtubule organizing center and fail to efficiently transfer melanosomes to keratinocytes. 

This results in hypopigmentation of the skin and hair in GS1, 2 and 3 patients and 

corresponding mouse models.412-414 Interestingly, MLPH that has not been phosphorylated 

by protein kinase A can bind to microtubules in vitro and relocate the associated MYOVA 

and RAB27A from actin filaments to microtubules; this might provide a mechanism for 

protein kinase A-dependent regulation of melanosome localization in vivo.415 MLPH 

function in RAB27A-dependent organelle motility appears to be limited to skin 

melanocytes, and hence GS3 patients display pigment dilution in the skin and hair, but not in 

the eye.413 RAB27A-dependent melanosome motility in retinal pigment epithelium employs 

a distinct adaptor, MYRIP, and a different myosin, MYOVIIA.416,417
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By contrast to MLPH, MYOVA and RAB27A function in other physiologically critical 

venues, and hence most GS1 and GS2 patients suffer more severe consequences. MYOVA 

plays a number of important roles in development, secretion, plasticity, and signaling in the 

neuronal system.418 Therefore, GS1 patients suffer from neurological impairment of varying 

severity (depending on the site of the mutation - for example, patients with mutations in the 

exon encoding the melanocyte-specific tail region of MYOVA resemble GS3 patients413). 

Among many other functions, RAB27A plays a critical role in the final steps of cytolytic 

granule secretion in cytotoxic T cells and NK cells14,419,420, and thus GS2 patients suffer 

from both immunodeficiency and accelerated phase HLH due to lymphoproliferation and an 

ensuing cytokine storm. In these cell types, RAB27A engages a distinct group of effector 

proteins including Munc13-4 (see section on FHL3 below)14,421,422, the synaptotagmin-like 

proteins Slp1 and Slp2a423,424 for tethering of lytic granules to the plasma membrane, and 

Slp3 at an earlier stage for kinesin-1-dependent motility of lytic granules to the plasma 

membrane.425 RAB27A and the homologous RAB27B function in regulated secretion in 

many other cell types, but their physiological importance is not clear. For example, although 

RAB27A appears to function in docking insulin granules to the pancreatic β cell plasma 

membrane426 and the RAB27A/MLPH/MYOVA complex plays an inhibitory role for mast 

cell granule secretion427, reports of any clinical consequence in GS patients are lacking.

Familial hemophagocytic lymphohistiocytosis types 3-5.

FHL, like HLH in GS2 and CHS, is characterized by defective cytolytic granule exocytosis, 

leading to defects in T cell and NK cell cytolytic activity and consequent 

lymphoproliferation, hyperinflammation, and a life-threatening cytokine storm. In addition, 

patients have a bleeding and bruising tendency due to defective platelet granule secretion. 

Whereas the gene underlying FHL1 has not been identified, and mutations in the gene 

encoding the cytolytic effector perforin underlie FHL2428, FHL3-5 are due to mutations in 

genes encoding the machinery required for secretion of lytic granules, platelet alpha and 

dense granules, and other regulated secretory organelles – specifically UNC13D (encoding 

munc13-4, mutated in FHL3)429, STX11 (encoding syntaxin-11, mutated in FHL4430,431) 

and STXBP2 (encoding munc18-2, mutated in FHL5432,433). STX11 is a Qa SNARE that is 

part of the tSNARE complex at the plasma membrane required for cytolytic granule and 

platelet granule secretion.434-437 Munc18-2 is a SM family member that specifically 

stabilizes STX11 in platelets and cytotoxic T cells and is required for efficient STX11 

expression at the plasma membrane438 and for granule fusion.433,434,439 It is particularly 

critical to stabilize full fusion intermediates mediated by the lipid-anchored STX11.437 

Consistent with its function, a number of FHL5 mutations disrupt the binding sites on 

munc18-2 for STX11 or αSNAP440 or impede release of the N-terminal STX11 peptide and 

thus block subsequent munc18-2 function in facilitating SNARE complex assembly.434 

Munc13 family members are thought to function in tethering and/or regulating tSNARE 

conformational changes required for SNARE complex assembly.441 Accordingly, the 

RAB27A effector, munc13-4, functions during granule tethering to the plasma membrane in 

CTLs and platelets.421,422,442 This step appears to require RAB27A, as GS2 patients with 

RAB27A mutations that impair its interaction with munc13-4 suffer from HLH but not 

pigment dilution.443 In CTLs, munc13-4 also appears to function independently of RAB27A 

at an earlier step required for cytolytic granule maturation.14 Intriguingly, HLH is not a 
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spontaneous feature of the mouse FHL3 model but is induced by infection444, suggesting 

that FHL in humans might similarly be triggered by infectious agents.

Perspectives

Research over the last two decades has enormously expanded our understanding of LROs 

and the heritable diseases in which their function is impaired. Our progress to date has 

opened up new areas of investigation into the basic biology of LROs and has illuminated 

molecular mechanisms by which the endosomal system is adapted to the needs of 

specialized cells. At the same time, new LROs are being discovered at a steady pace, 

suggesting that such adaptations may be more prevalent among cell types than previously 

thought. Importantly, our progress has also provided a new understanding into the 

mechanisms of heritable diseases that impact LROs and related organelle systems. Future 

work will likely build on these studies by discovering novel LRO-related disorders and by 

developing therapies for them.

Our progress to date in understanding LROs has largely been driven by the intensive study 

of specific model systems, particularly mammalian melanosomes, cytolytic granules, and 

Weibel-Palade bodies and several of the invertebrate model LROs (Figures 1, 2 and Table 1). 

These studies, driven by the identification of specific cargo transmembrane proteins and the 

availability of reagents to follow their fate under various genetic manipulations, have 

particularly illuminated the commonalities and diversity of LRO assembly pathways (Figure 

2). We now need to build on these studies to gain specific insights into other medically 

relevant LROs. For example, we have only scratched the surface in understanding the 

contents and delivery pathways for lung lamellar bodies or platelet dense and alpha granules, 

defects in which underlie the lung fibrosis and excessive bleeding in HPS and GPS. Studies 

of these systems are likely to yield interesting surprises. For example, recent evidence 

suggests that dense granules do not mature until the final stages of platelet formation from 

megakaryocytes.445 Understanding the temporal regulation of this step will likely lead to 

new ideas regarding signaling pathways that can regulate LRO biogenesis in specific cell 

types. Similarly, understanding the complex network of protein: protein interactions among 

NBEAL2, the CHEVI complex, and other effectors that are essential for alpha granule 

formation may allow us to better understand how these enigmatic organelles segregate from 

the late endosomal system.446 An important contribution to our understanding will be the 

identification of relevant cargoes for each LRO system; availability of such cargoes and 

reagents to easily detect them will allow a rapid test of whether the paradigms generated in 

better studied systems to date apply more generally to other LROs.

Non-mammalian model systems will likely play increasingly important roles in dissecting 

the physiological functions of LRO biogenetic and secretion effectors. The ability in many 

of these systems to combine mutations and to identify gene modifiers will extend known 

gene interaction networks. Combining data from analyses from such tractable genetic 

systems with the increasingly available complex interactomes from proteomics data in 

mammalian systems will provide important tests of the functionality of interaction partners 

and their importance in the physiology of new LROs. We thus should expect more robust 
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molecular detail in our models of LRO biogenesis, motility and secretion in the coming 

years.

While diseases such as HPS, CHS and GS have opened new avenues of basic science 

research over the last two decades, we can expect more insights to come from new diseases 

in the future as whole genome sequencing of patients will expand the number of candidate 

genes underlying LRO biogenesis and function. This has already come to light in several 

ways. For example, a recent publication reported screening of nearly 1000 albino patients 

for known albinism genes.203 Many harbored novel mutations in known genes, and nearly 

28% of the patients lacked mutations in known albinism genes; sequencing of these patients 

is likely to identify novel genes that contribute either specifically to melanosome biology or 

generally to LRO biogenesis or function. On the other side of the spectrum, sequencing of 

individual patients with novel syndromic disorders can identify novel genes and mechanisms 

in LRO biology. For example, screening of a pediatric patient with a FLH-like disease led to 

the identification of a novel mutation in STXBP1 with a dominant negative phenotype434. 

Thus, we can expect many new insights from analyses of patient samples in the coming 

years.

In turn, future studies will allow us to build on our knowledge of LROs to devise new 

therapies for the diseases that have taught us so much about LRO biogenesis and secretion. 

New modes of gene therapy, in some cases combined with bone marrow transplant for 

hematologic disorders, may provide relief for some symptoms of syndromic disorders. The 

major challenges to be overcome in this respect are symptoms arising from non-

hematopoietic cell types, such as the lung AT2 cells that are the drivers of lung fibrosis in 

the most common HPS patients; difficulties in specifically targeting these cells for gene 

therapy are exacerbated by the likely short half-life of the affected AT2 cells. In cases such 

as this, understanding how inflammatory sequelae contribute to disease progression might 

uncover other treatment options.
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Synopsis

Lysosome-related organelles are cell type-specific subcellular structures that derive from 

both the secretory and endolysosomal pathways and that play key roles in numerous 

physiological systems, in most cases following stimulus-dependent secretion of their 

contents. The biogenesis and/or secretion of lysosome-related organelle subsets are 

disrupted in hereditary syndromic disorders such as the Hermansky-Pudlak syndromes 

and Familial Hemophagocytic Lymphohistiocytosis. We comprehensively review 

lysosome-related organelles in humans and model organisms and the mechanisms by 

which products of disease genes regulate their formation, motility and ultimate secretion.
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Figure 1: Examples of lysosome-related organelles.
(a) Dense granules (arrows) in a human platelet observed by whole mount electron 

microscopy from ref. 447. Scale bar, 1 μm. (bi – bii) 3D reconstructions of α-granules in 

chemically fixed human platelets analyzed by electron tomography from ref. 448. The 

limiting membrane is in blue. Scale bar, 50 nm. (bi) Transverse view (left) and side view 

with transparent membrane (right) emphasizing the arrangement of VWF tubules (red on 

left, red-gray on right) within the organelle. (bii) Transverse view of an alpha granule that is 

immunogold labeled for P-selectin (yellow) and CD63 (magenta), emphasizing an 

intraluminal vesicle (green). (c) A lamellar body from ex vivo human skin analyzed by thin 

section electron microscopy (from ref. 449). Scale bar, 100 nm. (di – diii) Electron 

tomography of WPBs in human umbilical vein endothelial cells from ref. 450. (di) A 

longitudinal tomographic slice of a WPB emphasizing vWF tubules (arrows) along the 

length. (dii) A transverse tomographic section of a WPB emphasizing the diameter of vWF 

tubules. (diii) 3D reconstruction of (dii) showing the extension of individual VWF tubules. 

Arrows point to VWF tubules that end halfway through the WPB. Scale bars, 100 nm. (e) A 

lung lamellar body from a rat type II alveolar cell analyzed by thin section electron 

microscopy (from ref. 451). Scale bar, 1 μm. (f) Transverse section of a wild-type D. 

melanogaster eye analyzed by thin section electron microscopy from ref. 77. Note the 
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pigment granules (PG) of secondary pigment cells surrounding photoreceptor cell 

rhabdomeres (Rh). (g) 3D reconstruction of a stage II melanosome from electron 

tomography analysis of a human MNT-1 melanoma cell (from ref. 452). Red, melanosome 

membrane; brown, intraluminal fibrils; intralumenal vesicles are in yellow (membrane-

associated) or green (free). Scale bar, 200 nm. (h) Birefringent material in gut granules 

(arrowheads) in a C. elegans embryo observed by polarization microscopy (from ref. 279). 

Scale bar, 20 μm. All panels reprinted by permission of: (a) Taylor and Francis from 

Platelets, ref. 447, copyright 2018; (b) American Society of Hematology from Blood, ref. 

448, copyright 2010; (c) Elsevier from the Journal of Dermatological Science, ref. 449, 

copyright 2018; (d) Elsevier from the Journal of Structural Biology, ref. 450, copyright 

2008; (e) Springer Nature from Pediatric Research, ref. 451, copyright 2012; (f) John Wiley 

and Sons from EMBO Journal, ref. 77,451, copyright 1997; (g) National Academy of 

Sciences, U.S.A from Proceedings of the National Academy of Sciences U.S.A., ref. 452, 

copyright 2008; and (h) PLoS Genetics, ref. 279.
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Figure 2. Biogenesis models for mammalian LROs.
Lytic granules in CTLs and natural killer cells may derive from late endosomes that fuse 

with secretory vesicles from the TGN, and also function as the cells’ lysosomes under basal 

conditions. Lytic granule maturation (by fusion with early endosomal membranes; red 

arrow) and secretion are triggered by immune stimulation. The other indicated mammalian 

LROs co-exist with endolysosomes but derive from late endosomes, early endosomes, and/or 

the TGN as indicated. Question marks denote LRO biogenesis pathways that are not well-

characterized, and thick solid lines denote pathways, where known, by which the majority of 

material is targeted to maturing LROs. Alpha granules obtain material from multivesicular 

late endosomes in platelets and likely derive from these compartments, but also receive vWF 

from the TGN. Platelet dense granules and lung AT2 lamellar bodies may derive 

components from both late endosomes and early endosomes during maturation. In pigment 

cell melanocytes, immature melanosomes emerge from maturing endosomes and receive 

transmembrane cargo via early endosomal tubule carriers, endosome-derived vesicles, and 

the Golgi as they mature. In endothelial cells, immature Weibel-Palade bodies harboring 

vWF tubules that form in the Golgi bud from the TGN and mature by addition of cargoes 

derived from endosomes.
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Figure 3. HPS complexes and mechanisms of cargo delivery to melanosomes.
Melanosome-destined transmembrane protein cargoes are concentrated on early endosomes 

by AP-3 and AP-1. The majority of TYR (green) transits a vesicular pathway that requires 

AP-3 (Pathway 1). Other proteins such as TYRP1, OCA2, and ATP7A, transit endosome-

derived membrane tubules en route to melanosomes (Pathway 2). BLOC-1 and the KIF13A 

kinesin motor are required to generate the tubules along microtubules, and KIF13A is 

recruited to endosomes by AP-1. Cargo sorting on this pathway is mediated by AP-1 and/or 

AP-3; TYRP1 and ATP7A engage only AP-1, while both AP-1 and AP-3 facilitate OCA2 

transport on this pathway. BLOC-2 is required to direct the tubular transport carriers to 

melanosome membranes, and RAB32 and/or RAB38 might also play a role in this step. 

Cargo delivery requires transient fusion of the tubular transport carriers with melanosome 

membranes mediated by the v-SNARE, VAMP7, and an unidentified t-SNARE complex. 

DCT and MART1 are transported to melanosomes from the Golgi Apparatus in a separate 

vesicular pathway that requires RAB6 (Pathway 3). VAMP7 and perhaps other cargoes are 

recycled from melanosomes via tubules that derive from melanosome membranes in a 

BLOC-3- and RAB38/RAB32-dependent manner (Pathway 4). The scaffolding protein 

VARP is present on these tubules and likely supports the incorporation of VAMP7 into them. 

The destination of these tubules is not yet known, but VAMP7 is likely ultimately returned to 

early endosomes.
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