
The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming

James Finnie-Ansley
The University of Auckland
Auckland, New Zealand

james.finnie-ansley@auckland.ac.nz

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Andrew Luxton-Reilly
The University of Auckland
Auckland, New Zealand

a.luxton-reilly@auckland.ac.nz

James Prather
Abilene Christian University

Abilene, Texas, USA
james.prather@acu.edu

Figure 1: A problem description (left) based on the Rainfall Problem, provided verbatim to Codex as input, and two different programs
generated (output) by Codex (center and right). Both output programs meet the requirements of the problem.

ABSTRACT
Recent advances in artificial intelligence have been driven by an ex-
ponential growth in digitised data. Natural language processing, in
particular, has been transformed by machine learning models such
as OpenAI’s GPT-3 which generates human-like text so realistic that
its developers have warned of the dangers of its misuse. In recent
months OpenAI released Codex, a new deep learning model trained
on Python code from more than 50 million GitHub repositories.
Provided with a natural language description of a programming
problem as input, Codex generates solution code as output. It can
also explain (in English) input code, translate code between pro-
gramming languages, andmore. In this work, we explore howCodex
performs on typical introductory programming problems. We re-
port its performance on real questions taken from introductory
programming exams and compare it to results from students who
took these same exams under normal conditions, demonstrating
that Codex outscores most students. We then explore how Codex
handles subtle variations in problem wording using several pub-
lished variants of the well-known “Rainfall Problem” along with

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

ACE ’22, February 14–18, 2022, Virtual Event, Australia
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9643-1/22/02.
https://doi.org/10.1145/3511861.3511863

one unpublished variant we have used in our teaching. We find the
model passes many test cases for all variants. We also explore how
much variation there is in the Codex generated solutions, observing
that an identical input prompt frequently leads to very different
solutions in terms of algorithmic approach and code length. Fi-
nally, we discuss the implications that such technology will have
for computing education as it continues to evolve, including both
challenges and opportunities.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Computing methodologies→ Artificial intelligence.

KEYWORDS
academic integrity; AI; artificial intelligence; code generation; code
writing; Codex; copilot; CS1; deep learning; introductory program-
ming; GitHub; GPT-3; machine learning; neural networks; novice
programming; OpenAI

ACM Reference Format:
James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly,
and James Prather. 2022. The Robots Are Coming: Exploring the Implications
of OpenAI Codex on Introductory Programming. In Australasian Computing
Education Conference (ACE ’22), February 14–18, 2022, Virtual Event, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511861.3511863

10

https://orcid.org/0000-0002-4279-6284
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-1446-647X
https://orcid.org/
https://orcid.org/0000-0003-2807-6042
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511861.3511863&domain=pdf&date_stamp=2022-02-14

ACE ’22, February 14–18, 2022, Virtual Event, Australia Finnie-Ansley et al.

1 INTRODUCTION
On September 10, 2021 the New York Times ran an article titled
“A.I. Can Now Write Its Own Computer Code. That’s Good News
for Humans” describing OpenAI’s1 Codex AI model at a very high
level [27]. Codex is a descendant of GPT-32 one of the most ad-
vanced natural language models available. Codex is trained on
more than 50 million GitHub repositories representing the vast
majority of the Python code available on GitHub. Codex can take
English-language prompts and generate code in several program-
ming languages. It can also translate code between programming
languages, explain (in English) the functionality of code provided as
input, and return the complexity of code it generates. It also has the
ability to utilise APIs allowing it to, for example, send emails and
access information in databases. Codex is available via the OpenAI
API3 and it also powers GitHub Copilot4 which is billed as “Your
AI pair programmer” – a direct reference to pair programming, an
approach well-known in computing education research and prac-
tice [26] which was a hallmark of the Extreme Programming (XP)
software development methodology [41].

The NYT article provided several examples of Codex output
including “make a snowstorm on a black background” to which
Codex provides JavaScript code to draw a black rectangle with
randomly – yet appropriately – sized and placed white shapes
which then move downward, at an expected speed. Codex was also
discussed on a September 2021 Lex Fridman podcast, during an
interview with Donald Knuth [12]. Fridman stated that “This puts
the human in the seat of fixing issues versus writing from scratch”.
Knuth was overall sceptical about AI generated code, lack of control
when systems are built on auto-generated code, and executing code
with function that is not fully understood, stating “I’m never going
to try to write a book about that... I’m on the side of understanding”.

1.1 Motivating Example
The English text in Figure 1 shows a prompt that we provided to
Codex. This is a unique variant of Soloway’s Rainfall Problem [39]
which has been used in a number of studies of programming abil-
ity over the past 30+ years and which has developed a reputation
for being surprisingly difficult for introductory-level (CS1 [3]) stu-
dents [32] with multiple studies confirming poor performance [14].
This variant is fairly standard, but the English description contains
extraneous information such as “Mary has been collecting daily”
and abstract requirements/references such as “rainfall data” and
“these two values”. It also contains very specific requirements such
as “returns these two values as a tuple”, but also very human-like
requirements such as “excluding any negative values” (in brackets).
The two functions shown in Figure 1 (center and right) were gen-
erated by Codex in separate runs, in response to the same input
prompt (left). Both are functionally correct, well-structured, vari-
ables are well-named, and potential barriers such as extraneous
information and abstract requirements do not seem to cause issues.

1OpenAI (openai.com) is a non-profit “AI research and deployment company” [28]
set up with a $1 billion pledge from a group of founders including Tesla CEO Elon
Musk [33]. Microsoft has heavily funded OpenAI and now licenses GPT-3 exclu-
sively [31]. It is considered a competitor to Alphabet’s DeepMind [11].
2GPT-3 stands for third-generation Generative Pre-trained Transformer
3beta.openai.com
4copilot.github.com

This technology should be of great interest to all computing
educators. What we are dealing with is a freely-available program
that can take casually defined English language problem specifica-
tions, much like typical exam questions, and return often-correct,
well-structured code that could pass as human-written. It can also
translate code into other languages, return complexity data with
code solutions and provide a complete program or a standalone
function to complete a specified task by stating either “write a pro-
gram to...” or “write a function to...” in the input. It is also quite fast
– we never waited more than a second or so for a web-based API
output in any of the experiments we describe in this paper.

The potential implications of Codex for computing education
are significant, but the effectiveness of Codex in introductory com-
puting contexts is unknown. In this paper we explore how Codex
performs on typical introductory programming exercises, compare
its performance to that of real students, explore the variations in
Codex generated solutions, and explore the resulting implications
for the future of computing education. Our research questions are:
RQ1: Howdoes Codex perform on first year assessments compared

with CS1 students?
RQ2: How does Codex perform on variations of a benchmark

computing education problem that differ in context and level
of detail?

RQ3: How much variety is there in the solutions generated by
Codex?

The remainder of this paper is organised as follows: Section 2
provides the background of Codex and focuses on literature involv-
ing GPT-3 and OpenAI. We then turn to an evaluation of Codex
for introductory programming problems with Section 3 reporting
our method and Section 4 reporting the effectiveness of Codex in
generating code solutions to real CS1 exam questions and solving
variants of the Rainfall Problem [39]. We discuss the implications
of our findings further in Section 5.

2 RELATEDWORK
The concept of computer programs being generated by computer
programs goes back several decades [23], but has only gained signifi-
cant ground very recently. A comprehensive review of introductory
programming literature from 2018 makes no mention of tools that
use AI to produce code, and only mentions a few machine learning
based systems to analyse code or provide feedback along with in-
telligent tutoring systems that aim to provide customised learning
approaches (normally, pace and topic choice) for learners [22]. One
prerequisite for AI-generated code was the availability of training
data which has been growing for at least two decades. However, it
wasn’t until the AI/ML “boom” in 2017 [13] that natural language
models and other applications of AI began to make strong progress.

In 2020, OpenAI released GPT-3 [4], their 3rd generation Gen-
erative Pre-trained Transformer, a deep-learning natural language
prediction model. GPT-3 has 175B parameters and was trained on
570GB of text [40]. GPT-3 has an “unusually large” capability set
including text summarization, chatbot behaviour, search, and essay
generation [4]. The improvements that GPT-3 made over GPT-2,
a functionally similar model trained on a dataset approximately
10% as large, were described by experts as remarkable given that
they are the result of scaling model and training data size. Those

11

https://www.openai.com
https://beta.openai.com/
https://copilot.github.com/

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

experts, a group of researchers from OpenAI, the Stanford Institute
for Human-Centered Artificial Intelligence, and other universities,
convened under Chatham House Rules in 10/2020 to discuss the
capabilities, limitations, and societal impact of GPT-3 [40].

Despite not being trained for the generation of computer pro-
grams, testing of GPT-3 revealed that it could generate rudimentary
Python programs when supplied with Python docstrings [4]. In
2021, OpenAI released Codex, a descendent of GPT-3 that was
trained on an additional 159GB of Python code from >50M GitHub
repositories [5]. Codex is “proficient” in over a dozen programming
languages including JavaScript, Go, Perl, PHP, Ruby, Swift, Type-
Script, and Shell, but is “most capable” in Python [42] which is
unsurprising as that is what it was trained on. However, this makes
the fact that it is proficient in other languages particularly exciting.

The OpenAI team released a paper on arXiv on July 14, 2021 [5]
presenting Codex and their initial testing. This paper measured
the functional correctness of Codex in synthesising programs from
docstrings. Repeatedly sampling from the model was shown to be
particularly effective in producing working solutions to 164 “diffi-
cult” problems. These problems were released as a dataset in the
same paper and hand written because Codex was trained on a large
fraction of GitHub containing the solutions to many problems from
a large number of sources. Codex produced functionally correct pro-
grams for 70% of the prompts. The testing also revealed limitations
including that Codex struggles to deal with longer and higher-level
specifications. A specific weakness noted was binding operations
to variables, similar to text-conditional generative models often
struggle with binding attributes to objects [5]. The authors also
described some broader impacts and conducted a hazard analysis.
Although the authors claim that Codex and similar technologies
may “aid in education” it is likely that many educators may have
more serious concerns when Codex is in the hands of students.

3 METHOD
We assess the accuracy of Codex when applied to CS1-type prob-
lems using two evaluations. The first involves 23 programming
questions that were used as summative assessments on two invig-
ilated lab-based tests conducted in the CS1 programming course
at our institution in 2020. In this evaluation, we provide as input
to Codex the problem statements exactly as they were presented
to students. The second evaluation involves six variations of the
problem wording for the classic Rainfall Problem [39] published in
the literature and one variation we have used in our teaching. In
this evaluation, we provide as input to Codex the problem state-
ments exactly as they appeared in the literature and as used in our
teaching.

All runs were on the “Davinci” Codex model (the most capable,
but slowest). We use a temperature of 0.9 (or 90%) for all runs. Higher
temperature values produce more random responses, and the Codex
documentation suggests a temperature of 0.9 for “more creative
applications”. Since we were interested in creative answers and the
diversity of Codex’s solutions, we chose to follow this suggestion.

3.1 CS1 Programming Tests
In this evaluation, we use questions that appeared on two CS1 pro-
gramming tests conducted at our institution in 2020. These tests

Figure 2: Presentation of the first question of Test 1 within the
web-based examination tool as seen by students (top, shaded back-
ground); and the format of the same question as provided to Codex
(bottom, between """).

were the primary invigilated assessments in the course, with Test 1
conducted near the middle of the course and Test 2 conducted at
the end. Both tests were conducted under examination conditions
(timed, invigilated) using lab-based software that automatically
graded student solutions. The image at the top of Figure 2 illustrates
how the first question of Test 1 appeared to students. The prob-
lem statement is listed first, followed by several example test cases.
Underneath these is a code editor into which students typed their
solutions. Upon submission, students received immediate feedback,
and were shown the first failing test case. Incorrect submissions
attracted a penalty of 5% applied to that question, which accumu-
lated over subsequent submissions up to a maximum penalty of 50%.
Marks for each question were assigned on an all-or-nothing basis:
marks were only awarded for a question (including any penalties)
if the submitted code successfully passed all of the tests. Code that
did not successfully pass all tests for a question received 0 marks.
Test 1 contained 11 questions and Test 2 contained 12 questions.
Questions were ordered with respect to (approximate) increasing
complexity on each test. Table 1 provides the wording of three
problems (Q1, Q5, Q11) taken from near the start, middle and end
of Test 2, to illustrate the typical wording used.

We evaluate the performance of Codex on the 23 questions from
these two tests. The image at the bottom of Figure 2 illustrates how
each problem was reformatted for presentation to Codex. Input
to Codex is in the form of a Python docstring (within pairs of
three double quotes: """). For each question, the problem statement

12

ACE ’22, February 14–18, 2022, Virtual Event, Australia Finnie-Ansley et al.

Table 1: Several examples of questions fromTest 2, illustrating typ-
ical language used in problem prompts. All of these examples were
solved correctly by Codex.

Q1:Write a function named count_odd(my_list) that returns the number
of odd integers in a given list.
Q5:Write the get_numbers_needed() function which takes two parame-
ters: a list of numbers (numbers) and an integer (target) . The function
returns a list of all the numbers from the parameter list (starting from
the beginning) which add up to exactly, or just over, the target parameter,
e.g. if the target is 21 and the parameter list is [15, 10, 5, 20], the function
returns the list made up of the first two numbers, [15, 10] , which have
a sum of 25. If the sum of the parameter list numbers is less than the
target parameter, the function returns the empty list.
Q11: Complete the function sort_contact_tuple(contact_tuple) that
takes a tuple contact_tuple as a parameter. The tuple contains the exten-
sion details of staff members at a business and is formatted as follows:
(name1, extension1, name2, extension2,...). You can assume that the tuple
always has an even number of entries and that each name in the tuple is
unique. The sort_contact_tuple() function will sort the contact details
based on the staff names in ascending alphabetical order (A to Z). It will
then return a tuple with the sorted details.

was used verbatim, and any example test cases were included by
showing the expected output for a given input.

For each question, we took the response generated by Codex
and executed it using the same test cases as were applied during
the invigilated tests. This was achieved by submitting the Codex
response as input to the examination software. If a response suc-
cessfully passed all of the tests, we moved on to the next question.
If a response did not pass all of the tests for a question, we gen-
erated a new response by resubmitting the problem statement to
Codex. We generated a maximum of 10 responses from Codex for
any question, at which point we abandoned the question and con-
sidered it unsolved. This “repeated sampling” approach was used
by the developers of Codex in their testing [5] however our aban-
donment threshold (10 attempts) was much lower than theirs (164).
We recorded the total number of submissions required to solve
each question. In a small number of cases, which we document in
our results, if the response from Codex was correct up to a trivial
formatting error (for example, a missing comma in the expected
output) we manually amended the response and counted this as an
extra submission. This is consistent with the approach a student
might take if they submit code which is algorithmically correct, but
includes a minor formatting error. The examination software we
use highlights such formatting errors to students.

3.2 Rainfall Problem Variants
In this evaluation, we use seven variations of the well-known Rain-
fall Problem [39], six of which are published in the literature. The
seventh variation was used in a CS1 course at our large, research
intensive university in New Zealand. This variant uses harvested
apples rather than rainfall as the contextual setting and so will
be referred to as the apples variant. Table 2 shows the wording of
these seven variants exactly as they were provided to Codex. In this
case, no example test cases were provided as part of the problem

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11 Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

R
aw

 s
co

re
 (o

ut
 o

f 1
)

0.0

0.2

0.4

0.6

0.8

1.0

Test 1 Test 2

Figure 3: Raw score achieved by Codex on CS1 test problems (ac-
cumulating penalties applied for incorrect submissions; problems
abandoned after 10 failing submissions). Empty caps on some bars
indicate potential scores in the absence of trivial errors.

description. The problem descriptions are taken verbatim from the
corresponding source articles, with one exception. In the article
by Simon [37], the problem description includes a graphical figure
representing one possible input array; we have omitted the image
as there is no support for providing diagrams as input to Codex.

Each problem description was provided to Codex in a docstring
50 times. For the Fisler [10], Simon [37], Guzdial et al. [16], Lakanen
et al. [18], and apples problems, a function header was also provided
as the problem descriptions prompt the solver to write a function
or imply lists are provided as arguments rather than standard input.
Each response was executed against 10 test cases we prepared. Thus,
we evaluated a total of 350 responses, each against 10 test cases, for
a total of 3500 evaluations. We recorded how many of these tests
pass for each response as well as high-level metrics to evaluate
solution structure such as the classic “one loop or two?” distinction
commonly debated regarding the Rainfall Problem [10].

4 RESULTS
4.1 CS1 Programming Tests
Our first research question asks “How does Codex perform on
first year assessments compared with CS1 students?”. Figure 3
shows the outcome of the responses generated by Codex for the
23 programming questions from Tests 1 and 2 of our CS1 course.
Of the 23 questions, all but 4 were solved successfully using fewer
than 10 responses, and 4 responses (for Q2, Q4 and Q7 of Test 1 and
Q4 of Test 2) generated the correct solution with the exception of a
trivial formatting error. Overall, nearly half of the questions (10)
were solved successfully on the first attempt (including solutions
with a trivial formatting error).

4.1.1 Comparison With Student Performance. To contextualise this
performance, we calculate the score that the responses generated
by Codex would have received if graded according to the question
weights and accumulated penalties used for Tests 1 and 2 with real
students. Test 1 was graded out of a total of 20 marks, with Q1 and
Q11 worth 1 mark and all other questions worth 2 marks. Test 2
was graded out of a total of 25 marks, with Q11 and Q12 worth
1 mark, Q4, Q9 and Q10 worth 3 marks, and all other questions

13

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

Table 2: Variations of the wording of the “Rainfall” problem.

Reference Problem wording

Soloway [39] Write a program that will read in integers and output their average. Stop reading when the value 99999 is input.
Ebrahimi [9] Write a program that will read the amount of rainfall for each day. A negative value of rainfall should be rejected, since this is invalid and

inadmissible. The program should print out the number of valid recorded days, the number of rainy days, the rainfall over the period, and
the maximum amount of rain that fell on any one day. Use a sentinel value of 9999 to terminate the program.

Simon [37] A program has a one-dimensional array of integers called iRainfall, which is used to record the rainfall each day. For example, if iRainfall[0]
is 15 and iRainfall[1] is 0, there was 15mm of rain on the first day and no rain on the second day. Negative rainfall values are data entry
errors, and should be ignored. A rainfall value of 9999 is used to indicate that no more rainfall figures have been registered beyond that
element of the array; the last actual rainfall value recorded is in the element immediately before the 9999. The number of days represented
in the array is open-ended: it might be just a few days, or even none; it might be a month; it might be several years. The number of days is
determined solely by the location in the array of the 9999 entry. Write a function method to find and return the average rainfall over all
the days represented in the array. A day with negative rainfall is still counted as a day, but with a rainfall of zero.

Fisler [10] Design a program called rainfall that consumes a list of numbers representing daily rainfall amounts as entered by a user. The list may
contain the number -999 indicating the end of the data of interest. Produce the average of the non-negative values in the list up to the first
-999 (if it shows up). There may be negative numbers other than -999 in the list.

Guzdial
et al. [16],
cited in [15]

Write a function rainfall that will input a list of numbers, some positive and some negative, e.g., [12, 0, 41, -3, 5, -1, 999, 17]. These are
amounts of rainfall. Negative numbers are clearly a mistake. Print the average of the positive numbers in the list. (Hint: The average is the
total of the positive numbers divided by the number of just the positive numbers.)

Lakanen
et al. [18]

Implement the ‘Average’ function, which takes the amounts of rainfall as an array and returns the average of the array. Notice that if
the value of an element is less than or equal to 0 (‘lowerLimit’), it is discarded, and if it is greater than or equal to 999 (‘sentinel’), stop
iterating (the sentinel value is not counted in the average) and return the average of counted values.

apples Create a method called harvest that takes one parameter that is a list of integers representing daily tonnes of fruit picked at a given
orchard. It returns a floating point number rounded to 1 decimal place representing an average of the non-negative amounts up to either
the first sentinel or the end of the list, whichever comes first. The sentinel is -999. If it is not possible to compute an average, then return
-1.0. It is not possible to compute an average if there is no valid list (i.e. the parameter is None), or there are no non-negative values before
the sentinel. There may be values after the sentinel but they are to be ignored when determining the average.

worth 2 marks. Taking into account the penalty scheme, where
each incorrect submission attracts a 5% penalty applied to the final
mark for the corresponding question, the Codex responses scored
a total of 15.7/20 (78.5%) for Test 1 and 19.5/25 (78.0%) for Test 2.
Figure 4 plots the scores (scaled to a maximum of 100) of 71 students
enrolled in the CS1 course in 2020 who completed both tests. The
performance of the responses generated by Codex is marked with a
red asterisk. Averaging both Test 1 and Test 2 performance, Codex’s
score is in position 17when ranked alongside the 71 students’ scores,
placing it within the top quartile of class performance.

4.1.2 Trivial Formatting Errors. The Codex generated response
produced incorrectly formatted output for three of the questions
on Test 1 (Q2, Q4, Q7) and one question on Test 2 (Q4). For example,
a test case in Test 1 Q2 prompted students to print “The value of 4x
is 8.” whereas the response generated by Codex, while otherwise
correct, excluded the full stop. Similarly, a full stop was missing in
the output for Test 1 Q4 as well as an incorrectly worded prompt.
This question asked for a program that prompted the user to enter
a positive integer, and the example test cases displayed this prompt
as: “Enter a positive integer:”, whereas the prompt generated by the
Codex response was: “Enter a number:”

The error for Q4 of Test 2 also involved the printing of a prompt
for the user. This question asked for a program that would repeat-
edly read an input string from the user until a string that met certain
conditions was received. The example test cases for this question
illustrated that the prompt presented to the user should be shown
just once, whereas the Codex response placed the printing of this
prompt inside the loop that read input, thus printing it repeatedly.

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●● ●

●
●

●●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Test 1 (/100)

Te
st

 2
 (/

10
0)

Figure 4: Student scores on invigilated tests (Test 1 and Test 2), with
performance of Codex (plotted as red asterisk).

4.1.3 Failed Problems. In our evaluation, four problems remained
unsolved after 10 consecutive attempts. The two problems from
Test 1 (Q10, Q11) both placed restrictions on what features could be
used in solutions (and the grading tool enforced these restrictions).
For example, Q10 asked students to write a function that takes two

14

ACE ’22, February 14–18, 2022, Virtual Event, Australia Finnie-Ansley et al.

Figure 5: Examples shown as part of the problem descriptions, il-
lustrating formatting requirements, for failed problems Q7 (left)
and Q12 (right) from Test 2.

string parameters (a letter and a sentence) and “prints all the words
in the sentence that start with the letter”. However, solutions were
required to “use a while loop to perform the task” and were not
allowed to “use the split() method”. While the solutions produced
by Codex generally met both requirements – all ten solutions used
a while loop, and only one attempted to use split() – they failed
to produce the correct output. One common mistake was that for
each matching word, the solution would print only the first letter
of the word rather than the complete word. For Q11, students were
asked to write a function that printed four integer parameters in
sorted order only using the min() and max() functions and could not
use conditionals, collections, or loops. Only two of the 10 solutions
produced correct output, but both of these solutions violated this
constraint.

Two problems from Test 2 (Q7, Q12) both placed quite specific
formatting requirements on the output. Q7 asked students to define
a function that would print an “isosceles triangle as in the examples
below”, given an integer input, without further description of the
output. Q12 asked students to define a function that produced
an ASCII histogram given a dictionary of values representing the
bar heights. Figure 5 illustrates the required output for these two
questions. The solutions generated by Codex for Q7 were very close
to being correct – on several occasions producing the correct values
but failing to print the leading spaces required on each row (we
note that the problem description did not specifically state spaces
were needed, but left the student to infer this from the examples).
The solutions generated by Codex for Q12 tended to produce output
that used the correct ASCII characters, but did not come close to the
required format. Generating ASCII images is a challenging problem
given that the output must be printed one row at a time.

4.2 Rainfall Problem Performance
Our second research question asks: “How does Codex perform on
variations of a benchmark computing education problem that differ
in context and level of detail?”. The ten test cases used for the
rainfall responses are described in Table 3 which shows examples
of the standard input and list arguments used in the test cases. For
the Guzdial [16] test cases, the sentinel value was not included in
the list arguments as a sentinel was not mentioned in the question
prompt. For the Lakanen et al. [18] test cases, the ‘lowerLimit’ was
set to -1 and the ‘sentinel’ was set to 999.

The high-level results of the evaluation are shown in Table 4.
Each response was graded against each test case and marked out
of one (with one representing a perfect score — each test case
contributes 0.1 towards the overall score). The average mark for

Name Stdin List Argument

Blank S\ [S]
One 0 0\S\ [0, S]
One +ve 5\S\ [5, S]
One -ve -5\S\ [-5, S]
Multiple +ve 3\5\7\S\ [3, 5, 7, S]
Multiple 0’s 0\0\0\S\ [0, 0, 0, S]
Multiple -ve -3\-5\-7\S\ [-3, -5, -7, S]
Mixed +ve & 0 4\0\S\ [4, 0, S]
Mixed +ve & -ve 3\-2\5\S\ [3, -2, 5, S]
Mixed All 3\0\-2\5\S\ [3, 0, -2, 5, S]

Table 3: Rainfall test cases (S→Sentinel, \→newline).

Variant Mean Median Max Stddev

Soloway [39] 0.63 0.90 1.00 0.40
Simon [37] 0.48 0.50 1.00 0.28
Fisler [10] 0.61 0.70 1.00 0.26
Ebrahimi [9] 0.19 0.05 1.00 0.26
Guzdial et al. [16] 0.47 0.30 1.00 0.22
Lakanen et al. [18] 0.44 0.70 0.90 0.32
apples 0.54 0.60 1.00 0.34

Table 4: Rainfall results marked out of 1 (max score).

each test case by variant is shown in Figure 6. For each test case,
the binary pass/fail marks were averaged.

When compared to the published partial scores (i.e. percentage
of passing test cases – not all-or-nothing as described in section
3.1) from the literature, the performance of Codex is varied. Of
the published variants, three reported partial scores. Codex outper-
formed the results of Simon [37] with 149 students using C# with
an average partial score of 29% and none of the students providing
a fully correct solution. Codex has similar results to Guzdial et al.
[16] with 120 students using Python with an average partial score
of 46%. Codex performs worse than the results of Lakanen et al. [18]
where 139 students had an average partial mark of 69%. However,
the test cases used to grade the published variants are likely more
exhaustive than the tests used in our analysis, so it may not be an
entirely fair comparison.

However, the Codex responses to the apples variant can be di-
rectly compared to the responses of our students. This variant was
used in a CS1 course using Python with 45 students in 2019. The
course is usually the second programming focused course computer
science students take at our institution. The apples question was
given to students in a midterm test under similar conditions to those
reported in Section 3.1. Using the test cases provided in Table 3, the
students received an average partial mark of 84%. However, in this
setting students are able to re-attempt questions as described in 3.1.

Codex struggles on cases where no valid values are provided
as input, with the Simon, Fisler, Ebrahimi, Guzdial, and Lakanen
responses getting poor marks on the blank input and negative value
test cases (i.e. cases where no non-negative values are provided).
In these variants, the prompts excluded negative values but did not
mention the case where no valid inputs are provided. However, the

15

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

0.00

0.25

0.50

0.75

1.00

Blank One0 One+ve One−ve Multiple+ve Multiple−ve Multiple0's Mixed+ve&0 Mixed+ve&−ve MixedAll

Av
er
ag
e

Variant Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples

Figure 6: Mean mark (out of 1) per-case.

Variant One
while

One
for

Sum /
Len

Two
Pass

Other

Soloway [39] 41 1 0 5 3
Simon [37] 5 36 1 8 0
Fisler [10] 3 42 1 3 1
Ebrahimi [9] 36 3 0 10 1
Guzdial et al. [16] 0 35 1 13 1
Lakanen et al. [18] 2 37 2 5 4
apples 4 23 3 16 4

Table 5: Count of general method used by response.

apples variant explicitly mentions to return -1 in the case there are
no valid values and does much better on these cases in comparison.

4.3 Variety
Our third research question asks: “How much variety is there in
the solutions generated by Codex?”. To evaluate the variety of
solutions generated by Codex, we examined the number of source
lines of code (sloc) excluding blank and comment lines of solutions
to all rainfall variants, as well as the general algorithmic approach
employed in the solutions as an indicator of algorithmic variation.
Figure 7 shows sloc. Table 5 reports on the algorithmic variation
highlighting the different approaches of the solutions generated by
Codex. One while and one for represent solutions that exclusively
used a single while or for loop respectively. For example, using a
single for loop to add values to a sum and increment a count on the
condition a value is non-negative. Sum/Len represents solutions that
calculated an average only using built-in sum() and len() functions
without the use of loops. Two pass represents solutions that used
multiple methods to clean and then aggregate the data. For example,
having a while loop to filter values up to the sentinel followed by a
for loop to compute the average. Other represents solutions that
utilised some other method for calculating a result.

We find that the sloc and counts of general method indicate
Codex is providing a range of different responses to the same
prompt while ultimately favouring expected methods for each
response (i.e., for loops for processing lists, and while loops for
processing standard input). The variation is likely related to the

0

10

20

30

40

Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples

sl
oc

Figure 7: Source lines of code (sloc) per variant.

high temperature value of 0.9 which the Codex documentation
recommends as a value which will yield “creative” results.

5 DISCUSSION
We cannot put the genie back in the bottle! AI is already capable of
automatically generating a human-like quality of solutions in this
context. We anticipate that in the near-term such tools will be able
to generate solutions to increasingly more sophisticated problems,
and will be more commonly used by students. Our results show
that Codex performs better than most students on code writing
questions in typical first year programming exams, and performs
reasonably well in most variations of the Rainfall Problem. The
solutions generated by Codex appear to include quite a lot of vari-
ation, which is likely to make it difficult for instructors to detect,
but may offer some potential benefits for students. The question
arising for the computing education community (perhaps the most
significant question of the present century – so far at least) is how
we engage with the challenges and opportunities presented by the
increasing effectiveness of machine learning tools such as Codex.

16

ACE ’22, February 14–18, 2022, Virtual Event, Australia Finnie-Ansley et al.

5.1 Opportunities
Learning to program often involves a lot of relatively short program-
ming exercises for students to become familiar with programming
syntax, semantics, and style. Such activities are so common they
may form a signature pedagogy [36] of computing education. Some
of the exercises (or even previous years tests and exams) that are
used for practice typically do not come with sample solutions, so au-
tomatically generated solutions may provide students with models
that they can use for learning, or to check their own work.

The extensive literature on peer review, including the review of
code [17, 21] makes it clear that there are many benefits that arise
from looking at a variety of solutions to a given problem. These
benefits are present even when the code is flawed (i.e., there are
benefits from looking at poor solutions as well as good solutions).
When presented as a way of generating solutions of varying quality,
and alternative approaches that students are asked to evaluate,
the automatically generated solutions from Codex may provide
fertile ground for discussions of alternative approaches, quality of
solutions, and potential for refactoring exercises.

5.2 Challenges
The availability of tools such as Codex raise concerns and chal-
lenges for the future of computing education. The value of a tool
depends on its use, and there is the potential for Codex to be used in
ways that limit learning, or ways that make the work of educators
difficult. The developers of Codex mentioned one such challenge:
possible over-reliance on Codex by novice programmers [5]. Here
we discuss several other challenges in the context of introductory
programming, and computing more generally.

Students may use Codex to generate model solutions for exer-
cises where solutions are not provided by instructors. If the gener-
ated solution is incorrect or uses poor style, students are likely not
learning optimally, and may adopt inappropriate conventions and
poor style. While this is true for any crowd-sourced solution (i.e.,
using web-based examples), the customised solutions offered by
Codex may lead students to perceive the solutions as being more
credible, similar to an intelligent tutoring system [6].

This may suggest that future introductory programming courses
should place more emphasis on code review, or evaluation of code,
to ensure that students can effectively evaluate the quality of code
generated by Codex rather than relying on such tools as an “oracle.”
This will mean an increasing reliance on invigilated exams in a time
when academia is turning more and more toward online learning.

Finally, the fact Codex currently has limits in the complexity
of problems it can solve may be irrelevant to students. If students
submit code generated by Codex, even if it is not correct, it will
likely be worthy of partial credit. How can an educator differentiate
between a student who tried but ultimately failed to get the correct
answer and a student who simply generated code using Codex? This
may result in students being awarded a pass in a course without the
appropriate level of knowledge required, and subsequently burden
instructors (and peers if courses employ group projects).

5.3 Academic Integrity
Academics have long been concerned about violations of academic
integrity in computing disciplines [8, 30]. The literature reports

a high percentage of computing students to be engaged in some
form of plagiarism [7]. Some studies have reported almost 80%
of computing students to be involved [35], and there is a higher
occurrence of plagiarism in computer science than in many other
disciplines [20, 29, 30]. A recent systematic review of literature on
plagiarism observes that there are attributes that are specific to
computing, such as the nature of code reuse, that may impact on the
academic dishonesty of computing students [1]. Interestingly, even
though the study was published in 2019, it does not once mention
the possibility of students utilising artificial intelligence to cheat.

For many years academics reported improvements in technology
and availability of resources as being one of the most significant
factors contributing to increased plagiarism [7]. Codex may further
exacerbate this problem as well as blur the lines between generally
accepted intelligent support provided some by IDEs, and activities
that would be considered academic misconduct.

The use of many small exercises is an approach that CS1 students
can prefer and have better success with [2]. Instructors may also
be inclined to use them as they are easy to generate and assess
automatically. However, this approach is likely to result in problems
that can be more easily solved using Codex. This is contrasted
with calls for the use of more complexity in assignments to reduce
plagiarism [38]. It is possible that developments such as Codex may
add to the need to change our common assessment practices in the
direction of more unique and complicated assessments.

The availability of solutions to programming tasks can be prob-
lematic for student learning. Sheard et al. [34] make the case that:
“If students are given tasks for which solutions are readily available
to copy from textbooks or lecture notes they are tempted to take
short cuts and avoid the intended learning experience.” Solutions
to common problems are easy to locate using standard web search
engines. To avoid a solution being available, some educators may
choose to introduce variations, or use descriptions that obfuscate
the problem so an existing solution is more difficult to find. Evi-
dence from our analysis shows that Codex was able to produce a
solution to the apples problem with similar success to the more typ-
ical Rainfall Problem, despite the phrasing deliberately obscuring
the similarity to readily available web-based solutions.

One method proposed to prevent copying is to have the instruc-
tor create unique assignments for each student [7, 24, 35]. Although
this approach can prevent direct copying, students may still engage
in “contract cheating” where work is outsourced to an individual
or organisation [19, 25]. This approach frequently costs the student
financially and has the potential for the solution to be shared with
others using the same service, and subsequently become detected
by similarity comparison tools. Codex generates new solutions each
time, and the answers are not archived where they are visible to
others, so it avoids the reproduction of identical discoverable solu-
tions. This provides many of the benefits of contract cheating while
avoiding the financial cost and the potential pitfalls of sharing a
solution or potential identification by the contracted party.

Identifying plagiarism using similarity detection is a common
solution [35], with a third of academics responding to a survey
on academic integrity reporting the use of some form of similarity
detection software [7]. Given the wide variation in student solutions
generated by Codex, we anticipate that standard approaches to

17

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

Figure 8: Problem description for Test 2 Q6 (top, green font be-
tween """) and two correct solutions produced by Codex (each be-
ginning with ‘def’).

identifying copying through similarity detection will be largely
unsuccessful, and a different approach may be needed.

Figure 8 provides an example of the variety we observed in
solutions to problems. The problem description is from Test 2 Q6,
beneath which are two distinct solutions produced by Codex, both
of which correctly solve the problem. Note the inclusion of type
hints in the first solution, and the use of list slicing in the second.

Codex provides students with a means of obtaining solutions to
simple programming problems that carries low risk of similarity
detection due to the variation in solutions, and no risk of the ac-
tivity being revealed by a human who has provided the solution.
Given the difficulty involved in the detection of Codex solutions,
we suggest that a strategy focused on education is worthwhile. Al-
bluwi [1] states that there is confusion among students and no
consensus among instructors on what constitutes plagiarism in
programming assessments. The use of Codex and similar tools may
further complicate this issue. We suggest that there may be benefits
from explicitly discussing the use of Codex and other similar tools
in class, alongside other academic integrity guidelines.

5.4 Changes Ahead
Technologies such as Codex will improve and proliferate. These
tools will change the way we teach, learn, and work. Floridi and
Chiriatti [11] predict that “People whose jobs still consist in writing
will be supported, increasingly, by tools such as GPT-3. Forget the
mere cut & paste, they will need to be good at prompt & collate.”
Much as consumers of news articles and other text will have to
get used to not knowing what they are reading was authored by
humans or generated by AI tools [11], programmers will soon (if
not already) not know if code they have not seen before was written
by a human, an AI tool, or a combination of both. Trying to gauge
the intention or reasoning of a program’s author from their code is
difficult. It is arguably pointless if the author was not human.

We are also likely to see technologies such as Codex used as a
component in other tools, aiding the proliferation of low-code /
no-code platforms and their use. The emergence of Codex raises
several questions for the computing education community, and
many avenues to explore in future work:
• What problem types are difficult for tools such as GPT-3 and
Codex? What is the performance of such tools on Parsons prob-
lems, MCQs, and problems with contextual specifications.

• How does Codex perform on other question types such as “Ex-
plain in plain English”, identifying bugs in code, and fact-based
questions (e.g., list all the identifiers in the code provided)?

• Can automated plagiarism detection tools identify code generated
by Codex?

• Can tools like Codex be utilised to detect plagiarism?
• How can Codex be used to improve student learning?
• How should we adapt course content and assessment approaches
as the use of tools such as Codex becomes more prevalent?

We believe that further work investigating the challenges and op-
portunities presented by Codex and similar tools is of urgent im-
portance for the computing education community.

6 LIMITATIONS
The data that Codex was trained on may have included solutions to
the previously published Rainfall Problem. However this would be
at least partially mitigated by the fact that we used our own unique
variant of Rainfall, and the use of test questions which weren’t
published. Additionally it is possible that some of the solutions from
our test questions were posted online by students and included in
the Codex training data. This may be mitigated in part by the fact
that we used a high temperature value (0.9 out of a maximum of 1)
in Codex which produces more random (i.e. “creative”) responses,
and we did observe a good degree of variety in the Codex responses.

7 CONCLUSIONS
In this paper, we have examined what could be considered an emer-
gent existential threat to the teaching and learning of introductory
programming. With some hesitation we have decided to state how
we truly feel – the results are stunning – demonstrating capability
far beyond that expected by the authors.

Having Codex in the hands of students should warrant concern
similar to having a power tool in the hands of an amateur. The
tool itself may not be intended to do harm, but with a vulnerable
or untrained user, it may do just that. Even though, as we have
shown above, the current tool has clear limitations when given
tight constraints, it is evident from the rapid progression of GPT-
2 to GPT-3 to Codex, that this will not remain the case for long.
Furthermore, total correctness need not be a reality for technologies
such as this to shake the foundations of computing education. The
way we teach introductory programming – and probably eventually
all of computing – will change drastically in the next decade, and
the largest driver of that change may be tools such as Codex.

However, all is not lost. While tools like Codex present clear
threats and challenges to student learning and academic integrity,
they also present fantastic opportunities to refactor existing cur-
ricula. The CS1 of the future might use tools like Codex to create
unique code snippets for each student to analyse on invigilated

18

ACE ’22, February 14–18, 2022, Virtual Event, Australia Finnie-Ansley et al.

exams; students could be provided with a window into the variety
of solutions for any given problem; and eventually tools like Codex
may assist in automatic evaluation of student code.

Whatever we do, it is certain that this particular AI revolution
has arrived at the door of our classrooms, and we must consider
how we adapt to it. Keeping it out is not an option. We expect
much future work as tools like Codex appear in classrooms globally.
Anticipating this shift, we put the following sentence into GPT-3,
“The robots are taking over.” It returned, “Yes, you read that right.
The robots are coming for us. We have been warned”.

REFERENCES
[1] Ibrahim Albluwi. 2019. Plagiarism in Programming Assessments: A Systematic

Review. ACM Trans. Comput. Educ. 20, 1, Article 6 (Dec. 2019), 28 pages. https:
//doi.org/10.1145/3371156

[2] Joe Michael Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris Miller.
2019. An Analysis of Using Many Small Programs in CS1. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, NY, NY, USA, 585–591. https://doi.org/10.1145/3287324.3287466

[3] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review of
the Evolution of Introductory Programming Education Research. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). ACM, NY, NY, USA, 338–344. https://doi.org/10.1145/3287324.3287432

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, et al.
2020. Language Models Are Few-shot Learners. arXiv preprint arXiv:2005.14165
(2020).

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, et al. 2021. Evaluating Large Language Models Trained on Code.
(2021). arXiv:cs.LG/2107.03374 https://arxiv.org/abs/2107.03374

[6] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
Tutoring Systems for Programming Education: A Systematic Review. In Proceed-
ings of the 20th Australasian Computing Education Conference (ACE ’18). ACM,
NY, NY, USA, 53–62. https://doi.org/10.1145/3160489.3160492

[7] Martin Dick, Judy Sheard, Cathy Bareiss, Janet Carter, Donald Joyce, et al. 2002.
Addressing Student Cheating: Definitions and Solutions. InWorking Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-
WGR ’02). ACM, NY, NY, USA, 172–184. https://doi.org/10.1145/960568.783000

[8] John L. Donaldson, Ann-Marie Lancaster, and Paula H. Sposato. 1981. A
Plagiarism Detection System. SIGCSE Bull. 13, 1 (Feb. 1981), 21–25. https:
//doi.org/10.1145/953049.800955

[9] Alireza Ebrahimi. 1994. Novice Programmer Errors: Language Constructs and
Plan Composition. Int. J. Hum.-Comput. Stud. 41, 4 (Oct. 1994), 457–480. https:
//doi.org/10.1006/ijhc.1994.1069

[10] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (ICER ’14).
ACM, NY, NY, USA, 35–42. https://doi.org/10.1145/2632320.2632346

[11] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its Nature, Scope, Limits,
and Consequences. Minds and Machines 30, 4 (2020), 681–694. https://doi.org/10.
1007/s11023-020-09548-1

[12] Lex Fridman. 2021. Donald Knuth: Programming, Algorithms, Hard Problems &
the Game of Life | Lex Fridman Podcast #219. https://www.youtube.com/watch?
v=EE1R8FYUJm0&t=1995s

[13] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020. The
State of the ML-Universe: 10 Years of Artificial Intelligence & Machine Learning
Software Development on GitHub. In Proceedings of the 17th International Con-
ference on Mining Software Repositories (MSR ’20). ACM, NY, NY, USA, 431–442.
https://doi.org/10.1145/3379597.3387473

[14] Mark Guzdial. 2011. From Science to Engineering. Commun. ACM 54, 2 (Feb.
2011), 37–39. https://doi.org/10.1145/1897816.1897831

[15] Mark Guzdial. 2013. Exploring Hypotheses about Media Computation. In Pro-
ceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (ICER ’13). ACM, NY, NY, USA, 19–26. https:
//doi.org/10.1145/2493394.2493397

[16] Mark Guzdial, Rachel Fithian, Andrea Forte, and Lauren Rich. 2003. Report on
Pilot Offering of CS1315 Introduction to Media Computation With Comparison
to CS1321 and COE1361.

[17] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review
of Peer Code Review in Higher Education. ACM Trans. Comput. Educ. 20, 3,
Article 22 (Sept. 2020), 25 pages. https://doi.org/10.1145/3403935

[18] Antti-Jussi Lakanen, Vesa Lappalainen, and Ville Isomöttönen. 2015. Revisiting
Rainfall to Explore Exam Questions and Performance on CS1. In Proceedings of

the 15th Koli Calling Conference on Computing Education Research (Koli Calling
’15). ACM, NY, NY, USA, 40–49. https://doi.org/10.1145/2828959.2828970

[19] Thomas Lancaster and Codrin Cotarlan. 2021. Contract Cheating by STEM
Students Through a File Sharing Website: A Covid-19 Pandemic Perspective.
International Journal for Educational Integrity 17, 1 (2021), 1–16.

[20] Alberta Lipson andNormaMcGavern. 1993. Undergraduate Academic Dishonesty
at MIT. Results of a Study of Attitudes and Behavior of Undergraduates, Faculty,
and Graduate Teaching Assistants. (1993).

[21] Andrew Luxton-Reilly. 2009. A Systematic Review of Tools That Support Peer
Assessment. Computer Science Education 19, 4 (2009), 209–232.

[22] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, et al. 2018. Introductory Programming: A Systematic Literature Review.
In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018 Companion). ACM, NY,
NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

[23] Zohar Manna and Richard J. Waldinger. 1971. Toward Automatic Program
Synthesis. Commun. ACM 14, 3 (March 1971), 151–165. https://doi.org/10.1145/
362566.362568

[24] SathiamoorthyManoharan. 2017. Personalized Assessment as aMeans toMitigate
Plagiarism. IEEE Transactions on Education 60, 2 (2017), 112–119. https://doi.org/
10.1109/TE.2016.2604210

[25] Sathiamoorthy Manoharan and Ulrich Speidel. 2020. Contract Cheating in
Computer Science: A Case Study. In 2020 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE). 91–98. https:
//doi.org/10.1109/TALE48869.2020.9368454

[26] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The
Effects of Pair-Programming on Performance in an Introductory Programming
Course. SIGCSE Bull. 34, 1 (Feb. 2002), 38–42. https://doi.org/10.1145/563517.
563353

[27] Cade Metz. 2021. A.I. Can NowWrite Its Own Computer Code. Thats Good News
for Humans. https://www.nytimes.com/2021/09/09/technology/codex-artificial-
intelligence-coding.html

[28] OpenAI. 2020. About OpenAI. https://openai.com/about/
[29] Paul Phillips and Luc Cohen. 2014. Convictions of Plagiarism in Computer

Science Courses on the Rise. The Daily Princetonian, March 4 (2014), 2014.
[30] Eric Roberts. 2002. Strategies for Promoting Academic Integrity in CS Courses.

In 32nd Annual Frontiers in Education, Vol. 2. IEEE, F3G–F3G. https://doi.org/10.
1109/FIE.2002.1158209

[31] Kevin Scott. 2020. Microsoft teams up with OpenAI to Exclusively License GPT-3
Language Model. https://blogs.microsoft.com/blog/2020/09/22/microsoft-teams-
up-with-openai-to-exclusively-license-gpt-3-language-model/

[32] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do We Know How Difficult the Rainfall Problem Is?. In Proceedings of the
15th Koli Calling Conference on Computing Education Research (Koli Calling ’15).
ACM, NY, NY, USA, 87–96. https://doi.org/10.1145/2828959.2828963

[33] Sam Shead. 2021. Why Everyone is Talking About an Image Generator Released
by an Elon Musk-Backed A.I. Lab. https://www.cnbc.com/2021/01/08/openai-
shows-off-dall-e-image-generator-after-gpt-3.html

[34] Judy Sheard, Angela Carbone, and Martin Dick. 2003. Determination of Factors
Which Impact on IT Students’ Propensity to Cheat. In Proceedings of the Fifth
Australasian Conference on Computing Education - Volume 20 (ACE ’03). Australian
Computer Society, Inc., AUS, 119–126.

[35] Judy Sheard, Simon, Matthew Butler, Katrina Falkner, Michael Morgan, et al.
2017. Strategies for Maintaining Academic Integrity in First-Year Computing
Courses. In Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’17). ACM, NY, NY, USA, 244–249. https:
//doi.org/10.1145/3059009.3059064

[36] Lee S. Shulman. 2005. Signature Pedagogies in the Professions. Daedalus 134, 3
(2005), 52–59. http://www.jstor.org/stable/20027998

[37] Simon. 2013. Soloway’s Rainfall Problem Has Become Harder. In 2013 Learning
and Teaching in Computing and Engineering. 130–135. https://doi.org/10.1109/
LaTiCE.2013.44

[38] Simon. 2017. Designing Programming Assignments to Reduce the Likelihood of
Cheating. In Proceedings of the 19th Australasian Computing Education Conference
(ACE ’17). ACM, NY, NY, USA, 42–47. https://doi.org/10.1145/3013499.3013507

[39] E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858. https://doi.org/10.
1145/6592.6594

[40] Alex Tamkin, Miles Brundage, Jack Clark, and Deep Ganguli. 2021. Understanding
the Capabilities, Limitations, and Societal Impact of Large Language Models.
arXiv preprint arXiv:2102.02503 (2021).

[41] Laurie A. Williams and Robert R. Kessler. 2000. All I Really Need to Know about
Pair Programming I Learned in Kindergarten. Commun. ACM 43, 5 (May 2000),
108–114. https://doi.org/10.1145/332833.332848

[42] Wojciech Zaremba, Greg Brockman, and OpenAI. 2021. OpenAI Codex. https:
//openai.com/blog/openai-codex/

19

https://doi.org/10.1145/3371156
https://doi.org/10.1145/3371156
https://doi.org/10.1145/3287324.3287466
https://doi.org/10.1145/3287324.3287432
https://arxiv.org/abs/cs.LG/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/960568.783000
https://doi.org/10.1145/953049.800955
https://doi.org/10.1145/953049.800955
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://www.youtube.com/watch?v=EE1R8FYUJm0&t=1995s
https://www.youtube.com/watch?v=EE1R8FYUJm0&t=1995s
https://doi.org/10.1145/3379597.3387473
https://doi.org/10.1145/1897816.1897831
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/3403935
https://doi.org/10.1145/2828959.2828970
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://doi.org/10.1109/TE.2016.2604210
https://doi.org/10.1109/TE.2016.2604210
https://doi.org/10.1109/TALE48869.2020.9368454
https://doi.org/10.1109/TALE48869.2020.9368454
https://doi.org/10.1145/563517.563353
https://doi.org/10.1145/563517.563353
https://www.nytimes.com/2021/09/09/technology/codex-artificial-intelligence-coding.html
https://www.nytimes.com/2021/09/09/technology/codex-artificial-intelligence-coding.html
https://openai.com/about/
https://doi.org/10.1109/FIE.2002.1158209
https://doi.org/10.1109/FIE.2002.1158209
https://blogs.microsoft.com/blog/2020/09/22/microsoft-teams-up-with-openai-to-exclusively-license-gpt-3-language-model/
https://blogs.microsoft.com/blog/2020/09/22/microsoft-teams-up-with-openai-to-exclusively-license-gpt-3-language-model/
https://doi.org/10.1145/2828959.2828963
https://www.cnbc.com/2021/01/08/openai-shows-off-dall-e-image-generator-after-gpt-3.html
https://www.cnbc.com/2021/01/08/openai-shows-off-dall-e-image-generator-after-gpt-3.html
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/3059009.3059064
http://www.jstor.org/stable/20027998
https://doi.org/10.1109/LaTiCE.2013.44
https://doi.org/10.1109/LaTiCE.2013.44
https://doi.org/10.1145/3013499.3013507
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/332833.332848
https://openai.com/blog/openai-codex/
https://openai.com/blog/openai-codex/

	Abstract
	1 Introduction
	1.1 Motivating Example

	2 Related Work
	3 Method
	3.1 CS1 Programming Tests
	3.2 Rainfall Problem Variants

	4 Results
	4.1 CS1 Programming Tests
	4.2 Rainfall Problem Performance
	4.3 Variety

	5 Discussion
	5.1 Opportunities
	5.2 Challenges
	5.3 Academic Integrity
	5.4 Changes Ahead

	6 Limitations
	7 Conclusions
	References

