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Accumulating evidence suggests that endoplasmic reticulum
(ER) stress plays a role in the pathogenesis of diabetes, con-
tributing to pancreatic �-cell loss and insulin resistance. Com-
ponents of the unfolded protein response (UPR) play a dual
role in �-cells, acting as beneficial regulators under physio-
logical conditions or as triggers of �-cell dysfunction and ap-
optosis under situations of chronic stress. Novel findings sug-
gest that “what makes a �-cell a �-cell”, i.e., its enormous
capacity to synthesize and secrete insulin, is also its Achilles
heel, rendering it vulnerable to chronic high glucose and fatty
acid exposure, agents that contribute to �-cell failure in type
2 diabetes. In this review, we address the transition from
physiology to pathology, namely how and why the physiolog-
ical UPR evolves to a proapoptotic ER stress response and

which defenses are triggered by �-cells against these chal-
lenges. ER stress may also link obesity and insulin resistance
in type 2 diabetes. High fat feeding and obesity induce ER
stress in liver, which suppresses insulin signaling via c-Jun
N-terminal kinase activation. In vitro data suggest that ER
stress may also contribute to cytokine-induced �-cell death.
Thus, the cytokines IL-1� and interferon-�, putative media-
tors of �-cell loss in type 1 diabetes, induce severe ER stress
through, respectively, NO-mediated depletion of ER calcium
and inhibition of ER chaperones, thus hampering �-cell de-
fenses and amplifying the proapoptotic pathways. A better
understanding of the pathways regulating ER stress in �-cells
may be instrumental for the design of novel therapies to pre-
vent �-cell loss in diabetes. (Endocrine Reviews 29: 42–61, 2008)
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I. Introduction

THE TWO MAIN forms of diabetes mellitus are type 1
and type 2 diabetes (1). They are a major cause of

morbidity and mortality, decreasing both life quality and life
expectancy of millions of affected individuals. A reduction in
�-cell mass, due to increased �-cell apoptosis and defective
�-cell regeneration, is a key component of diabetes mellitus
(2–4). In the case of type 2 diabetes, this is very often ac-
companied by insulin resistance in fat, muscle, and liver (5).
The molecular mechanisms underlying decreased �-cell
mass and insulin resistance remain to be clarified.

Type 1 diabetes is characterized by a severe lack of insulin
production due to specific destruction of the pancreatic
�-cells that typically develops over several years. Although
some immune-related biomarkers (i.e., autoantibodies to
IA-2, GAD65, and insulin) can identify individuals at risk for
type 1 diabetes, the process by which the �-cells are de-
stroyed is not well understood. �-Cell loss in type 1 diabetes
is the result of an autoimmune-mediated process, where a
chronic inflammation called insulitis causes �-cell destruc-
tion. This is mediated by cytokines and other factors released
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regulating kinase; ATF, activating transcription factor; BiP (also known
as GRP78 or HSPA5), Ig heavy chain binding protein; C/EBP, CCAAT/
enhancer binding protein; CHOP (also known as GADD153 or DDIT3),
C/EBP homologous protein; CPA, cyclopiazonic acid; eIF, eukaryotic
translation initiation factor; ER, endoplasmic reticulum; ERAD, ER-
associated degradation pathway; FFA, free fatty acid; GADD, growth
arrest and DNA damage inducible gene; IAPP, islet amyloid polypep-
tide; IFN-�, interferon-�; iNOS, inducible nitric oxide synthase; IRE,
inositol requiring ER-to-nucleus signal kinase; IRS, insulin receptor sub-
strate; JNK, c-Jun N-terminal kinase; NF-�B, nuclear factor �B; NO, nitric
oxide; NOD, nonobese diabetic; ORF, open reading frame; ORP150 (also
known as GRP170), oxygen-regulated protein 150; PDI, protein disulfide
isomerase; PERK, PKR-like ER kinase; PKR, double-stranded RNA-
activated kinase; PP, protein phosphatase; ROS, reactive oxygen species;
SERCA, sarcoendoplasmic reticulum Ca2� ATPase; S1P, site-1 protease;
STAT, signal transducer and activator of transcription; TRAF, TNF re-
ceptor-associated factor; uORF, upstream ORF; UPR, unfolded protein
response; SREBP, sterol-response element-binding protein; WFS1, Wol-
fram syndrome gene 1; XBP1, X-box binding protein-1; XBP1s, spliced
XBP1.
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by and/or expressed on the surface of the immune cells
invading the islets, which trigger secondary pathways of cell
death in the target �-cells (2, 3, 6).

Type 2 diabetes results from a reduced ability of the pan-
creatic �-cells to secrete enough insulin to stimulate glucose
utilization by peripheral tissues (7). As �-cell secretory ca-
pacity deteriorates, glucose tolerance worsens and fasting
glucose levels progressively increase, eventually culminat-
ing in overt hyperglycemia (8–10). Defects in both insulin
secretion and action contribute to the pathogenesis of type 2
diabetes, but it is now acknowledged that insulin deficiency
is the crucial constituent, without which type 2 diabetes does
not develop. This �-cell defect is present early in the disease
process (7) and detectable as markedly reduced first phase or
acute glucose-induced insulin secretion (11, 12). The genetic
factors that predispose a subset of obese individuals to �-cell
failure are now being identified (13–17), but the underlying
biological mechanisms are not yet understood. From post-
mortem studies, it has been shown that type 2 diabetic pa-
tients have reduced �-cell mass (18–22) and increased �-cell
apoptosis rates (21). It is unlikely that �-cell loss entirely
accounts for reduced insulin secretion in type 2 diabetes, and
the extent of its contribution to diabetes development will
remain unclear until in vivo tools for imaging of �-cell mass
become available. The loss of �-cell mass in type 2 diabetes
may be due to chronic exposure to high glucose and free fatty
acid (FFA) levels (gluco- and lipotoxicity) (5, 23, 24).

Accumulating evidence indicates that �-cell loss in both
type 1 and type 2 diabetes results from stress responses
regulated by key transcription factors and gene networks
(25). Initial suggestions that �-cell apoptosis in both forms of
diabetes is mediated by a common “up-stream” pathway,
dependent on IL-1� production and activation of the Fas-
FasL system (26), have not been confirmed (27, 28). Instead,
it seems that there are diverging up-stream proapoptotic
signals in both forms of diabetes, depending on the tran-
scription factors nuclear factor (NF)-�B and signal transducer
and activator of transcription (STAT)-1 in type 1 diabetes and
on other signaling molecules, still to be discovered, in type
2 diabetes (Fig. 1). These early signaling pathways may con-
verge downstream into common “execution” pathways,
such as endoplasmic reticulum (ER) stress, mitochondrial
dysfunction, and production of reactive oxygen species
(ROS) (Fig. 1) (25). ER stress may also act as a link between
obesity and insulin resistance in liver and fat, raising the
intriguing possibility that this cellular response is a common
mechanism for both �-cell failure and defective insulin sig-
naling in type 2 diabetes.

In the present review, we will focus on the role for ER
stress in diabetes, with special emphasis on recent findings
clarifying the transition between “normal” and “pathologi-
cal” ER stress responses.

II. Endoplasmic Reticulum (ER) Stress and the
Unfolded Protein Response (UPR)

The ER is a highly dynamic organelle with a central role
in lipid and protein biosynthesis. The ER produces the trans-
membrane proteins and lipids for most cell organelles and is

responsible for the synthesis of almost all secreted proteins.
The ER also has an important role in Ca2� storage and sig-
naling. The resting intra-ER Ca2� concentration is three to
four orders of magnitude higher than cytosolic Ca2�. This
gradient is generated by the sarco(endo)plasmic reticulum
Ca2� ATPase (SERCA) proteins, which pump Ca2� into the
ER, and the Ins(1,4,5)P3 and ryanodine receptors that release
Ca2� from the ER (29). Due to its ability to store and secrete
Ca2�, the ER controls a wide range of cellular processes such
as organogenesis, transcriptional activity, stress responses,
and apoptosis (29).

The translation of proteins is performed by ribosomes on
the cytosolic surface of the ER (30), and the unfolded
polypeptide chains are translocated into the ER lumen via the
Sec61 complex (31). In the ER lumen these chains are often
N-glycosylated and folded into secondary and tertiary struc-
tures that are stabilized by disulfide bonds (32). The unique
oxidizing environment of the ER and the numerous protein
chaperones present in the organelle are crucial for the proper
folding of proteins and protein complexes (33). The disulfide
bond formation is catalyzed by protein disulfide isomerase
(PDI) (34). PDI is oxidized by Ero1� (35) and -� (36) into a
disulfide donor, whereas reduced PDI can isomerize disul-
fide bonds in client proteins. Other ER-resident folding fac-
tors include amino acid cis-trans isomerases, the chaperones
GRP94 and Ig heavy chain binding protein (BiP), N-glyco-
sylation enzymes and the lectins calnexin and calreticulin
that specifically chaperone N-glycans (37), all of which op-
erate in complex multiprotein structures (38). While assisting
with folding, these chaperones and foldases also retain client
proteins in the ER until the maturely folded proteins meet all
quality control standards and exit the ER (39–41).

The ER is exquisitely sensitive to alterations in homeosta-
sis, and proteins formed in the ER may fail to attain correct
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FIG. 1. �-Cell loss in type 1 and type 2 diabetes results from stress
responses that may lead to apoptosis. There are diverging up-stream
proapoptotic signals in both forms of diabetes, depending on the tran-
scription factors NF-�B and STAT-1 in type 1 diabetes and on other
signaling molecules, still to be discovered, in type 2 diabetes. These
early signaling pathways may converge downstream into potentially
common “execution” pathways, such as ER stress, activation of JNK
and AMP-activated protein kinase (AMPK), mitochondrial dysfunc-
tion, and production of oxygen free radicals (ROS).
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conformation due to: 1) lack of chaperones or cellular energy
to promote chaperone-protein interactions; 2) Ca2� deple-
tion; 3) disruption of redox state; 4) protein mutations that
hamper adequate folding; and 5) reduction of disulfide
bonds. Accumulation of misfolded proteins that aggregate in
the ER lumen causes ER stress and activation of a signal
response termed the UPR (42–45). The aim of the UPR is to
alleviate ER stress, restore ER homeostasis, and prevent cell
death. To achieve these goals, the UPR induces several co-
ordinated responses, including: 1) a decrease in the arrival of
new proteins into the ER, thus preventing additional protein
misfolding and overloading of the organelle; 2) an increase
in the amount of ER chaperones, thus augmenting the folding
capacity of the ER to deal with misfolded proteins; 3) an
increase in the extrusion of irreversibly misfolded proteins
from the ER and subsequently degradation of these proteins
in the proteasome; and 4) in case the steps described above
fail, apoptosis is triggered. Because these responses depend
at least in part on de novo gene transcription, signals must be
transmitted from the ER to the nucleus indicating the urgent
need for the expression of relevant mRNAs and proteins.

This signaling is mediated by three transmembrane ER pro-
teins: inositol requiring ER-to-nucleus signal kinase (IRE) 1,
activating transcription factor (ATF) 6, and double-stranded
RNA-activated kinase (PKR)-like ER kinase (PERK) (Fig. 2).
These proteins become active when unfolded proteins accu-
mulate in the lumen of the ER and translate this information
into signals that modulate expression of key genes and
proteins.

A. The dialogue between the ER and the nucleus

The discovery of the signal transduction regulating the
UPR is a telling example of the crucial role of basic research
in model organisms such as yeast for the understanding of
complex human diseases (42). Kozutsumi et al. (46) were the
first to suggest that ER stress can activate a signal transduc-
tion pathway. They observed that the expression of a mutant
influenza hemagglutinin, which is unable to fold correctly,
induced expression of several ER resident proteins. The clar-
ification of this signaling pathway was first described in the
yeast Saccharomyces cerevisiae, where a 22-bp cis-acting ele-
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FIG. 2. Main components of the UPR. When misfolded proteins accumulate in the ER lumen, BiP (yellow circles) dissociates from the luminal
side of the ER stress transducers IRE1�, ATF6, and PERK, thereby activating them. IRE1� activates XBP1 by its alternative splicing. XBP1s
is a transcriptional transactivator of genes regulating protein maturation, folding, and export from the ER, as well as export and degradation
of misfolded proteins. IRE1� also degrades ER-targeted mRNAs to decrease the production of new proteins in the organelle and activates JNK.
ATF6 translocates to the Golgi and is cleaved by S1P and S2P proteases. ATF6 induces transcription of ER chaperones (for clarity, only one
of these ER chaperones, BiP, is shown in the figure), XBP1 and CHOP. PERK phosphorylates eIF2�, thereby inhibiting global protein synthesis
and decreasing the protein load in the ER. Translation of some proteins such as ATF4 is facilitated, and downstream CHOP and ATF3 expression
is induced. The PERK-eIF2� branch undergoes negative feedback through GADD34-mediated PP1 activation and consequent eIF2� dephos-
phorylation, and perhaps through up-regulation of p58IPK, which may suppress PERK activity. Misfolded ER proteins are disposed of by ERAD
through dislocation to the cytosol via the retrotranslocon channel composed of derlins and degradation in the ubiquitin/proteasome pathway.
EDEM (ER degradation enhancing �-mannosidase-like protein) contributes to this process by targeting misfolded mannose-trimmed glycop-
roteins for degradation. Prolonged and excessive ER stress may trigger apoptosis through JNK, CHOP, and ATF-3 and inhibition of Bcl-2 and/or
activation of proapoptotic members of the Bcl-2 family. Execution of apoptosis may involve caspases whose nature remains unclear. Additional
information and supporting references are provided in the text.
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ment termed the UPR element was identified in the promoter
of most genes up-regulated by UPR (47, 48). Subsequent
screening of yeast mutants unable to induce UPR element led
to the identification of an ER transmembrane protein, Ire1p
(49–52). Ire1p is a bifunctional enzyme with Ser/Thr kinase
and endoribonuclease activities in its carboxy-terminal do-
main and an ER stress-sensing domain in its N-terminal part.
The endoribonuclease of Ire1p has as the main substrate the
homologous to ATF/CREB1 mRNA that encodes the basic
leucine zipper transcription factor Hac1. HAC1 is constitu-
tively transcribed, but it is not translated due to the presence
of a nonconventional intron of 252 bp at the 3� end of the open
reading frame (ORF), which base-pairs to the 5� untranslated
region and prevents translation. During ER stress, Ire1p is
activated by dimerization and autophosphorylation, and its
RNAse activity cleaves unspliced HAC1 mRNA, generating
exon fragments that are then joined together by a tRNA ligase
(53–55). This highly unique signal transduction pathway de-
pends also on the transcriptional coactivator alteration/de-
ficiency in activation (56) and will lead to removal of the
inhibitory intron of HAC1, allowing translation of the tran-
scription activator Hac1, which induces the transcription of
ER stress-responsive genes (53, 54). There are two mamma-
lian homologs of Ire1p: IRE1�, expressed in most cells and
tissues with high levels of expression in pancreas, and IRE1�,
which is mainly expressed in intestinal epithelial cells (57,
58). Once activated, the cytoplasmic domain of IRE1� gains
endoribonuclease activity and cleaves 26 nucleotides from
the mRNA encoding X-box binding protein (XBP) 1, gener-
ating a spliced variant (XBP1s) that functions as a potent
transcriptional transactivator of genes involved in ER ex-
pansion, protein maturation, folding and export from the ER,
as well as export and degradation of misfolded proteins (Fig.
2) (59–64). IRE1� may also degrade ER-targeted mRNAs,
thus decreasing the production of new proteins in the or-
ganelle (65, 66).

In addition to IRE1, higher eukaryotic cells have two ad-
ditional UPR transducers: PERK and ATF6 (Fig. 2). These ER
stress transducers are usually inactive due to binding to the
ER chaperone BiP, but they are activated when BiP dissoci-
ates from their luminal side to assist in protein folding, sig-
naling depletion of ER chaperone reserves (67–70). It has
been proposed that IRE1 also directly binds to unfolded
proteins (71), but this hypothesis was not confirmed by de-
tailed studies of the x-ray crystal structure of the luminal
domain of IRE1 and by functional studies indicating that
IRE1 can dimerize independently of the presence of unfolded
proteins (72). Recent findings in yeast indicate the presence
of additional and potentially novel mechanisms of IRE1 reg-
ulation (73).

ATF6� is a 90-kDa bZIP protein that is activated by post-
translational modifications. The disulfide and glycosylation-
bound status of the ATF6� ER luminal domain probably
participates in the sensing of ER stress (74, 75). ATF6 acti-
vation leads to its translocation to the Golgi and cleavage of
the membrane by site-1 protease (S1P) and S2P. The 50-kDa
cleaved ATF6� translocates to the cell nucleus where it binds
to the ER stress response element CCAAT(N)9CCACG (76)
in genes encoding ER chaperone proteins, increasing protein
folding activity in the ER (76, 77). There are two main chap-

erone systems in the ER, namely the calnexin/calreticulin
(lectin chaperones) and BiP/GRP94 (heat shock protein fam-
ily); components of both systems are up-regulated by ATF6�
in some cases in cooperation with XBP1s (61, 77, 78). ATF6
augments the expression of XBP1 mRNA, providing more
substrate for IRE1-induced generation of XBP1s (61). An-
other important cochaperone in the ER lumen is P58IPK,
which is associated with BiP and favors protein maturation
(79). ATF6� is ubiquitously expressed (80), but in recent
years several tissue-specific ER transmembrane proteins that
are similarly cleaved by S1P and S2P have been identified,
including cAMP-responsive element binding protein, old
astrocyte specifically induced substance (OASIS), luman,
and TISP40 (81–84).

PERK phosphorylates eukaryotic translation initiation fac-
tor (eIF) 2�, thereby inhibiting 80S ribosome assembly and
protein synthesis and consequently decreasing the functional
demand on the ER (85). eIF2� phosphorylation causes a
general decrease in translation, but some selected proteins
such as ATF4 are translated more efficiently (86, 87). The
ATF4 mRNA has two upstream ORFs (uORF)s before the
initiation codon. The 5� proximal uORF1 is a positive-acting
element that facilitates ribosome scanning and reinitiation at
downstream coding regions, whereas the second (uORF2) is
out of frame with the true ATF4 coding sequence. In non-
stressed cells, which contain low levels of phosphorylated
eIF2�, ribosomes scanning downstream of uORF1 reinitiate
at the next coding region, namely uORF2, thus preventing
effective ATF4 translation. During ER stress, however, the
presence of high levels of eIF2� phosphorylation delays the
capacitation of scanning ribosomes, favoring reinitiation at
the ATF4 initiation codon and resulting in increased ATF4
translation (88, 89). ATF4 regulates genes involved in amino
acid import, glutathione biosynthesis, and resistance to ox-
idative stress (90). ATF4 also induces the expression of the
proapoptotic genes CCAAT/enhancer binding protein (C/
EBP) homologous protein (CHOP) and ATF3 (91–93). Re-
covery from the translational repression caused by eIF2�
phosphorylation is mediated by growth arrest and DNA
damage inducible gene (GADD) 34, which interacts with the
catalytic subunit of protein phosphatase (PP) 1c and leads to
eIF2� dephosphorylation (94–99). It was suggested that
PERK function is also modulated by the cochaperone p58IPK

(100, 101). A recent study, however, indicates that whereas
a putative small cytosolic p58IPK fraction might mitigate
translational attenuation via PERK inhibition, its predomi-
nant ER luminal localization suggests that p58IPK functions
mainly as a chaperone (79). An additional mechanism exists
to selectively decrease protein load in the ER, the “preemp-
tive quality control.” Thus, during ER stress, ER signal se-
quences in the protein will determine whether or not it gains
access to the ER; for instance, while the chaperone BiP con-
tinues to translocate into the ER, proteins destined for the
plasma membrane are denied access (102).

The phenotypes caused by targeted deletion of the PERK/
eIF2� and IRE1/XBP1 pathways are not identical, indicating
both overlapping and divergent functions for these path-
ways (103). Different secretory cells seem to utilize prefer-
entially one or the other pathway in vivo. Thus, UPR-induced
translational control via eIF2� phosphorylation is not re-
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quired for B lymphocyte differentiation/maturation (104),
whereas deficiency in the PERK-eIF2� pathway leads to pro-
gressive loss of pancreatic �-cells (105, 106). XBP1 deletion
causes severe abnormalities in exocrine pancreas and sali-
vary glands but does not affect embryonic development of
islet cells (64, 103). These discrepancies underscore the need
to evaluate the specific regulation and role of the UPR in
differentiated secretory cells, such as �-cells, instead of re-
lying on data obtained in genetically modified embryonic
fibroblasts, a model widely used in the field.

Misfolded ER proteins are disposed of by the ER-associ-
ated degradation (ERAD) after a time lag of 30–90 min.
Protein disposal requires retrotranslocation into the cytosol,
via a presumptive retrotranslocon channel, and subsequent
degradation by the ubiquitin/proteasome pathway (107).
Recent evidence has implicated the mammalian translocon-
associated protein complex, which associates with Sec61,
binds preferentially to misfolded proteins, and accelerates
their degradation (108). Other proteins that play an impor-
tant role as translocon channels are the derlins (109–112). An
alternative model has recently been presented in which lipid
droplet formation from the ER membrane mediates mis-
folded protein dislocation from the ER (113).

Autophagy was recently described as a new alternative
pathway that targets proteins for degradation during ER
stress in yeast and mammalian cells (114–117). During au-
tophagy, parts of the cytoplasm, including its organelles, are
sequestered into membrane-bound compartments that then
fuse with lysosomes where their content is degraded by acid
hydrolases (118). An ER-selective UPR-induced form of au-
tophagy, ER-phagy, is apparently required for cell survival
under conditions of severe ER stress (114–116). Besides help-
ing to clear misfolded proteins, the ER-phagy reduces the
volume of the ER that is increased during the UPR. It remains
to be clarified how ER stress and the UPR activate autophagy,
but the IRE1 pathway seems to be involved (114, 115), and
a recent study indicates that PERK/eIF2� phosphorylation
mediates polyglutamine-induced LC3 conversion, an impor-
tant step for autophagy formation (119).

B. ER stress and apoptosis

The integrated result of the UPR is attenuation of global
protein translation paralleled by up-regulation of ER chap-
erones, thus increasing the folding capacity of the ER, and
degradation of irreversibly misfolded proteins. In case the
UPR fails to solve ER stress, the apoptosis pathway will be
activated. ER stress can lead to apoptosis by various path-
ways, involving activation of some of the key regulators of
the UPR described above. Thus, IRE1� was shown to recruit
the adaptor molecule TNF receptor-associated factor 2
(TRAF2) and activate c-Jun N-terminal kinase (JNK) and the
downstream proapoptotic kinase apoptosis-signal-regulat-
ing kinase (ASK1) (120, 121). Neurons from ASK1�/� mice
are resistant to ER stress-mediated cell death, suggesting that
ER stress-induced JNK and ASK is proapoptotic (121). The
IRE1/TRAF2 complex can also lead to NF-�B activation (122,
123), which may have a pro- or antiapoptotic effect depend-
ing on the cell type and context (124). The IRE1�/TRAF2
association is also required for the activation of procaspase

12, which may contribute to execution of ER stress-triggered
apoptosis (see below) (125).

Decreased protein translation via the PERK pathway has
mostly an antiapoptotic role during the UPR, by decreasing
the protein synthesis load on the ER and providing the cell
with a “resting time” to recover from the ER stress (126). In
line with this hypothesis, mice with deletion of different
components of the PERK pathway have progressive �-cell
loss and diabetes (see detailed discussion on these models in
Section IV.B). Activation of the PERK pathway also contrib-
utes to an antioxidant response through the PERK target Nrf2
and via ATF4 (90). The Nrf2 transcription factor induces
antioxidant response element-containing genes, including
detoxification enzymes, chaperones, and components of the
proteasome, but it may also mediate crosstalk with other
pathways such as IRE1� (90, 127). On the other hand, pro-
longed activation of the PERK pathway may lead to cell
death (128). Also, eIF2� phosphorylation via another path-
way, namely the dsRNA-activated kinase PKR, is part of the
proapoptotic responses of virally infected cells (129). The
capacity of different cells to endure inhibition of protein
synthesis is probably cell-type dependent. For instance, sa-
lubrinal, a selective inhibitor of eIF2� dephosphorylation
(which consequently prolongs inhibition of translation), pro-
tects pheochromocytoma PC12 cells against ER stress-medi-
ated apoptosis (126), whereas it triggers apoptosis in pan-
creatic �-cells (128).

Activation of the PERK pathway can also induce apoptosis
via ATF4 overexpression and consequent CHOP and ATF3
induction (91, 92, 130). CHOP, also known as GADD153, has
attracted special attention as a putative mediator of apoptosis
in ER stress (131). CHOP is a transcription factor of the
C/EBP family (131, 132). Its expression is low under non-
stressed conditions, but it increases markedly in response to
ER stress and other cellular stresses, such as nuclear DNA
damage by alkylating agents (131, 133); it is thus not a specific
marker for ER stress. Several studies point to a proapoptotic
effect of CHOP downstream of irremediable ER stress (131,
134, 135), but this effect may depend on the parallel expres-
sion of other components of the UPR (136). Possible mech-
anisms for CHOP-induced apoptosis include: 1) transloca-
tion of Bax from the cytosol to the mitochondria (137); 2)
down-regulation of Bcl-2 expression and perturbation of the
cellular redox state by depletion of cellular glutathione (138)
and sensitization to a subsequent oxidative stress (139); 3)
up-regulation of the death receptor 5 (140) and of Bim (141)
(see below); and 4) induction of TRB3, an Akt inhibitor
shown to contribute to ER stress-mediated death (142).

Members of the Bcl-2 family, usually considered as reg-
ulators of the mitochondrial pathway of cell death (143), are
also involved in the regulation of cell death induced by ER
stress (144). The Bcl-2 protein has been found to localize at
the ER, besides mitochondria and nucleus, where it modu-
lates the permeability of the ER membrane to Ca2� (145, 146).
Overexpression of Bcl-2 protects against lethal ER stress (145,
147), whereas fibroblasts deficient in Bax and Bak, proapop-
totic members of the Bcl-2 family, are resistant to ER stress-
induced cell death (148, 149). Bax and Bak regulate the out-
come of ER stress by acting at both the mitochondrial and ER
membranes and by regulating ER luminal Ca2� (150, 151).
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The BH3 only proteins PUMA, Noxa, Bik, and Bim (all pro-
apoptotic members of the Bcl-2 family) have also been re-
ported to contribute to cell death during ER stress (152–155).
Recent observations indicate that ER stress induced by thap-
sigargin, tunicamycin, or viral infection requires Bim acti-
vation for the induction of apoptosis in macrophages, breast,
and kidney epithelial cells (141). This Bim activation depends
on both transcriptional induction by CHOP/C/EBP� and
posttranslational modifications via PP2A-mediated dephos-
phorylation and consequent inhibition of Bim degradation
by the ubiquitin-proteasome pathway (141).

Most proapoptotic signals ultimately lead to caspase ac-
tivation, but it remains to be defined whether there is a
specific caspase pathway responsible for ER stress-mediated
apoptosis. The involvement of initiator caspases 2, 8, and 9
and effector caspases 3, 4, and 7 has been reported (123, 150,
156–161), and caspase 12 has been proposed as a specific
mediator of ER stress-induced apoptosis in rodent cells (162,
163). The human homolog of caspase 12, however, is not
catalytically active (164), and recent data indicate that ER
stress-induced death in rodent cells can take place in the
absence of caspase 12 (165, 166).

The precise mechanisms by which ER stress leads to ap-
optosis remain to be clarified, and this domain is perhaps the
least well understood in the field of ER stress/UPR. Many of
the mechanisms proposed for triggering apoptosis are cell
and context dependent, which may explain some of the ap-
parently contradictory results.

III. The UPR and �-Cell Adaptation to
Physiological Demand

World life expectancy has increased by 2-fold in the past
two centuries (167). Dietary composition has changed pro-
foundly in the last 25 yr, favoring energy-dense and satu-
rated fat-enriched diets (168), and physical activity is infre-
quent if not rare in the Western lifestyle. The increased
lifespan and high prevalence of obesity and insulin resistance
poses physiological challenges to long-living cells such as
pancreatic �-cells. �-Cells confronted with child and then
adulthood obesity will face decades of increased demand on
insulin synthesis and secretion.

The main role of pancreatic �-cells is the adequate syn-
thesis and release of insulin in response to glucose and other
nutrients (169). The cell is geared to this task: proinsulin
mRNA represents 20% of the total mRNA expression (170),
whereas (pro)insulin biosynthesis approaches 50% of the
total protein production in stimulated �-cells (171). Insulin
mRNA is translational quiescent at low (�3 mm) glucose
concentrations, but after stimulation by higher glucose con-
centrations there is a greater than 10-fold increase in bio-
synthesis (172–174). Synthesis of the endo- and exoproteases
involved in proinsulin conversion augments in parallel, con-
tributing to a nearly 5-fold glucose-induced increase in total
protein synthesis (175). Translation of insulin and other se-
cretory or cell membrane proteins takes place on ribosomes
on the cytosolic surface of the ER. The newly formed pro-
insulin is directed into the ER as a single molecule of 110
amino acids; in the specialized ER environment the proin-

sulin molecule will form disulfide bonds and fold into its
correct three-dimensional structure (169, 176). The marked
nutrient-induced protein synthesis poses a burden on the ER,
and minor changes in the insulin molecule that favor protein
misfolding are sufficient to induce ER stress, progressive
�-cell dysfunction and death, and early onset diabetes in
mice (177, 178).

Like many other proteins targeted for secretion or expres-
sion on the cell surface, proinsulin and its converting en-
zymes require special maturation steps in the ER. Because
synthesis of proinsulin may vary severalfold under physio-
logical conditions, �-cells utilize the UPR homeostatic mech-
anism to balance the load posed by newly synthesized pro-
teins against the ER capacity to properly fold them.
Transducers, such as IRE1� and PERK, total XBP1, and the
chaperones BiP, GRP94, and oxygen-regulated protein (ORP)
150 are highly expressed in �-cells (105, 179–181). Compared
with glucose-responsive insulin-producing MIN-6 cells,
MIN-6 cells that lose the glucose-responsiveness of insulin
synthesis have a marked decrease in the expression of ER
chaperones, including GRP94, BiP, ERp29, and PDI (182).
Similarly, in cultured primary rat islets, lowering glucose
from 30 to 5 mm causes a rapid (�50% by 2 h) and parallel
decline in insulin secretion and XBP1 mRNA splicing (181).
Furthermore, deficiency in key UPR pathways, such as the
PERK-eIF2� branch, suffices to trigger �-cell dysfunction
and death (105, 183) (see Section IV.B).

The steady-state eIF2� phosphorylation results from a bal-
ance between phosphorylation, induced by PERK in re-
sponse to the ER protein load, and dephosphorylation in-
duced by GADD34/PP1 (Fig. 2). Glucose-induced protein
translation in �-cells results from a rapid (within 15 min)
dephosphorylation of eIF2� by PP1 (184). On the other hand,
prolonged (12–24 h) phosphorylation of eIF2� causes �-cell
dysfunction and death (128).

Transient (1–3 h) exposure of �-cells to high glucose (10–25
mm) induces phosphorylation and activation of IRE1� (185).
This effect requires glucose metabolism, but it is not accom-
panied by BiP dissociation from IRE1� or by XBP1 splicing.
Prevention of IRE1� signaling by small interfering RNA de-
creases glucose-induced insulin biosynthesis, indicating that
acute IRE1� activation is required for proinsulin biosynthesis
(185). Prolongation of the time of exposure to high glucose
to 3–7 d, however, induces a protracted IRE1� phosphory-
lation, which is accompanied by XBP1 splicing and progres-
sive inhibition of insulin mRNA and protein expression
(185). This decrease in insulin mRNA expression may also be
secondary to mRNA degradation (66) (see Section VI).

These observations suggest that early activation of some
components of the UPR, such as the PERK-eIF2� and IRE1�
pathways, plays a physiological role in supporting proinsu-
lin and total protein biosynthesis and in adapting the ER
chaperone capacity to increased protein synthesis (181, 185).
On the other hand, prolonged UPR activation may impair
�-cell function and lead to apoptosis. The mechanisms for
this transition from physiology to pathology remain to be
clarified, but it may be related to XBP1 splicing (185) and to
an IRE1-mediated degradation of insulin mRNA (66). The
study of �-cell behavior after cessation of ER stress may shed
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light on the mechanisms of recovery from an acute UPR (see
Section VI).

IV. ER Stress and �-Cell Death in Monogenic and
Type 2 Diabetes

Autopsy data suggest that the early and progressive de-
cline in insulin secretion in type 2 diabetes is accompanied
by a decrease in �-cell mass and that this is secondary to
increased �-cell apoptosis (21). The putative mechanisms
involved in �-cell failure and death in type 2 diabetes have
been reviewed extensively (4, 23–25). Among the potential
factors contributing to progressive �-cell loss, glucose, FFA,
and islet amyloid polypeptide (IAPP) have been implicated
as triggers of �-cell ER stress. The most convincing evidence
for the role of ER stress in �-cell failure and diabetes comes
from rare genetic disorders.

A. ER stress and human diabetes

A mutation in EIF2AK3, encoding the human eIF2� kinase
(equivalent to rodent PERK), causes monogenic diabetes in
Wolcott-Rallison syndrome, a rare disorder characterized by
neonatal or early-infancy insulin-dependent diabetes (186).
Epiphyseal dysplasia and developmental delay become ap-
parent at later ages. The EIF2AK3 mutations identified so far
result in a truncated or missense eIF2� kinase with little or
no activity (187). Autopsy findings include pancreatic hyp-
oplasia and �-cell loss (188). This disease highlights the im-
portance of the PERK-mediated ER stress response in the
regulation of normal �-cell function and survival, at least in
neonatal life; its importance for �-cells in adult life has been
questioned (189).

In Wolfram syndrome, mutations in Wolfram syndrome
gene 1 (WFS1), which encodes an ER Ca2� channel, lead to
young-onset diabetes associated with selective �-cell loss,
optic atrophy, sensorineural deafness, diabetes insipidus,
and neurological manifestations (190).

Monogenic forms of diabetes may serve as “caricature”
models for the identification of small effects of common gene
variants in type 2 diabetes that have a polygenic and envi-
ronmental cause (191–194). Genetic variation in the WFS1
gene has been associated with type 2 diabetes (195, 196).
ATF6 has also been identified as a minor type 2 diabetes
susceptibility gene in Pima Indians (197). In some cohorts, an
association with insulin secretion was observed for a DNA
variant that extends into the 5� end of the ATF6 gene (198).
Further studies are needed on the genetic variation in key
UPR genes in type 2 diabetes and on possible gene–envi-
ronment interactions.

More direct evidence for a role of ER stress in type 2
diabetes comes from a recent study by Laybutt et al. (199).
Thus, a higher staining intensity was observed for BiP,
CHOP, and p58IPK in �-cells from pancreatic sections of type
2 diabetic patients compared with nondiabetic pancreatic
tissue (199), whereas another study demonstrated a 2-fold
increase in ER size in �-cells from type 2 diabetic patients
compared with nondiabetic patients (200). Increased staining
for ATF3, downstream of eIF2�-ATF4 (92), was also shown
in insulin-positive cells in pancreatic sections of type 2 dia-

betic patients (201). Huang et al. (202) recently reported in-
creased CHOP expression in �-cells from obese individuals,
whether diabetic or not. In the pancreatic sections of diabetic
patients, CHOP was found to be more frequently localized
in the nucleus as opposed to the cytoplasmic presence of
CHOP in obesity (202). Based on these findings, it was spec-
ulated that CHOP nuclear translocation is a discrete and
necessary step for apoptosis induction, although there are no
published data in other models of ER stress to support this
hypothesis. The factor triggering nuclear CHOP transloca-
tion was suggested to be IAPP because adenovirus-mediated
human IAPP expression in INS-1 cells increased CHOP ex-
pression and nuclear translocation and DNA fragmentation
(202). Unfortunately, no additional ER stress markers were
examined in this study. CHOP can be induced by a variety
of cellular stresses, and amyloid precursor protein was
shown to induce CHOP expression in neurons in the absence
of an UPR (203). Extracellular IAPP oligomers induced heat
shock protein 90 in MIN-6 cells and human islets, and mild
XBP1 splicing in MIN-6 cells. Inhibition of the ubiquitin-
proteasome pathway was implicated in the IAPP-induced
�-cell apoptosis (204). A recent study of the expression of ER
stress markers in islets isolated from type 2 diabetic organ
donors showed no marked differences compared with con-
trol islets after 3- to 6-d culture at 5 mm glucose. The islets
from diabetic donors, however, induced BiP and XBP1 ex-
pression markedly after an increase to 11 mm glucose,
whereas this response was absent in islets from nondiabetic
donors (200).

B. Animal models of ER stress and diabetes

In the Akita mouse, the C96Y mutation in insulin-2 pre-
vents formation of one of the disulfide bonds between the A
and B chains (177). The misfolded proinsulin accumulates in
the ER, is complexed to BiP, and is eventually degraded.
Despite the presence of normal insulin-1 and of one normal
insulin-2 allele in the heterozygous Akita mouse, the animals
develop diabetes due to progressive �-cell loss caused by ER
stress. In heterozygous, but not homozygous, Akita mice, the
homozygous disruption of CHOP delayed diabetes devel-
opment by 8–10 wk (205), suggesting that the cell death
mechanism is partially CHOP-dependent. A recent report
describes the C95S mutation in insulin-2 in the Munich
mouse, causing loss of the intra-A chain disulfide bond (178).
This leads to insulinopenic glucose intolerance and severe
diabetes in heterozygous and homozygous mice, respec-
tively (178). A mouse model of Wolfram syndrome has also
been established. Deletion of the WFS1 gene leads to diabetes
as a result of �-cell ER stress and apoptosis (206, 207). The
WFS1 gene product is an ER Ca2� channel induced during
ER stress. It exerts an inhibitory effect on IRE1�, PERK, and
ATF6 (208), thereby constituting another feedback loop to
tone down the UPR. These observations indicate that both
deficient and exaggerated responses to ER stress result in
�-cell loss and diabetes.

Mice with a PERK deletion cannot phosphorylate eIF2�
and attenuate insulin translation, and they develop dia-
betes within a few weeks after birth due to progressive
�-cell loss (105, 106). As in Wolcott-Rallison syndrome, the
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mice exhibit skeletal dysplasia, postnatal growth retarda-
tion, and exocrine pancreas insufficiency. To identify the
cause of diabetes in PERK-deficient mice, Zhang et al. (189)
generated diverse tissue- and cell-specific PERK-knockout
mice and observed that PERK is of particular relevance for
the fetal and early neonatal development of �-cell mass
and function. Mice homozygous for a Ser51Ala substitu-
tion in eIF2�, precluding its phosphorylation by PERK or
other kinases, die of hypoglycemia within hours after birth
because of defective gluconeogenesis. The pancreas from
these mice exhibits �-cell defects and insulin depletion at
late embryonic and neonatal stages (209). These animal
models show that lack of PERK-eIF2� signaling in �-cells
is detrimental by hampering their ability to down-regulate
insulin synthesis and thus adapt it to the prevailing ER
protein handling capacity. The PERK-eIF2� pathway un-
dergoes feedback inhibition via GADD34/PP1-mediated
eIF2� dephosphorylation (95), and perhaps also by up-
regulation of p58IPK, an ER-resident cochaperone (100, 101,
79). p58IPK-null mice develop diabetes as they reach adult
age due to increased �-cell apoptosis (210). Although mice
homozygous for a Ser51Ala substitution in eIF2� die
shortly after birth, the heterozygotes are phenotypically
normal. Challenged with a high-fat diet, however, the
heterozygous Ser51Ala mice develop glucose intolerance
(183). This is due to decreased islet insulin content and
lesser nutrient-stimulated insulin secretion. In the �-cells,
the ER appeared dilated, and increased amounts of pro-
insulin were bound to BiP, suggesting delayed proinsulin
processing (183). In islets obtained from 10- to 12-wk-old
diabetic db/db mice (which have a defective leptin recep-
tor), ER stress markers were increased compared with
control islets (199). There was more eIF2� phosphoryla-
tion; ATF4, CHOP, and p58IPK expression; and increased
XBP1 splicing and BiP, GRP94, and ERp72 expression
(199). Increased XBP1s expression may indicate “patho-
logical” �-cell ER stress (185), reinforcing the idea that ER
dysfunction contributes to the �-cell loss. It is not known
whether ER stress is present in db/db islets in the predi-
abetic phase. A 4-wk treatment of db/db mice with ex-
endin-4, a glucagon-like peptide 1 receptor agonist, led to
a significant decrease in nuclear CHOP expression in
�-cells and whole pancreas XBP1s levels, in parallel to a
reduction in hyperglycemia (211). Interestingly, exendin-4
also protected �-cells in vitro against the synthetic ER
stressors thapsigargin and tunicamycin (211). In these in
vitro studies, however, this protection occurred in parallel
to increased PERK and IRE1� signaling and with enhanced
expression of ATF4, CHOP, and XBP1s. It was suggested
that the resulting GADD34 induction (GADD34 is regu-
lated by CHOP) and PP1c activation mediated the eIF2�
dephosphorylation observed with exendin-4 and forsko-
lin, thereby attenuating the ER stress response and allow-
ing recovery of translational repression (211). Exendin-4
treatment also improved the glycemia of �-cell-specific
calmodulin-overexpressing mice, which lose �-cells by ap-
optosis induced by nitric oxide (NO) production and ER
stress (212, 213). In these animals, exendin-4 reduced BiP
and CHOP expression and augmented islet insulin content
(213).

C. Lipotoxicity and glucotoxicity as triggers of ER stress—
when physiology turns into pathology

A high-fat diet and/or obesity may contribute to the de-
velopment of type 2 diabetes by causing �-cell lipotoxicity
and insulin resistance. FFAs activate an ER stress response in
�-cells, with palmitate being more potent than oleate (128,
199, 214, 215). Palmitate leads to phosphorylation of PERK
and eIF2�, inhibition of protein synthesis, and induction of
ATF4 and CHOP (128, 215) (Fig. 3). CHOP induction by FFA
is mediated by ATF4 binding to the C/EBP-ATF binding site
in the CHOP promoter, as well as by c-Fos and Jun-B dimer
binding to the activator protein-1 (AP-1) binding site (93).
Palmitate also activates IRE1 (as evidenced by XBP1 splicing)
and ATF6 (214) and up-regulates ER chaperones including
BiP, GRP94, p58IPK, ORP150, ERp72, Dnajb9, Herp, and
Edem (128, 199, 214), although BiP induction was not ob-
served in one study (215). Oleate does not activate the PERK
pathway and is less effective in activating IRE1�, but it does
induce ER chaperone expression (128, 214). That ER stress
contributes to palmitate-induced �-cell apoptosis is sup-
ported by the observation that MIN-6 cells overexpressing
BiP have a milder ER stress response and are partially pro-
tected against palmitate-induced apoptosis (199). The mo-
lecular mechanism by which FFA-induced ER stress causes
�-cell apoptosis is not well understood. Because previous
observations suggested that defective PERK-eIF2� activation
contributes to �-cell death (209, 216–218), attempts were
made to protect �-cells against FFA with salubrinal (128), a
selective inhibitor of eIF2� dephosphorylation (126) (Fig. 3).
Unexpectedly, salubrinal-induced eIF2� phosphorylation
was proapoptotic in �-cells, and it specifically potentiated the
deleterious effects of oleate and palmitate, but not of other ER
stressors, through a synergistic activation of the PERK-eIF2�
branch (128). The percentage of apoptosis in �-cells exposed
to FFA increased by 3- to 6-fold in the presence of salubrinal,
whereas no such potentiation was seen with cytokines,
which also trigger ER stress (128) (see Section V), or the
synthetic ER stressors cyclopiazonic acid (CPA) and thapsi-
gargin (128). ER stress-mediated apoptosis in �-cells there-
fore seems to depend on both the ER stressor and the mag-
nitude and duration of eIF2� phosphorylation and activation
of downstream events. Both deficient and chronic excessive
eIF2� phosphorylation are poorly tolerated by �-cells and
trigger the apoptotic program.

High glucose (30 mm) also induced a modest (around
2-fold) activation of the UPR in cultured rat islets, triggering
XBP1 splicing, expression of the ER chaperones BiP, GRP94,
and Edem, and of PERK-dependent ATF3, CHOP, and
GADD34 (181). This did not depend on Ca2� influx or insulin
release by the �-cells because this response was not affected
by diazoxide (which opens the �-cell’s ATP-dependent K�

channels and thereby reduces Ca2� influx and insulin re-
lease) or by clonidine (which inhibits Ca2� influx) (181). The
regulation of CHOP expression by glucose in �-cells is me-
diated by the MAPK ERK1 and 2 (219). It remains to be
determined whether high glucose potentiates FFA-induced
�-cell ER stress.
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V. ER Stress and �-Cell Death in Type 1 Diabetes—
the Role of Cytokines and Nitric Oxide (NO)

In type 1 diabetes, �-cell death precedes massive T cell
infiltration in nonobese diabetic (NOD) mice (220) and in-
sulin-dependent diabetes mellitus rats (221). In both animal
models and human type 1 diabetes, �-cell apoptosis coin-
cides with expression of cytokines such as IL-1�, interferon
(IFN)-�, and TNF-� by the infiltrating immune cells, and
inducible NO synthase (iNOS) by both �-cells and immune
cells (2, 221, 222), suggesting that these are early mediators
of �-cell death. Under in vitro conditions, IL-1� and/or
TNF-�, in combination with IFN-�, induce NO production,
severe functional suppression, and death of �-cells (2, 223–
225). Cytokine-induced death in human, rat, and mouse
�-cells, and in insulin-producing cell lines, occurs mostly by
apoptosis (2, 25, 226), but there is also a minor NO-dependent
necrotic component in rodent �-cells (227). Cytokine-trig-
gered �-cell apoptosis is regulated by complex gene net-
works under the control of the key transcription factors
NF-�B and STAT-1 (25, 228–233).

One of the cytokine-induced and NF-�B-regulated genes
in �-cells is iNOS, leading to massive NO formation (2, 234).
The chemical NO donor SNAP depletes ER Ca2� in MIN-6
cells (180). Because Ca2� is required for the protein binding
and chaperoning ability of ER chaperones, severe ER Ca2�

depletion will impair the quality of ER protein folding and

assembly (78) and trigger CHOP expression and apoptosis
(180). IL-1� plus IFN-�, via NO synthesis, decrease the ex-
pression of SERCA in primary �-cells and insulin-producing
INS-1E cells, depleting ER Ca2� stores (235). Inhibition of
SERCA by the chemicals thapsigargin and CPA also triggers
ER stress and apoptosis in �-cells, and these cells are more
sensitive than fibroblasts to the proapoptotic effects of
SERCA inhibition (235, 236). IL-1� and IFN-� induce diverse
components of the ER stress response, including activation
of IRE1�, as observed by XBP1 splicing, and of eIF2�/ATF4/
CHOP/Bim, but not ATF6 (93, 229, 230, 235) (Fig. 4). In line
with the deficient ATF6 activation by IL-1� and IFN-�, the
cytokines failed to increase BiP expression (235). It is con-
ceivable that this deprives the �-cells of an important mech-
anism for cell survival during ER stress, which could con-
tribute to their susceptibility to cytokine- and NO-mediated
apoptosis. That ER stress contributes to cytokine-induced cell
death is supported by the recent finding that insulin-pro-
ducing NIT-1 cells overexpressing BiP have a decreased
CHOP induction and are partially protected against apopto-
sis induced by IL-1� and IFN-� or cytotoxic T lymphocytes
(237). In neuronal cells, NO induces s-nitrosylation and in-
hibition of PDI (238), thereby hampering proper protein fold-
ing and aggravating the ER stress (239). It remains to be
tested whether NO has similar effects on PDI in �-cells.
Interestingly, low concentrations of NO, as induced by ac-
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tivation of constitutive NOS by glucose, protect against ER
stress by dissipating ROS (240), suggesting that the effects of
NO on �-cell ER stress are concentration- and time-dependent.

IL-1� alone induces ER stress but fails to induce �-cell
death, whereas IFN-� by itself causes neither but it poten-
tiates IL-1�- or CPA-induced cell death (2, 25, 235, 241).
Treatment with IFN-� decreases expression of XBP1s mRNA,
several ER chaperones (BiP, GRP94, and ORP150, but not
calnexin/calreticulin), and Sec61�, while augmenting CHOP
and ATF-4 expression (241, 242). By decreasing ER chaper-
ones, and thus protein folding and Ca2� storage capacity (78),
IFN-� decreases �-cell defense against ER stress and favors
the proapoptotic signals, such as CHOP and other ATF4-
dependent genes. Other potential mechanisms by which
IFN-� synergizes with IL-1� to induce �-cell apoptosis are
augmentation of IL-1�-induced iNOS expression (2, 234) and
stimulation of expression of major histocompatibility com-
plex classes I and II and of other components of the antigen
processing machinery (242); because the MHC complex is
assembled in the ER, this may contribute to the ER overload
(243).

Activation of CHOP transcription after �-cell exposure to
palmitate or cytokines depends on the binding of ATF4 and
AP-1 to the CHOP promoter, but these two treatments induce

formation of different AP-1 dimers (c-Fos and c-Jun and/or
Jun-B in the case of cytokines, and c-Fos and Jun-B for palmi-
tate) at different time points (93). In line with this, cytokines,
but not palmitate, induce Ser-63 phosphorylation of c-Jun.
CPA, but not cytokines or palmitate, activates the CHOP
promoter via ER stress response element (93). These obser-
vations suggest that different pathways of the UPR are trig-
gered in �-cells depending on the source and intensity of the
ER stressor. The fate of the �-cells, death or survival, will
depend on the balance between the ER stress and the UPR
pathway(s) activated, their time course and intensity, and the
adequacy of other �-cell defense mechanisms, such as the
scavenging of ROS. Once the balance tilts for apoptosis, JNK,
ATF3, and CHOP are potential mediators of �-cell death (180,
201).

Evidence for human islet ER stress exists for type 2 dia-
betes (199, 202), but this remains to be proven for type 1
diabetes. Compared with rat �-cells, NO is of less importance
for cytokine-induced human �-cell death (244), and islet cells
from iNOS�/� mice are only partially protected against
cytokines (227, 245), pointing to non-NO (and putatively
non-ER stress) cell death mechanisms (246) in human type 1
diabetes. Histological exam of autopsy material from eight
type 1 diabetic patients (five with recent onset of diabetes and
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three with long-standing disease) failed to show increased
nuclear or cytosolic CHOP expression (202). These data
should, however, be interpreted with caution. CHOP acti-
vation is only one among several markers of ER stress; on one
hand, this protein can be activated in �-cells by toxic stimuli
unrelated to ER stress, e.g., after exposure to toxic doses of
streptozotocin or other alkylating agents (133), and on the
other hand cell populations adapted to chronic ER stress can
maintain an activated UPR without displaying up-regulation
of downstream genes such as CHOP (247). Furthermore, the
pattern of islet infiltration and destruction is nonuniform in
type 1 diabetes, suggesting that expression of �-cell ER stress
markers should be evaluated in correlation with local infil-
tration by T cells and macrophages (which was not done in
this study). For instance, expression of ATF3, another po-
tentially proapoptotic gene regulated by ATF4, is present in
�-cells adjacent to infiltrating lymphocytes in NOD mice, but
not in �-cells away from the lymphocytes (201). Increased
expression of ATF3 was also detected in �-cells from type 1
diabetic patients, but not in islets from nondiabetic individ-
uals (201). ER stress may contribute to �-cell death in the
early stages of the immune assault—which are probably
cytokine-dependent (2)—but be less relevant after clinical
diabetes onset, when other mechanisms predominate and
there remain only “surviving” �-cells, which may be a se-
lected cell population. Additional studies are required to
define the extent of the ER stress and non-ER stress contri-
butions to �-cell death in experimental models and human
type 1 diabetes. These studies should ideally utilize more
specific markers for ER stress, such as IRE1 activation, XBP1
splicing, BiP overexpression, and ATF6 activation and ex-
amine material from both prediabetic and diabetic patients,
correlating local immune infiltration with expression of
�-cell ER stress markers.

VI. �-Cell Recovery from ER Stress

As discussed above, �-cells are sensitive to ER stress, but
this vulnerability is relative. Assuming that increased func-
tional load in vivo augments the UPR in human �-cells, as
suggested by increased CHOP expression in �-cells from
obese nondiabetic patients (autopsy material) (202), it is re-
markable that most obese individuals cope with decades of
insulin resistance without developing �-cell failure and di-
abetes. Furthermore, islet cells surviving a 48-h exposure to
IL-1� in vitro (248) or exposure to the autoimmune assault in
NOD mice in vivo (249, 250) are able to recover function after
an additional 6-d in culture without the cytokine (248) or the
T cells (249, 250), and �-cells exposed for up to 12 h to a severe
CPA-induced ER stress do not reach “the point of no return”
for cell death (66). A time course microarray analysis in
INS-1E cells exposed to CPA for up to 12 h, including an
additional group of cells treated for 6 h and then allowed to
recover without CPA for 3 h (66), indicated that the two
groups of genes most affected by CPA were those related to
cellular responses to ER stress, which were up-regulated, and
those related to differentiated �-cell functions, which were
down-regulated. After a 3-h recovery period, most genes
returned to control levels, as for instance the proapoptotic

transcription factors ATF3 and CHOP, whereas expression of
the ER chaperones BiP and GRP94 remained elevated. This
pattern of gene expression is probably due to the longer
half-life of chaperones such as BiP, compared with proapop-
totic genes such as CHOP (247), and may explain why �-cells
can endure 12 h of severe ER stress without reaching the
point of no return for cell death. The most marked inhibitory
effect of CPA was on the expression of mRNAs for insulin-1
and -2. Similar findings were observed in INS-1E and pri-
mary �-cells exposed to thapsigargin or IFN-� plus IL-1�
(66). ER stress induces a rapid degradation of mRNAs tar-
geted for translation at the ER in Drosophila cells (65). This
degradation is mediated by IRE1� and complements other
UPR mechanisms by decreasing production of nonvital pro-
teins at the ER. The CPA-induced early degradation of in-
sulin-1 and -2 occurred in parallel to IRE1 activation and in
the absence of altered insulin promoter activity (66). It is
conceivable that degradation of insulin mRNA, the most
prevalent ER-targeted mRNA in �-cells, alleviates functional
demand on the ER. This, together with an up-regulation of
ER chaperones and down-regulation of proapoptotic genes,
may contribute to �-cell survival once the source of ER stress
is removed.

VII. ER Stress as a Putative Link between Obesity
and Insulin Resistance

ER stress has been proposed as one of the molecular mech-
anisms linking obesity with insulin resistance and might thus
be a common molecular pathway for the two main causes of
type 2 diabetes, namely insulin resistance and �-cell loss.
Since 2004, several papers were published on ER stress and
insulin signaling, mostly in rodent liver, and the subject has
been discussed in a series of reviews (251–255).

A. Liver

In high-fat-fed and ob/ob (leptin-deficient) mice, markers
for ER stress (PERK and eIF2� phosphorylation and BiP
expression) are increased in liver and fat (256) but not in
muscle, which is the main site of glucose disposal. Synthetic
ER stressors impaired proximal insulin signaling in hepa-
toma cells, increasing serine and decreasing tyrosine phos-
phorylation of insulin receptor substrate (IRS) 1 and reducing
Akt phosphorylation (256). The alterations in the insulin
signaling cascade were dependent on JNK activation, pre-
viously shown to mediate insulin resistance (257). ER stress
and JNK activation were shown to increase glucose-6-phos-
phatase activity and glucose output in primary hepatocytes
(258). IRE1 activation mediated this suppression of insulin
signaling, probably through TRAF2 recruitment and JNK
activation (120), but increasing cellular XBP1s levels had the
inverse effect and favored insulin signaling (256). Con-
versely, XBP1-deficient fibroblasts, which are more sensitive
to ER stress, exhibited impaired insulin signaling. XBP1�/�

mice placed on a high-fat diet developed greater insulin
resistance and glucose intolerance compared with high-fat-
fed XBP1�/� mice, and this correlated with increased PERK,
c-Jun, and IRS-1 serine phosphorylation and decreased ty-
rosine phosphorylation of the insulin receptor, IRS-1 and
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IRS-2, in liver and fat (256). ER stress can also lead to NF-�B
activation (122, 123, 259, 260). It is possible that ER stress
activates IKK-� and NF-�B signaling in the liver (261),
thereby inducing proinflammatory cytokines and conse-
quently insulin resistance (262, 263). The study by Ozcan et
al. (256) did not address how obesity induces ER stress sig-
naling, but it can be speculated that it is lipid mediated. Thus,
ER stress and insulin resistance were detected in high-fat-fed
XBP1�/� mice but not in those fed normal chow. Saturated
FFA were shown to induce sustained JNK activation and
insulin resistance in hepatocytes both in vitro and when per-
fused into the liver in vivo, whereas hyperglycemia had no
such effect (264).

In rats, sucrose- and saturated fat-enriched diets induced
steatosis, characterized by increased liver content in satu-
rated fatty acids, hepatic ER stress marker expression, and
caspase 3 activation. In contrast, polyunsaturated fat diets
that induce steatosis without increased liver accumulation of
saturated fat, did not induce hepatic XBP1 splicing, BiP ex-
pression, or liver injury (265). The induction of ER stress and
steatosis in rats fed the sucrose- and saturated fat-enriched
diets occurred early (after 1 wk on the diet), before obesity
and independently of changes in insulin action. The accu-
mulation of saturated fat probably triggers the ER stress
response, and ER stress may reciprocally contribute to ste-
atosis through the activation of sterol-response element-
binding proteins (SREBP). Under normal circumstances, cho-
lesterol deprivation leads to SREBP migration from the ER to
the Golgi apparatus where SREBP are proteolytically acti-
vated by S1P and S2P (266), similar to the mechanism of ATF6
activation (267), and induce lipogenic genes. ER stress also
activates SREBP in hepatocytes exposed to homocysteine and
thereby induces cholesterol and triglyceride synthesis and
steatosis (268), whereas BiP overexpression inhibits SREBP
activation and expression of its downstream genes (268). In
rat islets, synthetic ER stressors also activate SREBP, and this
was suggested to contribute to �-cell glucolipotoxicity (269).

Increased BiP expression was also detected in the liver of
obese db/db (leptin receptor-deficient) mice (270), although
low ER chaperone expression levels were observed in these
mice in another study (271). In the db/db mice, hepatic
overexpression of the ER chaperone ORP150 was induced
with a sense ORP150-encoding adenovirus (270). The glyce-
mia of these mice decreased already 2 d after viral injection.
Two weeks later, their insulin sensitivity and glucose toler-
ance had improved and hepatic glucose output was sup-
pressed as a result of improved insulin signaling and de-
creased expression of the key gluconeogenic enzymes
phosphoenolpyruvate carboxykinase and glucose-6-phos-
phatase. Conversely, antisense ORP150 virus administration
in wild-type mice resulted in loss of IRS-1 tyrosine phos-
phorylation and increased gluconeogenesis and insulin re-
sistance (270). Further evidence for the role of ORP150 in
regulating insulin sensitivity comes from a study in which
ORP150�/� or systemic ORP150 transgenic mice were
crossed with heterozygous Akita mice. Heterozygous
ORP150 deficiency in Akita mice impaired glucose tolerance,
which was related to decreased insulin action possibly due
to increased sensitivity to hyperglycemia-induced oxidative
stress (272). Akita mice overexpressing ORP150 (around

2-fold increase in pancreas and fat, 3-fold in liver, and 8-fold
in muscle) had improved glucose tolerance, due to improved
insulin sensitivity, but �-cell-specific ORP150 overexpres-
sion (under the rat insulin promoter) did not improve glu-
cose levels (272). It is conceivable that overexpression of
specific ER chaperone(s) may be beneficial in one cell type
and without effect, or perhaps even detrimental, in another.

Another approach to ameliorate insulin resistance by tar-
geting ER stress has been the use of chemical chaperones, low
molecular weight osmolytes that stabilize proteins and im-
prove their folding in and export from the ER (273). Treat-
ment of ob/ob mice with the chemical chaperones 4-phenyl
butyric acid and taurine-conjugated ursodeoxycholic acid
improved insulin sensitivity and glycemia within 10 d of
treatment through decreased hepatic glucose production and
greater glucose disposal in muscle and fat (274). The chap-
erones alleviated ER stress, decreasing PERK and IRE1 phos-
phorylation, reduced c-Jun phosphorylation by JNK, and
improved insulin signaling as shown by increased tyrosine
phosphorylation of the insulin receptor, IRS-1 and IRS-2, in
liver and fat (274).

B. Adipose tissue

Recent data suggest that hypoxia in adipose tissue of obese
mice contributes to the induction of ER stress and thereby
affects adipokine production (275). CHOP and BiP were in-
creased and adiponectin expression was decreased in adi-
pose tissue from high-fat-fed and KKAy mice. This was rep-
licated in vitro in hypoxia-exposed adipocytes, and
interference with CHOP expression partially reversed the
decrease in adiponectin mRNA levels (275). Evidence for a
role of ER stress in human tissue is presently not available,
but increased expression and phosphorylation of stress-ac-
tivated kinases such as p38 and JNK were detected in omen-
tal, but not sc, fat from obese women compared with lean
controls (276). Although there was no change in serine or
insulin-stimulated tyrosine phosphorylation of IRS-1 in the
omental fat tissue, the activation of the stress kinases corre-
lated with the patients’ glucose levels and insulin resistance.

VIII. Future Areas of Research

The UPR was discovered nearly 20 yr ago, the first indi-
cations that ER stress might contribute to diabetes were pub-
lished 6–7 yr ago, and there has been an exponential growth
in the field since then. As presently reviewed, it seems pos-
sible that ER stress and the UPR have physiological and
pathophysiological roles in �-cells and insulin signaling. We
should keep in mind, however, that the mechanisms causing
�-cell dysfunction and death in diabetes are complex (25),
and ER stress is probably only one of several factors con-
tributing to �-cell loss in diabetes. ER stress also seems to
play a role in high fat- and obesity-induced insulin resistance
in liver, at least in rodent models. Its role in adipose tissue
is not well documented yet, and, from currently available
data, ER stress does not seem to play a role in muscle insulin
resistance. In conclusion, time and the accumulation of novel
experimental data will confirm or disprove the hypothesis
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that ER stress contributes to the pathogenesis of diabetes and
other chronic degenerative diseases.

We outline below some of the areas where future research
may contribute to clarify the role for ER stress in diabetes:

1) Are there additional components of the UPR/ER stress
response with an important role for the regulation/dysregu-
lation of insulin biosynthesis and release?

2) Which are the mechanisms by which chronic exposure
to FFA and/or high glucose trigger an ER stress response?

3) Is ER stress relevant for �-cell death in human type 1
diabetes? Studies on human and mouse islets, and on his-
tological preparations from type 1 diabetic patients and ro-
dent models of autoimmune diabetes are required to clarify
whether there is indeed a role for ER stress in type 1 diabetes.

4) How does IFN-� inhibit ER chaperones? Are there com-
mon and novel binding sites in the promoter region of these
genes for IFN-�-induced transcription factors?

5) Which are the downstream mediators of ER stress-
induced �-cell death? Are these mediators different for FFA
and cytokines, or is there a “final common” pathway for
�-cell death?

6) Is apoptosis the only form of ER stress-induced �-cell
death, or is there a role for autophagy?

7) Is it possible to boost �-cell defenses against ER stress
without affecting their exquisite ability to sense glucose and
release insulin?

8) Is there a role for the UPR in the physiology of adipo-
cytes and hepatocytes, as recently suggested for the �-cells?

9) Does ER stress play a role for insulin resistance in
human type 2 diabetes? If yes, which are the tissues
involved?

Acknowledgments

Received May 29, 2007. Accepted November 6, 2007.
Address requests for reprints to: Dr. Décio L. Eizirik, Laboratory of
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