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ABSTRACT

Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving
for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related
strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vac-
cine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on
the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive
therapies and the implications of long-term immunity.

Key words: antibodies; COVID-19; SARS-CoV-2; convalescent plasma, nanobodies; vaccines; long-term immunity.

INTRODUCTION

Humoral immunity is a vital aspect of the immune system
highly implicated in infection control. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious vi-
rus that is responsible for the current worldwide coronavirus

disease 2019 (COVID-19) pandemic. Understanding the immune
response to this virus is paramount to limit disease burden in
the population, and to discover new therapeutic options. One
such response is that of antibodies; the immunoglobulins se-
creted by B-cells following antigen recognition. Antibodies have
a multitude of effector functions and can coordinate the
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responses of other immune cells, including T cells and macro-
phages, to eliminate pathogens. Studying the antibody response
to SARS-CoV-2 will aid in vaccine design and the understanding
of long-term immunity prospects. Additionally, antibodies that
bind and neutralize the SARS-CoV-2 virus have the potential to
be used as therapies for patients in the various forms of conva-
lescent plasma, monoclonal antibodies and nanobodies, all of
which are discussed within this review.

ANTIBODY RESPONSES TO SARS-COV-2 IN
DIFFERENT PATIENT POPULATIONS

Immunoglobulins IgM, IgA and IgG are key components of the
antibody response towards SARS-CoV-2 and differ in titre and
duration of response, as with other viral infections (Figure 1) [4].
Table 1 summarizes the SARS-CoV-2 antibody literature to date.
This includes seroconversion; how long it takes antibodies to be
detected in the serum following infection, response kinetics;
how long it takes antibodies to achieve their peak titre, and the
prediction of response duration.

IgG levels were shown to peak earlier in asymptomatic and
mild cases compared to severe cases [�20 vs. �35 days post
symptom onset (d.p.s.o)] and most asymptomatic patients,
many of whom were children, had low or undetectable IgM

levels, leading to speculation that high and persistent IgM may
result in more severe symptoms [19, 21, 25–27]. Interestingly,
many publications have shown significant correlations of

Box 2: Why do antibodies in SARS-CoV-2 infection matter?

COVID-19 has rapidly changed the World, from countless deaths and long-term health problems in survivors, to creating a social
and economic burden. Research on COVID-19 is being produced quickly, so it is crucial that we view this critically to distinguish
robust data. From this baseline, we are then able to produce successful therapies as soon as possible to help fight this pandemic.
Looking at previous coronavirus strains is necessary to gain useful insights into this new and novel virus. There are similari-
ties between SARS-CoV-2 and former strains we have faced, which give us invaluable knowledge in treating patients and lim-
iting global disease burden. What we learn from COVID-19 may also be applied to future epidemic or pandemic strains.
Using antibodies taken from patients that have recovered from COVID-19 infection and giving them to those that are strug-
gling to fight off the infection has the potential to save lives and bridge the gap while doctors and scientists are learning
more about how to fight the virus and produce other treatments and vaccines.

Box 1: What is the consensus on antibodies in SARS-CoV-2 infection?

When infected with COVID-19, patients produce antibodies to fight off the infection. These antibodies are known as immuno-
globulins; IgM, IgA and IgG, and are key players in the response to COVID-19. Each has a unique role and therefore takes dif-
ferent lengths of time to be detected in the blood, to reach the maximum quantity and diminish from the system. As this is
still a new disease, further work is needed to determine how long these antibody responses last in the body. Most COVID-19
patients that do not display any symptoms have low levels of IgM, while levels of IgA and IgG antibodies are higher in more
severe, symptomatic patients. However, more in-depth study is needed to see if these antibody responses are important in
controlling infection and how they co-ordinate with other immune responses to COVID-19.
Patients with strong immune responses to COVID-19 have high levels of neutralizing antibodies, which successfully control
the infection. Once recovered, plasma can be taken from these patients and be administered to those who are currently se-
verely infected. This is known as CP treatment. Other treatment options, which include mAbs and nanobodies, are more fo-
cused therapies, having developed from the most potent antibodies. Approval of two potent mAb therapies signifies the im-
portance of antibodies in overcoming infection. However, these are most effective at preventing severe disease, so research
to identify treatments to benefit those severely infected is still needed. However, these are most effective at preventing pro-
gression to severe disease, so research to identify treatments to benefit those severely infected is still needed. Work is also
being carried out to investigate previous coronavirus infections to see what we can learn from them. It is possible that anti-
bodies made against these other strains may help protect people during this pandemic.
It is currently unknown whether people who have recovered from COVID-19 are protected against a future SARS-CoV-2 infec-
tion as reinfection has been reported in several people worldwide. This has implications for vaccine design as regular boos-
ters may be required if the immune response declines. Key components to creating a long-lasting immunity to the virus will
become clearer once further research has been conducted.
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Figure 1: Changes in antibody concentration in response to viral infection.

Following exposure to the virus and the initial incubation period of around 5

days, the infection takes hold. During the infection period, patients may develop

symptoms as the first virus-specific antibodies are produced and the immune

system is activated. IgM and IgA are produced initially, followed by IgG, which

increases more slowly, but remains in the blood for a longer period. During

the recovery and convalescent phases of infection, the viral RNA reduces to

undetectable levels. IgA levels can persist, particularly at the mucous

membranes [1–3], it is currently unclear how long the IgG titres last.
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higher antibody titres in both older patients and those with
more severe disease [7, 13, 17, 19, 28–30]. Relative levels of IgA
and IgG have been reported to be significantly higher in severe
patients in addition to a significant correlation between IgA lev-
els and APACHE-II score in critically ill patients [16, 23]. A study
investigating the specificity and functionality of antibody
responses in children found that SARS-CoV-2 positive children
had low levels of IgM, IgA and IgG when compared to severe
COVID-19 adults and demonstrated that children predomi-
nantly generated an anti-S IgG response compared to the
broader antibody response generated by adults [31]. It has been
suggested that the reduced symptoms demonstrated by chil-
dren could be due to the reduced expression of the viral receptor
in children or that children generate a more robust innate im-
mune response [32, 33].

In addition to age, biological sex is also a potential factor in
COVID-19 disease severity. Several countries have reported
higher hospital admissions and mortality rates in males, with a
case fatality rate 1.7 times higher for men than for women [34].
The production of IgG appears to be higher in females in the
early stages of infection, possibly preventing the progression to
advanced disease and decreasing the mortality rate [35, 36].
Patients that succumb to SARS-CoV-2 infection were unable to
generate a functional IgG response, coordinate Fc receptor-
binding and produce innate immune effector binding [37].
Further to this, patients with severe COVID-19, particularly
males, have been shown to generate IgG1 antibodies with sig-
nificantly reduced Fc fucosylation, in addition to increased IgG3
antibodies when compared to patients with mild symptoms
and children, indicating that severe COVID-19 resulted from the
production of pro-inflammatory IgG antibodies [38].

Coordinated responses between B cells, CD4þ and CD8þ T
cells are necessary to control and clear infection, without a
functional B-cell response, virus-specific memory T cells cannot
provide complete protection [39]. Neutralizing antibody (nAb)
responses and B cell memory decline over time and depend on
CD4þ T cell help, leaving the role of long-term protection to the
memory T cells [40, 41]. This, therefore, indicates that the im-
mune system as a whole must be analysed, in addition to the
individual components, to understand why some people are
asymptomatic while others succumb to the disease.

THE USE OF ANTIBODIES AS THERAPY FOR
COVID-19

There are various strategies to treat SARS-CoV-2 infection with
antibodies, as summarized in Figure 2. Plasma extracted from re-
covered COVID-19 patients is known as convalescent plasma (CP).
CP contains antibodies of various diversity (polyclonal) and affini-
ties to SARS-CoV-2 and was greatly employed during the early
phases of the pandemic. More recently, monoclonal antibodies
(mAbs) and nanobodies/sybodies have been developed. By

isolating memory B cells from recovered patients and immunized
animals or screening of antibody mRNA using phage display,
highly selective candidates with high-neutralization capacity
have been identified. Neutralizing responses to SARS-CoV-2 target
the receptor-binding domain (RBD) of the spike (S) glycoprotein,
which is required to interact with the target receptor angiotensin-
converting enzyme 2 (ACE2) on host cells [42–48]. Steric hindrance
of the RBD–ACE2 interaction by antibodies will block viral entry
and prevent infection. It should be noted that other neutralizing
epitopes, distant from the RBD, exist but are less studied [43–50].

CONVALESCENT PLASMA

CP has been used to successfully reduce mortality in a variety of
viral epidemics, including influenza, SARS and Middle East
Respiratory Syndrome (MERS) [51, 52]. During the current
COVID-19 pandemic, several studies have investigated CP trans-
fusions with high nAb titres as a treatment option (see
Figure 2A). Plasma is harvested from donors with total anti-
spike IgG titres of >1:320 using plasmapheresis, this can then be
transfused into an ABO-compatible patient [53]. Table 2 sum-
marizes studies investigating the use of CP in COVID-19
patients.

An early meta-analysis of CP treatment for COVID-19 found
evidence of reduced mortality as well as increased viral clear-
ance, and clinical improvements [60]. Additionally, a more re-
cent meta-analysis of larger, better quality studies confirmed
these findings [61]. However, both the PLACID and PlasmAr ran-
domized trials found no differences in disease progression or
mortality in COVID-19 patients receiving CP or best standard of
care/placebo [58, 59]. Larger, blinded, randomized control trials
are still ongoing to confirm the efficacy of CP treatment, the
RECOVERY trial in Oxford is one such Phase 3 trial of CP
(NCT04381936).

In SARS patients, early CP treatment within 14 days of infec-
tion significantly improved outcomes [62]. This has also been
suggested for COVID-19, but more studies are required to fully
evaluate this [55]. Recovered patients with high nAb titres have
relatively stable levels but these do decrease over time. Gontu et
al. observed that the optimal time window for recovered
patients to donate plasma is within 60 d.p.s.o [9].

Finally, CP treatment could be particularly beneficial for
individuals who are immunocompromised [63, 64]. The nAbs in
CP are likely targeted to a range of SARS-CoV-2 S protein epito-
pes, which is advantageous compared to single or even ‘cock-
tail’ mAb treatment where there is greater likelihood of escape
mutations [65].

Monoclonal antibodies

Many studies have tested the neutralizing capacity of mAbs
against SARS-CoV-2 in vitro (Figure 2B) and assessed their

Table 1: Summary of analysis of IgM, IgA and IgG responses to SARS-CoV-2 infection

IgM IgA IgG

Per cent seroconversion >73 [5–9] >72 [5, 6, 10] 84–100 [5–12]
Seroconversion (d.p.s.o) 10–14 [8, 13–16] 13 [16] 12–14 [8, 13–16]
Peak titre (d.p.s.o) 15–30 [3–5, 7, 9, 14, 17–19] 16–30 [3, 5, 20–23] 16–50 [3–7, 9, 17, 19, 20, 22–24]
Median seronegative prediction 46.9 days [6] 51.0 days [6]

Following infection by SARS-CoV-2, IgM, IgA and IgG are rapidly seroconverted within the first 2 weeks; IgM and IgA appear to reach their peak titre at similar d.p.s.o,

whereas IgG often peaks at a later time point.
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functionality in vivo. Neutralizing mAbs have shown a reduction
in viral load and protection from challenge in animal models
[42, 44–50, 66, 67]. This ability to inhibit infection highlights
mAbs as potential therapeutic candidates for COVID-19.

Multiple candidates are in advanced clinical trials (Table 3).
Recently, two mAb therapies (bamlanivimab, formerly LY-
CoV555, and REGN-COV2) have received emergency use authori-
zation by the Food and Drug Administration (FDA) to prevent
mild-to-moderately-infected patients from progressing to se-
vere disease. While bamlanivimab is a single mAb isolated from
the B cells of a convalescent patient [68], REGN-COV2 is a cock-
tail of two mAbs (casirivimab and imdevimab) identified using
both recovered patients and humanized mice [70]. Casirivimab
and imdevimab recognize non-overlapping epitopes on the RBD
which may overcome resistance posed by ‘viral escape’ muta-
tions, such as D614G, a missense mutation in the spike protein
that results in a more transmissible form of SARS-CoV-2 [72].
This approach of ‘antibody cocktails’ is also being explored by
AstraZeneca, with their candidate AZD7442, comprising two
mAbs, recently entering Phase 3 trials [42].

Cross-reactive nAb therapies

Multiple SARS-CoV and MERS-CoV mAbs were identified follow-
ing the SARS and MERS epidemics in 2003 and 2012, respectively
[73]. However, therapeutic developments were limited due to
the short duration of these outbreaks. Both SARS-CoV and
SARS-CoV-2 utilize ACE2 as their cell-entry receptor and the S-

glycoprotein of SARS-CoV-2 is over 70% identical to that of
SARS-CoV [74–79]. Conversely, MERS-CoV binds to the CD26 re-
ceptor and is less homologous to SARS-CoV-2 [79, 80]. Antibody
cross-reactivity could potentially allow repurposing of these
SARS-CoV mAbs to combat COVID-19.

RBD-directed mAbs, which interfere with ACE2 binding,
thereby neutralizing SARS-CoV (e.g. 80R, CR3014), were unable
to bind to SARS-CoV-2-RBD [81, 82]. Conversely, multiple SARS-
CoV-targeted mAbs, which do not compete with ACE2, have
shown potent cross-neutralizing capacity including 47D11 and
CR3022 [82–84]. The ability of CR3022 to neutralize SARS-CoV-2
has been disputed by Yuan et al., however, who used a pseudo-
virus neutralization assay to assess this rather than one with
live virus as with Huo et al. [84, 85]. A further explanation for the
differences seen is that antibodies that show cross-reactivity
recognize epitopes that are highly conserved between the
strains. For example, the epitope of CR3022 is 86% conserved be-
tween SARS-CoV and SARS-CoV-2, and the more recently iden-
tified S309 (see Table 3) binds an epitope that is 77% conserved
[47, 85]. Additional work has shown that further increasing the
conservation of CR3022’s epitope vastly increases the antibody’s
affinity to SARS-CoV-2 RBD, suggesting that antibody cross-
reactivity is highly dependent on epitope recognition [86].

Nanobodies

Efforts have also been directed towards the development of
nanobodies to treat COVID-19 (Figure 2C). Sequences of these

Figure 2: SARS-CoV-2-specific antibodies can be utilized in multiple ways to treat COVID-19. (A) Sera from recovered COVID-19 patients can be given intravenously as

CP to ABO-matched-infected patients in order to reduce infectious burden and alleviate active disease. (B) mAbs (typically IgG) can be identified following isolation of

spike/RBD-specific memory B cells, which are sourced from recovered patients or mice immunized with target antigen. Potential candidates are screened for various

parameters, including specificity to target antigen and neutralization capacity. Selected lead candidates are further optimized before clinical evaluation as both a pro-

phylactic and therapeutic. (C) The epitope-binding domain of antibody heavy chains (VHH) also has therapeutic potential. These can be isolated following immuniza-

tion of camelids (nanobodies) or by using synthetic libraries (sybodies). The diversity of VHH mRNA is screened (e.g. using phage display) to identify those that have

high affinity to the target antigen. Like mAbs, these are evaluated for their specificity and neutralization capacity before clinical evaluation. Figure created using

BioRender.com
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single-domain antibodies (VHH) capable of blocking the RBD/
ACE2 interaction and neutralize SARS-CoV-2 have been identi-
fied using synthetic libraries (synthetic nanobodies, sybodies)
and camelids (nanobodies), which produce heavy-chain-only
antibodies [13, 87–95]. Nanobodies have multiple benefits over
conventional antibodies such as their biophysical and biochem-
ical characteristics, and ease of manufacture and varied admin-
istrative potential (e.g. via inhalation) [91, 96].

Recent literature has shown a variety of ways in which anti-
bodies can be used as treatment for COVID-19. While CP may
work as a polyclonal approach, mAbs and nanobodies recogniz-
ing the RBD epitope of the virus are more promising since they
are potent, high titre, relatively safe and can be readily manufac-
tured in bulk. Because of this, multiple candidates are reaching
clinical trials within a short timescale. Candidates recognizing
epitopes that are highly conserved between coronaviruses have
scope as potential pan-coronavirus therapies and may protect
individuals from future epidemic/pandemic strains.

ANTIBODY RESPONSES TO SARS-COV-2
VACCINES AND LONG-TERM IMMUNITY

Prophylactic vaccines are in development to protect against
COVID-19, with the aim of inducing nAb and T cell responses to
combat infection. In vivo antiviral efficacy has been demon-
strated in animal models, including preventing infection when
challenged, and is being tested in clinical trials [97–117].

The majority of vaccines include the whole SARS-CoV-2
spike protein, and may also include the nucleocapsid protein
(NP), while others only employ the RBD [97–109, 112–117]. The
NP antigen does not generate antibodies that are neutralizing
against SARS-CoV-2, whereas RBD and spike protein antigens
elicit nAb responses [102]. The RBD and S1 domain of the spike
protein unsurprisingly produce the greatest nAb responses, as
these domains are responsible for ACE2 binding and gaining en-
try to host cells [118, 119]. Smith et al. and Yarmarkovich et al.
took a computational approach to predict epitopes that produce
humoral and cell-mediated responses, which may be broadly
protective across various coronaviruses [120, 121].
Unfortunately, some non-neutralizing antibodies may have the
potential to bridge viral entry into host immune cells via Fc
receptors, known as antibody-dependent enhancement (ADE).
This leads to increased infectivity, higher viral loads, more se-
vere disease and has been observed in previous SARS/MERS

vaccines [122]. Thus far, no study has yet shown evidence of
vaccine-induced ADE for SARS-CoV-2.

The duration of long-term immunity to SARS-CoV-2 follow-
ing infection or vaccination, as well as the level of nAb required
for immunity, is currently unknown. Using a mathematical
model of antibody kinetics determined by follow-up of corona-
virus convalescent patients, one study has predicted that anti-
body responses will decline according to a biphasic pattern—a
rapid decline initially, followed by a slower rate of decay [123].
This study indicated that, due to the substantial initial reduc-
tion of antibodies, up to 50% of patients could test seronegative
after just 1 year [123]. Although these results cannot be verified
until those patients are followed for several years following in-
fection, other studies have estimated the time of seroreversion
of SARS-CoV-2 antibodies based on the time taken for patients
to become seronegative; 46.9 days for IgM and 51 days for IgA,
as of yet, there is no consensus on IgG (Table 1) [6]. The nAb
titres initially increase and remain stable for 3–4 months [5,
124–127]. Individuals with high peak nAb titres were observed
to maintain these, but levels decreased to those of less severe
groups at >90 d.p.s.o [5, 127].

The duration of the immune response resulting from sea-
sonal coronavirus infection varies, but the results obtained
from these can help predict the duration of antibody responses
until longer-term studies with large cohorts of patients can be
carried out for SARS-CoV-2. Previous work carried out on SARS-
CoV has indicated convalescent patients remained IgG positive
for 2–4 years and antibody responses declined after 2–3 years,
with severely affected individuals more likely to maintain de-
tectable responses [128–134]. However, antibody responses for
six out of nine volunteers inoculated with seasonal coronavirus
strain 229E were no longer sufficient to prevent reinfection 1
year later [135]. Furthermore, a 35-year-long study found that
most seasonal coronavirus reinfections occurred every 3 years,
depending on re-exposure and lingering immunity [136].
Adapted seasonal coronavirus modelling estimates that SARS-
CoV-2 immunity may last approximately 45 weeks, but an anti-
body response may not confer complete protection from rein-
fection [133, 137].

Reinfection has been reported in a number of cases, summa-
rized in Table 4. The majority of the reinfected individuals had
an initial mild or asymptomatic infection, and these may not
elicit a sufficiently robust antibody response to be sustained
and protective since patients whose nAb responses were mea-
sured had low to undetectable responses [138–145]. These

Table 4: A summary of SARS-CoV-2 reinfection cases confirmed by whole-genome sequencing

Location Patient: age (years)
and sex (M/F)

Severity of first
infection

Severity of second
infection

Days between first
and second infection

Reference

Hong Kong 34 (M) Mild Asymptomatic 142 [138]
USA 25 (M) Mild Severe 48 [139]

42 (M) Mild Moderate 51 [140]
60–69a Severe Mild 118 [141]

Ecuador 46 (M) Mild Moderate 47 [142]
India 25 (M) Asymptomatic Asymptomaticb 100 [143]

28 (F) Asymptomatic Asymptomaticb 101
27 (M) Mild Moderate 66 [144]
31 (M) Asymptomatic Mild 65
27 (M) Asymptomatic Mild 19
24 (F) Mild Moderate 55

aPatient details only gave age range of 60–69 years.
bAsymptomatic but had a higher viral load upon reinfection.
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reinfection cases highlight that since most cases of COVID-19
will be mild, reinfection is possible especially following a reduc-
tion in nAbs and the possibility of spike protein mutations that
reduce nAb-binding affinity [65]. Two patients were reinfected
with a D614G variant, and one patient was reinfected with an
N440K variant, which is a known nAb escape mutation [65, 140,
141, 143]. A recent study has demonstrated that although anti-
body titres decrease substantially over time, neutralization ac-
tivity is retained for up to 6 months [146]. Longer studies
involving more individuals are required to evaluate when peo-
ple might become vulnerable to reinfection. This work supports
a vaccine-based approach to controlling SARS-CoV-2 transmis-
sion but if serology of vaccinated individuals follows a similar
pattern to those who have recovered, then regular boosters may
be required.

Conclusion

Antibodies are an important aspect of the immune response to
COVID-19. While there remains a lot to learn, it is encouraging
to see that in a matter of months, many promising antibody-
based prophylactics and therapies are making their way into
the clinic. Considering the number of reported cases of SARS-
CoV-2 reinfection, the uncertainty surrounding long-term im-
munity will hopefully be more conclusively addressed in the
months to come. To date, the current estimate of antibody lon-
gevity is 46.9 days for IgA and 51 days for IgM, with no consen-
sus on IgG. Reinfections have occurred between 19 and 142
days, with the majority greater than 50 days, after recovery
from the first infection, resulting in both mild and severe ill-
ness. These numbers could change greatly in the coming
months and may not be representative of the population. It is
important to stress that antibodies are not the sole immune de-
fence against COVID-19, and many vaccines aim to elicit general
adaptive immune responses. Evaluating the collective immune
response to SARS-CoV-2 will advance our understanding of the
mechanism of disease and its control.
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