THE ROCK PHYSICS HANDBOOK

TOOLS FOR SEISMIC ANALYSIS IN POROUS MEDIA

Gary Mavko Stanford University

Tapan Mukerji Stanford University Jack Dvorkin Stanford University

CONTENTS

Preface		page	1X
PA	RT 1: BASIC TOOLS		1
1.1	The Fourier Transform		1
1.2	The Hilbert Transform and Analytic Signal		8
1.3	Statistics and Linear Regression		10
1.4	Coordinate Transformations		14
PA	RT 2: ELASTICITY AND HOOKE'S LAW		17
2.1	Elastic Moduli – Isotropic Form of Hooke's Law		17
2.2	Anisotropic Form of Hooke's Law		19
2.3	Thomsen's Notation for Weak Elastic Anisotropy		25
2.4	Stress-Induced Anisotropy in Rocks		26
2.5	Strain Components and Equations of Motion in Cylindrical and		
	Spherical Coordinate Systems		32
2.6	Deformation of Inclusions and Cavities in Elastic Solids		34
2.7	Deformation of a Circular Hole – Borehole Stresses		45
2.8	Mohr's Circles		48
PA	RT 3: SEISMIC WAVE PROPAGATION		51
3.1	Seismic Velocities		51
3.2	Phase, Group, and Energy Velocities		54

3.3 Impedance, Reflectivity, and Transmissivity	57
3.4 Reflectivity and AVO	60
3.5 AVOZ in Anisotropic Environments	65
3.6 Viscoelasticity and Q	70
3.7 Kramers-Kronig Relations Between Velocity Dispersion	
and Q	75
3.8 Waves in Layered Media: Full-Waveform Synthetic Seismograms	77
3.9 Waves in Layered Media: Stratigraphic Filtering and	
Velocity Dispersion	82
3.10 Waves in Layered Media: Frequency-Dependent Anisotropy	0_
and Dispersion	86
3.11 Scale-Dependent Seismic Velocities in Heterogeneous Media	91
3.12 Scattering Attenuation	95
3.13 Waves in Cylindrical Rods – The Resonant Bar	100
5.15 Waves in Cymidical Rods – The Resoliant Bar	100
DADT 4 - EFECTIVE MEDIA	
PART 4: EFFECTIVE MEDIA	106
4.1 Hashin–Shtrikman Bounds °	106
4.2 Voigt and Reuss Bounds	110
4.3 Wood's Formula	112
4.4 Hill Average Moduli Estimate	114
4.5 Composite with Uniform Shear Modulus	115
4.6 Rock and Pore Compressibilities and Some Pitfalls	117
4.7 Kuster and Toksöz Formulation for Effective Moduli	121
4.8 Self-Consistent Approximations of Effective Moduli	123
4.9 Differential Effective Medium Model	129
4.10 Hudson's Model for Cracked Media	133
4.11 Eshelby-Cheng Model for Cracked Anisotropic Media	140
4.12 Elastic Constants in Finely Layered Media – Backus Average	142
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
DADT E. ODANIII AD MEDIA	4.4
PART 5: GRANULAR MEDIA	147
5.1 Packing of Spheres – Geometric Relations	147
5.2 Random Spherical Grain Packings – Contact Models and Effective	
Moduli	149
5.3 Ordered Spherical Grain Packings – Effective Moduli	160
PART 6: FLUID EFFECTS ON	
WAVE PROPAGATION	162
WATE PROPAGATION	
6.1 Biot's Velocity Relations	162
6.2 Geertsma–Smit Approximations of Biot's Relations	166
6.3 Gassmann's Relations	168
6.4 BAM – Marion's Bounding Average Method	177

6.5	Fluid Substitution in Anisotropic Rocks: Brown and	
	Korringa's Relations	179
6.6	Generalized Gassmann's Equations for Composite Porous Media	181
6.7	Mavko-Jizba Squirt Relations	184
6.8	Extension of Mavko-Jizba Squirt Relations for All Frequencies	186
6.9	BISQ	190
6.10	Anisotropic Squirt	192
	Common Features of Fluid-Related Velocity Dispersion Mechanisms	197
6.12	2 Partial and Multiphase Saturations	202
6.13	Partial Saturation: White and Dutta-Odé Model for Velocity	
	Dispersion and Attenuation	207
6.14	Waves in Pure Viscous Fluid	212
6.15	5 Physical Properties of Gases and Fluids	214
PA	RT 7: EMPIRICAL RELATIONS	221
7.1	Velocity-Porosity Models: Critical Porosity and Nur's Modified	
	Voigt Average.	221
7.2	Velocity–Porosity Models: Geertsma's Empirical Relations	
	for Compressibility	225
7.3	Velocity-Porosity Models: Wyllie's Time Average Equation	226
7.4	Velocity-Porosity Models: Raymer-Hunt-Gardner Relations	228
	Velocity-Porosity-Clay Models: Han's Empirical Relations for	
	Shaley Sandstones	231
7.6	Velocity-Porosity-Clay Models: Tosaya's Empirical Relations for	
	Shaley Sandstones	233
7.7	Velocity-Porosity-Clay Models: Castagna's Empirical Relations	
	for Velocities	234
7.8	$V_{\rm P}$ – $V_{\rm S}$ Relations	235
7.9	Velocity–Density Relations	250
РА	RT 8: FLOW AND DIFFUSION	255
8 1	Darcy's Law	255
	Kozeny–Carman Relation for Flow	260
	Viscous Flow	264
	Capillary Forces	266
	Diffusion and Filtration – Special Cases	268
PA	RT 9: ELECTRICAL PROPERTIES	271
9 1	Bounds and Effective Medium Models	271
	Velocity Dispersion and Attenuation	275
	Empirical Relations	279
	Electrical Conductivity in Porous Rocks	282

PART 10: APPENDIXES	289
10.1 Typical Rock Properties	289
10.2 Conversions	304
10.3 Moduli and Density of Common Minerals	306
References	313
Index	325