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1. INTRODUCTION

In the field of reliability analysis one is often faced with the
problem of choosing a failure distribution to represent the pattern of
failure for a particular component or subsystem. If the assumption of a
uniforwm hazard rate can be Justified, the appropriate failure density
function is the familiar “"exponential” failure density and reliability
predictions may be made upon the determination or specification of a
single parameter. Alternatively, since the Yexponential” distribution
do#s not allow for degradation effects over the period of use, one may
prefer to use a faflure distribution which exhibits a hazard rate that
increases with age. An important clase of fallure densities with this
property frequently used in reliability amalysis is the Weibull family.l
This family includes the exponential distribution as a special case but,
in general, requires two paremeters to ldentify the distribution instead
of simply the "mean-time-to-fallure™ as in the "exponential® case. There-
fore, to 08¢ 3 meaber of the Weibull family of failure densities cne
requires wore knowledge than in the exponential case since, in a sense,
one must aleo specify the type of degradation involved.

1f sufficient failure data is available, the problem presents no

difficulty, for the data may be used to specify whether the exponential

the Weibull family allows for degradation effects only when its
shape paremetsr, o, is greater than unity. When a = 1 the hazard rate
is conatant and when o < 1 the haxerd rate is decressing and the corme-
sponding component would have the unusual property of improving reliapilivy
with incressing age. In practice a > 1 is the usual case; however, the
present pressarch covers the entire range a > O,
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or another member of the Weibull femily is valid. Bqnnr, when failure
data is insufficient or entirely absent (for example, in the design stage
of a system) one may wish to use the assumption of an exponential distri-
bution in lieu of attempting to identify and apecify a degradation effect.

Or, one may feel that an exponentisl asswption is quite reasonable but

would like some sort of assurance that if this wtion is modestly in
arror, the use of it will produce only small prediction errors. In either
of these cases, therefore, it would be useful to know how much of a devia-

tion from the exponential assusption may be allowed without producing a

significant prediction error. Obviocusly, the exp tial prion would
be more useful if the magnitude of this deviation were large than if it
were small, Specificslly, if the magnitude is large we may say that the
prediction procedure is "robust™ with respect to deviations from the
exponential asswtim.2

The purpose of this paper is to investigate the robustness of predic-
tion procedures with respect to deviations from an exponential assumption,
where the dﬁri&tim are within the family of Weibull densities. Since
the concept of robustness of a particular procedure is often quite vague
due to the arbitreriness of what one means by "acceptable” error or &
"modest" deviation, the author chose to attempt to quantify the idea of
robustness by determining regioms in the Weibull family such that if the
true failure distribution is in the region, the use of the exponential
assumption wil) produce a prediction error within a prespecified bound.
These regions are called "regions of robustness” and the bound identifies

the leve) of robustness. The region itself is identified in terms of the,

2Sta‘timical. procedures which are "healthy" with respect to deviations
from a particular assumption (i.e., modest deviations produce only wodest
errors i{n the probability level) are called "robust procedures” with
respect to deviations from this sssumption.
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shape parameter of the Weibull distribution. The foregoing concepts are

defined specifically in the next section.

Because of the complexity of the problem, the present research is

limited to a series system with N independent and identical components.

Results are obtained from N = 1, 2, 3, 4, 5, 8, and 10.

2., TERMINOLOGY AND NOTATION

2.1 Region of Robustness

If a reliability function Ro(t) is assumed when the true reliability

function R(t) is a ber of a broader family of reliability functioms,

then a region of robustness of size & is defined as any region of the

parameters of the family R(t) which satisfies the condition.
‘max |R (t) - R(t)| <& . (1)
+  ° -

If this region is the largest such region, it may be called a maximal

region of robustness of size §. The quantity & may be called the level
of robustness since it specifies the maximum absolute prediction error
which can be made in this region. This level is valid over the entire
range of t > 0 unless it is specified that a restricted range of t is

being considered.

2.2 Exponential Distribution

The exponential density function has the functional form

-t/@

£(t) = (1/6) e t>0,8>0 ,

where E(t) = 6 is known as the mean-time~to-failure (MTTF). The relia-

bility function for this failure distribution is

R (t) = I £(t;0)at = o t/e
¢ t

where the subscript e identifies it as exponential.



2,3 Weibull Distribution

The Weibull density has the form
a-1 -t%/8
g(t;a,8) = (at /B8) e t>0,a>0,8>0 ,

and with a = 1 is the exponential density. The reliability function,

identified by a subscript w, is
- a
R (t) = f gltsa,B)at = 7t /8
t

and the mean (MTTF) is E(t) = Blla {1 + 1/0).

3. REGIONS OF ROBUSTNESS

3.1 Standardization of the Problem

To investigate the effects of using an exponential assumption when
Weibull is correct, a reasonable approach is to require that the mean of
the Weibull distribution be equal to that of the exponential. This results

in the forms

-t/m -t%r%(1+1/a)/m”

R(t) =e and R(t) =e

where m is the mean in each case.

A change of scale from t to t/m leads to the standardized forms

t -%r%(141/a)

R(t) = e and R(t) = e (2)
e W

which will be used in the present paper. The standardization equates
the means to unity, thus making the analysis simpler without loss of

generality.

3.2 Single Component System

In the case of a system which consists of a single component, the
maximal region of mbmﬁess, using (1) and (2) is defined as the region
in a such that

max |A(t,a)} <& ,
where N

a.a
a(t,a) = et it T (141/e) (3)

The level of robustness, previously defined, is &. An analysis of the
Function (3) indicates that A(t,a) possesses two local extremum points
with respect to t for fixed o (see Appendix A). Also, it can be shown

that R.(t) and R'(t) intersect at a single point t, = [F(1 ¢ 1/0)]“/(1-‘)
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and that t, is greater than unity for a # 1. Therefore, from an inspec-
tion of the curves for Rw(t) for a range of o (see Figure 1) it is evi-
dent that the two local extrema exist one on each side of t, and that for
limiting values of the parameter a (i.e., a + 0 and a + =) the absolute
extremum appears to be to the left of t,. Because of the complexity of
the function A(t;a), the local extrema were not determined analytically,
but rather a numerical technique3 was employed to calculate both extremum
points. The extremum point yielding the largest value of |A(t;a)| was
jdentified as the absolute extremum point ta. The numerical results
showed that t, was always the smaller of the two extremum points and was
always less than unity.

The results of the calculations are shown in Figure 2, where
IA(tn;u)l is plotted as a function of a. The graph indicates that the
level of robustness is monotonic decreasing with respect to a as o
increases from zero to unity and monotonically increasing « > 1. Certain
additional numerical results further strengthen these indicatiomns; how-
ever, to date a rigorous proof of this monotonicity property has not been
found. This, however, presents no difficulties since the definition of
a region of robustnels of size & requires only that the error level & be
satisfied. It does not require that the region be the largest (maximal)
such region. In the present paper, however, the regions obtained are the
maximal regions of robustness for the specified §. The latter statement
is justified by the fact that |a(1;a)| is monotonic increasing as °
deviates from unity in either direction (see Appendix C) and by the fact

that lA(tu;u)I > {a(1;a)|. A bound on the maximal region of robustness

3'l'he value of t, was found using a Newton-Raphson approximation for

the root of A'(t;a). The computations were conducted on a GE~625 computer
with error tolerance 1075 in a.

for a given level § may therefore be obtained by solving the equation
[4(13a)| = 6 for the two values a, and a, (a) <1« @,). Then to obtain
the maximal region of robustness of size &, one need evaluate IA(ta;o)l
only over values of a in [al, a2]. This was the procedure for the present
research and hence all regions of robustness are maximal for the specified
level. These regions are given in Table 1 for a system of n = 1 components.
One obtains a region of robustness "about a = 1", at a specified ‘
level §, by reading the end points of the region in Table 1 from the
entries for a single component system. If a required level § is not given
in Table 1, an approximation may be obtained by reading the two abcissae
corresponding to the desired robustness level from Figure 2 which provides

a graphical representation of IA(ta;a)l as a function of a,

3.3 1ldentical Components in Series

In the case of a system of n identical independent comp ts in
series, the reliability functions, using the assumptions (2) of an expo-

nential and Weibull reliability function for the individual components,

are respectively

Br) = ™
e
and
a.
Be) = oMt r(1+1/a)
w
As in Section 3.2, regions of robustness may be obtained by maxi-
mizing

e.a
|a(tia,m)] = |‘—nt _e Mt (1’1/")[ (%)

with respect to t for a given o and n. Two local extrema of A(t;a,n)

exist (see Appendix A) and again they straddle t, = [l‘(l#l/a)]a/(l-a).

The same process of evaluating A(t;a,n) at the two local extrema and



selecting ta.n = the extreaum producing the maximum value of (4) was
used. Numerical results again showed this maximum to always be at the
lower extremum point which was less than unity. Also, the same monotoni-
city argumsents used in Section 3.2 way be used, with 4(1;a,n) replacing
A(1;a), for the n component system (see Appendix A). Repeating this
approach, the numerical evaluations were extended over the appropriate
region to produce the maximal regions of robustness for a given level 8.
The endpoints of the regions of robustness for various § and n =1, 2, 3,
4, 5, 8, 10 are given in Table 1 % and IA(t,'ni"-“)' is plotted versus a
for the same pange of n in Figure 3. Table 1 and Figure 3 may be used
in the same manner for the n component system as Table 1 and Figure 2
were for a single component. It is of interest to note that Figure 3
shows a decrease in the region of robustness for fixed § as the number

of

ts incr .

o

3.4 Series System of Identical Comp ts with High Reliability

Thus far no restriction has beer placed on the range of t for
which max|a(t;a,n)| was evaluated to obtain a region of robustness. That
is, in :ho indicated region the error bound was valid for any prediction
time t > 0. It is quite possible, however, that a particular system might
be used only over a period of time where it is known that the reliability
of sach component is extremely high (e.g., components used in the Manned
Space Flight Program) and, therefore, it might be possible that the region
of robustness for a specified level might be larger than when the use is
considered over the entire range t > 0. This section therefore considers

a system of n identical components with the individual components to

“‘l‘hc same numerical techniques used for n = 1 were used for all
values of n, with the same error tolerance (20~5) in a.
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be used only over the period where its reliability is at least p. Obvi-
ously, the regions previously obtained for unrestricted t are valid
regions of robustness for the present case, but they may no lomger be
maxisal such regions for the restricted range of t.

In this section, it is assumed that the identical components under
investigation are to be used over the time interval (0, tp) vhere t im
the length of time which provides a reliability of exactly ¢ (tp actually
depends upon o but the additional argument a will be understood and not

indicated). The problem therefore is to determine the range of a such

that
wax |A(t;a,n)| < & (5)
t<t
-p
for fixed n.

By appeal to Figure 1 and the development in Sections 3.2 and 3.3
it is clear that the range of a satisfying (5) are the same as in these
previous sections when t° is greater than or equal to the smaller of the
two local extremum point of A(t;a,n) (a and n fixed) and, when tp is

smaller than the same extrema, is the range of a satisfying
IA(tp;u.n)l <8 . (6)

In the latter case the region is enlarged because of the restricted period
of use of the system.
In summary, the calculations for this section were performed by

solving
ot avze)

to obtain

v, - -2 + 1/e)m Y, o
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The value of (7) was obtained for fixed o« and if tp proved to be smaller
than tn,n‘ (i.e., the smaller local extremum of A(t;a,n)), |A(t°;u,n)|
was evaluated. This procedure was repeated until the range of a satis-
fying (6) was determined.

Regions of robustness were determined, in the restricted case, for
p = .95 and .99 and forn =1, 2, 3, 4, 5, 8, 10. The end points of
these regions are given in Table 2 and Table 3 and, in general, indicate

a larger region than in the unrestricted case for the same n.

4, EXAMPLES

Example 1: A Weibull demsity function with parameters a = 1.1 and
8 = 2.0 has effectively represented the failure distribution of oiled
bearings. What maximum error can be expected in a reliability prediction
if an exponential reliability function is used?

Since a = 1.1 falls in the interval .87u8 < a < 1.1524 we may use the
exponential reliability function and make an error no greater than .05,

regardless of the value of t for which we predict.

Example 2: In a study on the fatigue life of deep groove ball bear-
ings [1], it was shown that for Record Number 2-35 the parameter a of the
Weibull distribution was estimated to be 1.05 from a sample of 1% ball
bearings. Using one ball bearing as a component, the exponential relia-
bility function can be used to calculate the reliability of the ball
bearing if a maximum error of .05 is accepted. The region of robustness

L8748 < a < 1.1524 yields the desired level of robustness of .0S.

Example 3: An auxiliary system composed of four identical indepen-
dent components in series is used in a particular radar system. Suppose
that it is necessary for each component of the auxiliary system to have
a reliability of at least .99 over an intended period of use. If the

reliability prediction for the system is based upon an exponential relia-

bility assumption, what range of deviation from the exponential reliability

assumption (in terms of a bound on a) can be allowed which will result in
an error of less than .005? Table 3 indicates that .9733 < a < 1.0249
will satisfy the requirement.

12



S. SUMMARY

The present research investigates the robustness of reliability
prediction procedures based on the assumption of an exponential failure
distribution. A system of n independent identical components in series
is considered and a maximal region of robustness, in terms of the shape
parameter of the Weibull failure distribution (having mean identical to
that of the assumed exponential distribution), is determined. This
region of robustness has the property that within this region the use
of the exponential assumption will produce a prediction error no larger
than the specified level of robustness for the region. Regions are
obtained for an unrestricted time period and a restricted time period
in which the individual components have a minimum reliabilityp(p = .95,
.99).

In general, the results indicate & decrease in robustness as the
number of components increases. That is, for a fixed level of robustness,
the size of the region of robustness decreases as n increases. Alter-
natively, one could state that for a fixed region the level of robustness

worsens (increases) as n increages.
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APPENDIX A

nt _  nt’r’(1e1/0)

STATEMENT: The function A(t;a,n) = e , where t > 0

and a > 0, has exactly two relative extrema.

PROOF: From the definition of A(t;a,n),

a.e
A'(t;a,n) = et . nctu-lrc(lﬂlo)e'nt I(1+1/a) . (A1)

Therefore, equating (Al) to zero, dividing by ne'ﬂt, and taking loga-

ithms, yields
-1n(aF®(141/0)] - (a-1)In t + nt®T%(1+1/0) - nt = 0 . (A2)
The solutions to (A2) are the desired extrema of A(t;a,n). Now set

g(t) = -1n(ar®(1+1/a)] - (a-1)ln t + at’r®(141/0) - nt .

g'(6) = (1a)/t + anl®(+1/a)e®t -

Lat h(t) = tg'(t). Then h(t) = x(t) - y(t), vhere x(t) = al’(1+1/a)"
and y(t) = nt+s-1. It can be seen that for a > 1, x(t) is convex and
for a < 1 is concave. Therefore, x(0) = 0 and y(0) = a-1 imply that h(t)
has only one root, say to'

Since the only difference between g'(t) and h(t) is the factor 1l/t,
the two functions have the same sign. This implies that when a < 1, g(t)
increases in (o,to), is maximum at t, and decreases for t > t; and when
a > 1, g(t) decreases in (0.t ), is minimm at t,, and incresses for
to>e .. Therefore, both g(t) and A'(t;a,n) have at most two roots. Hence,
if g(t) can be shown to be positive for some value of t when a <1 and

negative for some value of t when a > 1, the proof will be complete.

1




15
Now, it can be shown that for o < 1, ar®(1+43/a) < 1 and ®(1e1/a) > 1,

and also for a > 1, at®(141/a) > 1 and T*(141/6) < 1. Therefore, from
g(1) = -1nlar®(1+1/0)3 + o{r%Q41/a) - 11 ,

it is clear that g(l) is positive for o < 1 and negative for a > 1.

APPENDIX B
STATEMENT: I®(1#1/a) is monotonically decreasing in a.
PROOF: Using the Liapounoff Inequality [2]}, if a 2 b » ¢, then
Elx}P)*° < x| (glx|HPC
which, with ¢ = 0, simplifies to
€D < @l . (81)

Letting the random variable x have the exponential density with unit

mean, and applying (Bl) where a 2 b > 0,
S 1l o™ a0t < (17 (x]® & F a0M/?

Since the range on x is non-negative, the absolute value signs can be

dropped and we have
rre) P < treas)t/®

Equating 8 = 1/b and a = l/a, the inequality becomes
rf(1e1/8) < r®Q141/0) (82)

where o < 8.

16



APPENDIX C

STATEMENT: The function |4(1;a,n)| is monotomic decreasing in a as o

increases from zero to unity, and is monotonic increasing in a for a » 1.

.
| _ gl (141/a) Since I®(1+1/0) is monotonic

PROOF: 4(l;a,n) = e
decreasing for a > 0 (Appendix B), 8(1;a,n) is also monotonic decreasing
in this range. Therefore, since 4(1;1,n) = 0, 4(1;a,n) is positive and

decreasing to zero at @ = 1 and thereafter becomes negative and continues

decreasing. This proves the statement by considering the absolute value

of A(1;a,n) over the range of a.

17
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TABLE 1, Regions of Robustness (unrestricted case)
N o of Level of Robustness
Components .10 .05 .01 .008 .001
1 L7705 1,310 | .87w8 1,152% | .9730 1.0280 | .986% 1.0139 | .9972 1.0028
2 .8379 1.2079 .9183 1.0969 .9820 1.0184 .9910 1.0092 .9982 1.0018
3 8643 1.,1647 .9291 1.0781 .9653 1,01%0 .9926 1.0078 .9985 1.001%
4 8791 1.1u429 .9372 1.0683 .9870 11,0132 .9935 1.0066 .99987 1.9013
-] .8888 1.1293 <9424 1,0621 .9881 11,0120 .9941 1.0080 .9986 11,0012
8 .9052 1.1072 9512 1.0518 .9900 1.0101 .9950 1,000 .9990 1,0010
10 .9115 1,0991 . 9546 1.0480 .9907 1.009% .9953 1.0048 .9991 11,0009
TABLE 2. Regions of Robustness (restricted case p = ,95)
Number of Level of Robustness
Components .05 .01 .00% .001

1 .0600 1.2769 .9373 1.0588 .9693 1,0298 9939 1.0061

2 .8227 1.1520 .9677 1.031% .9840 1,0158 .9968 1.0032

3 .8820 1.1088 .9775 1.0222 .9888 11,0111 .9978 1.0022

[ .9090 1,0869 .9823 1.0176 .9912 1,0088 .9982 1.0018

S L9243 1,0737 .9651 11,0148 .9926 1.0074% ,9985 1,001S

8 .9460 1,056 .9892 1.0108 .9946 11,0054 .9989 1,001l

10 .9525 1.0487 .9904 11,0096 .9952. 1.0048 .9990 1.0010

selqey

q XIgN3dav



TABLE 3. Regions of Robustness (restricted case p = ,99)
Number of Level of Robustness
Components .01 .005 .001 .0005
1 .2804 11,1632 .8793 1.0889 L9798 11,0195 .9898 1.0097
2 .8781 1.0899 L9453 1.0474% .9875 1.0099 .9949 11,0050
3 .9233 1.0627 .9642 1,0326 .9931 1.0067 .,9966 1.003u
4 LOu42  1,0484 .9733 1.02u9 .9948 1.0051 .9974 1,0026
5 .9557 1.,0396 .9786 1.0203 .9958 1.00u41 .9979 1.0020
8 .9722 1.0260 .9863 1,0132 .9973 1.0027 .9987 1.0013
10 .9775 1.0214 .9889 1.0108 .9978 1.0022 .9989 1.0011

61




APPENDIX E

Figures

Figure 1: Plot of the function
fy= e tro(+V=)  ¢op
several values of «
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Figure 2: Plot of the function
| e'tcx,- e-t: F°‘(1o1/cx)-|

Figure 3: Plot showing the

| reduction of the Region of
Robustness for increasing
values of n
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