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ABSTRACT

Frequency-based methods for measuring seismic attenuation

are used commonly in exploration geophysics. To measure the

spectrum of a nonstationary seismic signal, different methods are

available, including transforms with time windows that are either

fixed or systematically varying with the frequency being ana-

lyzed. We compare four time-frequency transforms and show

that the choice of a fixed- or variable-window transform affects

the robustness and accuracy of the resulting attenuation measure-

ments. For fixed-window transforms, we use the short-time Fou-

rier transform and Gabor transform. The S-transform and contin-

uous wavelet transform are analyzed as the variable-length trans-

forms. First we conduct a synthetic transmission experiment, and

compare the frequency-dependent scattering attenuation to the

theoretically predicted values. From this procedure, we find that

variable-window transforms reduce the uncertainty and bias

of the resulting attenuation estimate, specifically at the upper and

lower ends of the signal bandwidth. Our second experiment mea-

sures attenuation from a zero-offset reflection synthetic using a

linear regression of spectral ratios. Estimates for constant-Q at-

tenuation obtained with the variable-window transforms depend

less on the choice of regression bandwidth, resulting in a more

precise attenuation estimate. These results are repeated in our

analysis of surface seismic data, whereby we also find that the at-

tenuation measurements made by variable-window transforms

have a stronger match to their expected trend with offset. We con-

clude that time-frequency transforms with a systematically vary-

ing time window, such as the S-transform and continuous wave-

let transform, allow for more robust estimates of seismic attenua-

tion. Peaks and notches in the measured spectrum are reduced be-

cause the analyzed primary signal is better isolated from the

coda, and because of high-frequency spectral smoothing implicit

in the use of short-analysis windows.

INTRODUCTION

Seismic attenuation can be caused by intrinsic effects such as ane-

lastic losses resulting from fluid movement �Dvorkin and Nur, 1993�

and friction between grains or crack faces �Johnston et al., 1979�.

Similarly, losses can occur by processes that mimic intrinsic effects

such as multiple scattering. Typically, the overall effect on the seis-

mic signal is that higher frequencies are suppressed more rapidly

than lower frequencies as the signal propagates over greater distanc-

es or through more attenuating media. This results in a loss of signal

resolution.

Conversely, the additional information that attenuation imparts to

the signal can be a useful tool for reservoir characterization. For ex-

ample, attenuation is sensitive to changes in gas saturation in partial-

ly saturated media �Winkler and Nur, 1982�, and in fractured media,

the magnitude of attenuation change with azimuth has been shown to

be a useful indicator of fracture direction �Clark et al., 2001; Mault-

zsch et al., 2007�. Finally, once attenuation is measured, it is possible

to mitigate the resolution loss by applying processes such as

inverse-Q filtering �Wang, 2002� to aid with structural interpreta-

tions �Kaderali et al., 2007�, amplitude-variation-with-offset �AVO�

analysis �Luh, 1993�. Attenuation is therefore a desirable parameter

to estimate; however, effects on the seismic spectrum from interfer-

ence of different seismic arrivals often make its accurate determina-

tion elusive.

Among the many methods available for measuring seismic atten-

uation, frequency-based methods are common in exploration geo-

physics because of their reliability and ease of use �Tonn, 1991�.

Spectral estimates are required for these methods, which often are

obtained using the short-time Fourier transform �STFT� �Dasgupta
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and Clark, 1998; Hauge, 1981�. Time-frequency transforms, such as

the continuous wavelet transform �Chakraborty and Okaya, 1995;

Rioul and Vetterli, 1991� and S-transform �Stockwell et al., 1996�,

are available also, and they are becoming more popular. The contin-

uous wavelet transform has found success in spectral decomposition

�Sinha et al., 2005�, and one of its benefits is its well-localized time

extent, particularly at high frequencies.

A few investigations have compared different time-frequency

transforms for specific applications. In the context of temporal reso-

lution, Castagna and Sun �2006� compare the performance of the

STFT and wavelet transform with other spectral estimates. They ac-

complish this by creating synthetic data using interfering wavelets

of different frequencies, and they conclude that a variant of matching

pursuit decomposition �Mallat and Zhang, 1993� has the best tempo-

ral resolution for their experiment. In the context of attenuation, Tai

et al. �2006� compare the STFT and wavelet transform for their abili-

ties to produce attenuation estimates in the presence of Gaussian ran-

dom noise. Their work uses the spectral ratio method applied to a

source wavelet and an isolated and attenuated version. Other works

show that non-Fourier transforms can be used for attenuation esti-

mates �e.g., Li et al., 2006�, yet a formal comparison of transform

types still is required in this context, and the aim of this paper is to

provide this comparison.

The use of simple synthetics does not establish conclusively the

superiority of one transform over another for attenuation estimates.

Part of the issue with calculating a spectrum is that the seismic re-

sponse is more complicated than a sparse convolutional model. The

spectrum of recorded data is influenced by scattering losses and in-

terference from short-path multiples �O’Doherty and Anstey, 1971;

Shapiro and Zien, 1993�. By obtaining estimates of the spectrum that

are less affected by this interference, more confident and stable at-

tenuation estimates can be made.

To address the complications of measuring a seismic spectrum, an

investigation is required that looks at the behavior of different trans-

form types in the presence of multiple scattering from numerous re-

flection interfaces. Here, we demonstrate that there are significant

differences between the spectral estimates from two broad catego-

ries of time-frequency transforms: those having time windows that

are fixed, and those with windows that are systematically varying

with the frequency being analyzed. In the category of fixed-time-

window transforms, we consider the STFT with both Hamming and

Gaussian window functions, the latter referred to as a Gabor trans-

form �Carmona et al., 1998�. For variable-time-window transforms,

we use the S-transform, and the continuous wavelet transform with a

Morlet wavelet �Daubechies, 1992�.

A third class of transform, which we do not consider, deals with

parametric methods including Burg autoregressive estimates and

matching pursuit decomposition. These methods allow for signal de-

composition with spectral elements whose size is flexible �Wang,

2007�.Although this property is useful for compactly describing sig-

nals or identifying major signal components, it makes a direct com-

parison with convolutional methods difficult. Whereas the basis

functions for the transforms that we consider remain constant, the el-

ements of parametric methods change depending on the signal, and

it is not possible to apply conclusions from testing these methods to

the general case.

We introduce first the algebraic description of seismic wave atten-

uation, and then give an overview of the time-frequency transforms

that we use. To test which transforms produce the most robust and

least biased attenuation estimates, we conduct two synthetic experi-

ments and an analysis of real-surface seismic data. First we compare

estimated and theoretical attenuation profiles resulting from multi-

ple scattering. For this purpose, we model a transmission vertical

seismic profile �VSP� and use wave localization theory �Shapiro and

Zien, 1993� to calculate the expected attenuation.

Next we estimate constant-Q effective attenuation from a zero-

offset reflection synthetic, and investigate the distribution of esti-

mates for different bandwidths used in the linear regression of a nat-

ural log spectral ratio versus frequency. We repeat this analysis on a

common-midpoint �CMP� supergather, and go on to investigate how

well the measurements agree with expected behavior. Finally, we

discuss reasons for the different performances, and the adequacy of

each transform type for robust attenuation measurements.

THEORY

Attenuation

The amplitude spectrum of a wave in a homogeneous attenuating

medium is given by

S�f� � S0�f�e��z, �1�

where S is the amplitude of frequency f after propagating distance z,

S0 is the initial spectral amplitude, and � is the attenuation coeffi-

cient �Aki and Richards, 2002�. By rearranging equation 1, attenua-

tion might be determined from the spectral estimates of an initial S0

and propagated event S:

ln� S�f�

S0�f�
� � ��z . �2�

Although there are many definitions relating � and the seismic qual-

ity factor Q �Toverud and Ursin, 2005�, we use the definition given

by Aki and Richards �2002�:

� �
� f

QV
, �3�

where V is the phase velocity of the wave in the medium.

Specifically for the case of a frequency-independent Q, by ex-

pressing a combination of equations 2 and 3 in terms of traveltime t,

ln� S�f�

S0�f�
� � �

� t

Q
f , �4�

a linear regression with frequency might be used to find the effective

1/Qe for the medium. The effective value, however, is not controlled

just by intrinsic effects such as fluid flow, but is affected also by ap-

parent attenuation effects such as multiple scattering. The effective

1/Qe is related to intrinsic �1/Qi� and apparent �1/Qsc� effects

through the following relationship �Spencer et al., 1982�:

1

Qe

�
1

Qi

�
1

Qsc

. �5�

Time-frequency transforms

Avariety of methods are available to determine the spectra used in

the measurement of 1/Q. For nonstationary data, time-frequency
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transforms are useful, as they produce a spectral estimate centered at

each time element of the data. In this respect, a 1D data trace is

mapped into a 2D spectrogram, which has dimensions of time and

frequency.

Perhaps the most recognized time-frequency transform is the

STFT, in which the data trace s is gated by a sliding window function

w, and the Fourier transform �Bracewell, 1978� is applied to the re-

sult:

SF�� , f� � �
��

�

w�t � � �s�t�e�i2� ftdt , �6�

where � is the time lag to the center of the window function. This

definition allows for an arbitrary window function; however, by us-

ing a Gaussian window function,

w�t� � e�t2/2� 2

, �7�

where � is the distribution width, equation 6 takes on the definition

of a Gabor transform �Carmona et al., 1998�. This is because equa-

tion 6 becomes a convolution of the signal with a modulated Gauss-

ian function, which is the impulse response of a Gabor filter �Rioul

and Vetterli, 1991�.

For our STFT analysis, we use a Hamming function �Harris,

1978�, and for the Gabor transform, we use a fractional distribution

width of � � 0.33. The time length of the windows is set at 101 ms

for the following analysis. This is suitable for measuring frequencies

above 10 Hz, which have a period smaller than the window size. For

data with lower frequency content, a larger window must be used.

The window functions chosen for the STFT and Gabor transform

have a fixed time length for each frequency that is analyzed. Con-

versely, the S-transform �Stockwell et al., 1996� analyzes shorter

data segments as the frequencies increase. This is accomplished by

using the Gaussian window function �equation 7�, and substituting a

frequency-dependent expression for the distribution width:

� �
1

�f �
. �8�

Thus, by normalizing the window amplitude, the S-transform takes

the form

SS�� , f� �

�f �

�2�
�
��

�

s�t�e��t � � �2f2
/2e�i2� ftdt . �9�

Whereas the above transforms use the e�i2� ft basis function, the

continuous wavelet transform uses scaled versions of a “mother

wavelet” � as its basis �Daubechies, 1992�. This results in a trans-

form of the form

SW�� ,a� �
1

�a
�
��

�

s�t�� *� t � �

a
�dt , �10�

where a is the scale of the wavelet �Chakraborty and Okaya, 1995;

Rioul and Vetterli, 1991�. Although no explicit window function is

used, the basis function itself has a restricted time extent, and there-

fore the time windowing is implicit in the choice of wavelet. Many

mother wavelets exist, and as commonly done in seismic applica-

tions, we use a modulated Gaussian, or Morlet, wavelet. This is de-

fined by Daubechies �1992� as

� �t� � ��1/4e�t2/2�e�i�0t
� e��0

2
/2� , �11�

with the constant �0 defined by

�0 � �� 2

ln�2�
. �12�

After creating a high-frequency mother wavelet, the scale a is in-

creased from its initial value. Thus, a time-scale decomposition is

obtained, where increasing scale a corresponds to decreasing fre-

quency f . For comparison with other time-frequency transforms,

each scale must be mapped to the frequency that corresponds to the

center frequency of the scaled wavelet. This is done by calculating

the expression for the Nyquist frequency fN in the oscillatory term in

equation 11, and relating it to the initial frequency of the mother

wavelet for discrete time with n points:

e�i�n
� e�i�0n. �13�

Therefore, the initial frequency of the mother wavelet is

f0 �
�0

�
fN, �14�

or

f0 �
�0

2��T
, �15�

where �T is the sample rate of the data. The frequencies f of subse-

quent scales a then are found as a function of the initial frequency f0

by

f �
1

a
f0. �16�

TRANSMISSION AND FREQUENCY-DEPENDENT

ATTENUATION

Objective

The first test is a controlled experiment in which we compare esti-

mated frequency-dependent attenuation with theoretically predicted

profiles for a synthetic VSP. The purpose is to show that the type of

transform used determines the precision and accuracy of the attenua-

tion estimate. For this to be a meaningful test, two requirements must

be met: �1� a geophysical model with known attenuation must be cre-

ated, and �2� the seismic response of that model must be calculated to

include all of the expected multiple reflections and interference. Al-

though it is easy enough to design a finely layered model with known

intrinsic attenuation, this does not account for the apparent attenua-

tion caused by stratigraphic effects �O’Doherty and Anstey, 1971;
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Schoenberger and Levin, 1974, 1978; Spencer et al., 1977�. Con-

versely, a model with coarse layers might be created to isolate the in-

trinsic attenuation; however, this does not accurately represent real-

istic subsurface conditions.

Wave localization theory

To meet these conditions, we use wave localization theory, which

describes the frequency-dependent attenuation of a transmitted

wave caused by multiple scattering in a randomly layered medium

�Shapiro and Zien, 1993�. By generating an appropriate medium, we

compare the estimated attenuation to the theoretical attenuation at

each frequency, thereby evaluating the quality of the spectral esti-

mate. Because wave localization theory involves a statistical de-

scription of the medium, it is possible then to create multiple model

realizations and produce a statistical analysis of the attenuation esti-

mates in terms of estimation variance and systematic error.

The random incompressibility fluctuations for a piecewise contin-

uous medium display an exponential autocorrelation function,

	�
 � � � �
2
e��
 �/ac, �17�

where 	 is the autocorrelation function in terms of depth lag 
 , � � is

the relative standard deviation of the incompressibility fluctuations,

and ac is their characteristic scale length �van der Baan, 2001�. For

this type of medium, wave localization theory can be used to show

that the theoretical apparent attenuation coefficient � is given by

� �

� �
2�2acf2

16ac
2�2f2

� V2
, �18�

where f is frequency and V is the average velocity �Shapiro and Zien,

1993; van der Baan, 2001�.

This function shows how the energy of the primary arrival is scat-

tered into a time-delayed sequence of arrivals referred to as the coda.

Low frequencies, having larger wavelengths, see the random layer-

ing as an effective medium, and the amount of scattering is negligi-

ble. This results in apparent attenuation decreasing to zero in the

low-frequency limit. The maximum scattering of energy occurs for

frequencies with wavelengths that approach the typical scale ac of

the medium. Finally, as frequencies increase, the attenuation coeffi-

cient � decreases and converges to a constant value because the me

dium is piecewise continuous and smaller wavelengths are resolved

for each layer �van der Baan, 2001�.

Test setup

Using the procedure outlined by van der Baan et al. �2007�, we an-

alyze the sonic log of a well that penetrates a shallow sequence of al-

ternating sands and shales. Assuming incompressibility fluctuations

that observe an exponential autocorrelation function, and using a

constant density, we then determine the parameters that describe the

data. This is done by removing a polynomial trend from the velocity

data, from which the zero-order term is used to give the mean veloci-

ty. Next the autocorrelation function is calculated. The zero-lag val-

ue of the autocorrelation, by equation 17, gives the value of � �
2 . Sim-

ilarly, the characteristic scale is the depth lag where

	�ac� � � �
2
e�1. �19�

We then use these parameters to create a reasonable set of model

properties for our medium, as well as three variants of this model

�Table 1�. Following the method described by van der Baan �2001�,

we generate 20 realizations of a random medium for each model, and

from these produce VSP synthetics.

We consider the vertical transmission of a seismic wave through

500 m of the random medium, with an overlying 11-m homoge-

neous layer. An explosive source is placed at 10-m depth, and a re-

ceiver is placed at 510 m. The modeling is done using a reflectivity

method, as implemented by Dietrich �1988�, and to eliminate sur-

face reflections, no free surface is used in the computation of syn-

thetic waveforms. The source used is a 70-Hz, 90° Ricker wavelet,

and the intrinsic attenuation of the medium is made negligible by set-

ting 1/Qi � 10�6.

The signal spectrum S�f� is extracted from the maximum ampli-

tude coefficients for each frequency in the spectrogram. This allows

for dispersion, because not all frequencies must have the same maxi-

mum-amplitude arrival time. The reference-signal spectrum S0�f� is

obtained from an identical synthetic setup using a homogeneous me-

dium, which eliminates potential problems resulting from geometric

spreading and numerical dispersion �van der Baan, 2001�. Finally,

the estimated attenuation profiles are determined using equation 2,

and the 1/Qsc is inspected using the Aki and Richards �2002� defini-

tion �equation 3�. The theoretical frequency-dependent 1/Qsc caused

by scattering is obtained using equations 3 and 18.

Results

Intermediate results are shown for only the first

model from Table 1, as the remaining models

show similar effects. A single realization of the

velocity model and the signal transmitted through

it are displayed in Figure 1. Here the time-domain

effects of the multiple scattering are seen, where

the direct arrival at 0.25 s is followed by coda en-

ergy from the multiples. In Figure 2, the spectro-

gram of the transmitted signal is shown using the

four transforms outlined above. The major differ-

ence between the fixed-window transforms �Fig-

ure 2a and b� and the variable-window transforms

�Figure 2c and d� is in the shape of the primary ar-

rival in time-frequency space. This shape is relat-

Table 1. Measured and modeled parameters for a medium with random
velocity vP fluctuations that exhibit an exponential autocorrelation. By
assuming a constant density �, the relative standard deviation of the velocity
�

v
is half of the relative standard deviation of incompressibility � �. Note that

although the scattering properties of models 2 and 3 are different, the apparent
attenuation defined by equation 18 is the same for both.

Well-log
analysis

Blocked
well log Model 1 Model 2 Model 3 Model 4

Mean VP �m/s� 2037 2067 2000 2000 4000 2000

Mean � �kg/m3� 2104 2129 2100 2100 2100 2100

Relative � � �%� 12.28 14.26 15 15 15 15

Relative � V �%� 6.14 7.13 7.5 7.5 7.5 7.5

Typical scale �m� 1.37 2 2 1 2 4
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ed directly to the transform window size, and for the variable-win-

dow transforms, the distinct wedge is evident, narrowing in time to-

ward higher frequencies.

What is apparent also from Figure 2 is that the coda energy is not

just separated from the direct arrival in time, but in frequency as

well. This is indicated by the lower amplitude energy centered be-

tween 50 and 150 Hz, which follows the primary arrival at 0.26 s.

More significant is that in the variable-window transforms, the coda

energy above 100 Hz shows less interference with the primary ener-

gy.

After extracting the maximum amplitude spectra from each trans-

form, the respective 1/Qsc functions are calculated for each realiza-

tion, examples of which are shown in Figure 3a. The frequency-de-

pendent curves fluctuate significantly about the theoretical predic-

tions as a result of the finite number of layers in the model, and the in-

terference of the coda that results from multiple scattering. To ac-

count for the finite layers, and to look at systematic deviations, we

must take a look at the mean of the 1/Qsc estimates from all realiza-

tions.

The mean of the estimated attenuation from each transform is

shown in Figure 3b. The statistical fluctuations are reduced, and the

main effects, which are visible, are fluctuations caused by coda inter-

ference. Below 10 Hz and above 200 Hz, large variations result be-

cause the measurements fall outside the significant bandwidth of the

data. The deviations from the theoretical curves are similar for all of

the transforms, with an improvement from the variable-window

transforms for frequencies above 110 Hz and below 30 Hz.

More significantly, the uncertainty in the measurement of a single

realization is shown by the standard deviation of the distribution of

estimates, shown in Figure 3c. The standard deviation of the attenua-

tion estimates is smaller for the variable-window transforms, with an

exception of the frequencies between 30 and 55 Hz, where the re-

sults show no major differences. In this frequency range, the window

lengths for all of the transforms are similar. The most significant im-

provements in the standard deviation are above

100 Hz. This suggests that individual amplitude

spectra produced by the variable-window trans-

forms are more precise, having a narrower statis-

tical distribution. The analysis is repeated for

models 2–4 from Table 1. Figure 4 shows the

standard deviations for the 1/Qsc estimates for

these models, and again, the results show that the

variable-window transforms have a lower vari-

ability than the fixed-window transforms, specifi-

cally at higher frequencies.

Reducing the size of the time window in the

STFT and Gabor transform obtains similar high-

frequency results to the variable-window trans-

forms. The detriment of reducing the time win-

dow, however, is seen in Figure 5, which shows

one realization of the 1/Qsc estimate from the

STFT with different-length time windows. Al-

though the fluctuations at high frequencies are re-

duced, the minimum frequency for which 1/Q

can be measured properly also increases. This is

seen by the short-window curves, which have

large deviations at the low end of the spectrum.

REFLECTION AND CONSTANT Q

ATTENUATION

Objective

For the second experiment, we measure the ef-

fective attenuation from a synthetic zero-offset

Figure 1. A single realization of randomly fluctuating velocities de-
fined by the parameters of model 1 �Table 1�, and the seismic signal
transmitted through it. The coda follows the primary arrival after
0.26 s. Relative amplitudes are shown.

a)

c)

b)

d)

Figure 2. Time-frequency plots of the signal shown in Figure 1. The highest amplitudes
�red colors� are for the primary arrival, whose shape in the time-frequency domain is de-
termined by the transform window functions. The interference effects between the pri-
mary arrival and coda can be seen as “holes” in the spectrum. �a� STFT, �b� Gabor trans-
form, �c� S-transform, and �d� wavelet transform. The frequency axis of the wavelet
transform has been rescaled to a linear frequency display.
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surface seismic geometry. Because there is no simple analog to wave

localization theory for reflection data, we use a different test to dem-

onstrate the effects shown in the transmission experiment. We create

a 1D model, which experiences a uniform constant-Q intrinsic atten-

uation in addition to scattering losses.

Although frequency-dependent multiple scattering is present in

all data, it is common to assume a frequency-independent effective

1/Qe within the seismic bandwidth �Sams et al., 1997�. This is a

worthwhile first approximation as long as the frequency-indepen-

dent intrinsic attenuation is large compared with the apparent scat-

tering attenuation. The assumption also implies that an effective

1/Qe estimate from a linear regression of the natural log spectral ra-

tio should be the same regardless of the bandwidth chosen. In fact,

spectral fluctuations, which result in part from multiple scattering,

cause the linear regression to be highly dependent on the choice of

bandwidth. This is true also for regressions that allow for a nonlinear

relationship between the natural log spectral ratio and frequency

�Reid et al., 2001�. In the second experiment, we test the ability of the

time-frequency transforms to produce 1/Qe estimates that are robust

with respect to the bandwidth used in the regression.

Test setup

We create first a 1D medium from the blocked velocity and densi-

ty logs of the well data used in the transmission test. We impose a

uniform intrinsic attenuation with 1/Qi � 0.020, and produce zero-

offset reflection seismic data with a 70-Hz, 90° Ricker source wave-

let �Figure 6�. In Figure 6, two reflectors are indicated that corre-

spond to large velocity and density changes in the model. We extract

the spectra from these two times and calculate the effective attenua-

tion from a linear regression of their natural log spectral ratios, using

a)

c)

b)

Figure 3. The theoretical and estimated 1/Qsc for �a� a single realization of the transmitted primary signal through the randomly fluctuating ve-
locity model, and �b� the mean of 20 realizations. The mean curve reduces statistical fluctuations for better analysis of the systematic deviations.
The estimated frequency-dependent 1/Qsc fluctuates about the theoretical curve resulting from effects of spectral interference with the coda en-
ergy. The values are similar for all transforms, with a slight improvement from the variable-window transforms below 30 Hz and above 110 Hz.
�c� Standard deviation of the 20 realizations of estimated 1/Qsc showing the frequency-dependent variability of the estimates. The variable-win-
dow transforms show improvement below 25 Hz and above 90 Hz, indicating a more precise estimate.
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equation 2. Because initial and final spectra, S0�f� and S�f�, are sub-

ject to scattering and interference, spectral notching exists in both,

contrary to the transmission test in which only the final spectrum

S�f� was affected. We repeat the regression for different bandwidths,

varying the lower frequency from 0 through 110 Hz, and the upper

frequency between 90 and 250 Hz.

Although not strictly accurate, we use equations 3 and 18 to pro-

vide a rough estimate of the scattering attenuation for the medium.

Figure 4. �a-c� Standard deviations of estimated 1/Qsc for models
2-4, respectively. The improvement in the standard deviation for the
variable-window transforms agrees with the data shown in Figure
3c.

Figure 5. Theoretical and estimated 1/Qsc for the single realization of
the fluctuating velocity model shown in Figure 1 using different win-
dow lengths of the STFT. Whereas the smaller windows reduce fluc-
tuations at higher frequencies, the low frequencies are not measured
properly.

Figure 6. From left to right, the blocked P-wave velocity and density
logs, and the resulting zero-offset reflection synthetic �normal polar-
ity with black peaks�. The dashed lines at 164 and 310 m �159 ms
and 309 ms� indicate two major impedance changes whose reflec-
tions are used in the 1/Q analysis. The logs have been blocked with
an average block size of 2 m.
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Using the parameters calculated for the blocked

well log in Table 1, the maximum 1/Qsc for the

medium occurs at 82 Hz and has a value of 1/Qsc

� 0.003. Although not exact, this estimation

shows that the apparent attenuation is an order of

magnitude smaller than the imposed intrinsic at-

tenuation for this model, consistent with observa-

tions made by Sams et al. �1997�. The effective

1/Qe for the medium therefore should be approxi-

mately 0.023 �equation 5�.

Results

For each discrete bandwidth choice, a 1/Qe

value is calculated and plotted in Figure 7. In this

plot, large areas of the same color indicate that the

1/Qe estimate is stable with the choice of band-

width. Ideally, this stable value should corre-

spond to the effective attenuation, a combination

of the input intrinsic attenuation and apparent at-

tenuation from multiple scattering. Areas at the

extreme ends of the color scale indicate that the

regression result is dominated by peaks and

notches in the natural log spectral ratio.

Figure 7a and b, for the fixed-window trans-

forms, are similar in appearance. The most stable

region that corresponds to the approximate 1/Qe

is found roughly in the center of the plot, between

15 and 65 Hz on the vertical axis and 125 Hz

through 200 Hz on the horizontal axis. The plots

corresponding to the variable-window trans-

forms, Figure 7c and d, extend this stable area

back to nearly 0 Hz on the vertical axis, and out

through 250 Hz on the horizontal axis. In prac-

tice, the extent of the stable bandwidths also

would be reduced by the signal-to-noise ratio.

Again, the benefits of reduced fluctuations

from the variable-window transforms are seen on

the histograms of the 1/Qe data in Figure 8. The

histograms for the S-transform and wavelet

transform show a more peaked distribution �� S

� 0.007, � W � 0.006� compared with those of

the STFT and Gabor transform �� F � 0.052, � G

� 0.016�. This indicates that the estimated 1/Qe

values for these transforms are less susceptible to

the choice of regression bandwidth because they

more closely match the expectation of a single

value that is independent of bandwidth. Con-

versely, the histograms of the STFT and Gabor

transform indicate a larger variability in results,

and they include 1/Qe values farther from the cen-

tral peak.

It should be noted also that the median value of

the distributions is 1/Qe � 0.025 for the fixed-

window transforms and 1/Qe � 0.027 for the

variable-window transforms. The median values

are higher than the intrinsic 1/Qi � 0.020 be-

cause of the apparent attenuation effects. The dif-

ference between the effective and intrinsic values

is of the same order of magnitude as the approxi-

a)

c)

b)

d)

Figure 7. The 1/Qe values estimated for a range of lower and upper bandwidth frequen-
cies using the spectra derived from the different transforms. �a� STFT: The area of stabili-
ty near the input 1/Qi � 0.020 is seen for lower frequencies between 15 and 65 Hz, and
upper ones between 125 and 200 Hz. �b� The Gabor transform has the same stable zone as
the STFT. �c� The S-transform extends the stable zone to 0 through 70 Hz for the lower
frequencies, and to 125 through 250 Hz for the upper ones. �d� Results for the wavelet
transform show similar results to the S-transform. The axes of the wavelet transform have
been rescaled to a linear frequency display.

a) b)

c) d)

Figure 8. Histograms of the 1/Qe estimates shown in Figure 7. �a� STFT, �b� Gabor trans-
form, �c� S-transform, �d� wavelet transform; �a� and �b� show a broader spread in values,
with more outlying values than for �c� and �d�. The standard deviations and median values
of the distributions are indicated, showing that variable-window transforms are less sen-
sitive to the choice of regression bandwidth.
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mation calculated above �1/Qsc � 0.003�. The difference in the me-

dian values for the fixed- and variable-window transforms could be

the result of differences in the systematic bias for a single realization,

the bias introduced by the variable-window transform being smaller

�Figure 3a�.

SURFACE SEISMIC ANALYSIS

Our final analysis is the measurement of an average 1/Qe for a sur-

face seismic CMP gather from the Alberta oil sands in Canada. The

data have a shallow zone of interest �two-way traveltime 400 ms�

and image an unconsolidated sandstone containing very heavy oil.

This unconsolidated sandstone is overlain by alternating sandstone

and siltstone layers. As with the synthetic reflection experiment,

there is no theoretically expected value for the attenuation in these

data. We look therefore at the robustness of the 1/Qe estimate with

the choice of bandwidth, in addition to the statistics of how well the

attenuation measurements match the expected offset-dependent be-

havior.

Q-versus-offset method

Dasgupta and Clark �1998� describe a method for measuring at-

tenuation from prestack surface seismic data. The first step involves

calculating the natural log spectral ratio slopes A as functions of fre-

quency for a reflection at each offset relative to a reference wavelet

�equation 4�. Because these slopes are proportional to traveltime, a

second regression then can be performed to estimate the value of A at

zero offset. The final step is to convert this value to a zero-offset 1/Qe

estimate.

Whereas Dasgupta and Clark �1998� use a small-spread approxi-

mation and perform the second regression versus offset squared,

Carter �2003� points out that this assumption is unnecessary if the

measured traveltime is used directly. In this case, we perform a linear

regression of the form

A � �
�

Q
�t , �20�

where �t is the traveltime difference between the reflection and ref-

erence wavelet. The Q-versus-offset �QVO� method assumes that

there is a homogeneous and isotropic overburden with a horizontal

reflector. Although this never is perfectly the case, the geology of

this particular data set is a good approximation, and the method still

provides useful insight into the attenuation behavior of the medium.

Test setup

The data that we analyze consist of a 3�3 grid of CMP gathers

extracted from a 3D survey. The survey was acquired using single

explosive sources and single multicomponent digital receivers. The

source and receiver spacing were 20 m, resulting in a 10- � 10-m

bin size. We apply minimal processing to the seismic data so as to

avoid introducing lateral and temporal changes to the spectrum. Re-

fraction and residual statics are applied, along with trace edits and a

trapezoidal �10–20–120–180 Hz� band-pass filter. To improve the

signal-to-noise ratio, the CMPs are formed into a single stacked su-

pergather. The offset range is restricted to 416 m, which provides 40

traces of data to a maximum offset-to-depth ratio of approximately

1.2. The final CMP supergather is shown in Figure 9.

The reflection that we analyze has a zero-offset time of 324 ms,

which is near the base of the zone of interest. Rather than use NMO-

corrected data, we calculate the hyperbolic traveltimes using the

stacking velocity field. Then we shift the center of the analysis along

this curve, thereby avoiding the need to apply an NMO stretch cor-

rection to the spectra. For a reference wavelet, we use the direct ar-

rival from a near-offset trace. Because the data are acquired with

point sources and receivers, there are no directivity effects on the

spectrum to consider �Hustedt and Clark, 1999�.

Results

We test first the stability of the natural log spectral ratio slopes A

with the choice of regression bandwidth. The bandwidth-dependent

slopes of a near �159-m� and far �350-m� offset are shown in Figure

10, in which for consistency, the data have been scaled to show 1/Qe.

This analysis shows results that are consistent with the synthetic ex-

periments. Specifically, for the far-offset example, the variable-win-

dow transforms significantly extend the lower bandwidth frequency

that produces a uniform 1/Qe estimate. For the near-offset case, the

fixed-window transforms show an abrupt change in 1/Qe as the low-

er frequency is increased, whereas the variable-window transforms

have a much more gradual change.

Figure 9. CMP supergather used in the QVO analysis. An enlarge-
ment of the reference wavelet is shown, and the offsets analyzed in
Figure 10 are indicated by arrows. A 100-ms automatic gain control
and a top mute have been applied for display purposes.
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Because attenuation increases with traveltime, the relationship

between A and �t is expected to be linear with a negative slope. In re-

ality, the measurements fluctuate about this trend because of noise in

the data, spectral interference, and apparent attenuation effects. To

quantify how closely the measurements of A and �t follow the theo-

retical behavior, we calculate the correlation coefficient. Given two

variables, the correlation coefficient measures the degree to which

they are related linearly. The values range between minus one and

one corresponding to a perfect negative and positive correlation, re-

spectively, whereas a value of zero indicates uncorrelated data �Tay-

lor, 1997�. Figure 11 shows the correlation coefficients derived for

the four transforms, and these data show that A and �t have a stron-

ger correlation when measured by the variable-window transforms.

These transforms also extend the bandwidth range in which this ex-

pected behavior is observed.

Finally, Figure 12 shows the bandwidth dependency of the zero-

offset 1/Qe estimate from the A versus �t regression. This result

clearly shows that the variable-window transforms produce 1/Qe es-

timates that are more robust than their fixed-window counterparts.

Furthermore, the 1/Qe values obtained are consistent with the type of

geology investigated. Macrides and Kanasewich �1987�, for exam-

ple, use a crosswell experiment to find a value of 1/Qe � 0.03 in un-

consolidated heavy-oil reservoirs. Although this does not account

for attenuation in the overburden, the findings are consistent with

our measurements.

DISCUSSION

A single estimate of frequency-dependent

1/Qsc for a transmitted pulse is more accurate and

has less uncertainty when made with a time-fre-

quency transform that uses a variable-length time

window instead of a fixed-length time window.

This is shown by the statistical properties dis-

played in Figure 3. Similarly, when estimating a

frequency-independent 1/Qe for both a synthetic

and a real data reflection experiment, the vari-

able-window transforms produce results that are

more robust with respect to the choice of regres-

sion bandwidth.

These observations arise because the variable-

window transforms reduce the extent of the spec-

tral fluctuations for two reasons. First, at high fre-

quencies, at which typically more energy is scat-

tered to the coda, there is an increase in the degree

of nonstationarity in the data. The variable time

windows use shorter time windows to analyze the

high frequencies, so that the primary arrival is

better isolated from the coda. This can be seen in

Figure 2, in which at higher frequencies, the spec-

trum of the primary arrival is more distinct from

the spectrum of the coda for variable-window

transforms. Although the variable windows iso-

late high frequencies as noted, they also include a

larger portion of coda at lower frequencies.

This is not detrimental, because �1� only small

amounts of low-frequency energy are in the coda

as a result of the nature of the scattering and �2� in

a given time window, the variability of attenua-

tion for lower frequencies is less than that for

higher frequencies because of the reduced num-

ber of wavelengths present.

The second reason behind the reduction of

fluctuations also is related to window size. Be-

cause of the Gabor uncertainty principle �Hall,

2006�, as the time window becomes shorter, the

effective frequency window increases in size.

This means that there is an increased spectral av-

eraging for the shorter windows, and any rapid

fluctuations in the spectrum are smoothed out. Of

course, the converse is true also, namely, that

Figure 10. The 1/Qe values for the near offset trace �left side� and far offset trace �right
side�, estimated over a range of bandwidths. At both trace offsets, the variable-window
transforms �lower half� increase the number of bandwidth choices that produce a stable
1/Qe estimate.
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there is higher spectral resolution for the longer time windows at low

frequencies.

Although it is possible to isolate the coda from the signal by using

a shorter window length for the fixed-window transforms, this is not

an ideal solution for broadband data. Figure 5 shows that the fluctua-

tions about the theoretical value are reduced at higher frequencies,

but the minimum frequency that can be measured properly increases

also. This makes short windows detrimental for data consisting of a

large frequency range. The variable-window transforms do not face

this problem, as they maintain a window length that is proportional

to the period being analyzed.

The small differences between the results of the S-transform and

wavelet transform demonstrate why it is more significant to compare

classes of transforms, rather than the individual transforms them-

selves. Small changes in the transform parameters or in the data be-

ing analyzed can create situations in which either variable-window

transform will show a small benefit over the other. Nevertheless, we

prefer the S-transform over the wavelet transform because it produc-

c)

a)

d)

b)
Figure 11. Correlation coefficient plots between A
and �t for the �a� STFT, �b� Gabor transform, �c� S-
transform, and �d� wavelet transform. The theoreti-
cal relationship results in a value of �1, and �c� and
�d� more closely approach this value over a larger
choice of bandwidths.

a)

c)

b)

d)

Figure 12. The final 1/Qe estimates from the QVO
method. As with previous results, estimates of the
�a� STFT and �b� Gabor transform are less stable
than the �c� S-transform and �d� wavelet-transform
measurements.
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es spectral estimates as a function of frequency rather than scale, and

because it preserves the time reference of the data’s phase informa-

tion �Stockwell et al., 1996�.

CONCLUSIONS

We have conducted two experiments to test what difference the

choice of time-frequency transform makes when measuring seismic

attenuation. We investigated two classes of transforms, those with

fixed time windows and those with systematically varying time win-

dows, in the context of measuring a frequency-dependent 1/Qsc

caused by multiple scattering, and a frequency-independent effec-

tive 1/Qe from a linear regression of natural log spectral ratios versus

frequency.

We have shown that the time-frequency transform used to calcu-

late the spectrum of a transmitted wave influences the precision and

accuracy of attenuation estimates. The S-transform and continuous

wavelet transform decrease the variability of the attenuation esti-

mate, specifically at the high and low ends of the spectrum. For high-

er frequencies, the variability is reduced for two reasons: �1� the pri-

mary arrival is isolated from the coda by the shorter time windows

used for higher frequencies; and �2� the shorter window results in

spectral averaging, thereby reducing the influence of spectral fluctu-

ations such as notches and peaks. At the low-frequency end, im-

provements are the results of proper amplitude determination by

maintaining an adequate signal sample for each period.

Variable-window transforms also improve the robustness of a fre-

quency-independent effective 1/Qe estimate obtained using a linear

regression of natural log spectral ratios versus frequency. This offers

more flexibility in the choice of bandwidth used for the regression.

The increased robustness is seen in the analysis of a real data set, in

which attenuation measurements across multiple offsets more close-

ly follow an expected linear behavior with traveltime when they are

made with variable-window transforms instead of fixed-window

transforms. These measurements led to a determination of 1/Qe that

is consistent with previously measured values. We therefore find that

variable-window transforms, such as the S-transform and wavelet

transform, offer distinct benefits for seismic attenuation analysis, in

cases when a nonstationary signal must be evaluated.
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