
The RoboCup So

er Server and CMUnited Clients:

Implemented Infrastru
ture for MAS Resear
h

Itsuki Noda
Ele
trote
hni
al Laboratory
1-1-4 Umezono
Tsukuba, Ibaraki 305-8568, JAPAN
noda�etl.go.jp

Peter Stone
AT&T Labs { Resear
h
180 Park Ave., room A273
Florham Park, NJ 07932
pstone�resear
h.att.
om



 2001 Kluwer A
ademi
 Publishers. Printed in the Netherlands.

draft.tex; 28/10/2001; 2:41; p.1



2

1. Introdu
tion

The �eld of multiagent systems (MAS) 
overs a wide variety of re-
sear
h fo
i and appli
ations, ranging from software-based information
pro
essing (e.g. (Sy
ara et al., 1996)) to roboti
 
ontrol of multiple
agents (e.g. (Matari
, 1997)). One 
ommon 
hara
teristi
 of multia-
gent resear
h is that it relies on signi�
ant software and/or hardware
infrastru
ture: domains that support the simultaneous operation of tens
to thousands of agents are needed.

As Gasser (Gasser, 2000) points out, infrastru
ture both enables
domain-spe
i�
 progress and serves as a \leveling devi
e: it uni�es lo
al
pra
ti
es with global ones." He 
lassi�es the infrastru
ture needs of four
MAS fo
us areas: s
ien
e, edu
ation, appli
ation, and use. Sin
e ea
h
fo
us area has a wide range of di�erent needs, ea
h has room for several
infrastru
tures. Certainly no single infrastru
ture 
an meet the needs
of all four fo
us areas.

One MAS infrastru
ture that is designed to meet many of the needs
of the s
ien
e and edu
ation fo
us areas is the RoboCup So

er Server
(Noda et al., 1998; Noda and Frank, 1998) and asso
iated 
lient 
ode.
The Robot So

er World Cup, or RoboCup, is an international resear
h
initiative that uses the game of so

er as a domain for arti�
ial intelli-
gen
e and roboti
s resear
h. Annual international RoboCup events in-
volve te
hni
al workshops as well as software and roboti
 
ompetitions.
So

er Server is used as the substrate for the RoboCup software 
ompe-
titions. Originally released in 1995, So

er Server has an international
user 
ommunity of over 1000 people.

So

er Server is a multiagent environment that supports 22 indepen-
dent agents intera
ting in a dynami
, real-time environment. The server
embodies many real-world 
omplexities, su
h as noisy, limited sensing;
noisy a
tion and obje
t movement; limited agent stamina; and limited
inter-agent 
ommuni
ation bandwidth. AI resear
hers have been using
the So

er Server to pursue resear
h in a wide variety of areas, in
luding
real-time multiagent planning, real-time 
ommuni
ation methods, 
ol-
laborative sensing, agent/opponent modeling, and multiagent learning
(Asada and Kitano, 1999).

In addition to the server itself being publi
ly available in an open-
sour
e paradigm, users have 
ontributed several 
lients that 
an be used
as starting points for new
omers to the domain. One example is the
CMUnited simulated so

er team, 
hampion of the RoboCup-98 and
RoboCup-99 roboti
 so

er 
ompetitions. After winning the 
ompeti-
tions, mu
h of the CMUnited sour
e 
ode be
ame publi
ly available,
and several groups used it as a resour
e to help them 
reate new 
lients
for resear
h and as entries in the RoboCup-99 and RoboCup-2000

draft.tex; 28/10/2001; 2:41; p.2



3


ompetitions. As a unit, So

er Server and the 
lient 
ode 
omprise a

omplete infrastru
ture, allowing resear
hers to easily fo
us on a wide
variety of issues.

Based on the su

ess of So

er Server and its asso
iated 
lient 
ode,
we are now in the pro
ess of 
reating a new 
exible utility for simulation
systems (FUSS) that will be designed to support simulations of multiple
domains. For example, we plan to use the same underlying simulation
for an improved simulator of the game of so

er as well as a disaster
res
ue simulator for use in the RoboCup Res
ue initiative (Kitano et

al., 1999). FUSS will also be available as infrastru
ture for the MAS
resear
h 
ommunity.

The remainder of the paper is organized as follows. Se
tion 2 out-
lines the s
ien
e and edu
ation needs that are met by this infras-
tru
ture. Se
tion 3 gives an overview of the RoboCup So

er Server.
Se
tion 4 presents the CMUnited simulated so

er 
lients for use with
So

er Server. Se
tion 5 motivates and presents the 
urrent state of the
development of FUSS and Se
tion 6 
on
ludes.

2. Infrastru
ture Chara
teristi
s

So

er Server and the CMUnited 
lient 
ode are widely and freely avail-
able over the internet using an open sour
e paradigm. The software is
pa
kaged for easy installation, supported both by the developers and by
the large 
ommunity of 
urrent users.

This infrastru
ture is a 
omprehensive, implemented MAS designed
for simulation experiments. It 
onsists of several independent 
ompo-

nents, in
luding visualization, sample 
lient, and 
oa
h modules. The

oa
h module is often used as a tool for experiment 
onstru
tion. The
most natural and 
ompelling form of measurement is game results
in tournaments with multiple teams, but the infrastru
ture also in-

ludes data 
olle
tion and analysis tools for more rigorous s
ienti�

measurement.

Judging by the large user 
ommunity, this infrastru
ture is very
usable; the fa
t that it has been su

essfully used for multiple interna-
tional 
ompetitions is a testament to its robustness. New users 
an take
advantage of its progressive 
omplexity by starting with a single agent
and gradually in
reasing the size of teams and their 
ommuni
ative
and organizational 
apabilities. A re
ent addition to the infrastru
ture
is the ability to indu
e intentional failures by disabling sele
ted players.

The itali
ized words above are all 
hara
teristi
s identi�ed by Gasser
(Gasser, 2000) as essential or desirable for MAS infrastru
tures that
support s
ien
e and edu
ation.

draft.tex; 28/10/2001; 2:41; p.3



4

In addition to meeting these abstra
t, general needs, So

er Server
has been used to study many 
on
rete resear
h issues and as a basis
for several undergraduate and graduate 
ourses (e.g. (Corades
hi and
Male
, 1999; Takahashi and Itoh, 2001)).

An IJCAI-97 
hallenge paper (Kitano et al., 1997) identi�ed three
general resear
h 
hallenges that 
an be addressed within So

er Server
as being

� Multiagent learning;

� Teamwork stru
tures; and

� Agent/Opponent modeling.

As laid out in (Stone, 2000a), other relevant resear
h issues in
lude
inter-agent 
ommuni
ation in single-
hannel, low-bandwidth environ-
ments; 
oordination with limited 
ommuni
ation, 
ollaboration in a
dynami
 real-time environment; organizational stru
tures; distributed
sensing/sensor fusion; resour
e management; agent monitoring; and
multiagent planning. These resear
h topi
s are all addressed by var-
ious resear
hers in the 
ontinuing series of RoboCup books (Kitano,
1998; Asada and Kitano, 1999; Veloso et al., 2000; Stone et al., 2001).

It also is important to emphasize that So

er Server is not simply
for domain-spe
i�
 resear
h. It shares 
hara
teristi
s with many other
domains, in
reasing the likelihood that advan
es will span appli
ations.
Spe
i�
ally, algorithms that have been developed and/or studied in
So

er Server have also been applied to:

Heli
opter 
ombat: A generi
 model of teamwork and opponent mod-
eling has been applied to both roboti
 so

er and a heli
opter

ombat domain. STEAM, a large number of domain-independent
teamwork rules, were de�ned in a SOAR ar
hite
ture, redu
ing the
number of domain-spe
i�
 rules required in ea
h appli
ation (Tambe,
1997).

Network routing: Team-Partitioned, Opaque-Transition Reinfor
e-
ment Learning is an algorithm that enables multiple independent
agents to learn to 
ooperate despite limited 
ommuni
ation 
apa-
bilities. It was originally implemented and tested within So

er
Server, but then generalized and su

essfully applied to a network
pa
ket routing domain (Stone, 2000b).

Disaster res
ue: The RoboCup res
ue disaster res
ue domain, using
earthquake res
ue as its motivating s
enario, has been designed
spe
i�
ally to transfer RoboCup resear
h to a related domain.

draft.tex; 28/10/2001; 2:41; p.4



5

Similar to so

er, non-
entralized, eÆ
ient 
ontrol me
hanism to
assign roles and to share information dynami
ally among agents
are ne
essary for this domain. Challenges also in
lude s
aling up
to hundreds of heterogeneous agents (Kitano et al., 1999).

Other potential appli
ations for transferring RoboCup-related te
h-
nologi
al advan
es in
lude: intelligent traÆ
 systems; oÆ
e robots;
NASA domains su
h as multirover or interferometry missions; roboti

surveillan
e; agent 
ommuni
ation resear
h; real-time systems resear
h;
and market trading. Prokopenko summarizes these appli
ations at http:
//www.
mis.
siro.au/iit/Proje
ts/RoboCup/appli
ations.htm.

Another aspe
t to show the generality will be the list of new resear
h
problems that these infrastru
tures make 
lear for resear
hers. Andou
(Andou, 1999) pointed out the importan
e how rewards are assigned to
ea
h agent under reinfor
ement learning of multiagent systems. They
fo
used espe
ially on autonomous learning by agents who do not play
the ball dire
tly when their team get a goal. They also pointed out the
issue of ratio of exploitation and exploration in multiagent reinfor
e-
ment learning. In a multiagent learning, exploration of an agent may
disturbs others' exploitation. Therefore exploration is used more 
are-
fully in multiagent learning. (Nakashima and Noda, 1998) mentioned
an issue of 
ombination of behavior-oriented 
ontrol and goal-oriented
planning, and propose a 
on
ept of dynami
 subsumption ar
hite
-
ture. These issues are motivated by So

er Server, but in
lude general
problems found in various multiagent systems.

With all of these past su

esses and unrealized potentials, So

er
Server is one of the leading examples of MAS infrastru
tures appropri-
ate for the s
ien
e and edu
ation 
ommunities. The following se
tions
detail the 
urrent state and future plans for this infrastru
ture.

3. The RoboCup So

er Server

3.1. So

er Server

So

er Server enables a so

er mat
h to be played between two teams
of player-programs (possibly implemented in di�erent programming
systems). A mat
h using So

er Server is 
ontrolled using a form of

lient-server 
ommuni
ation. So

er Server provides a virtual so

er
�eld su
h as the one shown in Fig. 1 and simulates the movements of
players and a ball. A 
lient program 
an provide the `brain' of a player
by 
onne
ting to the So

er Server via a 
omputer network (using a
UDP/IP so
ket) and spe
ifying a
tions for that player to 
arry out. In
return, the 
lient re
eives information from the player's sensors.

draft.tex; 28/10/2001; 2:41; p.5



6

Figure 1. Window image of So

er Server

Message
Board

Field
Simulator

Referee

X window

Soccer Server

Client

Client

Client
Socket

Socket

Socket

Client

Client

ClientSocket

Socket

Socket

Network
(UDP/IP)

Network
(UDP/IP)

Figure 2. Overview of So

er Server

The three main modules in the So

er Server itself are:

1. A �eld simulator module. This 
reates the basi
 virtual world of
the so

er �eld, and 
al
ulates the movements of obje
ts, 
he
king
for 
ollisions.

draft.tex; 28/10/2001; 2:41; p.6



7

2. A referee module. This ensures that the rules of the game are
followed.

3. A message-board module. This manages the 
ommuni
ation
between the 
lient programs.

Fig. 2 gives an overview of the relation of these modules and of how
the So

er Server 
ommuni
ates with 
lients. A 
lient 
ontrols only
one player. It re
eives visual and verbal sensor information (`see' and
`hear' respe
tively) from the server and sends 
ontrol 
ommands (`turn',
`dash', `ki
k' and `say') to the server. Visual information gives only par-
tial information about the �eld from the player's viewpoint, so that the
player program must make de
isions based on in
omplete knowledge.
Limited verbal 
ommuni
ation is also available, by whi
h the players

an 
ommuni
ate with ea
h other to de
ide team strategy.

All 
ommuni
ation between the server and ea
h 
lient is in the form
of ASCII strings. Therefore, 
lients 
an be realized in any programming
environment on any ar
hite
ture that has the fa
ilities of UDP/IP
so
kets and string manipulation. The 
ommuni
ation proto
ol 
onsists
of:

� Control 
ommands: messages sent from a 
lient to the server
to 
ontrol a
tions of the 
lient's player. The basi
 
ommands are
turn, dash and ki
k. Communi
ation is 
ondu
ted through the
say 
ommand, and a privileged goalie 
lient 
an also attempt to

at
h the ball.

� Sensor information: messages sent from the server to a 
lient
des
ribing the 
urrent state of the game from the viewpoint of the

lient's player. There are three types of information, visual (see),
auditory (hear) and bodily (sense body).

So

er Server is a dis
rete simulation of 
ontinuous time. Thus, both
the 
ontrol 
ommands and the sensor information are pro
essed within
a framework of `simulator steps'. The length of the 
y
le between the
pro
essing steps for the 
ontrol 
ommands is 100mse
, whereas the
length of the step 
y
le for the sensor information ranges from 37{
300mse
 and is 
ontrolled a
tively by the individual 
lients (frequen
y
is traded o� against visible angle and information quality). Note that
all players have identi
al abilities (strength and a

ura
y of ki
king,
stamina, sensing) so that the entire di�eren
e in performan
e of teams
derives from the e�e
tive use of the 
ontrol 
ommands and sensor

draft.tex; 28/10/2001; 2:41; p.7



8

information, and espe
ially from the ability to produ
e 
ollaborative
behavior among multiple 
lients 1.

As a �nal feature, when invoked with the -
oa
h option, the server
provides an extra so
ket for a privileged 
lient (
alled a 
oa
h 
lient)
that has the ability to dire
t all aspe
ts of the game. The 
oa
h 
lient

an move all obje
ts, dire
t the referee module to make de
isions, and
announ
e messages to all 
lients. This fa
ility is extremely useful for
tuning and debugging 
lient programs, whi
h usually involves repeated
testing of the behaviors of the 
lients in many situations. In addition to
the -
oa
h option, \online 
oa
h" feature is implemented to the re
ent
So

er Server, whi
h allows teams to in
lude a twelfth 
lient that has a
global view of the game and 
an 
ondu
t sideline 
oa
hing during play
by shouting strategi
 or ta
ti
al advi
e to players.

3.2. As a Resear
h Tool

So

er Server has been used by resear
hers to examine MAS. Here we
investigate So

er Server's features as a resear
h tool.

The biggest reason that it is used widely is that it simulates so
-


er, whi
h is very popular world-wide. Similar to 
hess, popularity
is an important fa
tor for resear
h appli
ations, be
ause resear
hers

an share an understanding and intuition about the domain. While
individual plays in so

er are relatively simple (this is important in
simulations), the variation of team play is very wide. Therefore, we 
an
�nd many open issues in it, su
h as opponent modeling, multiagent
learning, 
ooperative a
tions, multiagent planning, and so on. Thus,
resear
hers in various �elds 
an share a 
ommon domain.

The se
ond reason is that it uses a middle-level abstra
tion for
representing the 
lient 
ommands and the sensor information. One
possibility was a low-level physi
al des
ription, for example allowing
power values for drive motors to be spe
i�ed. However it was felt that
su
h a representation would 
on
entrate users' attention too mu
h on
the a
tual 
ontrol of a player's a
tions, relegating true investigation
of the multiagent nature of team-play to the level of a se
ondary ob-
je
tive. Further, it is diÆ
ult to design a low-level des
ription that is
not impli
itly based on a spe
i�
 notion of robot hardware; for ex-
ample, 
ontrol of speed by drive motors is biased towards a physi
al
implementation that uses wheels. On the other hand, a more abstra
t
representation, using ta
ti
al 
ommands su
h as pass-ball-to and
blo
k-shot, would produ
e a game in whi
h the real-world nature
of so

er be
omes obs
ured, and in whi
h the development of so

er

1 Re
ent So

er Server versions (starting with version 7.0) in
lude the option of
using heterogeneous players, though players are still all homogeneous by default.

draft.tex; 28/10/2001; 2:41; p.8



9

te
hniques not yet realized by human players be
omes problemati
.
Thus, our representation| using basi
 
ontrol 
ommands su
h as turn,
dash, and ki
k | is a 
ompromise. To make good use of the available

ommands, 
lients need to ta
kle both the problem of 
ontrol in an
in
omplete information, dynami
 environment and also the 
hallenge of

ombining the e�orts of multiple players. Thus, we believe that So

er
Server a
hieves our goal of providing a simple test-bed with signi�
ant
real-world properties.

Several te
hni
al issues are also important for So

er Server's wide-
spread use. So

er Server has the following te
hni
al features that help
resear
hers to use it:

� So

er Server is lightweight. It requires few 
omputing resour
es
so that it 
an run on entry-level PCs. This enables resear
hers to
start their resear
h with limited resour
es. Additionally, in order
to use it for edu
ational purpose, it is ne
essary to run on PCs
students 
an use in 
omputer labs in s
hools.

� So

er Server runs on various platforms. It supports SunOS 4,
Solaris 2.x, Linux, IRIX, OSF/1, and Windows 2. It also requires
quite 
ommon tools and libraries like Gnu or ANSI C++ 
ompiler,
standard C++ libraries, and X window. They are distributed freely
and used widely.

� So

er Server uses ASCII string on UDP/IP for proto
ol between

lients and the server. This feature enables resear
hers/students
to use any kind of programming language. Indeed, parti
ipants
in past RoboCup 
ompetitions used C, C++, Java, Lisp, Prolog
and various resear
h oriented AI programming systems su
h as
SOAR (Tambe et al., 1995). Version 
ontrol of proto
ol is also an
important feature. It enables us to use old 
lients to run in newer
servers.

As well as supporting resear
h pertaining to player 
ontrol, So
-

er Server also supports several auxiliary resear
h a
tivities. So

er
Server 
onsists of two modules, so

erserver, a simulation kernel, and
so

ermonitor, a viewer of simulated so

er �eld. They are 
onne
ted
via UDP/IP. While this separated stru
ture was introdu
ed only for
displaying the �eld window on multiple monitors, it led to unexpe
ted

2 Windows versions were 
ontributed by Sebastien Don
ker and Dominique
Duhaut (
ompatible to version 2), and now by Mario Pa
 (
ompatible to version 4)
independently. Information about Mario's versions is available from:

http://users.informatik.fh-hamburg.de/~pa
 m/

draft.tex; 28/10/2001; 2:41; p.9



10

a
tivities in di�erent resear
h �elds. Many resear
hers have made and
have been trying to build 3D monitors to display s
enes of mat
hes
dynami
ally (Shinjoh and Yoshida, 1998). In addition, some groups
are building 
ommentary systems that des
ribe mat
hes dynami
ally
in natural language (Andr�e et al., 1998; Tanaka-Ishii et al., 1998). Both
kinds of systems are 
onne
ted with the server as se
ondary moni-
tors. They get information regarding the state of mat
hes, analyze the
situations, and generate appropriate s
enes and senten
es.

4. The CMUnited Client

As des
ribed in Se
tion 3, So

er Server 
lients intera
t with the So

er
Server via an ASCII string proto
ol. The server supports low-level
sensing and a
ting primitives. However, there are several basi
 tasks
left up to the 
lients, in
luding

� Managing so
ket 
ommuni
ation with the server;
� Parsing the sensory 
ommands;
� Handling asyn
hronous sensation and a
tion 
y
les;
� Maintaining a model of the world; and
� Combining the low-level a
tion primitives into useful skills.

Depending on one's resear
h fo
us, a new
omer to the domain may
not be interested in solving ea
h of these tasks from �rst prin
iples.
Instead, one 
an look to the growing body of publi
ly available 
lient

ode available at http://medialab.di.unipi.it/Proje
t/Robo
up/
pub/.

While there are many possible solutions to ea
h of these tasks, it
is often diÆ
ult to evaluate them independently. The CMUnited 
lient

ode (Stone et al., 1999) o�ers robust solutions to these tasks that
have been su

essfully tested in 
ompetitive environments: CMUnited
won both the RoboCup-98 and RoboCup-99 simulator 
ompetitions.
It has already been su

essfully used by others. For example, the 3rd
pla
e �nisher in the RoboCup-99 
ompetition, was partially adapted
from the CMUnited-98 simulator team 
ode, and the 1st, 2nd, and
3rd pla
e �nishers in the RoboCup-2000 
ompetition were all based on
CMUnited-99 sour
e 
ode.

We present the 
lient 
ode as a part of the infrastru
ture, as opposed
to as an appli
ation. Without this 
ode, 
reating a substrate team of
agents for resear
h purposes is a daunting task, and is likely to yield
sub-par agents. The freely available 
lient 
ode enables resear
hers to
immediately fo
us on any of a wide variety of areas of interest. The
remainder of this se
tion gives an overview of the CMUnited 
lient

ode.

draft.tex; 28/10/2001; 2:41; p.10



11

4.1. Agent Ar
hite
ture Overview

CMUnited agents are 
apable of per
eption, 
ognition, and a
tion. By
per
eiving the world, they build a model of its 
urrent state. Then,
based on a set of behaviors, they 
hoose an a
tion appropriate for the

urrent world state.

At the 
ore of CMUnited agents is what we 
all the lo
ker-room
agreement (Stone, 2000a). Based on the premise that agents 
an period-
i
ally meet in safe, full-
ommuni
ation environments, the lo
ker-room
agreement spe
i�es how they should a
t when in low-
ommuni
ation,
time-
riti
al, adversarial environments.

Individual agents 
an 
apture lo
ker-room agreements and respond
to the environment, while a
ting autonomously. Based on a standard
agent paradigm, our team member agent ar
hite
ture allows agents to
sense the environment, to reason about and sele
t their a
tions, and to
a
t in the real world. At team syn
hronization opportunities, the team
also makes a lo
ker-room agreement for use by all agents during periods
of limited 
ommuni
ation. Fig. 3 shows the fun
tional input/output
model of the ar
hite
ture.

ARCHITECTURE

World

State

Internal 

State

Real

World

Internal

Behaviors

Predictor

External

Behaviors

Sensor Information

Interpreter

Action Primitives

TEAM MEMBER

Agreement

Locker-Room

AGENT

Figure 3. A fun
tional input/output model of CMUnited's team member agent
ar
hite
ture.

The agent keeps tra
k of three di�erent types of state: the world

state, the lo
ker-room agreement, and the internal state. The agent also
has two di�erent types of behaviors: internal behaviors and external

behaviors.

The world state re
e
ts the agent's 
on
eption of the real world,
both via its sensors and via the predi
ted e�e
ts of its a
tions.
It is updated as a result of interpreted sensory information. It may
also be updated a

ording to the predi
ted e�e
ts of the exter-
nal behavior module's 
hosen a
tions. The world state is dire
tly
a

essible to both internal and external behaviors.

draft.tex; 28/10/2001; 2:41; p.11



12

The lo
ker-room agreement is set by the team when it is able to
privately syn
hronize. It de�nes the 
exible teamwork stru
ture
and the inter-agent 
ommuni
ation proto
ols, if any. The lo
ker-
room agreement is a

essible only to internal behaviors.

The internal state stores the agent's internal variables. It may re-

e
t previous and 
urrent world states, possibly as spe
i�ed by
the lo
ker-room agreement. For example, the agent's role within
a team behavior 
ould be stored as part of the internal state. A
window or distribution of past world states 
ould also be stored as
a part of the internal state. The agent updates its internal state
via its internal behaviors.

The internal behaviors update the agent's internal state based on
its 
urrent internal state, the world state, and the team's lo
ker-
room agreement.

The external behaviors referen
e the world and internal states, and
sele
t the a
tions to send to the a
tuators. The a
tions a�e
t the
real world, thus altering the agent's future per
epts. External be-
haviors 
onsider only the world and internal states, without dire
t
a

ess to the lo
ker-room agreement.

4.2. Asyn
hronous Sensing and A
ting

A driving fa
tor in the design of the agent ar
hite
ture is the fa
t
that the simulator operates in �xed 
y
les of length 100 mse
, while
sensations are sent at di�erent intervals (typi
ally every 150 mse
). The
simulator a

epts 
ommands from 
lients throughout a 
y
le and then
updates the world state all at on
e at the end of the 
y
le. Only one
a
tion 
ommand (dash, ki
k, turn, or 
at
h) is exe
uted for a given

lient during a given 
y
le.

Therefore, agents (simulator 
lients) should send exa
tly one a
tion

ommand to the simulator in every simulator 
y
le. If more than one

ommand is sent in the same 
y
le, a random one is exe
uted, possibly
leading to undesired behavior. If no 
ommand is sent during a simulator

y
le, an a
tion opportunity has been lost: opponent agents who have
a
ted during that 
y
le may gain an advantage.

In addition, sin
e the simulator updates the world at the end of every

y
le, it is advantageous to try to determine the state of the world at
the end of the previous 
y
le when 
hoosing an a
tion for the 
urrent

y
le. As su
h, the basi
 agent loop during a given 
y
le t is as follows:

draft.tex; 28/10/2001; 2:41; p.12



13

� Assume the agent has 
onsistent information about the state of
the world at the end of 
y
le t � 2 and has sent an a
tion during

y
le t � 1.

� While the server is still in 
y
le t� 1, upon re
eipt of a sensation
(see, hear, or sense body), store the new information in temporary
stru
tures. Do not update the 
urrent state.

� When the server enters 
y
le t (determined either by a running

lo
k or by the re
eipt of a sensation with time stamp t), use all of
the information available (temporary information from sensations
and predi
ted e�e
ts of past a
tions) to update the world model
to mat
h the server's world state (the \real world state") at the
end of 
y
le t�1. Then 
hoose and send an a
tion to the server
for 
y
le t.

� Repeat for 
y
le t+ 1.

While the above algorithm de�nes the overall agent loop, mu
h of
the 
hallenge is involved in updating the world model e�e
tively and

hoosing an appropriate a
tion. The remainder of this se
tion goes into
these pro
esses in detail.

4.3. World Modeling

When a
ting based on a world model, it is important to have as a

urate
and pre
ise a model of the world as possible at the time that an a
tion
is taken. In order to a
hieve this goal, CMUnited agents gather sensory
information over time, and pro
ess the information by in
orporating it
into the world model immediately prior to a
ting.

4.3.1. Obje
t Representation

There are several obje
ts in the world, su
h as the goals and the �eld
markers whi
h remain stationary and 
an be used for self-lo
alization.
Mobile obje
ts are the agent itself, the ball, and 21 other players (10
teammates and 11 opponents). These obje
ts are represented in a type
hierar
hy as illustrated in Fig. 4.

Mobile
Object

Stationary
Object

Ball Player

Object

Figure 4. The agent's obje
t type hierar
hy.

draft.tex; 28/10/2001; 2:41; p.13



14

Ea
h agent's world model stores an instantiation of a stationary
obje
t for ea
h goal, sideline, and �eld marker; a ball obje
t for the
ball; and 21 player obje
ts. Sin
e players 
an be seen without their
asso
iated team and/or uniform number, the player obje
ts are not
identi�ed with parti
ular individual players. Instead, the variables for
team and uniform number 
an be �lled in as they be
ome known.

Mobile obje
ts are stored with 
on�den
e values within [0,1℄ indi
at-
ing the 
on�den
e with whi
h their lo
ations are known. The 
on�den
e
values are needed be
ause of the large amount of hidden state in the
world: no obje
t is seen 
onsistently.

The variables asso
iated with ea
h obje
t type are as follows:

Obje
t :

� Global (x; y) position 
oordinates
� Con�den
e within [0,1℄ of the 
oordinates' a

ura
y

Stationary Obje
t : nothing additional

Mobile Obje
t :

� Global (dx; dy) velo
ity 
oordinates
� Con�den
e within [0,1℄ of the 
oordinates' a

ura
y

Ball : nothing additional

Player :
� Team
� Uniform number
� Global � fa
ing angle
� Con�den
e within [0,1℄ of the angle's a

ura
y

4.3.2. Updating the World Model

Information about the world 
an 
ome from
� Visual information;
� Audial information;
� Sense body information; and
� Predi
ted e�e
ts of previous a
tions.

Visual information arrives as relative distan
es and angles to obje
ts in
the player's view 
one. Audial information 
ould in
lude information
about global obje
t lo
ations from teammates. Sense body information
pertains to the 
lient's own status in
luding stamina, view mode, and
speed.

Whenever new information arrives, it is stored in temporary stru
-
tures with time stamps and 
on�den
es (1 for visual information, possi-
bly less for audial information). Visual information is stored as relative

oordinates until the agent's exa
t lo
ation is determined.

draft.tex; 28/10/2001; 2:41; p.14



15

When it is time to a
t during 
y
le t, all of the available information
is used to best determine the server's world state at the end of 
y
le
t � 1. If no new information arrived pertaining to a given obje
t, the
velo
ity and a
tions taken are used by the predi
tor to predi
t the new
position of the obje
t and the 
on�den
e in that obje
t's position and
velo
ity are both de
ayed.

When the agent's world model is updated to mat
h the end of simu-
lator 
y
le t� 1, �rst the agent's own position is updated to mat
h the
time of the last sight; then those of the ball and players are updated.

4.4. Agent Skills

On
e the agent has determined the server's world state for 
y
le t as
a

urately as possible, it 
an 
hoose and send an a
tion to be exe
uted
at the end of the 
y
le. In so doing, it must 
hoose its lo
al goal within
the team's overall strategy. It 
an then 
hoose from among several low-
level skills whi
h provide it with basi
 
apabilities. The output of the
skills are primitive movement 
ommands.

The skills available to CMUnited players in
lude
� ki
king,
� dribbling,
� ball inter
eption,
� goaltending,
� defending, and
� 
learing.
The 
ommon thread among these skills is that they are all predi
-

tive, lo
ally optimal skills (PLOS). They take into a

ount predi
ted
world models as well as predi
ted e�e
ts of future a
tions in order to
determine the optimal primitive a
tion from a lo
al perspe
tive, both
in time and in spa
e.

One simple example of PLOS is ea
h individual agent's stamina
management. The server models stamina as having a replenishable and
a non-replenishable 
omponent. Ea
h is only de
remented when the

urrent stamina goes below a �xed threshold. Ea
h player monitors its
own stamina level to make sure that it never uses up any of the non-
replenishable 
omponent of its stamina. No matter how fast it should
move a

ording to the behavior the player is exe
uting, it slows down
its movement to keep itself from getting too tired. While su
h behavior
might not be optimal in the 
ontext of the team's goal, it is lo
ally
optimal 
onsidering the agent's 
urrent tired state.

Even though the skills are predi
tive, the agent 
ommits to only
one a
tion during ea
h 
y
le. When the time 
omes to a
t again, the
situation is 
ompletely reevaluated. If the world is 
lose to the an-

draft.tex; 28/10/2001; 2:41; p.15



16

ti
ipated 
on�guration, then the agent will a
t similarly to the way
it predi
ted on previous 
y
les. However, if the world is signi�
antly
di�erent, the agent will arrive at a new sequen
e of a
tions rather than
being 
ommitted to a previous plan. Again, it will only exe
ute the �rst
step in the new sequen
e.

4.5. Layered Dis
losure

A perennial 
hallenge in 
reating and using 
omplex autonomous agents
is following their 
hoi
es of a
tions as the world 
hanges dynami
ally,
and understanding why they a
t as they do. To this end, we intro-
du
e the 
on
ept of layered dis
losure (Riley et al., 2000) by whi
h
autonomous agents in
lude in their ar
hite
ture the foundations ne
-
essary to allow them to dis
lose to a person upon request the spe
i�

reasons for their a
tions. The person may request information at any
level of detail, and either retroa
tively or while the agent is a
ting.

A key 
omponent of layered dis
losure is that the relevant agent
information is organized in layers. In general, there is far too mu
h
information available to display all of it at all times. The imposed
hierar
hy allows the user to sele
t at whi
h level of detail he or she
would like to probe into the agent in question.

The CMUnited layered dis
losure module is publi
ly available and
has been su

essfully used by other resear
hers to help them in their

ode development.

4.6. Summary

In Summary, the CMUnited 
ode hadles several 
hallenges presented by
So

er Server, in
luding managing asyn
hronous sensing and a
ting via
so
ket 
ommuni
ation with the server; parsing the sensory information;
maintaining a world model; and supporting basi
 skills that 
an be used
to build up a fully fun
tional team. Sin
e it fa
ilitates MAS resear
h
in the domain, it forms an important part of this infrastru
ture.

5. Next Generation Infrastru
ture

5.1. Problems of So

er Server

As des
ribed above, So

er Server is a useful infrastru
ture for resear
h
on MAS.While it is used widely for resear
h, several problems of So

er
Server have be
ome 
lear.

� Generality: From 5 years experien
e of RoboCup a
tivity, we
have re
ognized that many resear
hers want simulators like So

er

draft.tex; 28/10/2001; 2:41; p.16



17

Server for other domains. For example, some resear
hers want
to modify So

er Server for ho
key or basket-ball. In addition
to these ball games, there is growing interest in simulations of
res
ue from huge natural disasters. Be
ause, So

er Server itself
was designed only for so

er, however, it is diÆ
ult to modify it
for su
h purposes.

� Huge Network TraÆ
: So

er Server 
ommuni
ates with vari-
ous types of 
lients (player 
lients, monitor 
lients, o�ine-/online-

oa
h 
lients) dire
tly. This often makes the server a bottle-ne
k
of network-traÆ
. In order to avoid su
h trouble, the server should
be re-designed to enable distributed pro
essing easily.

� Lega
y: In order to keep ba
kward 
ompatibility as mu
h as
possible, So

er Server uses version 
ontrol for the 
lient-server
proto
ol. Be
ause the 
urrent server is a single module, the server
must in
lude all proto
ol versions. In order to solve this problem,
the server should have a me
hanism that enables it to 
onne
t with
a kind of �lter or proxy that 
onverts internal representations for
ea
h version of the proto
ol.

A possible strategy to over
ome these problems is \modular stru
-
ture over network." In So

er Server, the monitor module is separated
from the simulation kernel. As mentioned before, this modularity brings
the following merits:

� It enables the development of systems to show plays in 3D, to
des
ribe games in natural language, and to analyze performan
e
of teams from various point of view. These systems are possible
be
ause the modules are 
onne
ted via networks and loosely 
ou-
pled by a simple proto
ol. Therefore, ea
h developer 
an develop
their systems independently.

� It enables resear
hers to develop su
h monitors on various plat-
forms. This is possible be
ause 
ommuni
ation between modules
use open and standard proto
ol (
hara
ter strings via UDP/IP).

We are now applying a similar te
hnique to other parts of the simulator.
In the following se
tions, we des
ribe the general framework, 
alled
FUSS, for distributed simulation based on this strategy, and show the
implementation of the so

er simulator as an example.

draft.tex; 28/10/2001; 2:41; p.17



18

5.2. Overview

FUSS (Framework for Universal Simulation System) is a 
olle
tion
of programs and libraries to develop distributed simulation systems.
It is designed to aid development of systems that simulate 
omplex
environments like MAS.

A simulation system in FUSS 
onsists of a few modules, ea
h of
whi
h simulates an individual fun
tion or phenomenon. For example,
we 
an develop a so

er simulator in FUSS that 
onsists of a �eld
(physi
al) simulation module, a referee module, and multiple player
simulation modules. The modules are 
ombined into a system by a
kernel (fskernel) and libraries. Fig. 5 shows the high-level stru
ture of
a simulation system built on top of FUSS.

simulation

module 3

fskernel

simulation

module 1

simulation

module 2

FUSS

CORBA

network

FUSS library
(libfuss)

Figure 5. A Simulation System Built on FUSS

FUSS itself 
onsists of the following items:

� fskernel: A kernel for a simulation system. It provides servi
es of
module database, shared memory management, and syn
hroniza-
tion 
ontrol.

� FUSS library (libfuss): A library to develop modules of the sim-
ulation system. The library 
onsists of FsModule, ShrdMem and
PhaseRef libraries, whi
h provide a framework of simulation mod-
ules, an interfa
e to a

ess shared memories, and fa
ilities to syn-

hronize exe
utions of modules respe
tively.

� utility library and programs: A 
olle
tion of utilities.

In order to guarantee open-ness in 
ommuni
ation among modules
and the kernel, FUSS uses CORBA for the 
ommuni
ation layer. This

draft.tex; 28/10/2001; 2:41; p.18



19

makes users free to sele
t any platform and programming language
to develop simulation modules. While the 
urrent implementation of
FUSS uses C++, we 
an develop libraries in other languages that have
a CORBA interfa
e.

In addition, FUSS uses the POSIX multi-thread fa
ility (pthread) to
realize 
exible intera
tions between modules and fskernel. Using this
fa
ility, users need not manage 
ontrol of exe
ution of the simulation
and the 
ommuni
ation.

5.3. Shared Memory and Time Management

In development of distributed systems, there are two major issues,
shared data management and time management. As an infrastru
ture
for distributed simulation systems, FUSS provides two frameworks,
shared memory and phase 
ontrol, to realize this management.

All shared data in a FUSS simulation system must be de�ned by
IDL of CORBA. The de�nitions are 
onverted into C++ 
lasses and
in
luded by all related modules. The shared data is de�ned as a sub-

lass of ShrdMem, the shared memory 
lass, in ea
h module. A module

alls the download method before using the shared memory, and 
alls
the uploadmethod after modifying the memory. Then the FUSS library
maintains the 
onsisten
y of the memory among modules.

In order to make an expli
it order of exe
ution of multiple simulation

omponents, FUSS modules are syn
hronized by phase 
ontrol. In the

ase of so

er simulation, ea
h 
y
le of the physi
al (�eld) simulation
may 
onsist of the following steps:

1. 
olle
t players' a
tions to exe
ute in the 
y
le,

2. 
al
ulate movements of players and a ball,

3. 
he
k 
onditions of the game a

ording to the rules, and

4. re
e
t 
hanges of movements to a shared memory.

These steps are represented by phases in a FUSS simulation system.
A phase is a kind of an event that has joined modules. When a mod-

ule is plugged into the simulation system, the module sends joinPhase
messages to fskernel to join phases in whi
h it exe
utes a part of the
simulation. When a phase starts, the kernel noti�es the beginning of
the phase by sending an a
hievePhase message to all joined modules.
Then, the 
y
lemethod of the phase, whi
h should be de�ned by users,
is 
alled in ea
h module. The kernel waits until all joined modules �nish
the 
y
le operations of the phase, and moves to the next phase. In

draft.tex; 28/10/2001; 2:41; p.19



20

other words, exe
utions of simulation modules are serialized a

ording
to sequential order of phases.3

The kernel 
an handle two types of phases: timer phase and adjun
t

phase. A timer phase has its own interval. The kernel tries to start
the phase for every interval. For example, a �eld simulation phase
in so

er simulation may o

ur every 100mse
. This phase has the
�eld simulator as a joined module. So, the �eld simulator re
eives an
a
hievePhase message for every 100mse
. Then the simulator module

alls 
y
le method of �eld simulation phase, in whi
h it 
al
ulates
movement of obje
ts.

An adjun
t phase is invoked before or after another phase adjun
-
tively. For the example of so

er simulation, a referee phase will
be registered as an adjun
t phase after a �eld simulation phase.
Then the kernel starts the referee phase immediately after the �eld
simulation phase is a
hieved. For another example, a player phase,
in whi
h player simulators/proxies upload players' 
ommands, will be
registered as an adjun
t phase before a �eld simulation phase. In
this 
ase, the kernel starts the player phase �rst, and starts the �eld
simulation phase after it is a
hieved.

A phase 
an have multiple adjun
t phases before or after it. To
arrange them in an order expli
itly, ea
h adjun
t phase has its own
tightness fa
tor. If the fa
tor is larger, the phase o

urs more tightly
adjoined to the mother phase. For example, a �eld simulation phase
will have two adjun
t phases, a referee phase and a publish phase,
after it. Tightness fa
tors of the referee and publish phases will be 100
and 50 respe
tively. So, the referee phase o

urs just after the �eld
simulation phase, and the broad
ast phase o

urs later. Fig. 6 shows
phase-
ontrol and 
ommuni
ation between the kernel and modules in
the so

er simulation des
ribed in Se
. 5.4.

The stru
ture of the adjun
t relationship among phases is an im-
portant feature of FUSS. It serializes exe
utions of simulation of joined
modules4 a

ording to the stru
ture and the tightness. Therefore, users

an realize serialization of exe
ution by spe
ifying logi
al relations (ad-
jun
t relationships) between phases rather than an exa
t order of phases.
This feature is useful when users want to add new modules to an
existing simulation system.

3 Exe
ution of modules that join to the same phase are pro
essed in parallel.
4 Phase 
ontrol serializes only operations de�ned as 
y
le methods. Users 
an

invoke other threads of exe
ution, that are performed in parallel with the phase
exe
ution, using the multi-thread fa
ility.

draft.tex; 28/10/2001; 2:41; p.20



21

Player Module

Field Simulator

Referee Module

Monitor Proxy

Player Module

achievePhase
downloadData

uploadData
achievePhase

achievePhase

downloadData

uploadData

achievePhase

achievePhase

achievePhase

uploadData

achievePhase

achievePhase
downloadData

achievePhase

achievePhase
downloadData

Action Phase
adjunct before Field Phase

joined modules:

Player Module(s)

Field Phase
every 100ms

joined modules:

Field Simulator

Referee Phase
adjunct after Field Phase

joined modules:

Rerefee Module

Publish Phase
adjunct after Field Phase

joined modules:

Player Module(s)
Monitor Proxy

T
im

e

Figure 6. Phase Control and Communi
ation with Joined Modules

5.4. Implementation of So

er Simulator on FUSS

(proxy) proxyproxy

Monitor

Proxy
Player

 Simulator

Player

 Simulator

Field

Simulator

fskernel

Referee

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t p

la
y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

p
la

y
er

cl
ie

n
t

co
ac

h

cl
ie

n
t

co
ac

h

cl
ie

n
t

M
o
n
it

o
r

C
o
m

m
en

ta
to

r

3
D

 V
ie

w
er

L
o
g
g
er

o
ff

-l
in

e 
co

ac
h
 c

li
en

t

re
fe

re
e 

cl
ie

n
t

FUSS

CORBA

UDP/IP

Figure 7. Design of the new so

er simulator

FUSS is designed to be a general tool for development of simulations
of arbitrary multiagent systems that run in a distributed way over a

draft.tex; 28/10/2001; 2:41; p.21



22


omputer network. As a proof of 
on
ept and to ensure that it 
an
emulate previous su

esses, we implemented a so

er simulator using
FUSS. In the implementation, we divided the fun
tions of the so

er
simulator into the following modules:

� Field Simulator is a module to simulate the physi
al events on
the �eld.

� Referee Simulator is a privileged module to 
ontrol a mat
h a
-

ording to rules. This module may override and modify the results
of the �eld simulator.

� Player Simulators/Proxies are modules to simulate events in-
side of a player's body, and 
ommuni
ate with the player and
on-line 
oa
h 
lients.

� Monitor Proxy provides a fa
ility for multiple monitors and

ommentators, as well as the ability to re
ord a game.

The implementation of the referee module is the key of the simulator.
Compared with other modules, the referee module should have a spe
ial
position, be
ause the referee module needs to a�e
t behaviors of other
modules dire
tly rather than via data. For example, the referee module
restri
ts movements of players and a ball, that are 
ontrolled by the �eld
simulator module, a

ording to the rules of the game. Therefore, the
referee module is invoked just before and after the simulator module
and 
he
ks the data. In other words, the referee module works as a
`wrapper' of other modules. Phase 
ontrol des
ribed in Se
. 5.3 enables
this style of implementation. As shown in Fig. 6, referee phase is an
adjun
t phase to �eld phase with a large tightness. Therefore, the
referee module 
an a�e
t the result of the �eld phase dire
tly. This
means the referee module regulates exe
ution of the �eld module by
modifying the result of the simulation.

The advantage of this feature be
omes 
lear when we think of adding
a 
oa
h module, whi
h will regulate the result of the �eld simulation
in a weaker manner than does the referee module. In this 
ase, a user
de�nes a 
oa
h phase as an adjun
t phase to the �eld phase, whose
tightness is intermediate between those of the referee phase and the
publish phase. As a result, the 
oa
h phase is invoked after the referee
phase and before the publish phase, where the 
oa
h module 
an modify
the result of simulation after the referee module.

draft.tex; 28/10/2001; 2:41; p.22



23

6. Con
lusion

So

er Server and CMUnited 
lient 
ode provide a robust infrastru
ture
for MAS resear
h using the game of so

er as the underlying domain. A
large 
ommunity has been su

essfully using it for several years, and it
meets many of the s
ien
e and edu
ation needs of the MAS 
ommunity.

Building on the lessons learned via the So

er Server, FUSS will
provide a utility for 
reating simulations in a wide variety of multiagent
domains. Its modular fa
ilities enable in
remental and distributed de-
velopment of large simulation systems. By using FUSS, So

er Server's
problems are solved as follows:

� Generality: FUSS provides fa
ilities for distributed modular simu-
lation system. We 
an develop various kinds of simulation systems
like res
ue simulators and virtual markets using FUSS.

� Huge TraÆ
: As opposed to So

er Server, 
ommuni
ations with

lients are handled with three modules, a monitor proxy and two
player simulator/proxies, separately. Therefore, we 
an distribute
the network traÆ
 by invoking these modules on di�erent ma
hines
in di�erent network segments.

� Lega
y: Communi
ation with player 
lients is lo
alized by player
proxies. This means that we 
an handle multiple proto
ols by pro-
viding di�erent player proxies for ea
h proto
ol. This 
apability
makes it mu
h easier to maintain lega
y features.

Further information about FUSS is available from http://www.
ar
.

aist.go.jp/~noda/fuss.
The infrastru
ture presented in this paper has many of the 
hara
-

teristi
s suitable for resear
h in s
ien
e and edu
ation as enumerated in
Se
tion 2 (Gasser, 2000). However, there are of 
ourse many issues that
it does not address. For example, it is not at all intended as an MAS
appli
ation development tool or as an environment to be presented for
general use. In addition, not all MAS resear
h and edu
ational issues

an be addressed in this domain. In order to study, for example, web-
based multiagent information pro
essing, another infrastru
ture will be
needed.

Nonetheless, So

er Server and the CMUnited 
lient 
ode provide
robust and fun support for disparate resear
h issues su
h as multiagent
learning, sensor fusion, multiagent planning, and agent 
ommuni
ation.
With the release of FUSS, support for studying these issues a
ross
multiple domains will also be introdu
ed. We look forward to 
ontinuing
resear
h progress in this dynami
 multiagent infrastru
ture.

draft.tex; 28/10/2001; 2:41; p.23



24

Referen
es

Tomohito Andou. Andhill-98: A robo
up team whi
h reinfor
es positioning with
observation. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
So

er World Cup II, pages 338{345. Springer, 1999.

E. Andr�e, G. Herzog, and T Rist. Generating multimedia presentations for RoboCup
so

er games. In H. Kitano, editor, RoboCup-97: Robot So

erWorld Cup I, pages
200{215. Le
ture Notes in Arti�
ial Intelligen
e, Springer, 1998.

Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot So

er World Cup
II. Le
ture Notes in Arti�
ial Intelligen
e 1604. Springer Verlag, Berlin, 1999.

Silvia Corades
hi and Ja
ek Male
. How to make a 
hallenging AI 
ourse enjoyable
using the RoboCup so

er simulation system. In Minoru Asada and Hiroaki Ki-
tano, editors, RoboCup-98: Robot So

er World Cup II. Springer Verlag, Berlin,
1999.

Les Gasser. Mas infrastru
ture de�nitions, needs, and prospe
ts. In Pro
eedings
of the Autonomous Agnets 2000 Workshop on Infrastru
ture for S
alable Multi-
Agent Systems, Bar
elona, Spain, June 2000.

Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Corades
hi,
Eii
hi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCup
syntheti
 agent 
hallenge 97. In Pro
eedings of the Fifteenth International Joint
Conferen
e on Arti�
ial Intelligen
e, pages 24{29, San Fran
is
o, CA, 1997.
Morgan Kaufmann.

Hiroaki Kitano, Satoshi Takokoro, Itsuki Noda, Hitoshi Matsubara, Tomoi
hi Taka-
hashi, Atsuhi Shinjou, and Susumu Shimada. RoboCup res
ue: Sear
h and res
ue
in large-s
ale disasters as a domain for autonomous agents resear
h. In Pro
eed-
ings of the IEEE International Conferen
e on Man, System, and Cyberneti
s,
1999.

Hiroaki Kitano, editor. RoboCup-97: Robot So

er World Cup I. Springer Verlag,
Berlin, 1998.

Maja Matari
. Reinfor
ement learning in the multi-robot domain. Autonomous
Robots, 4(1):73{83, January 1997.

Hideyuki Nakashima and Itsuki Noda. Dynami
 subsumption ar
hite
ture for pro-
gramming intelligent agents. In Pro
. of International Conf. on Multi-Agent
Systems 98, pages 190{197. AAAI Press, 1998.

Itsuki Noda and Ian Frank. Investigating the 
omplex with virtual so

er. In J.-C.
Heudin, editor, Virtual Worlds, pages 241{253. Ppringer Verlag (LNAI-1434),
Sep. 1998.

Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. So

er server: A tool
for resear
h on multiagent systems. Applied Arti�
ial Intelligen
e, 12:233{250,
1998.

Patri
k Riley, Peter Stone, and Manuela Veloso. Layered dis
losure: Revealing
agents' internals. In Submitted to the Sixth Pa
i�
 Rim International Conferen
e
on Arti�
ial Intelligen
e (PRICAI 2000), 2000.

A. Shinjoh and S. Yoshida. The intelligent three-dimensional viewer system for
robo
up. In Pro
eedings of the Se
ond International Workshop on RoboCup,
pages 37{46, July 1998.

Peter Stone, Manuela Veloso, and Patri
k Riley. The CMUnited-98 
hampion sim-
ulator team. In Minoru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot
So

er World Cup II. Springer Verlag, Berlin, 1999.

Peter Stone, Tu
ker Bal
h, and Gerhard Kraetsz
hmar, editors. RoboCup-2000:
Robot So

er World Cup IV. Springer Verlag, Berlin, 2001.

draft.tex; 28/10/2001; 2:41; p.24



25

Peter Stone. Layered Learning in Multiagent Systems: A Winning Approa
h to
Roboti
 So

er. MIT Press, 2000.

Peter Stone. TPOT-RL applied to network routing. In Pro
eedings of the
Seventeenth International Conferen
e on Ma
hine Learning, 2000.

K. Sy
ara, K. De
ker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. IEEE Expert, 11(6), De
ember 1996.

Tomoi
hi Takahashi and Nobuhiro Itoh. Agent Programming using RoboCup (in
Japanese). Kyoritsu Shuppan, Jul 2001.

Milind Tambe, W. Lewis Johnson, Randolph M. Jones, Frank Koss, John E. Laird,
Paul S. Rosenbloom, and Karl S
hwamb. Intelligent agents for intera
tive
simulation environments. AI Magazine, 16(1), Spring 1995.

Milind Tambe. Towards 
exible teamwork. Journal of Arti�
ial Intelligen
e
Resear
h, 7:81{124, 1997.

Kumiko Tanaka-Ishii, Itsuki Noda, Ian Frank, Hideyuki Nakashima, Koiti Hasida,
and Hitoshi Matsubara. MIKE: An automati
 
ommentary system for so

er. In
Yves Demazeau, editor, Pro
. of Third International Conferen
e on Multi-Agent
Systems, pages 285{292, July 1998.

Manuela Veloso, Enri
o Pagello, and Hiroaki Kitano, editors. RoboCup-99: Robot
So

er World Cup III. Springer Verlag, Berlin, 2000.

draft.tex; 28/10/2001; 2:41; p.25


