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The study of microorganisms that pervade each and every part of this planet has

encounteredmany challenges through time such as the discovery of unknown organisms

and the understanding of how they interact with their environment. The aim of this

review is to take the reader along the timeline and major milestones that led us to

modern metagenomics. This new and thriving area is likely to be an important contributor

to solve different problems. The transition from classical microbiology to modern

metagenomics studies has required the development of new branches of knowledge and

specialization. Here, we will review how the availability of high-throughput sequencing

technologies has transformed microbiology and bioinformatics and how to tackle the

inherent computational challenges that arise from the DNA sequencing revolution.

New computational methods are constantly developed to collect, process, and extract

useful biological information from a variety of samples and complex datasets, but

metagenomics needs the integration of several of these computational methods. Despite

the level of specialization needed in bioinformatics, it is important that life-scientists have

a good understanding of it for a correct experimental design, which allows them to reveal

the information in a metagenome.

Keywords: metagenomics, bioinformatics, high-throughput sequencing, taxonomy, functional genomics,

microbiology

BRIEF HISTORY OF MICROBIAL COMMUNITIES STUDY

From various definitions of microbial communities, the one proposed by Begon et al. (1986)
defines it as the set of organisms (in this case, microorganisms) coexisting in the same space and
time. The study of microbial communities has changed from the first report of microbes made by
Leeuwenhoek and their oral organisms in 1676 (Schierbeek, 1959), to the characterization using
the current molecular techniques. Pioneer scientists tried to isolate these “invisible” organisms,
and like Robert Koch, they started by using nutrients in a solid phase like potato slices or gelatine
to cultivate and isolate microorganisms in order to count and visualize them. Ultimately, these
isolation techniques helped scientists to understand the microorganisms’ physiologies (Blevins and
Bronze, 2010).

Soon, the microscope became the principal tool to study microorganisms and their interactions.
Development of practical staining techniques such as Gram, Ziehl–Neelsen, and Schaeffer and
Fulton (Beveridge, 2001; Blevins and Bronze, 2010) significantly improved the resolution of
microscopy techniques. Something evident to microbiologist was that the number of observed
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microorganisms in a microscope did not correspond with
number of microorganism obtained in culture plates (Staley and
Konopka, 1985). Although the explanation to this observation
was not evident at that time, the conclusion was that the
microorganisms need special conditions to grow, and based on
this, Winogradsky emulated environments for culture media
production that resembled native growing conditions (McFall-
Ngai, 2008). Winogradsky’s ideas and his contribution to
ecology revolutionized microbiology and gave birth to a new
concept named “microbial ecology,” which refers to the study of
microorganisms and their environmental roles (Ackert, 2012).

For almost 300 years (Figure 1), the study of microorganisms
was based on morphology features, growth, and selection of
some biochemical profiles (Roszak et al., 1984; Oliver et al., 1991;
Colwell et al., 1996). These techniques provided an insight into
the microbial world, but nowadays, they provide only a limited
resolution for other applications.

In the late 1970s, Carl Woese proposed the use of
ribosomal RNA genes as molecular markers for life classification
(Woese and Fox, 1977). This idea in conjunction with the
Sanger automated sequencing (Sanger et al., 1977) method
revolutionized the study and classification of microorganisms.
Some decades later, advances in molecular techniques were
applied to microbial diversity description and granted access
to a “new uncultured world” of microbial communities.
Some of these techniques, which had a remarkable impact,
were the polymerase chain reaction (PCR), rRNA genes
cloning and sequencing, fluorescent in situ hybridization
(FISH), denaturing gradient gel electrophoresis (DGGE and
TGGE), restriction-fragment length polymorphism, and terminal

FIGURE 1 | Metagenomics timeline and milestones. Timeline showing advances in microbial communities studies from Leeuwenhoek to NGS (Ottman et al.,

2012; Yarza et al., 2014).

restriction-fragment length polymorphism (T-RFLP). However,
in spite all these improvements, there were many other
observations in microbiology that remained unanswered like
those related to the microorganisms’ metabolic and ecological
function. Characterization of certain functions in a particular
environment was possible only after gene cloning from total
DNA of a certain habitat and when its heterologous expressed
product was associated with a given metabolic function (i.e.,
nitrogenases, cellulases, oxidoreductases, laccases, etc.). This
implied the development of gene expression techniques using
other microorganisms as systems to test gene function and
roles in the microbial community. In addition, a window
of opportunity was open to discover new genes, functions,
and metabolic products with technological application, thereby
giving birth to biotechnology. Products such as “terragines” from
Streptomyces lividians (Wang et al., 2000) or genes related to
broad-spectrum antibiotics were cloned from soil-DNA libraries
(Gillespie et al., 2002) were achievements that set the foundation
to a new area named “metagenomics analysis,” which was
later defined as the theoretical collection of all genomes from
members in a microbial community from a specific environment
(Handelsman et al., 1998). Even if these approaches led to
the discovery of new molecules and identification of new
microbial communities members (Giovannoni et al., 1990), more
recently, some problems have been spotted. Cloning biases
(Morgan et al., 2010), sampling biases, misidentification of
“decorating enzymes” and incorrect promoter sites in genomes,
and dispersion of genes involved in secondary metabolite
production (Keller and Zengler, 2004) are some of the problems
found in metagenomics. Therefore, it is important to evaluate
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and correct these biases with statistical methods to have a better
understanding of the species richness and know the difference
between the expected and the observed microbial diversity.

CONCEPTS OF MICROBIAL DIVERSITY
AND SPECIES RICHNESS

“Species diversity” is an attribute of any biological community
(Krebs, 2014), but how we quantify it, is not trivial. The
simplest idea to describe and quantify a microbial community
(e.g., a metagenome) is the species richness concept, which
refers to the number of species in a specified region. Another
idea that can be applied to metagenomics is the evenness
concept or differential abundance proposed by Simpson (1949).
The evenness measurement attempts to quantify the unequal
representation in communities where there are few dominant
species and many species that are relatively uncommon. This
could be tested against a hypothetical community in which
all species are equally common. Therefore, when comparing
two communities, if both have the same number of species
(equal species richness) but different abundances, then the
consortia with the shortest difference between the observed and
hypothetical distribution (even abundance) will be the more
diverse. Hence, it should be considered that species richness
should not be the only parameter to define diversity.

In order to describe and compare communities in a better way,
there are other metrics that have been adapted to metagenomics
and that can complement the aforementioned. Alpha (α) is a
metric for local diversity of a community; opposite to it, we have
Gamma (γ ), which measures the total regional diversity that
includes many communities, and finally Beta (β) metric tells us
how different community samples are in an area, linking Alpha
and Gamma metrics (Krebs, 2014).

In the Alpha diversity assessment, the accumulation of species
or Operational Taxonomic Units (OTUs) plots have been used
to evaluate the sample efficiency and to correct sampling
problems. Although a species accumulation curve could present
an asymptotic trend after using a bigger sample size, the
maximum species number could not be reached. This is why a
statistical approach has to be performed, i.e., rarefaction curves,
which are useful to estimate the real maximum species or OTUs
number observed in the sample and to compare samples with
different sizes (Sanders, 1968; Heck et al., 1975; Colwell and
Coddington, 1994).

Another alternative to calculate species diversity
quantitatively is the use of statistical estimators. Particularly,
non-parametric estimators have been used for microbial
communities’ studies. These estimators do not depend on
the statistical behavior of the sample and can consider low
abundance species. On one hand, the simplest non-parametric
diversity estimator is the Simpson’s index (D), which is based
on the probability of assigning two independent individuals
taken randomly from the community into the same species
(Simpson, 1949). On the other hand, Shannon–Wiener function
or Shannon–Weaver index H′ (Shannon, 1948) is an entropy
measurement that increases with the number of species in the

sample. Simpson and Shannon–Wiener indices are used as
heterogeneity measurements and differ mainly in calculation of
the taxa abundance for the final richness estimation. Simpson
index gives a higher weight to species with more frequency in
a sample, whereas Shannon–Wiener gives more weight to rare
species (Krebs, 2014).

The development of molecular biology provided a new
vision of microbial ecology and allowed the study of highly
complex communities in a short period of time. However, the
application of diversity estimators in metagenomics projects has
been evaluated by some authors with divided ideas about their
results.

Some authors concluded that microbial diversity estimation
based on molecular markers is possible and can be used
for comparison with some precautions (Gihring et al., 2012).
They recommended the use of Simpson or Shannon–Wiener
estimators as the best descriptors for species richness at high-
level taxa in metagenomes (Haegeman et al., 2013; Chernov
et al., 2015). However, in nature, the microbial communities
have a large number of rare species that can be detected
only if an exhaustive sampling is performed (Colwell and
Coddington, 1994; Kemp and Aller, 2004; Bonilla-Rosso et al.,
2012). Therefore, the use of such estimators is unsuccessful
for very complex microbial communities. This problem has
generated the creation of new diversity indexes for species that
analyse statistically the behavior of the sample. For example, the
tail statistic (τ) estimates the number of undiscovered species
from a rank abundance curve, giving a higher weight to the low
abundant taxa and increasing the sensitivity of the analysis of
complex samples (Li et al., 2012).

The use of diversity indexes is a better approach to
quantify and compare microbial diversity among samples. Such
comparison should be done cautiously because it could be
uninformative unless biases related to sampling and criteria for
species or OTU definition are minimized (Bonilla-Rosso et al.,
2012).

NEXT GENERATION SEQUENCING
TECHNOLOGIES TO EXPLORE
MICROBIAL COMMUNITIES

As previously mentioned, Sanger sequencing technology had
a great impact on the early stage of microbial community
studies. Nowadays, the sequencing yield and sequence length
have changed a lot since Sanger sequencing (Table 1). Currently,
Sanger sequencing can retrieve up to 96 sequences per run
with an average length of 650 bp, which might be enough
for phylogenetic marker analysis. However, low-cost platforms
known as Next Generation Sequencing technologies (NGS) are
capable of parallel sequencing millions of DNA molecules with
different yields and sequence lengths (Table 1; Logares et al.,
2012; Fichot andNorman, 2013; Glenn, 2014; Sanchez-Flores and
Abreu-Goodger, 2014) having a positive impact in different areas.

The first of these technologies that revolutionized the
genomics and metagenomics areas was the 454 sequencing
platform or “pyrosequencing.” The principle of this technology is
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TABLE 1 | Direct comparison among sequencing technologies suitable for

metagenomics.

Roche

454

IonTorrent

PGM

Illumina PacBio

RSIIa

Maximum read

length (bp)

1200 400 300b 50,000

Output per run (Gb) 1 2 1000c 1

Amplification for

library construction

Yes Yes Yes No

Cost/Gb (USA

Dollar)

$9538.46 $460.00 $29.30 $600

Error kind Indel Indel Substitution Indel

Error rate (%) 1 ∼1 ∼0.1 ∼13

Run time 20 h 7.3 h 6 days 2 h

Adapted from Glenn, T. 2014 NGS Field Guide—Table 2a—Run time, Reads, Yield|The

Molecular Ecologist. Available online at:

http://www.molecularecologist.com/next-gen-fieldguide-2014/ (Accessed Aug 17,

2015).
aP6-C4 chemistry.
bMiSeq read length.
c Illumina HiSeq 2500 Dual flowcell yield.

a one-by-one nucleotide addition cycle, where the pyrophosphate
(PPi) released from the DNA polymerization reaction is
transformed in a luminous signal. The light emission from a plate
with millions of microwells containing a given DNA fragment
is detected by the machine and is translated to nucleotide
sequences with an associated base quality value (Margulies
et al., 2005). This technology offered a higher yield than Sanger
sequencing at a lower cost but with shorter read lengths (Table 1).
The main bias of this technology is artificial insertions and
deletions due to long homopolymeric regions. In spite of the
advantages that this technology provided to metagenomics, it is
now obsolete. Recent announcements by Roche (current owner
of the technology) reported the shutdown of 454 division, ceasing
the platform support by mid-2016 (Karow, 2013). Nevertheless,
all the software that has been developed so far to analyse 454 data
could be adapted to analyse data obtained by another platforms.

The Ion Torrent platform is an analogous technology to 454
that produces a similar yield and a read length to those obtained
at its middle stage of development. The Ion Torrent PGM is
considered as the smallest potentiometer that exists and can
detect the change in hydrogen potential generated each time a
proton is released after a nucleotide is added in the sequencing
reaction occurring in millions of microwells (Rothberg et al.,
2011). The maximum Ion Torrent yield is ∼500 million reads
with a mode length of 400 bp (Table 1) (Glenn, 2014). In this
case, there is a clear benefit in terms of cost reduction, since Ion
Torrent sequencing is just a tenth of the pyrosequencing cost
(Whiteley et al., 2012).

However, read length reduction in return for higher yields
and error-rates is another trade-off observed in some platforms
in order to reduce the sequencing costs, i.e., the case of the
Illumina technology, which has become one of the most popular
technologies due to its low cost and high yield. The basis of
Illumina chemistry is the reversible-termination sequencing by
synthesis with fluorescently labeled nucleotides. In a nutshell,

DNA fragments are attached and distributed in a flow cell, where
the sequencing reaction occurs by adding a labeled nucleotide.
When the labeled nucleotide is incorporated and its fluorescent
molecule is excited by a laser, the signal is registered by the
machine. Afterwards, the fluorophore molecule is removed and
the next nucleotide can be incorporated. DNA fragments can be
sequenced from one or both sides giving single end or pair-end
sequencing, respectively, with a maximum read length of 300
base pairs per read (Bennett, 2004). The output of this technology
is currently the highest among the second generation sequencing
technologies and makes it suitable for multiplexing hundreds of
samples (Table 1; Glenn, 2014).

Currently, the technologies already mentioned are the
most used for metagenome projects, but the development of
sequencing was kept going for the last 5 years in order to solve
the known biases of these technologies and to offer a better
trade-off between yield, cost, and read length. At present, the so
called third generation sequencing technologies such as PacBio
RS from Pacific Bioscience (Fichot and Norman, 2013) or the
Oxford Nanopore (Kasianowicz et al., 1996), which are single-
molecule, real-time technologies, reduced the amplification bias
and also the short read length problem. The time and cost
reduction offered by these technologies is also a valuable asset.
However, the error rate is higher compared to other technologies
but correctable if the sequencing depth is high enough. In terms
of computational tools, there is virtually no software that can be
used for metagenomics analysis.

One of the great improvements of second and third generation
sequencing technologies is that the library preparation does not
require DNA cloning vectors or bacterial hosts, simplifying the
library preparation and reducingDNA contamination from other
organisms that are not part of the metagenome.

Although new generation sequencing technologies are
powerful and have allowed us to discover novel microbial
worlds and explore new environments, they present particular
limitations and biases that have to be circumvented (Table 1).
It is important to consider that data obtained from second
or third generation sequencing technologies have certain
computational requirements for their analysis. The bigger the
dataset generated, the higher computational resources and more
complex bioinformatics analyses are necessary. In addition, large
data storage is needed to archive and process the data (Logares
et al., 2012). In terms of bioinformatic analysis, not only high-end
servers are required but also UNIX operative system skills are
needed. Programming and scripting knowledge are desirable to
run and install the available metagenomics software for parsing
and interpreting the results. Thus, it is suggested that biologists
or biological scientists should develop basic computational skills
in order to take an advantage of metagenomic data.

Quality Control (QC) Procedures for
Metagenomics
Assessing the output quality from any of the previously
mentioned sequencing technologies will be always a crucial step
before starting any analysis. Each sequencing platform presents
a particular bias product of the intrinsic mechanism to detect
each nucleotide, which conforms the DNA polymer that is being
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analyzed (Table 1). The error rate from each technology varies,
affecting the characterization of a microbial community (Luo
et al., 2012). Filtering low quality reads considerably improves
metagenome analyses such as taxonomical classification and
α and β diversity calculation (Bokulich et al., 2013). There
are several programs that can be used for sequencing read
QC analysis as described in Table 1. In general, they provide
information about the sequencing output (number or reads,
length, GC content, overrepresented sequences, etc.) and some
of them include tools to modify the reads (adapter removal,
quality filtering or trimming). These QC operations need an
interpretation depending on the analysis. For example, a GC
content analysis can be used to anticipate the presence of
organisms with different GC content, but a single GC distribution
does not imply that our sample has very low diversity, just a
bias toward the GC content of the most abundant organisms.
Removal of low quality bases or entire reads can be beneficial in
terms of mapping, but for metagenome assembly (or any other
genome assembly), none of the current assembly programs use or
interpret base quality within the assembly process. For Illumina
sequencing, removal of optical or PCR duplicates can increase the
quality of abundance analysis from whole metagenome shotgun
DNA sequencing. However, this QC control has no sense at
all in amplicon sequence analysis. Therefore, there are some
compulsory QC processes that need to be performed before
analysing our data, but depending on the approach, we have to
design specific QC steps to improve our results.

RECONSTRUCTING THE GENOMIC
CONTENT OF THE MICROBIAL
COMMUNITY FROM NGS DATA

The main questions to answer in microbial ecology are “Who is
out there?” and “What are they doing?” In fact, metagenomics
can answer both questions. Particularly, microbial diversity can
be determined using two different approaches: (1) Amplicon
sequencing or (2) Shotgun metagenomics. In the first approach,
specific regions of DNA from communities are amplified using
taxonomical informative primer targets such as 16S rRNA gene
for prokaryotes and intergenic transcribed spacers (ITS) or the
large ribosomal subunit (LSU) gene for eukaryotes (Sharpton,
2014; Tonge et al., 2014). In the second approach, shotgun
metagenomics can help to reconstruct large fragments or even
complete genomes from organisms in a community without
previous isolation, allowing the characterization of a large
number of coding and non-coding sequences that can be used
as phylogenetic markers.

Amplicon Sequencing Analysis
First of all, the term “metagenomics” should not be used to
refer amplicon sequence analysis, as this analysis is based on
just one gene instead of the collection of all the genes in the
available genomes from all the organisms in a sample. A better
term proposed is “metaprofiling,” and it should be interpreted in
the rest of this text as the study of all members in a microbial

community based on one gene or marker (i.e., 16S rRNA gene)
for taxonomy or phylogenetic purposes.

Metaprofiling has been widely used due to its convenience to
perform taxonomic and phylogenetic classification in large and
complex samples within organisms from different life domains.
In addition, it could be performed using almost all mentioned
sequencing technologies (Table 1).

Moneywise, metaprofiling is currently the best option for
16S rRNA amplicon library preparation and sequencing by
platforms such as the Illumina MiSeq or the Ion Torrent PGM.
These benchtop sequencers allowmicrobial ecologists to perform
diversity studies at their labs, using multiple replicates and
samples from longitudinal time studies. Previous comparisons
between HiSeq 2000 and MiSeq technologies have shown that
despite the yield difference between them (>50 Gb per day
against 5 Gb), the number of OTUs obtained are not significantly
different on using both the technologies (Caporaso et al., 2012;
Luo et al., 2012).

The advantages of amplicon sequencing are contrasted by the
bias generated from using only one phylogenetic marker such as
the 16S ribosomal gene or a variable region from it. Some of the
pitfalls are low resolution at the species level (Petrosino et al.,
2009; Nalbantoglu et al., 2014), a range in gene copy number
in many species (Acinas et al., 2004), horizontal transfer of 16S
rRNA genes (Schouls et al., 2003; Bodilis et al., 2012), and the fact
that <0.1% of the total genome are ribosomal genes, hindering
the amplification of thismarker from very low abundant genomes
in a sample.

The ribosomal genes as phylogenetic markers have been used
for the last 40 years or so, resulting in a wide representation of this
marker in many databases, allowing the taxonomic annotation of
almost any microorganisms present in a metagenomic sample.
Some database examples are Greengenes (DeSantis et al., 2006),
the Ribosomal Database Project (Wang et al., 2007), and Silva
(Quast et al., 2013). The latter includes a great catalog of
eukaryotic LSU sequences and is convenient to analyse fungi or
other metazoan microorganisms. However, amplicon-dependent
techniques are prone to sequencing errors, such as result
discrepancy from using different ribosomal variable regions,
primers bias, and OTU assignment errors (Fox et al., 1992;
Logares et al., 2012; Poretsky et al., 2014).

Most of the earlier amplicon analysis programs were designed
for Sanger or 454 ribosomal pyrotag sequences. For example,
Mothur (Schloss et al., 2009), QIIME (Caporaso et al., 2010),
MEGAN (Huson and Weber, 2013), and CARMA (Krause et al.,
2008) are some of the legacy software still available. Nowadays,
the software development for metagenomics considers short
sequences like Illumina reads or very long sequences such as
PacBio reads (Table 2).

Once the species level taxonomic annotation objective is
covered, metagenome projects can focus on the functional
information mining. This could be achieved from the
taxonomical information by extrapolating the functional
annotation of related reference genomes (De Filippo et al., 2012).
To our knowledge, PICRUSt (Langille et al., 2013) is the only
available software that connects the taxonomic classification
from metaprofiling results with metabolic information (Table 2).
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TABLE 2 | Examples of software used in metagenomic and metaprofiling analysis.

Software Application References Link (website)

FastQC Quality control tool for high-throughput sequence

data using modular options and giving graphic

results of quality per base sequence, GC content, N

numbers, duplication, and over represent

Andrews, 2015 http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

Fastx-Toolkit Command line tools for Short-reads quality control.

These allow processing, cutting, format conversion,

and collapsing by sequence length and identity

NP http://hannonlab.cshl.edu/fastx_

toolkit/index.html

PRINTSEQ Quality control tool for sequence trimming based in

dinucleotide occurrence and sequence duplication

(mainly 5′/3′)

Schmieder and Edwards, 2011 http://prinseq.sourceforge.net/

NGS QC Toolkit Tool for quality control analysis performed in parallel

environment

Patel and Jain, 2012 http://www.nipgr.res.in/

ngsqctoolkit.html

Meta-QC-Chain Parallel environment tool for quality control. This

performs a mapping against 18S rRNA databases

for removing eukaryotic contaminant sequences

Zhou et al., 2014 http://www.

computationalbioenergy.org/qc-

chain.html

Mothur From reads quality analysis to taxonomic

classification, calculus of diversity estimators and

ribosomal gene metaprofiling comparison

Schloss et al., 2009 http://www.mothur.org/

QIIME Quality pre-treatment of raw reads, taxonomic

annotation, calculus of diversity estimators, and

comparison of metaprofiling or metagenomic data

Caporaso et al., 2010 http://qiime.org/

MEGAN Taxonomy and functional analysis of metagenomic

reads. It based on BLAST output of short reads and

performs comparative metagenomics. Graphical

interface

Huson and Weber, 2013 http://ab.inf.uni-tuebingen.de/

software/megan5/

CARMA Phylogenetic classification of reads based on Pfam

conserved domains

Krause et al., 2008 http://omictools.com/carma-

s1021.html

PICRUSt Predictor of metabolic potential from taxonomic

information obtained of 16S rRNA metaprofiling

projects

Langille et al., 2013 http://picrust.github.io/picrust/

Parallel-meta Taxonomic annotation of ribosomal gene markers

sequences obtained by metaprofiling or

metagenomic reads. Functional annotation based

on BLAST best hits results. Comparative

metagenomics

Su et al., 2014 http://www.

computationalbioenergy.org/

parallel-meta.html

MOCAT Pipeline that includes quality treatment of

metagenomic reads, taxonomic annotation based

on single copy marker genes classification, and

gene-coding prediction

Kultima et al., 2012 http://vm-lux.embl.de/~kultima/

MOCAT2/index.html

TETRA Taxonomic classification by comparison of

tetranucleotide patterns. Web service available

Teeling et al., 2004 http://omictools.com/tetra-

s1030.html

PhylophytiaS Composition-based classifier of sequences based

on reference genomes signatures

McHardy et al., 2007 http://omictools.com/

phylopythia-s1455.html

MetaclusterTA Taxonomic annotation based on binning of reads

and contigs. Dependent of reference genomes

Wang et al., 2014 http://i.cs.hku.hk/~alse/

MetaCluster/

MaxBin Unsupervised binning of metagenomic short reads

and contigs

Wu et al., 2014 http://sourceforge.net/projects/

maxbin/

Amphora and Amphora2 Metagenomic phylotyping by single copy

phylogenetic marker genes classification

Wu and Eisen, 2008; Wu and Scott, 2012 http://pitgroup.org/amphoranet/

BWA Algorithm for mapping short-low-divergent

sequences to large references. Based on

Burrows–Wheeler transform

Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Bowtie Fast short read aligner to long reference sequences

based on Burrows–Wheeler transform

Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.

net/index.shtml

Genometa Taxonomic and functional annotation of short-reads

metagenomic data. Graphical interface

Davenport and Tümmler, 2013 http://genomics1.mh-hannover.

de/genometa/

SORT-Items Taxonomic annotation by alignment-based

orthology of metagenomic reads

Monzoorul Haque et al., 2009 http://metagenomics.atc.tcs.

com/binning/SOrt-ITEMS

(Continued)
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TABLE 2 | Continued

Software Application References Link (website)

DiScRIBinATE Taxonomic assignment by BLASTx best hits

classification of reads

Ghosh et al., 2010 http://metagenomics.atc.tcs.

com/binning/DiScRIBinATE/

IDBA-UD Assembler de novo of metagenomic sequences

with uneven depth

Peng et al., 2012 http://i.cs.hku.hk/~alse/hkubrg/

projects/idba_ud/

MetaVelvet De novo assembler of metagenomic short reads Namiki et al., 2012 http://metavelvet.dna.bio.keio.

ac.jp/

Ray Meta Assembler of de novo of metagenomic reads and

taxonomy profiler by Ray Communities

Boisvert et al., 2012 http://denovoassembler.

sourceforge.net/

MetaGeneMark Gene coding sequences predictor from

metagenomic sequences by heuristic model

Zhu et al., 2010 http://exon.gatech.edu/index.

html

GlimmerMG Gene coding sequences predictor from

metagenomic sequences by unsupervised

clustering

Kelley et al., 2012 http://www.cbcb.umd.edu/

software/glimmer-mg/

FragGeneScan Gene coding sequences predictor from short reads Rho et al., 2010 http://sourceforge.net/projects/

fraggenescan/

CD-HIT Clustering and comparing sequences of nucleotides

or protein

Li and Godzik, 2006 http://weizhongli-lab.org/cd-hit/

HMMER3 Hidden Markov models applied in sequences

alignments

Eddy, 2011 http://hmmer.janelia.org/

BLASTX Basic local alignment of translated sequences Altschul et al., 1997 http://blast.ncbi.nlm.nih.gov/

blast/Blast.cgi?PROGRAM=

blastx&PAGE_TYPE=

BlastSearch&LINK_LOC=

blasthome

MetaORFA Assembly of peptides obtained from predicted

ORFs

Ye and Tang, 2008 NA

MinPath Reconstruction of pathways from protein family

predictions

Ye and Doak, 2009 http://omics.informatics.indiana.

edu/MinPath/

MetaPath Identification of metabolic pathways differentially

abundant among metagenomic samples

Liu and Pop, 2011 http://metapath.cbcb.umd.edu/

GhostKOALA KEGG’s internal annotator of metagenomes by

k-number assignment by GHOSTX searches

against a non-redundant database of KEGG genes

NP http://www.kegg.jp/ghostkoala/

RAMMCAP Metagenomic functional annotation and data

clustering

Li, 2009 http://weizhong-lab.ucsd.edu/

rammcap/cgi-bin/rammcap.cgi

ProViDE Analysis of viral diversity in metagenomic samples Ghosh et al., 2011 http://metagenomics.atc.tcs.

com/binning/ProViDE/

Phyloseq Tool-kit to row reads pre-processing, diversity

analysis and graphics production. R, Bioconductor

package

McMurdie and Holmes, 2014 https://joey711.github.io/

phyloseq/

MetagenomeSeq Analysis of differentially abundance of 16S rRNA

gene in metaprofiling data. R, Bioconductor

package

Paulson et al., 2013 http://bioconductor.org/

packages/release/bioc/html/

metagenomeSeq.html

ShotgunFunctionalizeR Metagenomic functional comparison at level of

individual genes (COG and EC numbers) and

complete pathways. R, Bioconductor package

Kristiansson et al., 2009 http://shotgun.math.chalmers.

se/

Galaxy portal Web repository of computational tools that can be

run without informatic expertise. Graphical interface

and free service

Goecks et al., 2010 https://usegalaxy.org/

MG-RAST Taxonomic and functional annotation, comparative

metagenomics. Graphical interface, web portal, and

free service

Meyer et al., 2008 http://metagenomics.anl.gov/

IMG/M Functional annotation, phylogenetic distribution of

genes and comparative metagenomics. Graphical

interface, web portal, and free service

Markowitz et al., 2012 https://img.jgi.doe.gov/cgi-

bin/m/main.cgi

NP, Not published in an indexed Journal; NA, Not web site available.
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PICRUSt uses an evolutionary modeling to generate functional
predictions from ribosomal (16S rRNA) genes databases, which
allows to obtain a general vision of microbial functions in
a microbiome. However, it only works adequately for those
environments where the results have large numbers of organisms
with annotated reference genomes available. Finally, PICRUSt is
only designed to analyse prokaryotes, ignoring a large amount of
metabolic features performed by eukaryotes.

Shotgun Metagenomics
As mentioned, after deciphering the microbial diversity of a
metagenome, it would be very convenient to understand its
metabolic potential. This can be achieved by using a whole
metagenome approach where total DNA is obtained to prepare
whole shotgun libraries. As discussed, the sequencing platform
choice will be somehow influenced by the computational
resources and available software to handle and process the
sequencing output (Table 2). It should be noted that the impact
and potential of shotgunmetagenomics would be also reflected in
taxonomy species level classification. The many microorganisms
obtained from whole metagenome shotgun sequencing will
probably deliver new genes with novel functions.

Assessment of Taxonomy Based on Markers
Theoretically, when a whole metagenome shotgun sequencing
approach is performed, we can obtain a representation of all
the genomes in the sample. This permit us not only to choose
from a wide range of phylogenetic markers in order to perform
taxonomic annotation but also we can obtain the ribosomal
markers or any other used in the amplicon sequencing approach.

Amultithreading software option to extract ribosomal marker
genes from metagenomic sequences to conduct the taxonomic
annotation is Parallel-meta (Su et al., 2014). The program collects
ribosomal sequences from short reads by using a HiddenMarkov
Models (HMM)-based reconstruction algorithm (De Fonzo et al.,
2007). Then it maps the reconstructed sequences to different 16S
gene databases using Megablast (http://www.ncbi.nlm.nih.gov/
blast/html/megablast.html). As discussed in the metaprofiling
analysis section, taxonomical annotation could be improved
by using more than one phylogenetic marker. Therefore, in
whole metagenome shotgun sequencing, we can use software
to search single copy marker genes in other databases. Two
examples of programs using these approaches are MOCAT
(Kultima et al., 2012), which uses the RefMG database (Ciccarelli
et al., 2006) constituted by a collection of 40 single copy marker
genes, and AMPHORA (Wu and Eisen, 2008), which includes
a database containing around 31 single copy universal markers
(Table 2). After the single copy marker identification, such
pipelines perform anOTUmultiple sequence alignment, distance
calculation, and clustering. Finally, the taxonomical annotation is
performed using reference genomes giving a species resolution in
many cases.

The Binning Strategy
Binning classification is a quick and handy method to predict
taxonomical composition using the information contained in the
reads. These could be performed using either reads or assembled

sequences. Binning algorithms use different strategies to get the
taxonomic assignment: (a) sequence composition classification
or (b) sequence alignment against references.

The first one is based on k-mer frequencies methods, which
uses short words (k-mers) to represent a vector-like sequence
and then to obtain the similarity among all words in the query.
This representation can be considered as a “genomic signature”
and was widely used by Karlin and Burge (1995) to explore
evolutionary conservation among species. Examples of software
that perform sequence classification by composition are TETRA
(Teeling et al., 2004), PhylophytiaS (McHardy et al., 2007), and
MetaclusterTA (Wang et al., 2014) (Table 2).

Other methods have more than one strategy to support the
correct binning of sequences as in the case of MaxBin (Wu et al.,
2014) andAmphora2 (Wu and Scott, 2012), which rely on finding
single copy marker genes, k-mer signatures, GC content, and
coverage information to perform contig and read binning.

In spite of the binning approach facilitating taxonomic
classification, it should be considered that this strategy have some
problems with horizontally transferred sequences, where genes
from an organism appear in another. This could lead to an
aggravated misclassification if it occurs between non-described
organisms (Sharpton, 2014).

However, other methods based on reference read alignment
are based on Burrows–Wheeler Transform indexes like BWA (Li
and Durbin, 2009) or Bowtie (Langmead and Salzberg, 2012).
These fast and accurate alignment methods can assess species
richness and abundance in metagenomes by mapping reads
directly to individual reference genomes or many concatenated
genomes (pangenomes) or sequences. This last approach is used
in the Genometa software (Davenport and Tümmler, 2013) and
allows us to obtain OTUs for metagenome samples by grouping
genomic islands, operons, or orthologous genes present in
reference pangenomes. Furthermore, if long reads are available,
then it is possible to do a taxonomic assignment by translating
them and use all potential coding sequences to perform searches
in annotated protein databases using local alignment tools,
i.e., BLAST. In addition, some programs like SORT-Items
(Monzoorul Haque et al., 2009), Megan, or Discribinate (Ghosh
et al., 2010) (Table 2) can recover the lowest common ancestor
(LCA) of a certain sequence from BLAST results.

Finally, we should consider that themore information we have
for supporting taxonomic or functional results, the more reliable
will be our conclusions. This is why it is always advisable to
use more than one approach to assess taxonomic or functional
annotation, if possible.

Functional Metagenomics Analysis
Reconstruction of metabolic pathways from enzyme-coding
genes is a relevant matter in the metagenome analysis. Generally,
there are two options to perform functional annotation from
shotgun sequences, one is using sequencing reads directly and
another is by read assembly.

Read assembly
Assembly is more efficient for genome reconstruction in low
complex samples and when closely related species reference

Frontiers in Genetics | www.frontiersin.org 8 December 2015 | Volume 6 | Article 348

http://www.ncbi.nlm.nih.gov/blast/html/megablast.html
http://www.ncbi.nlm.nih.gov/blast/html/megablast.html
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Escobar-Zepeda et al. A Brief History of Metagenomics

genomes are present (Teeling and Glöckner, 2012; Luo et al.,
2013). However, the task is hampered when the read coverage
is low and when there is high frequency of polymorphisms and
repetitive regions (De Filippo et al., 2012). Nowadays, there
are ad hoc assemblers for metagenome reads (Table 2) such as
IDBA-UD (Peng et al., 2012) and MetaVelvet (Namiki et al.,
2012). Both are based on de Bruijn graph construction methods
and consider different coverage peaks, which are expected in a
community composed by several different organisms (Thomas
et al., 2012).

An extension of this algorithm is the use of the so called
“colored” de Brujin graphs. This computational implementation
can perform a genome assembly and variant calling at the same
time (Iqbal et al., 2012). An assembler that incorporates this
technique is Ray genome assembler that presents a different
implementation such as RayMeta for de novo assembly of
metagenomes and RayCommunities that calculates microbe
abundance and taxonomical profiling (Table 2) (Boisvert et al.,
2012).

Some advantages of assembling metagenomes are: (1) The
possibility of analysing the genome context (i.e., operons);
(2) Increasing the probability of complete genes and genomes
reconstruction, arising the confidence of sequence annotation;
(3) Analysis simplification by mapping long contigs instead of
short reads (Thomas et al., 2012; Luo et al., 2013; Segata et al.,
2013).

Prediction of gene coding sequences
After metagenome assembly, gene prediction and annotation
are similar to the framework followed in whole genome
characterization (Yandell and Ence, 2012; Richardson and
Watson, 2013). For metagenomics, it is recommended to predict
genes using algorithms that consider di-codons frequency,
preferential bias in codon usage, patterns in the use of start and
stop codons and, if possible, incorporates the information of
species-specific ribosome-binding sites patterns, Open Reading
Frame (ORF) length, and GC content of coding-sequences (Liu
et al., 2013).

To assess such tasks, some gene predictors have been designed
particularly for metagenomic contig ORFs calling (Table 2). For
example, MetaGeneMark (Zhu et al., 2010) or GlimmerMG
(Kelley et al., 2012) uses ab initio gene identification by
“heuristical model” methods and second-order Markov chains
for coding-sequence prediction training.

However, it is not always possible to get a good assembly,
especially for complex metagenomes with a great number of
low abundance species. A workaround would be the use of
FragGeneScan tool, which predicts partial ORFs from short reads
of at least 60 bp length (Rho et al., 2010).

With predicted genes, we can continue to analyse the
translations of such predictions and obtain a product and
functional annotation.

Function assignment and databases
Function assignment of predicted ORFs could be performed
on either nucleotide or translated sequences. In both cases,
homology detection is probably the easiest and most frequent

annotation method, despite being computationally demanding
and time consuming. Using algorithms like BLAST against
databases such as Swiss-Prot or NCBI-nr retrieve a list of
related hits with a certain annotation that can be used to mine
taxonomical information as well. However, a limitation of this
approach is the size and phylogenetic coverage of the database
(Carr and Borenstein, 2014).

Searches in customized databases such as CAZY, dbCAN, or
MetaBioMe are alternative to avoid time consuming and the use
of excessive computational resources in the annotation of genes
related to ametabolic pathway (Teeling andGlöckner, 2012; Yang
et al., 2014). In any case, reducing computational workload is
useful to remove redundant sequences using algorithms such
as CD-HIT (Li and Godzik, 2006) to make the ORF or read
annotation process more efficient.

Usually, when protein function assignment by homology
is not possible due to low sequence identity values (<20%
of identity), HMM searches (Eddy, 2011) can be used for
interrogating protein functional domain profiles using databases
like the Conserved Domain Database of NCBI, PFAM, or SEED.
Apart from solving the remote homology problem, this approach
has helped us to find the regional or functional domains in
proteins, in addition to the product annotation that sometimes
could be cryptic.

Homology-based or HMM strategies can deliver a great
number of false negatives especially when using short reads
(Scholz et al., 2012; Yang et al., 2014). It is noteworthy that
for functional annotation, the longer the sequence, the more
information is provided, which makes the sequence search
easier (Carr and Borenstein, 2014). The use of short reads to
perform direct searches has low sensitivity and specificity for
homologous identification (Wommack et al., 2008); therefore,
E-value threshold should be adjusted in order to obtain correct
results (Carr and Borenstein, 2014).

Another option is sequence clustering using BLASTX
(Altschul et al., 1997). This strategy allows us to search directly
from reads or contigs, since the program will perform all the
possible translations. This has been implemented by Ye and
Tang (2008) in the MetaORFA pipeline, where the translations
(ORFome) are used to search homologs in the databases
(Table 2). However, this could be very inefficient if a large set of
reads is being analyzed.

A workflow summary for functional annotation could be as
follows: get the best possible metagenome assembly (highest
N50, N90, and contig/scaffold ave. length) to perform the
ORF prediction and then assign function to a set of translated
sequences by homology against well-curated databases of both
protein and conserved domains. Finally, mine the functional and
taxonomical information obtained from the search results based
on the target sequences.

An alternative to avoid dealing with local software and
computational resources is web portals such as Galaxy (Goecks
et al., 2010), MG-RAST (Meyer et al., 2008), and IMG-M portal
(Markowitz et al., 2012). These web servers are dedicated to
perform taxonomical and functional analysis of metagenomes via
a graphical user-friendly interface (Table 2). Unfortunately, these
portals sometimes are saturated and the analysis parameters are
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not customizable. Finally, the internet bandwidth to transfer very
large datasets could be a bottleneck for some users.

Metabolic pathway reconstruction
Pathway reconstruction of the metagenome data is one of the
annotation goals. The concept of metabolic pathway in microbial
ecology should be understood as the flow of information through
different species. Therefore, the term “inter-organismic meta-
routes” or “meta-pathways” has been proposed for this kind of
analysis (De Filippo et al., 2012).

In order to perform a reliablemetabolic reconstruction, a good
functional annotation should be achieved in the first place. This
has to be used to find each gene in an appropriate metabolic
context, filling missing enzymes in pathways and find optimal
metabolic states to perform the best pathway reconstructions.
Examples of programs available are MinPath (Ye and Doak,
2009) and MetaPath (Liu and Pop, 2010). Both use information
deposited in KEGG (Ogata et al., 1999) andMetaCyc (Caspi et al.,
2014) repositories (Table 2).

However, most of the metabolic information comes from
model organisms, but not all the enzymes or pathways are
conserved among all species or environments. That is why most
of the current platforms fail in metabolic reconstruction of
variant pathways (de Crécy-Lagard, 2014) and most are designed
to analyse single genomes.

A web service implementation by KEGG for metagenome
analysis is GhostKOALA (Kanehisa Laboratories; http://www.
kegg.jp/ghostkoala/). It relates taxonomic origin with their
respective functional annotation, and the user is able to visualize
metabolic pathways from different taxa in the same map.

Metabolic pathway reconstruction could be completed with
information provided by the data context such as gene function
interactions, synteny, and copy number of annotated genes to
integrate the metabolic potential of consortium.

Bottlenecks in functional annotation: The ORFans problem
There are some relevant issues to consider in the whole
metagenome shotgun sequencing annotation. Protocols based
on sequence similarity searching assume that each read will be
mapped to a homologous gene of some closely related species.
However, depending on the database quality and size, different
results could be obtained. For example, if direct DNA searches are
performed, then it is probable to get matches against intergenic
regions or non-coding genes (as a tRNA). In addition, alignments
could retrieve best hits from a sequence in a potentially distant
genome (Carr and Borenstein, 2014), affecting the taxonomic
annotation if the search results are used for this endeavor (i.e.,
MEGAN).

In spite of the annotation method, it is known that
metagenomes will have around 50% of protein sequences with
no annotation or unknown function (referred as ORFans). This
percentage increases when the species richness is high in the
community. ORFans can be classified into three categories: (1)
spurious genes produced by errors in the gene prediction; (2)
genes with homology at secondary or tertiary structure level but
not at nucleotide sequence level, or (3) real new genes with no
homology to other genes, hence with unknown functions.

An option to deal the ORF prediction errors is to use the
rate of possible non-synonymous and synonymous substitutions
(ka/ks) as a criterion to select probable genes. If ka/ks value is
close to 1, then it indicates that such sequence is not under
selective pressure, suggesting a low probability to code for a
real protein (Yooseph et al., 2008). To confirm a candidate
for a novel gene, the appropriate strategy should include a de
novo secondary and tertiary structure predictions using tools
like I-TASSER (Yang et al., 2015), QUARK (Xu and Zhang,
2012), or RaptorX (Källberg et al., 2012) and perform a protein
structure comparison using tools like STRAP (Gille et al., 2014).
Nevertheless, this will reveal the protein tertiary structure but not
necessarily its function. In fact, from more than six millions of
putative enzymes identified by 454-sequencing in metagenome
projects, only less than a few hundred proteins have a reliable
functional annotation (Guazzaroni et al., 2010). Finally, the
best way to confirm novel genes or discover new functions
is through experimental procedures such as heterologous
expression, biochemical characterization, and proteomics.

Pseudogenes are also a problem in metagenome functional
annotation, and they could represent up to 35% in prokaryotic
genomes (Liu et al., 2004). To address this annotation
challenge, there are databases like BactPepDB (Rey et al., 2014)
and Pseudogene.org for short sequences and pseudogenes of
prokaryotic and eukaryotic organisms (Karro et al., 2007). A
search in such databases before further analysis could be useful
to discard non-coding sequences.

COMPARATIVE METAGENOMICS

In either of the metaprofiling or shotgun sequencing, the species
richness or OTUs profiling could be contrasted among samples
based on species diversity comparison (beta-diversity).

Two types of beta-diversity indices, such as incidence type and
abundance type, could be used. The former, such as Jaccard and
Sørensen indices, treats the common and rare species equally and
just compares the number of shared and unique taxa between
the samples. The abundance-type index contemplates abundance
similarity, thereby treating individuals not species equally; some
examples are the Morisita-type and Bray–Curtis dissimilarity
indices (Chao et al., 2006). Such indexes are affected by sampling
size. An excellent review of beta-diversity fundamentals were
done by Tuomisto (2010). Alternatively, UniFrac is a method
for comparing microbial communities through phylogenetic
distance information contained in marker genes as the 16S
ribosomal rRNA (Lozupone and Knight, 2005). This method has
been well accepted in metagenomics pipelines and implemented
in some R-Bioconductor packages such as phyloseq (McMurdie
and Holmes, 2013) and metagenomeSeq (Paulson et al., 2013).
The latter implemented a novel algorithm for normalization as
alternative to rarefaction.

In metaprofiling analysis, some modular pipelines such as
Mothur and QIIME are capable of analysing raw reads and
performing taxonomical annotation. In addition, they can
compute sample comparisons and the calculation of some
indexes mentioned in the Section Concepts of Microbial
Diversity and Species Richness. In order to improve diversity
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estimation, a lot of specialized software have been developed
(Table 2) like ProViDE, which is designed for viral diversity
estimation (Ghosh et al., 2011).

For whole metagenome shotgun projects, where gene
protein coding information is available, functional comparative
metagenomics is possible. It is based on identifying differential
feature abundance (pathways, subsystems, or functional roles)
between two or more conditions following a statistical procedure
with some normalization step (Rodriguez-Brito et al., 2006;
Pookhao et al., 2015). Some useful tools to perform robust
comparative functional metagenomics are Parallel-meta and
MEGAN. Other more specialized software are capable of
returning graphical representations of metabolic abundances
and taxonomic correlations as heatmaps or PCA plots of
communities cluster genes. Two examples that compares
metabolic pathways are ShotgunFunctionalizeR, which use a
binomial and hypergeometric test to perform comparisons
(Kristiansson et al., 2009), and MetaPath, a tool implemented
in Perl that identifies and compares differentially abundant
pathways in metagenomes (Liu and Pop, 2011).

THE NEGLECTED WORLD OF
EUKARYOTES IN METAGENOMICS

Eukaryotes play important roles in almost all ecological niches
in the earth; however, the study of eukaryotic domain is mostly
biased toward animals, plants, and fungi, thereby resulting in
a narrow view of the great eukaryotic diversity. Microscopic
eukaryotes (regularly named protists) are the real bulk of most
of the eukaryotic lineages (Burki, 2014). Microeukarya are poorly
studied, but it is estimated that around 10% percent of protrist
species are already described and were found in the ocean (Mann
and Droop, 1996; Norton et al., 1996). Meanwhile, a 1.2–10
million species have been predicted as host-associated protista
from which only 6000 have been reported (Burki, 2014).

Studying these organisms by NGS techniques has been a
challenge because they are not well represented in the sequence
databases. The lack of reference eukaryotic genomes is due in part
the difficulty of their genome assembly and annotation (Gilbert
and Dupont, 2011). In spite of the lack of information, it is
important to remark the importance of microeukaryotes in the
environment. They are responsible for CO2 fixing in the oceans,
and they are the principal organic matter degraders in soils, and
some of them are symbionts of other eukaryotes (Burki, 2014).

Diversity studies of the “eukaryotome” have been done
using 18S rRNA gene amplicons (Andersen et al., 2013), and
some programs include tools to analyse them such as Parallel-
meta and QIIME, which have an option for mapping reads
against eukaryotic Silva small ribosomal subunit (SSU) database.
The SSU is commonly used for diversity analysis as universal
phylogenetic marker for eukaryotic genes, but there are issues
to reach a species classification level due to their little variation
that limits the taxonomical position, especially for some fungi
and protists (Schoch et al., 2012).

Nowadays, new strategies have been developed based on other
phylogenetic markers to evaluate the eukaryotic fraction in a

sample. The LSU or ITS regions are good alternatives to classify
organisms at the species level with high accuracy. Ecologists
interested in analysing the eukaryotic fraction are using NGS
platforms like the Ion Torren PGM or the Illumina MiSeq
sequencers, which generate 400 bp single reads or 300 bp paired
end reads, respectively (Table 1). Both platforms deliver enough
yield to perform the analysis of LSU or ITS amplicons at a very
high depth (Lindahl and Kuske, 2013; Hugerth et al., 2014; Tonge
et al., 2014).

Regarding the metabolic association of eukaryotic genes
in a certain pathway, it can be a greater challenge than
bacterial annotation. Eukaryotic genomes are typically 6–10
times larger than the average bacterial genome (about 3–5
Mb) size, plus they can have different genome ploidy states.
It is worthy to mention that the eukaryotic genes contain
introns, which may have differential splicing patterns under
particular environmental conditions, thereby increasing the
amount of products (isoforms) with different functions to
annotate. Moreover, high percentage of intergenic non-coding
sequences that are represented differently in a shotgun sequenced
metagenome can represent a problem if they were not assembled
correctly leaving them out of their gene context. A strategy to
further characterize coding regions in a eukaryotic metagenome
is to isolate some mRNA to perform a metatranscriptomics
analysis. Enriched mRNA from eukaryotic organisms (Qi et al.,
2011; Keeling et al., 2014) can be de novo assembled or mapped
to related reference genomes in order to elucidate the functions
from these transcripts.

CONCLUDING REMARKS

Here, we have reviewed the evolution of Microbiology into
Metagenomics to describe exhaustively a microbial community
in terms of taxonomic diversity and metabolic potential.
Metagenomics allows us to discover new genes and proteins or
even the complete genomes of non-cultivable organisms in less
time and with better accuracy than classical microbiology or
molecular methods. However, there are no standard methods
or universal tools that can answer all of our questions in
metagenomics. In fact, the lack of standards reduces the
reproducibility and comparison between similar projects, making
metagenomics a case by case study. It is noteworthy that each
metagenome project has specific requirements depending on its
experimental design, and hence, the sequencing technology and
computational tools should be chosen carefully. In spite of the
serendipity that is present in science, we have to bear inmind that
the experimental design is the most important part and should fit
each project objectives in order to reach them and answer the
biological question behind the project.

A metagenome usually represents a snapshot of a community
at a certain time when its DNA is obtained. As mentioned, a
good experimental design is necessary to explore the complete
population dynamics by combining different approaches like
culture methods, DNA and RNA analysis, protein studies, and
if possible, the metabolic profile. Consequently, integration
of several tools to microbiology (such as molecular biology,
genetics, bioinformatics, and statistics) is necessary to answer the
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questions related to microbial diversity and ecology in a greater
extent.

In our opinion, the development of more bioinformatics tools
for metagenomics analysis is necessary, but the experience of
scientists to manipulate such tools and interpret their results is
the key to a sensible biological conclusion. The bioinformatics
expertise is a necessity, as the sequencing platforms are
delivering a massive yield at a very low cost, increasing the
amount of information to analyse. Finally, the near future
challenge will reside in the manipulation and analysis of

the data deluge and how we can interpret them in a more
integrative way that could reflect the biodiversity present in our
world.
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