
The RoboCup Soer Server and CMUnited Clients:

Implemented Infrastruture for MAS Researh

Itsuki Noda
Eletrotehnial Laboratory
1-1-4 Umezono
Tsukuba, Ibaraki 305-8568, JAPAN
noda�etl.go.jp

Peter Stone
AT&T Labs { Researh
180 Park Ave., room A273
Florham Park, NJ 07932
pstone�researh.att.om

 2001 Kluwer Aademi Publishers. Printed in the Netherlands.

draft.tex; 28/10/2001; 2:41; p.1



2

1. Introdution

The �eld of multiagent systems (MAS) overs a wide variety of re-
searh foi and appliations, ranging from software-based information
proessing (e.g. (Syara et al., 1996)) to roboti ontrol of multiple
agents (e.g. (Matari, 1997)). One ommon harateristi of multia-
gent researh is that it relies on signi�ant software and/or hardware
infrastruture: domains that support the simultaneous operation of tens
to thousands of agents are needed.

As Gasser (Gasser, 2000) points out, infrastruture both enables
domain-spei� progress and serves as a \leveling devie: it uni�es loal
praties with global ones." He lassi�es the infrastruture needs of four
MAS fous areas: siene, eduation, appliation, and use. Sine eah
fous area has a wide range of di�erent needs, eah has room for several
infrastrutures. Certainly no single infrastruture an meet the needs
of all four fous areas.

One MAS infrastruture that is designed to meet many of the needs
of the siene and eduation fous areas is the RoboCup Soer Server
(Noda et al., 1998; Noda and Frank, 1998) and assoiated lient ode.
The Robot Soer World Cup, or RoboCup, is an international researh
initiative that uses the game of soer as a domain for arti�ial intelli-
gene and robotis researh. Annual international RoboCup events in-
volve tehnial workshops as well as software and roboti ompetitions.
Soer Server is used as the substrate for the RoboCup software ompe-
titions. Originally released in 1995, Soer Server has an international
user ommunity of over 1000 people.

Soer Server is a multiagent environment that supports 22 indepen-
dent agents interating in a dynami, real-time environment. The server
embodies many real-world omplexities, suh as noisy, limited sensing;
noisy ation and objet movement; limited agent stamina; and limited
inter-agent ommuniation bandwidth. AI researhers have been using
the Soer Server to pursue researh in a wide variety of areas, inluding
real-time multiagent planning, real-time ommuniation methods, ol-
laborative sensing, agent/opponent modeling, and multiagent learning
(Asada and Kitano, 1999).

In addition to the server itself being publily available in an open-
soure paradigm, users have ontributed several lients that an be used
as starting points for newomers to the domain. One example is the
CMUnited simulated soer team, hampion of the RoboCup-98 and
RoboCup-99 roboti soer ompetitions. After winning the ompeti-
tions, muh of the CMUnited soure ode beame publily available,
and several groups used it as a resoure to help them reate new lients
for researh and as entries in the RoboCup-99 and RoboCup-2000

draft.tex; 28/10/2001; 2:41; p.2



3

ompetitions. As a unit, Soer Server and the lient ode omprise a
omplete infrastruture, allowing researhers to easily fous on a wide
variety of issues.

Based on the suess of Soer Server and its assoiated lient ode,
we are now in the proess of reating a new exible utility for simulation
systems (FUSS) that will be designed to support simulations of multiple
domains. For example, we plan to use the same underlying simulation
for an improved simulator of the game of soer as well as a disaster
resue simulator for use in the RoboCup Resue initiative (Kitano et

al., 1999). FUSS will also be available as infrastruture for the MAS
researh ommunity.

The remainder of the paper is organized as follows. Setion 2 out-
lines the siene and eduation needs that are met by this infras-
truture. Setion 3 gives an overview of the RoboCup Soer Server.
Setion 4 presents the CMUnited simulated soer lients for use with
Soer Server. Setion 5 motivates and presents the urrent state of the
development of FUSS and Setion 6 onludes.

2. Infrastruture Charateristis

Soer Server and the CMUnited lient ode are widely and freely avail-
able over the internet using an open soure paradigm. The software is
pakaged for easy installation, supported both by the developers and by
the large ommunity of urrent users.

This infrastruture is a omprehensive, implemented MAS designed
for simulation experiments. It onsists of several independent ompo-

nents, inluding visualization, sample lient, and oah modules. The
oah module is often used as a tool for experiment onstrution. The
most natural and ompelling form of measurement is game results
in tournaments with multiple teams, but the infrastruture also in-
ludes data olletion and analysis tools for more rigorous sienti�
measurement.

Judging by the large user ommunity, this infrastruture is very
usable; the fat that it has been suessfully used for multiple interna-
tional ompetitions is a testament to its robustness. New users an take
advantage of its progressive omplexity by starting with a single agent
and gradually inreasing the size of teams and their ommuniative
and organizational apabilities. A reent addition to the infrastruture
is the ability to indue intentional failures by disabling seleted players.

The italiized words above are all harateristis identi�ed by Gasser
(Gasser, 2000) as essential or desirable for MAS infrastrutures that
support siene and eduation.

draft.tex; 28/10/2001; 2:41; p.3



4

In addition to meeting these abstrat, general needs, Soer Server
has been used to study many onrete researh issues and as a basis
for several undergraduate and graduate ourses (e.g. (Coradeshi and
Male, 1999; Takahashi and Itoh, 2001)).

An IJCAI-97 hallenge paper (Kitano et al., 1997) identi�ed three
general researh hallenges that an be addressed within Soer Server
as being

� Multiagent learning;

� Teamwork strutures; and

� Agent/Opponent modeling.

As laid out in (Stone, 2000a), other relevant researh issues inlude
inter-agent ommuniation in single-hannel, low-bandwidth environ-
ments; oordination with limited ommuniation, ollaboration in a
dynami real-time environment; organizational strutures; distributed
sensing/sensor fusion; resoure management; agent monitoring; and
multiagent planning. These researh topis are all addressed by var-
ious researhers in the ontinuing series of RoboCup books (Kitano,
1998; Asada and Kitano, 1999; Veloso et al., 2000; Stone et al., 2001).

It also is important to emphasize that Soer Server is not simply
for domain-spei� researh. It shares harateristis with many other
domains, inreasing the likelihood that advanes will span appliations.
Spei�ally, algorithms that have been developed and/or studied in
Soer Server have also been applied to:

Heliopter ombat: A generi model of teamwork and opponent mod-
eling has been applied to both roboti soer and a heliopter
ombat domain. STEAM, a large number of domain-independent
teamwork rules, were de�ned in a SOAR arhiteture, reduing the
number of domain-spei� rules required in eah appliation (Tambe,
1997).

Network routing: Team-Partitioned, Opaque-Transition Reinfore-
ment Learning is an algorithm that enables multiple independent
agents to learn to ooperate despite limited ommuniation apa-
bilities. It was originally implemented and tested within Soer
Server, but then generalized and suessfully applied to a network
paket routing domain (Stone, 2000b).

Disaster resue: The RoboCup resue disaster resue domain, using
earthquake resue as its motivating senario, has been designed
spei�ally to transfer RoboCup researh to a related domain.

draft.tex; 28/10/2001; 2:41; p.4



5

Similar to soer, non-entralized, eÆient ontrol mehanism to
assign roles and to share information dynamially among agents
are neessary for this domain. Challenges also inlude saling up
to hundreds of heterogeneous agents (Kitano et al., 1999).

Other potential appliations for transferring RoboCup-related teh-
nologial advanes inlude: intelligent traÆ systems; oÆe robots;
NASA domains suh as multirover or interferometry missions; roboti
surveillane; agent ommuniation researh; real-time systems researh;
and market trading. Prokopenko summarizes these appliations at http:
//www.mis.siro.au/iit/Projets/RoboCup/appliations.htm.

Another aspet to show the generality will be the list of new researh
problems that these infrastrutures make lear for researhers. Andou
(Andou, 1999) pointed out the importane how rewards are assigned to
eah agent under reinforement learning of multiagent systems. They
foused espeially on autonomous learning by agents who do not play
the ball diretly when their team get a goal. They also pointed out the
issue of ratio of exploitation and exploration in multiagent reinfore-
ment learning. In a multiagent learning, exploration of an agent may
disturbs others' exploitation. Therefore exploration is used more are-
fully in multiagent learning. (Nakashima and Noda, 1998) mentioned
an issue of ombination of behavior-oriented ontrol and goal-oriented
planning, and propose a onept of dynami subsumption arhite-
ture. These issues are motivated by Soer Server, but inlude general
problems found in various multiagent systems.

With all of these past suesses and unrealized potentials, Soer
Server is one of the leading examples of MAS infrastrutures appropri-
ate for the siene and eduation ommunities. The following setions
detail the urrent state and future plans for this infrastruture.

3. The RoboCup Soer Server

3.1. Soer Server

Soer Server enables a soer math to be played between two teams
of player-programs (possibly implemented in di�erent programming
systems). A math using Soer Server is ontrolled using a form of
lient-server ommuniation. Soer Server provides a virtual soer
�eld suh as the one shown in Fig. 1 and simulates the movements of
players and a ball. A lient program an provide the `brain' of a player
by onneting to the Soer Server via a omputer network (using a
UDP/IP soket) and speifying ations for that player to arry out. In
return, the lient reeives information from the player's sensors.

draft.tex; 28/10/2001; 2:41; p.5



6

Figure 1. Window image of Soer Server

Message
Board

Field
Simulator

Referee

X window

Soccer Server

Client

Client

Client
Socket

Socket

Socket

Client

Client

ClientSocket

Socket

Socket

Network
(UDP/IP)

Network
(UDP/IP)

Figure 2. Overview of Soer Server

The three main modules in the Soer Server itself are:

1. A �eld simulator module. This reates the basi virtual world of
the soer �eld, and alulates the movements of objets, heking
for ollisions.

draft.tex; 28/10/2001; 2:41; p.6



7

2. A referee module. This ensures that the rules of the game are
followed.

3. A message-board module. This manages the ommuniation
between the lient programs.

Fig. 2 gives an overview of the relation of these modules and of how
the Soer Server ommuniates with lients. A lient ontrols only
one player. It reeives visual and verbal sensor information (`see' and
`hear' respetively) from the server and sends ontrol ommands (`turn',
`dash', `kik' and `say') to the server. Visual information gives only par-
tial information about the �eld from the player's viewpoint, so that the
player program must make deisions based on inomplete knowledge.
Limited verbal ommuniation is also available, by whih the players
an ommuniate with eah other to deide team strategy.

All ommuniation between the server and eah lient is in the form
of ASCII strings. Therefore, lients an be realized in any programming
environment on any arhiteture that has the failities of UDP/IP
sokets and string manipulation. The ommuniation protool onsists
of:

� Control ommands: messages sent from a lient to the server
to ontrol ations of the lient's player. The basi ommands are
turn, dash and kik. Communiation is onduted through the
say ommand, and a privileged goalie lient an also attempt to
ath the ball.

� Sensor information: messages sent from the server to a lient
desribing the urrent state of the game from the viewpoint of the
lient's player. There are three types of information, visual (see),
auditory (hear) and bodily (sense body).

Soer Server is a disrete simulation of ontinuous time. Thus, both
the ontrol ommands and the sensor information are proessed within
a framework of `simulator steps'. The length of the yle between the
proessing steps for the ontrol ommands is 100mse, whereas the
length of the step yle for the sensor information ranges from 37{
300mse and is ontrolled atively by the individual lients (frequeny
is traded o� against visible angle and information quality). Note that
all players have idential abilities (strength and auray of kiking,
stamina, sensing) so that the entire di�erene in performane of teams
derives from the e�etive use of the ontrol ommands and sensor

draft.tex; 28/10/2001; 2:41; p.7



8

information, and espeially from the ability to produe ollaborative
behavior among multiple lients 1.

As a �nal feature, when invoked with the -oah option, the server
provides an extra soket for a privileged lient (alled a oah lient)
that has the ability to diret all aspets of the game. The oah lient
an move all objets, diret the referee module to make deisions, and
announe messages to all lients. This faility is extremely useful for
tuning and debugging lient programs, whih usually involves repeated
testing of the behaviors of the lients in many situations. In addition to
the -oah option, \online oah" feature is implemented to the reent
Soer Server, whih allows teams to inlude a twelfth lient that has a
global view of the game and an ondut sideline oahing during play
by shouting strategi or tatial advie to players.

3.2. As a Researh Tool

Soer Server has been used by researhers to examine MAS. Here we
investigate Soer Server's features as a researh tool.

The biggest reason that it is used widely is that it simulates so-

er, whih is very popular world-wide. Similar to hess, popularity
is an important fator for researh appliations, beause researhers
an share an understanding and intuition about the domain. While
individual plays in soer are relatively simple (this is important in
simulations), the variation of team play is very wide. Therefore, we an
�nd many open issues in it, suh as opponent modeling, multiagent
learning, ooperative ations, multiagent planning, and so on. Thus,
researhers in various �elds an share a ommon domain.

The seond reason is that it uses a middle-level abstration for
representing the lient ommands and the sensor information. One
possibility was a low-level physial desription, for example allowing
power values for drive motors to be spei�ed. However it was felt that
suh a representation would onentrate users' attention too muh on
the atual ontrol of a player's ations, relegating true investigation
of the multiagent nature of team-play to the level of a seondary ob-
jetive. Further, it is diÆult to design a low-level desription that is
not impliitly based on a spei� notion of robot hardware; for ex-
ample, ontrol of speed by drive motors is biased towards a physial
implementation that uses wheels. On the other hand, a more abstrat
representation, using tatial ommands suh as pass-ball-to and
blok-shot, would produe a game in whih the real-world nature
of soer beomes obsured, and in whih the development of soer

1 Reent Soer Server versions (starting with version 7.0) inlude the option of
using heterogeneous players, though players are still all homogeneous by default.

draft.tex; 28/10/2001; 2:41; p.8



9

tehniques not yet realized by human players beomes problemati.
Thus, our representation| using basi ontrol ommands suh as turn,
dash, and kik | is a ompromise. To make good use of the available
ommands, lients need to takle both the problem of ontrol in an
inomplete information, dynami environment and also the hallenge of
ombining the e�orts of multiple players. Thus, we believe that Soer
Server ahieves our goal of providing a simple test-bed with signi�ant
real-world properties.

Several tehnial issues are also important for Soer Server's wide-
spread use. Soer Server has the following tehnial features that help
researhers to use it:

� Soer Server is lightweight. It requires few omputing resoures
so that it an run on entry-level PCs. This enables researhers to
start their researh with limited resoures. Additionally, in order
to use it for eduational purpose, it is neessary to run on PCs
students an use in omputer labs in shools.

� Soer Server runs on various platforms. It supports SunOS 4,
Solaris 2.x, Linux, IRIX, OSF/1, and Windows 2. It also requires
quite ommon tools and libraries like Gnu or ANSI C++ ompiler,
standard C++ libraries, and X window. They are distributed freely
and used widely.

� Soer Server uses ASCII string on UDP/IP for protool between
lients and the server. This feature enables researhers/students
to use any kind of programming language. Indeed, partiipants
in past RoboCup ompetitions used C, C++, Java, Lisp, Prolog
and various researh oriented AI programming systems suh as
SOAR (Tambe et al., 1995). Version ontrol of protool is also an
important feature. It enables us to use old lients to run in newer
servers.

As well as supporting researh pertaining to player ontrol, So-
er Server also supports several auxiliary researh ativities. Soer
Server onsists of two modules, soerserver, a simulation kernel, and
soermonitor, a viewer of simulated soer �eld. They are onneted
via UDP/IP. While this separated struture was introdued only for
displaying the �eld window on multiple monitors, it led to unexpeted

2 Windows versions were ontributed by Sebastien Donker and Dominique
Duhaut (ompatible to version 2), and now by Mario Pa (ompatible to version 4)
independently. Information about Mario's versions is available from:

http://users.informatik.fh-hamburg.de/~pa m/

draft.tex; 28/10/2001; 2:41; p.9



10

ativities in di�erent researh �elds. Many researhers have made and
have been trying to build 3D monitors to display senes of mathes
dynamially (Shinjoh and Yoshida, 1998). In addition, some groups
are building ommentary systems that desribe mathes dynamially
in natural language (Andr�e et al., 1998; Tanaka-Ishii et al., 1998). Both
kinds of systems are onneted with the server as seondary moni-
tors. They get information regarding the state of mathes, analyze the
situations, and generate appropriate senes and sentenes.

4. The CMUnited Client

As desribed in Setion 3, Soer Server lients interat with the Soer
Server via an ASCII string protool. The server supports low-level
sensing and ating primitives. However, there are several basi tasks
left up to the lients, inluding

� Managing soket ommuniation with the server;
� Parsing the sensory ommands;
� Handling asynhronous sensation and ation yles;
� Maintaining a model of the world; and
� Combining the low-level ation primitives into useful skills.

Depending on one's researh fous, a newomer to the domain may
not be interested in solving eah of these tasks from �rst priniples.
Instead, one an look to the growing body of publily available lient
ode available at http://medialab.di.unipi.it/Projet/Roboup/
pub/.

While there are many possible solutions to eah of these tasks, it
is often diÆult to evaluate them independently. The CMUnited lient
ode (Stone et al., 1999) o�ers robust solutions to these tasks that
have been suessfully tested in ompetitive environments: CMUnited
won both the RoboCup-98 and RoboCup-99 simulator ompetitions.
It has already been suessfully used by others. For example, the 3rd
plae �nisher in the RoboCup-99 ompetition, was partially adapted
from the CMUnited-98 simulator team ode, and the 1st, 2nd, and
3rd plae �nishers in the RoboCup-2000 ompetition were all based on
CMUnited-99 soure ode.

We present the lient ode as a part of the infrastruture, as opposed
to as an appliation. Without this ode, reating a substrate team of
agents for researh purposes is a daunting task, and is likely to yield
sub-par agents. The freely available lient ode enables researhers to
immediately fous on any of a wide variety of areas of interest. The
remainder of this setion gives an overview of the CMUnited lient
ode.

draft.tex; 28/10/2001; 2:41; p.10



11

4.1. Agent Arhiteture Overview

CMUnited agents are apable of pereption, ognition, and ation. By
pereiving the world, they build a model of its urrent state. Then,
based on a set of behaviors, they hoose an ation appropriate for the
urrent world state.

At the ore of CMUnited agents is what we all the loker-room
agreement (Stone, 2000a). Based on the premise that agents an period-
ially meet in safe, full-ommuniation environments, the loker-room
agreement spei�es how they should at when in low-ommuniation,
time-ritial, adversarial environments.

Individual agents an apture loker-room agreements and respond
to the environment, while ating autonomously. Based on a standard
agent paradigm, our team member agent arhiteture allows agents to
sense the environment, to reason about and selet their ations, and to
at in the real world. At team synhronization opportunities, the team
also makes a loker-room agreement for use by all agents during periods
of limited ommuniation. Fig. 3 shows the funtional input/output
model of the arhiteture.

ARCHITECTURE

World

State

Internal 

State

Real

World

Internal

Behaviors

Predictor

External

Behaviors

Sensor Information

Interpreter

Action Primitives

TEAM MEMBER

Agreement

Locker-Room

AGENT

Figure 3. A funtional input/output model of CMUnited's team member agent
arhiteture.

The agent keeps trak of three di�erent types of state: the world

state, the loker-room agreement, and the internal state. The agent also
has two di�erent types of behaviors: internal behaviors and external

behaviors.

The world state reets the agent's oneption of the real world,
both via its sensors and via the predited e�ets of its ations.
It is updated as a result of interpreted sensory information. It may
also be updated aording to the predited e�ets of the exter-
nal behavior module's hosen ations. The world state is diretly
aessible to both internal and external behaviors.

draft.tex; 28/10/2001; 2:41; p.11



12

The loker-room agreement is set by the team when it is able to
privately synhronize. It de�nes the exible teamwork struture
and the inter-agent ommuniation protools, if any. The loker-
room agreement is aessible only to internal behaviors.

The internal state stores the agent's internal variables. It may re-
et previous and urrent world states, possibly as spei�ed by
the loker-room agreement. For example, the agent's role within
a team behavior ould be stored as part of the internal state. A
window or distribution of past world states ould also be stored as
a part of the internal state. The agent updates its internal state
via its internal behaviors.

The internal behaviors update the agent's internal state based on
its urrent internal state, the world state, and the team's loker-
room agreement.

The external behaviors referene the world and internal states, and
selet the ations to send to the atuators. The ations a�et the
real world, thus altering the agent's future perepts. External be-
haviors onsider only the world and internal states, without diret
aess to the loker-room agreement.

4.2. Asynhronous Sensing and Ating

A driving fator in the design of the agent arhiteture is the fat
that the simulator operates in �xed yles of length 100 mse, while
sensations are sent at di�erent intervals (typially every 150 mse). The
simulator aepts ommands from lients throughout a yle and then
updates the world state all at one at the end of the yle. Only one
ation ommand (dash, kik, turn, or ath) is exeuted for a given
lient during a given yle.

Therefore, agents (simulator lients) should send exatly one ation
ommand to the simulator in every simulator yle. If more than one
ommand is sent in the same yle, a random one is exeuted, possibly
leading to undesired behavior. If no ommand is sent during a simulator
yle, an ation opportunity has been lost: opponent agents who have
ated during that yle may gain an advantage.

In addition, sine the simulator updates the world at the end of every
yle, it is advantageous to try to determine the state of the world at
the end of the previous yle when hoosing an ation for the urrent
yle. As suh, the basi agent loop during a given yle t is as follows:

draft.tex; 28/10/2001; 2:41; p.12



13

� Assume the agent has onsistent information about the state of
the world at the end of yle t � 2 and has sent an ation during
yle t � 1.

� While the server is still in yle t� 1, upon reeipt of a sensation
(see, hear, or sense body), store the new information in temporary
strutures. Do not update the urrent state.

� When the server enters yle t (determined either by a running
lok or by the reeipt of a sensation with time stamp t), use all of
the information available (temporary information from sensations
and predited e�ets of past ations) to update the world model
to math the server's world state (the \real world state") at the
end of yle t�1. Then hoose and send an ation to the server
for yle t.

� Repeat for yle t+ 1.

While the above algorithm de�nes the overall agent loop, muh of
the hallenge is involved in updating the world model e�etively and
hoosing an appropriate ation. The remainder of this setion goes into
these proesses in detail.

4.3. World Modeling

When ating based on a world model, it is important to have as aurate
and preise a model of the world as possible at the time that an ation
is taken. In order to ahieve this goal, CMUnited agents gather sensory
information over time, and proess the information by inorporating it
into the world model immediately prior to ating.

4.3.1. Objet Representation

There are several objets in the world, suh as the goals and the �eld
markers whih remain stationary and an be used for self-loalization.
Mobile objets are the agent itself, the ball, and 21 other players (10
teammates and 11 opponents). These objets are represented in a type
hierarhy as illustrated in Fig. 4.

Mobile
Object

Stationary
Object

Ball Player

Object

Figure 4. The agent's objet type hierarhy.

draft.tex; 28/10/2001; 2:41; p.13



14

Eah agent's world model stores an instantiation of a stationary
objet for eah goal, sideline, and �eld marker; a ball objet for the
ball; and 21 player objets. Sine players an be seen without their
assoiated team and/or uniform number, the player objets are not
identi�ed with partiular individual players. Instead, the variables for
team and uniform number an be �lled in as they beome known.

Mobile objets are stored with on�dene values within [0,1℄ indiat-
ing the on�dene with whih their loations are known. The on�dene
values are needed beause of the large amount of hidden state in the
world: no objet is seen onsistently.

The variables assoiated with eah objet type are as follows:

Objet :

� Global (x; y) position oordinates
� Con�dene within [0,1℄ of the oordinates' auray

Stationary Objet : nothing additional

Mobile Objet :

� Global (dx; dy) veloity oordinates
� Con�dene within [0,1℄ of the oordinates' auray

Ball : nothing additional

Player :
� Team
� Uniform number
� Global � faing angle
� Con�dene within [0,1℄ of the angle's auray

4.3.2. Updating the World Model

Information about the world an ome from
� Visual information;
� Audial information;
� Sense body information; and
� Predited e�ets of previous ations.

Visual information arrives as relative distanes and angles to objets in
the player's view one. Audial information ould inlude information
about global objet loations from teammates. Sense body information
pertains to the lient's own status inluding stamina, view mode, and
speed.

Whenever new information arrives, it is stored in temporary stru-
tures with time stamps and on�denes (1 for visual information, possi-
bly less for audial information). Visual information is stored as relative
oordinates until the agent's exat loation is determined.

draft.tex; 28/10/2001; 2:41; p.14



15

When it is time to at during yle t, all of the available information
is used to best determine the server's world state at the end of yle
t � 1. If no new information arrived pertaining to a given objet, the
veloity and ations taken are used by the preditor to predit the new
position of the objet and the on�dene in that objet's position and
veloity are both deayed.

When the agent's world model is updated to math the end of simu-
lator yle t� 1, �rst the agent's own position is updated to math the
time of the last sight; then those of the ball and players are updated.

4.4. Agent Skills

One the agent has determined the server's world state for yle t as
aurately as possible, it an hoose and send an ation to be exeuted
at the end of the yle. In so doing, it must hoose its loal goal within
the team's overall strategy. It an then hoose from among several low-
level skills whih provide it with basi apabilities. The output of the
skills are primitive movement ommands.

The skills available to CMUnited players inlude
� kiking,
� dribbling,
� ball intereption,
� goaltending,
� defending, and
� learing.
The ommon thread among these skills is that they are all predi-

tive, loally optimal skills (PLOS). They take into aount predited
world models as well as predited e�ets of future ations in order to
determine the optimal primitive ation from a loal perspetive, both
in time and in spae.

One simple example of PLOS is eah individual agent's stamina
management. The server models stamina as having a replenishable and
a non-replenishable omponent. Eah is only deremented when the
urrent stamina goes below a �xed threshold. Eah player monitors its
own stamina level to make sure that it never uses up any of the non-
replenishable omponent of its stamina. No matter how fast it should
move aording to the behavior the player is exeuting, it slows down
its movement to keep itself from getting too tired. While suh behavior
might not be optimal in the ontext of the team's goal, it is loally
optimal onsidering the agent's urrent tired state.

Even though the skills are preditive, the agent ommits to only
one ation during eah yle. When the time omes to at again, the
situation is ompletely reevaluated. If the world is lose to the an-

draft.tex; 28/10/2001; 2:41; p.15



16

tiipated on�guration, then the agent will at similarly to the way
it predited on previous yles. However, if the world is signi�antly
di�erent, the agent will arrive at a new sequene of ations rather than
being ommitted to a previous plan. Again, it will only exeute the �rst
step in the new sequene.

4.5. Layered Dislosure

A perennial hallenge in reating and using omplex autonomous agents
is following their hoies of ations as the world hanges dynamially,
and understanding why they at as they do. To this end, we intro-
due the onept of layered dislosure (Riley et al., 2000) by whih
autonomous agents inlude in their arhiteture the foundations ne-
essary to allow them to dislose to a person upon request the spei�
reasons for their ations. The person may request information at any
level of detail, and either retroatively or while the agent is ating.

A key omponent of layered dislosure is that the relevant agent
information is organized in layers. In general, there is far too muh
information available to display all of it at all times. The imposed
hierarhy allows the user to selet at whih level of detail he or she
would like to probe into the agent in question.

The CMUnited layered dislosure module is publily available and
has been suessfully used by other researhers to help them in their
ode development.

4.6. Summary

In Summary, the CMUnited ode hadles several hallenges presented by
Soer Server, inluding managing asynhronous sensing and ating via
soket ommuniation with the server; parsing the sensory information;
maintaining a world model; and supporting basi skills that an be used
to build up a fully funtional team. Sine it failitates MAS researh
in the domain, it forms an important part of this infrastruture.

5. Next Generation Infrastruture

5.1. Problems of Soer Server

As desribed above, Soer Server is a useful infrastruture for researh
on MAS.While it is used widely for researh, several problems of Soer
Server have beome lear.

� Generality: From 5 years experiene of RoboCup ativity, we
have reognized that many researhers want simulators like Soer

draft.tex; 28/10/2001; 2:41; p.16



17

Server for other domains. For example, some researhers want
to modify Soer Server for hokey or basket-ball. In addition
to these ball games, there is growing interest in simulations of
resue from huge natural disasters. Beause, Soer Server itself
was designed only for soer, however, it is diÆult to modify it
for suh purposes.

� Huge Network TraÆ: Soer Server ommuniates with vari-
ous types of lients (player lients, monitor lients, o�ine-/online-
oah lients) diretly. This often makes the server a bottle-nek
of network-traÆ. In order to avoid suh trouble, the server should
be re-designed to enable distributed proessing easily.

� Legay: In order to keep bakward ompatibility as muh as
possible, Soer Server uses version ontrol for the lient-server
protool. Beause the urrent server is a single module, the server
must inlude all protool versions. In order to solve this problem,
the server should have a mehanism that enables it to onnet with
a kind of �lter or proxy that onverts internal representations for
eah version of the protool.

A possible strategy to overome these problems is \modular stru-
ture over network." In Soer Server, the monitor module is separated
from the simulation kernel. As mentioned before, this modularity brings
the following merits:

� It enables the development of systems to show plays in 3D, to
desribe games in natural language, and to analyze performane
of teams from various point of view. These systems are possible
beause the modules are onneted via networks and loosely ou-
pled by a simple protool. Therefore, eah developer an develop
their systems independently.

� It enables researhers to develop suh monitors on various plat-
forms. This is possible beause ommuniation between modules
use open and standard protool (harater strings via UDP/IP).

We are now applying a similar tehnique to other parts of the simulator.
In the following setions, we desribe the general framework, alled
FUSS, for distributed simulation based on this strategy, and show the
implementation of the soer simulator as an example.

draft.tex; 28/10/2001; 2:41; p.17



18

5.2. Overview

FUSS (Framework for Universal Simulation System) is a olletion
of programs and libraries to develop distributed simulation systems.
It is designed to aid development of systems that simulate omplex
environments like MAS.

A simulation system in FUSS onsists of a few modules, eah of
whih simulates an individual funtion or phenomenon. For example,
we an develop a soer simulator in FUSS that onsists of a �eld
(physial) simulation module, a referee module, and multiple player
simulation modules. The modules are ombined into a system by a
kernel (fskernel) and libraries. Fig. 5 shows the high-level struture of
a simulation system built on top of FUSS.

simulation

module 3

fskernel

simulation

module 1

simulation

module 2

FUSS

CORBA

network

FUSS library
(libfuss)

Figure 5. A Simulation System Built on FUSS

FUSS itself onsists of the following items:

� fskernel: A kernel for a simulation system. It provides servies of
module database, shared memory management, and synhroniza-
tion ontrol.

� FUSS library (libfuss): A library to develop modules of the sim-
ulation system. The library onsists of FsModule, ShrdMem and
PhaseRef libraries, whih provide a framework of simulation mod-
ules, an interfae to aess shared memories, and failities to syn-
hronize exeutions of modules respetively.

� utility library and programs: A olletion of utilities.

In order to guarantee open-ness in ommuniation among modules
and the kernel, FUSS uses CORBA for the ommuniation layer. This

draft.tex; 28/10/2001; 2:41; p.18



19

makes users free to selet any platform and programming language
to develop simulation modules. While the urrent implementation of
FUSS uses C++, we an develop libraries in other languages that have
a CORBA interfae.

In addition, FUSS uses the POSIX multi-thread faility (pthread) to
realize exible interations between modules and fskernel. Using this
faility, users need not manage ontrol of exeution of the simulation
and the ommuniation.

5.3. Shared Memory and Time Management

In development of distributed systems, there are two major issues,
shared data management and time management. As an infrastruture
for distributed simulation systems, FUSS provides two frameworks,
shared memory and phase ontrol, to realize this management.

All shared data in a FUSS simulation system must be de�ned by
IDL of CORBA. The de�nitions are onverted into C++ lasses and
inluded by all related modules. The shared data is de�ned as a sub-
lass of ShrdMem, the shared memory lass, in eah module. A module
alls the download method before using the shared memory, and alls
the uploadmethod after modifying the memory. Then the FUSS library
maintains the onsisteny of the memory among modules.

In order to make an expliit order of exeution of multiple simulation
omponents, FUSS modules are synhronized by phase ontrol. In the
ase of soer simulation, eah yle of the physial (�eld) simulation
may onsist of the following steps:

1. ollet players' ations to exeute in the yle,

2. alulate movements of players and a ball,

3. hek onditions of the game aording to the rules, and

4. reet hanges of movements to a shared memory.

These steps are represented by phases in a FUSS simulation system.
A phase is a kind of an event that has joined modules. When a mod-

ule is plugged into the simulation system, the module sends joinPhase
messages to fskernel to join phases in whih it exeutes a part of the
simulation. When a phase starts, the kernel noti�es the beginning of
the phase by sending an ahievePhase message to all joined modules.
Then, the ylemethod of the phase, whih should be de�ned by users,
is alled in eah module. The kernel waits until all joined modules �nish
the yle operations of the phase, and moves to the next phase. In

draft.tex; 28/10/2001; 2:41; p.19



20

other words, exeutions of simulation modules are serialized aording
to sequential order of phases.3

The kernel an handle two types of phases: timer phase and adjunt

phase. A timer phase has its own interval. The kernel tries to start
the phase for every interval. For example, a �eld simulation phase
in soer simulation may our every 100mse. This phase has the
�eld simulator as a joined module. So, the �eld simulator reeives an
ahievePhase message for every 100mse. Then the simulator module
alls yle method of �eld simulation phase, in whih it alulates
movement of objets.

An adjunt phase is invoked before or after another phase adjun-
tively. For the example of soer simulation, a referee phase will
be registered as an adjunt phase after a �eld simulation phase.
Then the kernel starts the referee phase immediately after the �eld
simulation phase is ahieved. For another example, a player phase,
in whih player simulators/proxies upload players' ommands, will be
registered as an adjunt phase before a �eld simulation phase. In
this ase, the kernel starts the player phase �rst, and starts the �eld
simulation phase after it is ahieved.

A phase an have multiple adjunt phases before or after it. To
arrange them in an order expliitly, eah adjunt phase has its own
tightness fator. If the fator is larger, the phase ours more tightly
adjoined to the mother phase. For example, a �eld simulation phase
will have two adjunt phases, a referee phase and a publish phase,
after it. Tightness fators of the referee and publish phases will be 100
and 50 respetively. So, the referee phase ours just after the �eld
simulation phase, and the broadast phase ours later. Fig. 6 shows
phase-ontrol and ommuniation between the kernel and modules in
the soer simulation desribed in Se. 5.4.

The struture of the adjunt relationship among phases is an im-
portant feature of FUSS. It serializes exeutions of simulation of joined
modules4 aording to the struture and the tightness. Therefore, users
an realize serialization of exeution by speifying logial relations (ad-
junt relationships) between phases rather than an exat order of phases.
This feature is useful when users want to add new modules to an
existing simulation system.

3 Exeution of modules that join to the same phase are proessed in parallel.
4 Phase ontrol serializes only operations de�ned as yle methods. Users an

invoke other threads of exeution, that are performed in parallel with the phase
exeution, using the multi-thread faility.

draft.tex; 28/10/2001; 2:41; p.20



21

Player Module

Field Simulator

Referee Module

Monitor Proxy

Player Module

achievePhase
downloadData

uploadData
achievePhase

achievePhase

downloadData

uploadData

achievePhase

achievePhase

achievePhase

uploadData

achievePhase

achievePhase
downloadData

achievePhase

achievePhase
downloadData

Action Phase
adjunct before Field Phase

joined modules:

Player Module(s)

Field Phase
every 100ms

joined modules:

Field Simulator

Referee Phase
adjunct after Field Phase

joined modules:

Rerefee Module

Publish Phase
adjunct after Field Phase

joined modules:

Player Module(s)
Monitor Proxy

T
im

e

Figure 6. Phase Control and Communiation with Joined Modules

5.4. Implementation of Soer Simulator on FUSS

(proxy) proxyproxy

Monitor

Proxy
Player

 Simulator

Player

 Simulator

Field

Simulator

fskernel

Referee

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t p

la
y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

co
ac

h

cl
ie

n
t

co
ac

h

cl
ie

n
t

M
o
n
it

o
r

C
o
m

m
en

ta
to

r

3
D

 V
ie

w
er

L
o
g
g
er

o
ff

-l
in

e 
co

ac
h
 c

li
en

t

re
fe

re
e 

cl
ie

n
t

FUSS

CORBA

UDP/IP

Figure 7. Design of the new soer simulator

FUSS is designed to be a general tool for development of simulations
of arbitrary multiagent systems that run in a distributed way over a

draft.tex; 28/10/2001; 2:41; p.21



22

omputer network. As a proof of onept and to ensure that it an
emulate previous suesses, we implemented a soer simulator using
FUSS. In the implementation, we divided the funtions of the soer
simulator into the following modules:

� Field Simulator is a module to simulate the physial events on
the �eld.

� Referee Simulator is a privileged module to ontrol a math a-
ording to rules. This module may override and modify the results
of the �eld simulator.

� Player Simulators/Proxies are modules to simulate events in-
side of a player's body, and ommuniate with the player and
on-line oah lients.

� Monitor Proxy provides a faility for multiple monitors and
ommentators, as well as the ability to reord a game.

The implementation of the referee module is the key of the simulator.
Compared with other modules, the referee module should have a speial
position, beause the referee module needs to a�et behaviors of other
modules diretly rather than via data. For example, the referee module
restrits movements of players and a ball, that are ontrolled by the �eld
simulator module, aording to the rules of the game. Therefore, the
referee module is invoked just before and after the simulator module
and heks the data. In other words, the referee module works as a
`wrapper' of other modules. Phase ontrol desribed in Se. 5.3 enables
this style of implementation. As shown in Fig. 6, referee phase is an
adjunt phase to �eld phase with a large tightness. Therefore, the
referee module an a�et the result of the �eld phase diretly. This
means the referee module regulates exeution of the �eld module by
modifying the result of the simulation.

The advantage of this feature beomes lear when we think of adding
a oah module, whih will regulate the result of the �eld simulation
in a weaker manner than does the referee module. In this ase, a user
de�nes a oah phase as an adjunt phase to the �eld phase, whose
tightness is intermediate between those of the referee phase and the
publish phase. As a result, the oah phase is invoked after the referee
phase and before the publish phase, where the oah module an modify
the result of simulation after the referee module.

draft.tex; 28/10/2001; 2:41; p.22



23

6. Conlusion

Soer Server and CMUnited lient ode provide a robust infrastruture
for MAS researh using the game of soer as the underlying domain. A
large ommunity has been suessfully using it for several years, and it
meets many of the siene and eduation needs of the MAS ommunity.

Building on the lessons learned via the Soer Server, FUSS will
provide a utility for reating simulations in a wide variety of multiagent
domains. Its modular failities enable inremental and distributed de-
velopment of large simulation systems. By using FUSS, Soer Server's
problems are solved as follows:

� Generality: FUSS provides failities for distributed modular simu-
lation system. We an develop various kinds of simulation systems
like resue simulators and virtual markets using FUSS.

� Huge TraÆ: As opposed to Soer Server, ommuniations with
lients are handled with three modules, a monitor proxy and two
player simulator/proxies, separately. Therefore, we an distribute
the network traÆ by invoking these modules on di�erent mahines
in di�erent network segments.

� Legay: Communiation with player lients is loalized by player
proxies. This means that we an handle multiple protools by pro-
viding di�erent player proxies for eah protool. This apability
makes it muh easier to maintain legay features.

Further information about FUSS is available from http://www.ar.

aist.go.jp/~noda/fuss.
The infrastruture presented in this paper has many of the hara-

teristis suitable for researh in siene and eduation as enumerated in
Setion 2 (Gasser, 2000). However, there are of ourse many issues that
it does not address. For example, it is not at all intended as an MAS
appliation development tool or as an environment to be presented for
general use. In addition, not all MAS researh and eduational issues
an be addressed in this domain. In order to study, for example, web-
based multiagent information proessing, another infrastruture will be
needed.

Nonetheless, Soer Server and the CMUnited lient ode provide
robust and fun support for disparate researh issues suh as multiagent
learning, sensor fusion, multiagent planning, and agent ommuniation.
With the release of FUSS, support for studying these issues aross
multiple domains will also be introdued. We look forward to ontinuing
researh progress in this dynami multiagent infrastruture.

draft.tex; 28/10/2001; 2:41; p.23



24

Referenes

Tomohito Andou. Andhill-98: A roboup team whih reinfores positioning with
observation. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
Soer World Cup II, pages 338{345. Springer, 1999.

E. Andr�e, G. Herzog, and T Rist. Generating multimedia presentations for RoboCup
soer games. In H. Kitano, editor, RoboCup-97: Robot SoerWorld Cup I, pages
200{215. Leture Notes in Arti�ial Intelligene, Springer, 1998.

Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soer World Cup
II. Leture Notes in Arti�ial Intelligene 1604. Springer Verlag, Berlin, 1999.

Silvia Coradeshi and Jaek Male. How to make a hallenging AI ourse enjoyable
using the RoboCup soer simulation system. In Minoru Asada and Hiroaki Ki-
tano, editors, RoboCup-98: Robot Soer World Cup II. Springer Verlag, Berlin,
1999.

Les Gasser. Mas infrastruture de�nitions, needs, and prospets. In Proeedings
of the Autonomous Agnets 2000 Workshop on Infrastruture for Salable Multi-
Agent Systems, Barelona, Spain, June 2000.

Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeshi,
Eiihi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCup
syntheti agent hallenge 97. In Proeedings of the Fifteenth International Joint
Conferene on Arti�ial Intelligene, pages 24{29, San Franiso, CA, 1997.
Morgan Kaufmann.

Hiroaki Kitano, Satoshi Takokoro, Itsuki Noda, Hitoshi Matsubara, Tomoihi Taka-
hashi, Atsuhi Shinjou, and Susumu Shimada. RoboCup resue: Searh and resue
in large-sale disasters as a domain for autonomous agents researh. In Proeed-
ings of the IEEE International Conferene on Man, System, and Cybernetis,
1999.

Hiroaki Kitano, editor. RoboCup-97: Robot Soer World Cup I. Springer Verlag,
Berlin, 1998.

Maja Matari. Reinforement learning in the multi-robot domain. Autonomous
Robots, 4(1):73{83, January 1997.

Hideyuki Nakashima and Itsuki Noda. Dynami subsumption arhiteture for pro-
gramming intelligent agents. In Pro. of International Conf. on Multi-Agent
Systems 98, pages 190{197. AAAI Press, 1998.

Itsuki Noda and Ian Frank. Investigating the omplex with virtual soer. In J.-C.
Heudin, editor, Virtual Worlds, pages 241{253. Ppringer Verlag (LNAI-1434),
Sep. 1998.

Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soer server: A tool
for researh on multiagent systems. Applied Arti�ial Intelligene, 12:233{250,
1998.

Patrik Riley, Peter Stone, and Manuela Veloso. Layered dislosure: Revealing
agents' internals. In Submitted to the Sixth Pai� Rim International Conferene
on Arti�ial Intelligene (PRICAI 2000), 2000.

A. Shinjoh and S. Yoshida. The intelligent three-dimensional viewer system for
roboup. In Proeedings of the Seond International Workshop on RoboCup,
pages 37{46, July 1998.

Peter Stone, Manuela Veloso, and Patrik Riley. The CMUnited-98 hampion sim-
ulator team. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
Soer World Cup II. Springer Verlag, Berlin, 1999.

Peter Stone, Tuker Balh, and Gerhard Kraetszhmar, editors. RoboCup-2000:
Robot Soer World Cup IV. Springer Verlag, Berlin, 2001.

draft.tex; 28/10/2001; 2:41; p.24



25

Peter Stone. Layered Learning in Multiagent Systems: A Winning Approah to
Roboti Soer. MIT Press, 2000.

Peter Stone. TPOT-RL applied to network routing. In Proeedings of the
Seventeenth International Conferene on Mahine Learning, 2000.

K. Syara, K. Deker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. IEEE Expert, 11(6), Deember 1996.

Tomoihi Takahashi and Nobuhiro Itoh. Agent Programming using RoboCup (in
Japanese). Kyoritsu Shuppan, Jul 2001.

Milind Tambe, W. Lewis Johnson, Randolph M. Jones, Frank Koss, John E. Laird,
Paul S. Rosenbloom, and Karl Shwamb. Intelligent agents for interative
simulation environments. AI Magazine, 16(1), Spring 1995.

Milind Tambe. Towards exible teamwork. Journal of Arti�ial Intelligene
Researh, 7:81{124, 1997.

Kumiko Tanaka-Ishii, Itsuki Noda, Ian Frank, Hideyuki Nakashima, Koiti Hasida,
and Hitoshi Matsubara. MIKE: An automati ommentary system for soer. In
Yves Demazeau, editor, Pro. of Third International Conferene on Multi-Agent
Systems, pages 285{292, July 1998.

Manuela Veloso, Enrio Pagello, and Hiroaki Kitano, editors. RoboCup-99: Robot
Soer World Cup III. Springer Verlag, Berlin, 2000.

draft.tex; 28/10/2001; 2:41; p.25


