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“Chance favors a prepared mind” – Louis Pasteur at Pouilly le Fort 

In a public defense for the French Academy of Science, Pasteur inoculates several 

livestock using his inactivated anthrax vaccine. One change has been made to his 

protocol though; the inoculation dose of anthrax is now going to be significantly higher 

than what was thought. After inoculation, the press covering the event asks Pasteur if he 

is nervous for the results. He indicates that he is not because chance favors a prepared 

mind. After one week, all of the animals inoculated with the vaccine were alive, while all 

of the uninoculated were dead or dying. 
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Abstract 

JORDON DALE GRUBER. Role of 2,4-Dihydroxyquinoline (DHQ) in Pseudomonas 

aeruginosa Pathogenicity. (Under the direction of Yong-Mei Zhang). 

 

 Bacterial group behaviors are advantageous during an infection to thwart immune 

cell attack and resist deleterious changes in the environment. Bacteria use a chemical 

messaging system in order to coordinate the phenotypes in the environment. In 

Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing 

system produces alkylquinolones that regulate virulence factor production and also 

perform extracellular roles. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-

heptyl-3-hydroxy-4-quinolone (PQS) activate transcriptional regulator PqsR for 

subsequent production of quinolones and phenazines, iron chelation, and autolysis. The 

most abundant quinolone produced from the Pqs system is 2,4-Dihydroxyquinoline 

(DHQ); however, DHQ has no known function. We demonstrated mutants only able to 

produce DHQ maintained virulence towards a model of bacterial infection and in vitro 

virulence factor production. Furthermore, we identified a potential extracellular role for 

DHQ against both epithelial cells and macrophages that resulted in reduced replication, 

viability, and cytokine production.  As a signaling molecule, DHQ activated PqsR to bind 

to the promoter region of pqsA for transcription. Finally, we determined the impact of 

DHQ on cystic fibrosis patient health and its correlation to lung function. Taken together, 

our findings suggest DHQ is capable of activating PqsR as a redundant QS molecule, but 

may play a significant role against host cells during infection. 
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Chapter 1: Introduction to Pseudomonas aeruginosa pathogenicity, quorum sensing, 
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1.1 Significance of P. aeruginosa infections 

 

Pseudomonas aeruginosa is a motile, Gram-negative bacterium found in different 

soil and aquatic environments. In order to survive on various carbon and nitrogen 

sources, P. aeruginosa possesses a versatile metabolic system that sustains the bacterium 

even in nutrient-poor conditions. Although P. aeruginosa uses oxygen as a terminal 

electron acceptor for oxidative phosphorylation, P. aeruginosa contains three separate 

systems for acquiring nitrogen and synthesizing nitrate as an alternative electron acceptor 

under anaerobic conditions. Among the different environments colonized by P. 

aeruginosa, the bacteria can live as a single cell or in a complex community.  

P. aeruginosa is an increasingly prevalent environmental and nosocomial 

pathogen. Intact immune systems often prevent P. aeruginosa colonization, but 

furnishing a surface to grow on or a compromised immune system can predispose 

patients to infection [1, 2].  Implanted medical devices provide a surface for P. 

aeruginosa to colonize, which leads to biofilm formation and infection [3, 4]. Ventilated 

patients are also susceptible to P. aeruginosa infections because the ventilator system 

generates a warm, moist environment for bacterial growth and subsequent access to 

anesthetized or damaged tissue [5, 6]. Although not widely publicized in the media, 

contact-lenses can also be colonized by P. aeruginosa, which can lead to corneal 

infections severe enough to result in blindness [7].  

Overall, patients with compromised immune systems are most at risk to acquire a 

P. aeruginosa infection. Diabetic patients have poor circulation as a result of damaged 

blood vessels and tissues not efficiently replenished with cycled blood. Subsequently, 
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pressure ulcers and wounds from these patients are no longer adequately protected from 

the immune system and subject to P. aeruginosa chronic infections [8]. P. aeruginosa 

colonizes burn wound patients because the charred dermal layers provide a surface not 

protected by the immune system [9]. These patients face overwhelming bacterial 

infections, especially those who have wounds covering over 40% of their bodies. Due to 

the ability of P. aeruginosa to resist antibiotic treatments, patients infected with P. 

aeruginosa require intense therapies to overcome infection. The cost of treating P. 

aeruginosa is on the rise worldwide, and in America, the annual cost of treating P. 

aeruginosa infections is in the billions [10, 11].   

Cystic fibrosis (CF) is an autosomal recessive genetic disorder and the most 

common heritable disorder among Caucasians. CF patients possess a mutation in the 

cystic fibrosis transmembrane conductance regulator (CFTR), which results in a 

dysfunctional chloride channel and disrupted surface-liquid homeostasis [12]. Over 2,000 

different mutations exist that can cause disease, but the most common CF-causing 

mutation is a deletion of phenylalanine 508 (∆F508) [13]. Normal lungs contain a thin 

layer of mucus over the epithelial cells, which bind to inhaled microorganisms. Over 

time, expelling or swallowed mucus prevents most pathogens from establishing an 

infection. CF patients accumulate thick mucus in their lungs, which contains 

macromolecules and salt build-up above the epithelial cells [14]. As a result of increased 

mucus viscosity and decreased ciliary beat, patients with CF cannot effectively clear their 

lungs. In the thick mucus, pathogens establish infections, gather abundant nutrients, and 

avoid attack by host immune cells. Altogether, the paradigm of CF disease revolves 
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around three deleterious effects: decreased lung clearance, increased infections with 

microbial pathogens, and increased inflammatory response [15].  

In the US, more than 30,000 CF patients must receive intense, life-long treatments 

that include airway-clearance respiratory therapy, steroids, and daily antibiotics to 

prevent severe infection and lung damage [16]. Many CF patients are now living close to 

forty years (median survival) as a result of new antibiotics and better supportive therapies 

[17]. Within the CF population, P. aeruginosa colonizes up to 80% of patients, of which, 

P. aeruginosa colonization is associated with earlier morbidity and mortality [18, 19]. CF 

patients often acquire P. aeruginosa later on in life and may be previously infected with 

other pathogens. During their teenage years, CF patients initially isolate P. aeruginosa 

from their lungs and harbor the bacterium for the duration of the their disease [20]. 

Patient exacerbations, which may be related to increasing P. aeruginosa colonization, 

contribute to lung damage and lower patient expiratory lung volume over time.  

Eradication of P. aeruginosa is a priority in the care of CF patients, but traditional 

antibiotic therapies have had little success in eliminating the bacterium after an initial 

positive culture or following chronic colonization. 

 The success of pathogenic P. aeruginosa is based on its ability to adapt and 

control the environment within the lungs [21]. Specifically, P. aeruginosa utilizes a 

variety of nutrients and form communities that adjust quickly to changes in the 

environment. P. aeruginosa also ‘senses’ and attacks other microorganisms competing 

for the same niche [22]. This competition is highlighted in CF sputum samples that have 

been enumerated for bacterial growth and high densities of the bacterium, upwards of 108 
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to 109 CFU/ml, demonstrating the ability to thrive in the lungs while facing the host 

inflammatory response and daily antibiotic therapy [23, 24]. 
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1.2 Mechanisms of antibiotic resistance in P. aeruginosa  

 

Eradicating P. aeruginosa is difficult due to both intrinsic and acquired antibiotic 

resistance mechanisms. Of the intrinsic resistance mechanisms, those contained in the 

membrane play major roles. Porins in the outermembrane allow for the exchange of small 

hydrophilic compounds [25]. Antibiotics take advantage of the porins to gain access to 

the inside of the cell [26]. P. aeruginosa porins can be smaller (allow molecules <200 da 

to pass through) than normally found in Gram-negative bacteria such as E. coli (allow for 

molecules <500 da to pass through), which impede antibiotics from moving across the 

membrane [27, 28]. Efflux pumps in the membrane also play a role in antibiotic 

resistance because they secrete a variety of toxic compounds and make entire classes of 

antibiotics useless [29, 30]. These mechanisms within the membrane protect individual P. 

aeruginosa cells, while other resistance mechanisms are community-dependent. 

A biofilm is a community lifestyle of bacteria that provides cellular heterogeneity 

and protection from chemical assaults in the environment. P. aeruginosa forms biofilms 

on surfaces through a highly coordinated process of initial attachment, maturation, and 

dispersal. An exopolymeric substance (EPS - eDNA, proteins, lipids, carbohydrates) 

covers the cells and reduces the penetration of chemicals into the biofilm. By encasing 

the bacteria in an exopolymeric shield and reducing cellular activity, biofilms increase 

antibiotic resistance up to 1000x compared to planktonic cultures [31].  Another 

resistance feature is differentiated cells with more active cells closer to the surface and 

dormant cells closer to the core. Dormant cells naturally resist antibiotics because those 

drugs often target active processes in bacteria, which are reduced within the biofilm [32, 
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33]. Biofilms also contain small colony variants, which are highly antibiotic resistant 

when compared to planktonic cells [34]. Bacteria form biofilms or macrocolonies in 

response to the host environment; therefore, bacterial infections naturally contain 

resistance mechanisms that may be only controlled by a functioning immune system [35, 

36].  

Although not completely understood as an antibiotic resistance mechanism, P. 

aeruginosa contains a large genome, > 6Mb, which allows the bacteria to have 

specialization and redundancy within essential systems [37]. Apart from the large 

genome, >9% of the genes encode for regulatory systems that provide metabolic diversity 

and quick adaptation to an environment [38]. An example is the P. aeruginosa 

redundancy of key systems such as the Pel or Psl systems to produce polysaccharides for 

different components of the biofilm [39]. When one system is chemically inhibited, such 

as the Pel polysaccharide system, then another system, the Psl polysaccharide system, is 

able to perform the same function to help the bacterium survive [40]. To this end, true 

biocidal targets of P. aeruginosa may be difficult to identity because essential targets 

may not be easily found. 

Acquired mechanisms of antibiotic resistance include those via transduction and 

transformation of DNA from the environment. Extracellular DNA from diverse bacterial 

sources can code for resistance mechanisms that are taken up and expressed. Those 

bacteria possessing the resistance mechanism will then pass on the gene to future 

progeny. P. aeruginosa strains that have acquired metallo-β-lactamases have been found 

to cause hospital-wide outbreaks and, in general, are difficult to control [41]. Another 

acquired mechanism, which doesn’t require acquisition of extracellular DNA, is the 
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process of generating DNA-damaging reactive oxygen species (ROS) [42]. Damaged 

DNA can be repaired, but often at the expense of mutations that generate new phenotypes 

expressed within the bacterial population. P. aeruginosa metabolism, phenazines, and 

certain alkylquinolones generate ROS in the environment. ROS-damaged DNA within 

genes such as RecA may result in different bacterial phenotypes due to the loss of a 

global regulator [43]. The ability to actively promote DNA mutations under stress, known 

as the “Insurance Hypothesis”, generates new phenotypes that are optimal in certain 

environments [43].  

Traditional antibiotic treatments target essential cellular structures and functions 

such as the cell wall and protein synthesis. Therefore, antibiotics place a selective 

pressure on bacterial communities for those that can survive the treatment. Drug-resistant 

mutants pass on the mutation through horizontal and vertical gene transfer leading to 

widespread antibiotic resistance. In order to subvert the selection of resistance mutants, a 

new approach to treatment should target bacterial mechanisms such as virulence factor 

production or biofilm formation that are not essential for growth. This strategy would 

reduce the selective pressure of targeting those bacteria that are susceptible and place 

more emphasis on the immune system to naturally clear an infection. Bacterial 

communication, which is dispensable for growth, is one such target for anti-virulence 

because of its link to virulence factor regulation and community behaviors. 
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1.3 Bacterial quorum sensing 

 

In order to colonize a new environment or cause an infection, P. aeruginosa 

communicates through chemical messaging systems to coordinate collective phenotypes 

[44-46]. Communication between bacteria, known as QS, provides a mechanism to 

determine the cell density and composition of the bacterial community. Although 

community behaviors have been widely notice by microbiologists, the first published 

study of QS was determined from Vibrio fischeri and its symbiotic behavior with the 

Hawaiian Bob-Tailed squid [47]. In the light-organ of the squid, bacteria produced light 

only in high densities following replication throughout the day. Further work found that a 

small molecule and a novel two-component system regulated the light system. Following 

the initial discovery of light generation, QS was determined to regulate community 

phenotypes such as biofilm formation, swarming motility, and the production of 

virulence factors.  QS mutants are unable to establish effective infections and have been 

isolated from sites of bacterial infection (discussed in a later section).  

Instead of the planktonic cultures that were traditionally envisioned, QS provides 

the ability to act as a higher multicellular organism. Interestingly, cells within the 

community share public and private goods [48]. Communication via QS arranges a 

mechanism to differentiate roles within a community, synchronize specific phenotypes, 

and regulate mutants that arise in the system [49]. Differentiated cells can display altered 

secondary metabolite synthesis, metabolism, virulence factor production, and DNA 

transformation [50]. Synchronization of phenotypes provides temporal regulation so that 
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bacteria can regulate the production of virulence factors or other secondary metabolites 

only when they are needed [51]. This ‘timed-regulation’ can save energy and resources.  

Bacteria communicate by secreting small signaling molecules into the 

environment. To this end, the concentration of the signaling molecules increases with cell 

density. Consequently, increasing extracellular concentration drives QS molecules back 

into the cell by diffusion. Once the intracellular concentration of a QS molecule reaches a 

threshold, the QS molecule activates a cognate transcriptional regulator to enact changes 

in transcription [52]. In order to prevent early activation of the transcriptional regulators, 

orphan transcriptional regulators bind specific QS molecules and reduce the available 

intracellular concentration of QS molecules [53]. QS system regulation is also 

accomplished through limiting precursors incorporated into the QS molecules. In order to 

retain some QS molecules that have been secreted, biofilms utilize the constituents of the 

EPS to transiently interact with the QS molecules so that those molecules remain with the 

biofilm [54]. This polymer greatly reduces the loss of secreted metabolites and also 

provides more intimate signaling opportunities. 

Apart from cellular density, environmental stimuli can also affect QS systems 

[21]. For example, low iron and phosphate activate the necessary QS systems, which 

induce extracellular systems responsible for gathering essential nutrients [55, 56]. 

Oxygen concentration has also been shown to have a relationship between QS and 

metabolism in P. aeruginosa [57]. Specifically, low oxygen concentrations affect the 

nitrate reductase system, which subsequently down-regulates the Pqs system. Stress 

response is another environmental factor that can alter QS [58, 59]. P. aeruginosa utilizes 
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the RelA-SpoT stress response system to produce the alarmone ppGp(p), which 

selectively activates the different QS systems [60]. 

Quorum-sensing molecules exhibit either broad or specific activity (Fig. 1.1). 

Bacteria universally produce Auto-inducer-2 (AI-2), but the individual receptors for the 

QS molecule have only been studied in a few species. Small cyclic peptides synthesized 

from Gram-positive bacteria target various two-component adaptive response proteins to 

regulate competence, sporulation, and virulence factor production [61, 62]. Acylated 

homoserine lactones (HSL) are conserved among Gram-negative bacteria and target 

LuxR-type transcriptional regulators [63]. HSL systems regulate certain community 

phenotypes, production of virulence factors, and acquisition of nutrients. Finally, some 

bacteria possess novel QS systems that are only shared among related species. P. 

aeruginosa produces alkylquinolones, which are conserved only to closely related 

Burkholderia species. Bacteria that contain these novel QS systems can use their own 

language to control certain processes that may not be intercepted by other bacteria. To 

date, P. aeruginosa produces AI-2, two separate acylated-homoserine lactones, and a 

diverse group of alkylquinolones. Current work has also identified other non-canonical 

QS systems that are environment-specific [64, 65]. 

QS molecules also play roles apart from signaling. In Gram-positive bacteria such 

as Staphylococcus aureus, the small signaling peptides have potent antibiotic properties. 

An example from Gram-negative bacteria, extracellular homoserine lactones and 

alkylquinolones from P. aeruginosa antagonize the host immune response during an 

infection [66]. Further explanation of alkylquinolones as multifunctional molecules will 

be discussed in another section (1.5).  
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Figure 1.1 Diversity of QS molecules produced from bacteria. 
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1.4 Major quorum-sensing systems in P. aeruginosa 

 

In P. aeruginosa, there are three commonly studied QS systems; the Las, Rhl, and 

Pqs systems (Fig. 1.2). These QS systems control community phenotypes such as 

swarming, biofilm formation, and virulence factor production [67]. During replication to 

higher cellular densities, the QS systems function together in a hierarchal manner [68, 

69]. The Las system, which is initiated earliest during growth, produces 3-oxo-C12-

Homoserine Lactone (C12-HSL) and activates the LasR transcriptional regulator. An 

activated Las system synthesizes a protease and also induces the other QS systems [45, 

70]. The Rhl system produces C4-Homoserine Lactone (C4-HSL) and activates the 

transcriptional regulator RhlR [58]. The Rhl system regulates the production of 

rhamnolipids, which aid in swarming and absorption of hydrophobic compounds [71, 72]. 

Secreted rhamnolipids also initiate apoptosis in neutrophils and reduce ROS in the 

environment [73]. Following a transposon mutant screen for genes regulated by the Las 

system, the Pqs system was discovered to be a novel system compared to traditional 

Gram-negative QS [74]. The Pqs system produces alkylquinolones that activate the 

transcriptional regulator PqsR (also known as MvfR). Signaling from the Pqs system 

controls production of virulence factors, iron chelators, and biofilm formation [75, 76]. 

Together, these three QS systems function together to control up to 12% of the genome 

and are essential for survival and community phenotype regulation [77, 78].  
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Figure 1.2 Interconnected QS systems in P. aeruginosa. Three core QS systems are 
both positively and negatively regulate each other. As bacterial density increases, there 
is a shift from Las-mediated transcriptional regulation to Rhl and Pqs transcriptional 
regulation. 
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Hierarchy of the QS systems in P. aeruginosa guides the production of virulence 

factors and community development in a new environment [21]. After initial growth, C12-

HSL signaling activates production of proteases that degrade peptides in the environment 

and affects host cell integrity [79]. The Las system also regulates biofilm formation 

following initial attachment to a surface. After Las system activation, the Rhl system 

participates in biofilm formation by forming water channels within the biofilm and also 

helps to secure fatty acids from the environment [80]. Rhamnolipids also block attack by 

the host immune system and participate in infiltration of airway epithelial cells [81]. The 

Pqs system contributes to biofilm formation by providing eDNA via autolysed cells and 

increases the production of virulence factors such as pyocyanin, hydrogen cyanide, and 

lectins [82, 83]. During an infection, the cascade of QS systems alters host immune cell 

reaction to bacteria, forms biofilms, and secures limited nutrients within the environment.  
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1.5. The Pseudomonas quinolone signal (Pqs) system 

  

 P. aeruginosa culture supernatants contain greater than fifty different quinolone 

molecules that vary in alkylation and modification on the quinolone ring [84]. Three 

alkylquinolones have garnered most of the attention for research; specifically, 2-heptyl-4-

quinolone  (HHQ), 4-hydroxy-2-heptylquinolone N-oxide (HQNO), and 2-heptyl-3,4-

hydroxy-quinolone (PQS) [76]. Most of the other unmentioned quinolones exist in low 

concentrations and do not have specified function. Contrary to the HSLs, the quinolone 

ring is stable in different environments, but is affected by certain ring-hydrolyzing 

enzymes [85]. Those enzymes responsible for breaking down quinolones are not found in 

humans, which may allow quinolones to persist in the chronic wound environment for 

long periods of time.  

The Pqs system consists of a transcriptional regulator, PqsR, and a five-gene 

operon, pqsABCDE (Fig. 1.3). Only Burkholderia thailandensis and Burkholderia 

pseudomallei possess homologous biosynthetic operons for quinolones, while no other 

Pseudomonas species use quinolones as a mechanism for QS [86]. PqsR belongs to the 

LysR-type transcriptional regulator family, which are structurally and functionally 

diverse DNA-binding proteins [87]. PqsR contains two domains; the C-terminus ligand-

binding domain and the N-terminus DNA-binding domain. Crystal structures of PqsR 

bound to C9-PQS and a PQS-analogue identified two hydrophobic pockets that 

coordinate binding with the quinolones [88]. The peripheral hydrophobic pocket on the 

protein associates with the alkyl-moiety, while the interior pocket forms hydrogen bonds 

with the hydroxyl-groups and the hydrogen on the quinolone ring. 
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Anthranilic acid, a precursor for tryptophan and quinolone synthesis, is formed 

from chorismate along with the enzymes PhnA and PhnB [89]. Three separate systems 

monitor anthranilic acid levels in the cell, which indicate the importance of this precursor 

to P. aeruginosa for maintaining a cellular pool to synthesize phenazines, catechol, 

tryptophan, and quinolones [90].  

For quinolone synthesis, PqsA modifies anthranilic acid to form anthraniloyl-

CoA, of which the product subsequently interacts with PqsD [91]. Following binding, 

CoA is released and a fatty acid is brought into the PqsD catalytic site for condensation 

with the anthranilate [92]. DHQ, the only terminate non-alkylated quinolone, is 

synthesized by PqsD from anthranilate and malonyl-CoA [93]. Alkylquinolone synthesis 

requires anthranilate condensation with longer-chain fatty acids such as β-keto fatty acid 

or octanoic acid and malonyl-CoA [94]. Condensation using PqsD, PqsB and PqsC form 

the initial alkylquinolone, HHQ. PqsD, PqsC, and PqsB share similar sequence homology 

and are described as FabH-type condensing enzymes [93]. However, PqsD is the only 

enzyme that contains the complete catalytic triad, Cys-His-Asn. Until recently, PqsE was 

not thought to participate in quinolone synthesis, but rather regulate the production of the 

virulence factor pyocyanin [95]. New data from Drees et al has now shown that PqsE 

may also be functioning as a thioesterase to increase precursors for alkylquinolone 

synthesis [96].  
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Figure	1.3	Synthesis	and	regulation	of	quinolones	from	the	Pqs	system.	The	
red	arrow	indicates	an	undiscovered	role	for	DHQ.		
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The pqs operon produces DHQ and HHQ, whereby HHQ is subsequently 

modified to generate other quinolones. PqsH synthesizes PQS, which adds a second 

hydroxyl-group to HHQ using oxygen [97]. Other pqs enzymes, such as PqsS and PqsL, 

are coded elsewhere on the genome and also modify the alkylquinolones [76].  

Quinolone production can be expensive to the cell due to the requirements for 

precursors from fatty acid pools and anthranilic acid. However, P. aeruginosa requires an 

intact Pqs system to cause an infection [82, 98]. Quinolones play diverse roles for P. 

aeruginosa, but there are still several unanswered questions; specifically, the complete 

mechanism of quinolone synthesis and the function of a diverse set of quinolones. 
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1.6 Roles of the quinolones  

 

Quinolones play both intracellular and extracellular roles for P. aeruginosa 

virulence, while only HHQ, HQNO, and PQS have established functions. HQNO is an N-

oxide form of HHQ that is toxic towards Gram-positive bacteria [99]. HHQ performs 

similar functions compared to PQS, but is found at significantly lower concentration 

because it is a precursor for PQS that is actively turned over under aerobic conditions 

[84]. The major effector of the Pqs system is PQS (Fig. 1.4). As a signaling molecule, 

PQS regulates biofilm formation, swarming, and extracellular functions to control the 

environment [100, 101]. PQS signaling is also responsible for activating the Rhl operon, 

which synthesizes rhamnolipids that coat the surface and reduce the co-efficient of 

friction for swarming. Extracellular PQS can initiate cellular autolysis, which adds eDNA 

to the exopolymeric substance for biofilm formation and may have undiscovered roles in 

the PQS-laden blebs from the membrane [102, 103].  

PQS-activated PqsR controls the production of virulence factors such as 

pyocyanin and hydrogen cyanide [98]. Pyocyanin, the characteristic blue-green pigment 

of P. aeruginosa, is a redox-active molecule that forms an electrocline surrounding a 

biofilm [104]. Due to its electrogenic potential, pyocyanin kills both eukaryotic and 

prokaryotic cells by creating reactive oxygen species [105].  Hydrogen cyanide has not 

been quantified from the environment during P. aeruginosa colonization, but was 

elucidated by infecting a model species with the bacterium [82]. Therefore, regulation of 

PqsR through PQS provides P. aeruginosa with an arsenal of virulence factors to unleash 

during infection.  
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Figure	1.4	PQS	is	a	multifunctional	molecule	and	participates	in	several	aspects	
of	P.	aeruginosa	pathogenicity.	PQS	also	functions	to	maintain	P.	aeruginosa	
within	an	environment	and	secure	limiting	nutrients.	
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Secreted PQS and HHQ antagonize immune cell signaling from host cells. 

Alkylquinolones inhibit the NF-ĸB pathway in macrophages causing a reduction in both 

IL-6 and TNF-α [106, 107]. PQS also blocks T-cell proliferation, which is important for 

the adaptive immune response by inhibiting dendritic cell antigen presentation [108]. 

Overall, control of the immune response is an important contribution to the ability of P. 

aeruginosa to cause chronic infections.  

A unique trait to PQS is the sequestration of iron from the environment [109]. P. 

aeruginosa produces several iron siderophores, which trap iron from the environment 

[110, 111]. Three PQS molecules bind a single iron ion in the environment and reduce its 

availability to other organisms [109, 112]. It was proposed that PQS sequesters iron at the 

membrane of P. aeruginosa in order to increase the efficiency of siderophores [112]. 

Other quinolones possess similar structure, but do not appear to have the same ability to 

chelate. Although PQS has established chelation activity, further research is needed to 

understand the potential role of PQS-iron interactions during an infection.  

Extracellular roles of the quinolones show how P. aeruginosa optimizes 

production of molecules for not only signaling, but also controlling the environment. 

However, most of the extracellular functions were elucidated using in vitro conditions 

and have not been demonstrated during an infection. Apart from pathogenicity, there are 

several links to quinolones and metabolic pathways. However, the metabolic flux from P. 

aeruginosa remains to be elucidated in conditions that represent an infection. 
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1.7 Mechanism of DHQ synthesis  

 

Alkylquinolones HHQ and PQS have been extensively studied for their functions 

in P. aeruginosa pathogenicity. Critically, HHQ and PQS activate PqsR for 

transcriptional regulation of virulence factors and also provide extracellular functions. Of 

the quinolones produced, DHQ is the most abundant in P. aeruginosa planktonic culture 

[93, 113]. DHQ requires anthranilic acid, malonyl-CoA, and the enzymes PqsA and PqsD 

for its synthesis, which is significantly shortened compared to alkylquinolone synthesis. 

Given the truncated mechanism, increased DHQ synthesis is also perpetuated through 

more abundant precursors and no requirement for oxygen from the environment [114]. 

Because it has its own synthesis mechanism, DHQ is neither a precursor nor a 

degradation byproduct from the alkylquinolones, which highlight this molecule as unique 

and may play a novel role for the Pqs system.  

Liquid chromatography and mass spectrometry can be used to quantify the 

different alkylquinolones from culture supernatant (Fig. 1.5). Supernatant from a pqsA 

KO-strain did not resolve any quinolone production. To identify mutants that altered 

DHQ synthesis, radiolabeled anthranilic acid was fed to wild-type and pqs mutants (Fig. 

1.6). Following incubation of the pqs mutant strains, supernatants from the cultures were 

processed using TLC and monitored by autoradiography. Mutants of pqsB and pqsC 

maintained DHQ production, but did not produce the alkylquinolones. Mutants of pqsA 

and pqsD did not produce any quinolones, which indicated they were essential for all 

quinolone synthesis. The function of PqsA and PqsD for DHQ synthesis was confirmed 

in an E. coli strain, which maintained DHQ production using a plasmid containing both 
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pqsA and pqsD. DHQ production was also demonstrated in vitro with purified PqsA and 

PqsD. Both of the precursors, malonyl-CoA and anthranilic acid, sufficed for DHQ 

synthesis, while only activated forms of malonate were incorporated.  

Virulence associated with DHQ production was initially visualized through inhibition of 

the yeast Cryptococcus neoformans (Cn) from a pqs mutant that was only capable of 

synthesizing DHQ [115] (Fig. 1.7). However, the DHQ-only mutant did not inhibit 

growth to the same degree compared to the wild-type. To determine toxicity towards host 

cells, DHQ was also incubated with mouse lung epithelial cells. DHQ treatment reduced 

epithelial cell number in a time-dependent and concentration- dependent manner [93]. 

These results demonstrated that the production of DHQ was associated with virulence 

factor production and induced extracellular effects. 
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Figure 1.5 LC-MS trace of quinolones in P. aeruginosa supernatant. In 
wildtype supernatant, DHQ was the most abundant quinolone, followed by the 
alkylquinolones. From the pqsA mutant supernatant, no quinolones were 
quantified.  
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Figure	1.6	Mutants	of	the	pqs	operon	displayed	differences	in	synthesizing	
DHQ	and	the	alkylquinolones.	Only	wild-type,	pqsB,	and,	pqsC	maintained	
production	of	DHQ,	while	pqsA	and	pqsD	were	devoid	of	quinolone	
production.	

Zhang,	JBC.	2008.	
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Figure	1.7	Pyocyanin	negatively	affects	growth	of	yeast	Cryptococcus	neoformans.	
Lawns	of	C.	neoforms	were	challenged	against	filter	disks	containing	culture	
supernatant	from	P.	aeruginosa	PAO1	and	pqs	mutants.	Pyocyanin	from	the	P.	
aeruginosa	strains	were	measured	in	vitro	in	normal	laboratory	conditions.	

Rella,	Mycopathologia.	2012.	
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CF patients can harbor P. aeruginosa in their lungs for years. Therefore, CF 

patient sputum may contain secreted molecules that have accumulated over time. PQS 

has been quantified from sputum samples using various methods, while the composition 

of quinolones from the samples has not been assessed [116, 117]. Other studies of P. 

aeruginosa QS molecules from sputum have focused on the homoserine lactones. Struss 

et al. quantified the long chain HSL, 3-oxo-C12-HSL, and identified an increasing trend in 

concentration prior to admission for an exacerbation and a decreasing trend following 

admission [118]. However, concentration of 3-oxo-C12-HSL rebounded back to the levels 

found during stable disease after a week of IV antibiotic therapy. To date, no study to 

date has investigated all of the major QS molecules from P. aeruginosa and how the 

composition of the molecules may be related to disease severity. Because QS regulates 

virulence factor production and community behaviors, composition of QS molecules may 

predetermine certain negative events such as declining of lung function or an 

exacerbation. Also lacking are studies of quinolone composition on the basis of CF 

mutation, current antibiotic/lung-clearing therapy, and other cultured microorganisms.  
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1.8 Hypothesis and Specific Aims 

 

The short-term goals of this study are to understand how DHQ production is 

involved in P. aeruginosa pathogenicity, the activity of DHQ with the transcriptional 

regulator PqsR, and dynamics of DHQ concentration in CF patient samples. Our long-

term goal is to understand the fitness provided by DHQ production and its effect on 

chronic colonization of P. aeruginosa. No group has published a function for DHQ, only 

its high concentration in culture. Compared to PQS, DHQ does not require oxygen, which 

is especially limited within biofilms and the mucus of CF patients [119, 120]. Finally, 

DHQ possesses a similar structure compared to the alkylquinolones, which may allow for 

similar interactions with PqsR. The high concentration of DHQ warrants investigation 

into the extracellular effects against host cells. Overall, further understanding of the Pqs 

system makes it a good target for inhibition, but it is also important to understand the 

roles quinolones play during an infection to successfully block the communication 

system. 

 

Hypothesis: DHQ plays a role in P. aeruginosa pathogenicity as a ligand for 

PqsR and controls host cell functions.  

 

Specific Aim 1: Determine effect of DHQ production on P. aeruginosa 

pathogenicity. Alkylquinolones HHQ and PQS play a role in transcriptional regulation 

as ligands of the transcriptional regulator PqsR. Extracellular HHQ and PQS also exhibit 

anti-inflammatory effects. We infer DHQ plays a similar role in pathogenicity during an 
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infection, but may have specialized functions within certain environments. To investigate 

the mechanism of DHQ on virulence, we propose the following sub aims: 1) determine 

virulence associated with DHQ production; 2) determine effect of growth environment on 

synthesis and secretion of DHQ; and 3) determine effect of DHQ on eukaryotic cells. We 

will use established methods for Caenorhabditis elegans infection to estimate total 

pathogenicity and quantify in vitro virulence factor production. We will also develop a 

model of C. elegans to investigate bacterial colonization in real-time. Liquid-

chromatography with mass spectrometry (LC-MS) will be used to quantify DHQ and 

other QS molecules from samples. We will assess quinolone composition under the 

following conditions: in LB and cystic fibrosis mimic media (CFMM) using aerobic and 

anaerobic conditions. Finally, we will test the effect of DHQ on eukaryotic cells for 

viability and cytokine analysis by enzyme-linked immunosorbant assay (ELISA). 

 

Specific Aim 2: Determine effect of DHQ on PqsR for activating 

transcription of the pqs operon. HHQ and PQS activate PqsR to bind to the upstream 

regulatory site of the pqsA promoter. Transcription of the operon not only leads to 

virulence factor production, but also leads to further production of the quinolones by 

generating a positive feedback loop. To determine the role of DHQ on PqsR activation, 

we propose the following sub-aims: 1) determine the activity of DHQ on transcription of 

the pqs operon through PqsR; and 2) determine kinetic interaction of PqsR with DHQ. 

For these aims, we will quantify expression of pqsA in wild-type and pqs mutants using 

RT-PCR. We will also use a pqsA’-LacZ fusion reporter assay in P. aeruginosa strains 

and E. coli supplemented with exogenous quinolones. For the protein-ligand interaction 
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studies, we will use saturation transfer difference NMR (STD-NMR) that will identify the 

specific interactions of DHQ in the binding pocket of PqsR.  Electrophoretic mobility 

shift (EMSA) in vitro assays will show the influence of DHQ on PqsR binding to the 

promoter region of pqsA.   

 

Specific Aim 3: Determine DHQ concentration and composition of 

quinolones in CF sputum during stable and exacerbated disease states. Little is 

known about the dynamics of P. aeruginosa QS molecules during CF disease 

progression, especially since there are limited publications that report QS molecules in 

sputa. QS molecules provide a link to both bacterial density and virulence, which may be 

important in interpreting in vivo phenotypes. DHQ has not been quantified from CF 

sputum; however, PQS and homoserine lactones were previously identified in patient 

samples. Given that DHQ is secreted by P. aeruginosa in high concentrations in vitro, we 

predict that DHQ will be readily identified in both stable and exacerbated samples. The 

role of P. aeruginosa to initiate an exacerbation is not known, although declining lung 

function may be accompanied by increased colonization and density. To investigate the 

composition of quinolones during different disease states in CF patients, we propose the 

following sub-aims: 1) determine QS molecule composition in stable CF patients and 

compare concentrations based on patient CFTR mutation, antibiotic treatment, lung 

volume, and organisms cultured from samples; and 2) determine QS molecule 

composition during an exacerbation compared with stable levels. We will initiate a 

patient study of adult CF patients colonized with P. aeruginosa to obtain sputum samples 
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from clinic visits and hospitalized patients. QS molecules extracted from sputum will be 

quantified using LC-MS.  
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Chapter	2:	Role	of	DHQ	in	P.	aeruginosa	pathogenicity	and	extracellular	effects	

against	host	cells.	
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2.1 Introduction 

P. aeruginosa possesses a versatile metabolic system, which allows the bacterium 

to live in diverse soil and aquatic environments. People frequently come into contact with 

P. aeruginosa, but an intact immune system can block the bacterium from establishing an 

infection. However, immunocompetent and immunocompromised patients are still at risk 

for infection, particularly those who have diabetic or burn wounds, undergo surgery for 

an implantable device, or use contact lenses [121-124]. Patients with the genetic disorder 

cystic fibrosis (CF) are highly susceptible to P. aeruginosa infection, which is correlated 

with increased mortality [19, 125]. In CF lungs, P. aeruginosa replicates to high densities 

and forms antibiotic-resistant biofilms, a community lifestyle protected by exopolymeric 

substance [23, 126]. Treatment of chronic and acute P. aeruginosa infections is 

complicated due to numerous endogenous antimicrobial resistance mechanisms, 

including reduced outer-membrane porin size, increased expression of efflux pumps, and 

high mutation rate [127, 128].  

Quorum sensing (QS) synchronizes group behaviors and is essential for P. 

aeruginosa to establish an infection [46]. The act of QS is comprised of releasing and 

uptake of signaling molecules that activate cognate transcriptional regulators at a critical 

intracellular concentration. Each QS system plays a role in community phenotypes and 

virulence factor production [74, 129-131]. The Las and Rhl systems, conserved to Gram-

negative bacteria, produce acyl-homoserine lactones that activate cognate LuxR-type 

transcriptional regulators, LasR and RhlR [130, 132]. The Pqs system, conserved to P. 

aeruginosa, Burkholderia thailandensis, and Burkholderia pseudomalia, produces 

alkylquinolones that activate a LysR-type transcriptional regulator, specifically, PqsR in 
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P. aeruginosa [86, 133]. Few quinolones have established functions for signaling, 

controlling the microenvironment, and facilitating biofilm formation; however, greater 

than 50 different quinolones are produced from the Pqs system [84, 133, 134].  

Alkylquinolones are synthesized from the pqs operon and associated genes 

located elsewhere on the genome. The first step in quinolone synthesis requires PqsA to 

convert anthranilic acid, an intermediate of tryptophan biosynthesis, to anthraniloyl-CoA 

[91, 113]. The next step involves the transfer of the anthraniloyl-moiety to PqsD and the 

release of CoA [92]. Using simulations and surface Plasmon resonance, PqsD and the 

substrates display a ping-pong type mechanism, which is in agreement with other Claisen 

condensing enzymes [135]. PqsD condenses the anthraniloyl moiety with malonyl-CoA 

to form DHQ, the only terminate, non-alkylated quinolone species [93]. Formation of 

HHQ requires PqsD, PqsB, and PqsC to condense longer chain fatty acids with 

anthraniloyl-CoA [76]. PqsH converts HHQ to PQS in the presence of oxygen [97]. 

Unsaturations, variation in the length of the alkyl chain, and modification of the ring-

substituted nitrogen generate the diversity of alkylquinolones [136, 137]. PQS and HHQ 

activate PqsR to initiate a positive-feedback mechanism that increases transcription of the 

pqs operon and further quinolone production [138, 139]. Among the genes regulated by 

PqsR for virulence, PqsE controls the production of pyocyanin, a potent redox-active 

virulence factor, through an unknown mechanism [75].  

PQS plays numerous roles in P. aeruginosa pathogenicity [76, 137]. However, P. 

aeruginosa frequently colonizes hypoxic zones within CF lungs, which may reduce PQS 

production due to lack of oxygen [140, 141]. Deep sequencing has allowed for the 
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detection of anaerobic bacteria within the lungs of CF patients indicating the lack of 

oxygen found in certain parts of the lungs [142].  

In comparison to other quinolones produced from the Pqs system, DHQ is the 

most abundant in P. aeruginosa planktonic cultures. DHQ also shares a similar structure 

with the alkylquinolones, which provides rationale in that DHQ functions similar to other 

established quinolones [93, 113]. Therefore, based on the high cellular expense of 

anthranilic acid to produce DHQ and numerous roles played by alkylquinolones to 

establish an infection, we hypothesize DHQ plays an important role in P. aeruginosa 

pathogenicity, potentially under hypoxic conditions. In this study, we investigated the 

role of DHQ on P. aeruginosa virulence, production of DHQ in different environments, 

and effect on epithelial cells and macrophages.  
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2.2 Results 

	
Production of DHQ increased P. aeruginosa virulence in the C. elegans infection 

assay. In order to delineate function of DHQ from the other quinolones, we produced 

non-polar mutants of the pqs operon using the common lab strain PAO1 (originally 

isolated from a burn wound). Knockout of pqsAB resulted in abolished quinolone 

production, while knockout of pqsB or pqsC resulted in mutants that only produced 

DHQ. Previous results have indicated wild-type PAO1 required both virulence factor 

production and the ability to colonize the nematodes in order to kill C. elegans following 

several days of incubation (>200 h) [143-147]. We monitored the survival of C. elegans 

infected with PAO1 and pqs mutants to determine a role DHQ may play (Fig 2.1) [148]. 

None of the nematodes survived infections from PAO1, ΔpqsB, and ΔpqsC after 220 h of 

incubation, while 50% of the nematodes infected with ΔpqsAB remained viable. The 

reduction in virulence from the ΔpqsAB mutant was attributed to loss of quinolone 

production. In comparing survival trends, C. elegans survival incubated with PAO1 

displayed the sharpest downward trend compared to the other strains. PqsB and PqsC are 

both essential for alkylquinolone synthesis but are not required to produce DHQ. 

Compared to the ΔpqsAB mutant, the trend of C elegans killing by the ΔpqsB and ΔpqsC 

decreased faster over time and also indicated that DHQ production maintained the same 

level of virulence in both mutants. Altogether, the survival trends demonstrated that 

production of DHQ was related to increased pathogenicity towards a model of bacterial 

infection. 
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Figure	2.1	Survival of C. elegans infected with PAO1 and pqs mutants. P. aeruginosa 
strains were incubated with C. elegans and worm survival was monitored daily for over 10 
days. Each assay contained around 30 nematodes per strain and was performed in triplicate. 
Survival data of all of the assays were combined and plotted in a Kaplan-Meier survival 
curve and analyzed using the Log-Rank test (significant * p = 0.05, ** p<0.05, 

***p<0.0001).	
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None of the nematodes survived infections from PAO1, ΔpqsB, and ΔpqsC after 

220 h of incubation, while 50% of the nematodes infected with ΔpqsAB remained viable. 

The reduction in virulence from the ΔpqsAB mutant was attributed to loss of quinolone 

production. In comparing survival trends, C. elegans survival incubated with PAO1 

displayed the sharpest downward trend compared to the other strains. PqsB and PqsC are 

both essential for alkylquinolone synthesis but are not required to produce DHQ. 

Compared to the ΔpqsAB mutant, the trend of C elegans killing by the ΔpqsB and ΔpqsC 

decreased faster over time and also indicated that DHQ production maintained the same 

level of virulence in both mutants. Altogether, the survival trends demonstrated that 

production of DHQ was related to increased pathogenicity towards a model of bacterial 

infection.  

 Fluorescence-producing bacteria have been used to infect C. elegans in order to 

study the internalization of bacteria and their localization in different tissues [149]. To 

visualize colonization of C. elegans by the P. aeruginosa strains, we monitored 

nematodes infected with PAO1 and the pqs mutants carrying a plasmid that constitutively 

expressed GFP (Fig 2.2) [150]. After 4 h of co-incubation, GFP-expressing bacteria was 

present in the nematodes after 4 hours of incubation on the bacterial lawns. After 24 h, 

GFP-expressing bacteria were distributed throughout the intestinal tract of all the 

nematodes investigated. There was no overall qualitative difference between bacterial 

accumulation comparing the 4 and 24 hour time point. At 144 h, C. elegans infected with 

PAO1 and ΔpqsB showed higher GFP fluorescence than those infected with the ΔpqsAB 

mutant. Colonization was observed throughout 75% of the length of the nematodes that 

had been incubated with those strains.  
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Figure	2.2	Real-time	monitoring	of	C.	elegans	infected	with	P.	aeruginosa	
strains	expressing	GFP.	C.	elegans	were	incubated	on	plates	containing	P.	
aeruginosa,	which	constitutively	expressed	GFP.	At	the	indicated	times,	C.	
elegans	was	investigated	for	fluorescence	at	435nm	excitation	and	485nm	
emission.	Assay	was	completed	in	triplicate.	Pictures	shown	were	from	the	
same	assay.	GFP	fluorescence	was	quantified	using	ImageJ	and	graphed.	
Samples	at	144	h	were	statistically	compared	using	the	student'	t-test	(*	p < 

0.05).	
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Because of the disparity of fluorescence, we determined the difference in bacterial 

colonization by comparing fluorescence of the strains following 1 second of excitation 

versus 5 seconds of excitation. A 5 second excitation yielded oversaturated fluorescence 

when analyzing nematodes infected with PAO1 and the ΔpqsB mutant, while minimal 

fluorescence was detected from those infected with ΔpqsAB. A 1 second excitation 

resolved the oversaturation in PAO1 and ΔpqsB infected nematodes and demonstrated 

only background fluorescence from nematodes infected with the ΔpqsAB mutant. The 

144 h time point was important to show because it coincided with a sharp decrease in C. 

elegans survival among the nematodes infected PAO1 and ΔpqsB.  

Over the course of an infection, P. aeruginosa displays several successive steps in 

order to establish itself with the nematode. In our study, following several hours of 

incubation, PAO1 and ΔpqsB both showed tissue invasion from the central gut-tract and 

into the intestines and some gonadal tissue. The actions taken by the P. aeruginosa 

strains appear to be initial attachment to the host tissue, protection from host anti-

infection mechanisms, and breakdown of tissues to move away from the central gut-tract. 

Although fluorescence microscopy only visualized bacteria in different tissue sections of 

the nematodes, comparison of the different strains indicated that those able to produce 

DHQ maintained a similar infection progress compared to the wild-type.  

 Along with colonization of C. elegans, virulence factor production is also 

important for nematode killing. Pyocyanin, a blue-green redox-active pigment, is a potent 

virulence factor that is toxic towards other microorganisms and eukaryotic cells [115, 

151-153]. Pqs enzymes PqsR and PqsE participate in the regulation of pyocyanin 
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production. PqsR activates transcription of the phz operon, but the role of PqsE in 

pyocyanin production is not understood [154]. 

 To demonstrate that changes in virulence were not due to defects in growth, we 

found all of the strains grew similarly regardless of their mutation (Fig 2.3). Next, we 

quantified pyocyanin from overnight cultures of PAO1 and pqs mutants grown in LB 

media. PAO1 produced the highest amount of pyocyanin followed by the ΔpqsB mutant. 

The ΔpqsAB mutant produced the least amount of pyocyanin. LB media is a rich media 

that contains an excess amount of nutrients to support high-density growth of bacteria. 

The media alone may help to potentiate pyocyanin production because of the low level 

found in ΔpqsAB mutant culture. However, this media does not represent of the 

environment colonized by bacteria during an infection. Nutrient conditions alter the 

bacterial phenotypes expressed; thereby, bacteria grown in LB compared to a less 

nutrient-dense media may demonstrate different phenotypes [155]. Therefore, we tested 

how growth in media more representative of an infection environment, cystic fibrosis 

mimic media (CFMM), would affect pyocyanin production. CFMM was chemically 

defined by LC-MS to quantify the abundance of carbon and nitrogen sources from cystic 

fibrosis sputa. Although the overall concentrations were lower, we found a similar trend 

in pyocyanin production among the strains compared to LB. Because of the loss of 

pyocyanin from the ΔpqsAB mutant, this demonstrates the requirement for quinolone 

production in the context of an infection.  

 

 

 



50	

 

 

 

 

 

 

 

 

 

 

 

 

Figure	2.3	Growth and pyocyanin production by PAO1 and pqs mutants. (A) Growth 
curves of P. aeruginosa strains in LB over 24 h. (B) Pyocyanin was extracted from 18 
h planktonic cultures grown in LB and quantified spectrophotometrically at 520 nm. 
(C) Growth curves of P. aeruginosa strains in SCFM over 24 h. (D) Pyocyanin was 
extracted from 24 h planktonic cultures grown in SCFM and measured the same as in 
LB. Experiments were performed in triplicate. C,D data is represented as box-and-
whisker plots with the mean and range of the data. The data was statistically analyzed 
using a Student's T-test (** p<0.005, *** p < 0.0001).	
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Because pyocyanin production is regulated by Pqs signaling, we wanted to 

investigate if exogenous DHQ can rescue pyocyanin in the quinolone-null mutant. 

Culture supernatants from the different strains contain the quinolones in their natural 

form following secretion. Quinolones are not soluble in aqueous solutions; however, 

other secreted molecules may help solubilize the QS molecules. For the add-back 

experiments, we supplemented culture supernatants of the P. aeruginosa strains to 

ΔpqsAB cultures and incubated overnight. PAO1 and ΔpqsB supernatant supplied to the  

ΔpqsAB mutant rescued pyocyanin production, while the ΔpqsAB mutant with ΔpqsAB 

culture supernatant had little effect. Supplementation of pure DHQ back to the ΔpqsAB 

did not affect pyocyanin production, which indicated DHQ may have poor solubility in 

solution and/or require another factor to help cross the membrane. Overall, the 

importance of PqsR activation by the quinolones is underscored by the loss of pyocyanin. 

The Pqs system activates both the Las and Rhl systems. Therefore, the effect of 

DHQ production apart from other quinolones on the concentration of virulence factors 

from the Las and Rhl systems are important to determine. Elastase and rhamnolipids are 

secreted from the cell and can be quantified from the culture supernatant. In the same 

growth conditions used for assessing pyocyanin production, production of DHQ did not 

significantly affect other virulence factor production (Fig 2.4).  This result was surprising 

given the interconnected relationship of the QS systems found with PQS. The effect of 

the Pqs system on the other QS systems may need to be assessed during a time-course, 

which could resolve changes between the mutants.  
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Figure	2.4	Elastase	and	rhamnolipids	quantified	from	the	P.	aeruginosa	strains	grown	
in	LB	and	CFMM.	Samples	were	extracted	from	culture	supernatants	and	measured	at	
the	indicated	OD.	Samples	were	measured	in	triplicate	and	the	average	and	the	error	
bars	represent	the	standard	deviation.	
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To date, long-term monitoring of the phenotypes from the QS systems has not 

been published. Biochemical modeling of the QS systems has indicated a circadian 

rhythm between activation of the Rhl system and the Pqs system, but has not been shown 

experimentally. 

DHQ was the most abundant extracellular quinolone produced during 

aerobic and anaerobic planktonic growth. Our results have suggested that DHQ 

activates PqsR similarly to PQS and HHQ; however, conditions found during CF lung 

colonization may limit alkylquinolone production [120, 140]. Further complicating 

alkylquinolone syntheses are potentially altered fatty acid pools and lower cellular energy 

found in biofilms [156, 157]. Therefore, DHQ may play a role that is different from what 

has been traditionally considered for alkylquinolones during chronic colonization of the 

CF lung. 

 Strict anaerobic cultures of P. aeruginosa do not contain PQS and have fewer 

transcripts compared to aerobic cultures [158]. To determine how DHQ production might 

be affected during anaerobic growth, we quantified quinolones from PAO1 cultures 

grown aerobically and anaerobically (Fig 2.5). Increased C4-HSL over 3-oxo-C12-HSL 

concentrations in the anaerobic samples has been shown previously that QS molecule 

production was maintained without the presence of oxygen [119]. DHQ was the most 

abundant quinolone (65µM) produced under aerobic conditions in LB, but was less than 

then homoserine lactones (72 and 83µM).  
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Figure	2.5	Quantification of extracellular levels of DHQ from aerobic and anaerobic 
PAO1 cultures. (A) PAO1 cultures were grown aerobically in LB and anaerobically in 
LB+400 µM sodium nitrate until the culture reached OD600 of 2.0. Culture 
supernatants were acidified with formic acid and QS molecules were analyzed using 
HPLC-MS. The concentrations were determined using calibration curves of QS 
standards. (B) PAO1 cultures in SCFM were treated in the same manner and grown 
aerobically and anaerobically to determine the concentrations of QS molecules. Data 
represented as scatter plots with the mean (central bar). The data was statistically 
analyzed using a Student's T-test (* p = 0.05, *** p < 0.0001).	
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When comparing the amount of DHQ between the different environments, 

anaerobic culture supernatants contained increased concentrations of DHQ compared to 

aerobic cultures. PQS was maintained at 10µM between both types of media; however, 

PQS was not detected under anaerobic conditions. To our surprise, HHQ was detected in 

aerobic and anaerobic cultures, but was below our limit of detection (<100 nM). Blinded 

controls verified that the extraction methods did not affect detection of the quinolones or 

homoserine lactones. Nutrient between the different types of media used appears to have 

an effect on QS molecule production because relative levels of the molecule shift 

between the different media regardless of oxygen availability. Comparison of the DHQ 

concentrations between LB and CFMM identified that DHQ production was slightly 

higher in the media most representing the CF lung environment, but was not statistically 

significant (p>0.05). The increase in DHQ and decrease in the alkylquinolones shows that 

precursors are possibly shunted over for DHQ production and less for HHQ. Importantly, 

DHQ was the most abundant QS molecule under anaerobic conditions in CFMM. This 

result indicates DHQ might have specific function within the Pqs system under anaerobic 

conditions; however, further research is needed to understand P. aeruginosa 

transcriptional regulation in hypoxic conditions and the dynamics of QS molecules within 

the mucous.  

 P. aeruginosa secretes PQS and HHQ through different mechanisms. PqsH, 

responsible for PQS synthesis, locates to the bacterial membrane and is thought to 

participate in membrane packaging of PQS into the blebs that are released into the 

environment. HHQ is not secreted through this mechanism, which was a surprise given 
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the similarity in structure to PQS. An efflux pump, MexEF-OprN, was found to be 

responsible for HHQ secretion. The MexEF-OprN efflux pump is a RND-type efflux 

pump, which has a role in antibiotic resistance because those pumps are promiscuous 

with their target molecules. MexAB-OprM, another RND-type efflux pump, is 

responsible for ciprofloxacin resistance [159]. Although the fluoroquinolones have a 

similar structure to the quinolones, knocking out the Mex-EF-OprN pump resulted in 

increased pyocyanin production because the quinolones accumulate within the cells and 

activate the Pqs system (Fig 2.6). Loss of the negative regulator mexS slightly decreased 

pyocyanin, which is thought to be a result of increased efflux pump expression. MexT is 

a positive regulator of the MexEF-OprN pump; thereby, the loss of mexT also resulted in 

increased pyocyanin production. MexS negatively regulates the efflux pump and resulted 

in decreased pyocyanin production, presumably through the increased expression of the 

efflux pump. We hypothesized that the MexEF-OprN efflux pump would also be 

responsible for secretion of DHQ from the cell and found loss of mexE and mexT both 

resulted in decreased extracellular DHQ concentrations, while loss of mexS resulted in 

increased extracellular DHQ. Together, the data showed a relationship with DHQ 

secretion and a functional MexEF-OprN efflux pump.  

 It is important to note that the MexEF-OprN efflux pump is affected by the Rhl 

system, the Pqs system, and antibiotic selection (i.e. fluoroquinolones) [160]. There is 

currently no direct connection between the efflux pump and the Rhl system, but mutants 

of the pump dramatically affect rhamnolipid and swarming behavior. Antibiotic selection 

provides an interesting interaction because most wild-type P. aeruginosa strains possess a 

short insert within the positive regulator mexT.  
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Figure	2.6	Effect	of	MexEF-OprN	efflux	pump	on	secretion	of	DHQ.	
Wild-type	and	transposon	mutants	were	grown	and	assessed	for	
pyocyanin	production	and	extracellular	DHQ.	Samples	were	measured	
in	duplicate.	The	average	and	standard	deviation	were	plotted	on	the	
graph.	
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Following growth in the presence of antibiotics, mutants are selected that no longer 

contain the insertion and have increased expression of the efflux pump. As a consequence 

of the expression, the bacteria resist antibiotic treatment and quinolones secretion is 

increased. This new phenotype provides interesting context for P. aeruginosa during an 

infection and may have an impact on chronic colonization. 

 A hallmark of QS is the regulation of community behaviors, which involve the 

coordinated action of bacteria together. QS regulation proceeds through a stepwise 

process of signaling and transcriptional regulation. The outcome of the signaling cascade 

results in the bacteria acting like multicellular organisms. In P. aeruginosa, swarming 

and biofilm formation are well established for their QS regulation. Swarming bacteria 

move together across a surface. P. aeruginosa swarms coordinate both preparation of the 

surface by secreting rhamnolipids and flagellar movement in a uniform direction. 

Swarming on an agar surface shows P. aeruginosa move together as tendrils from a 

central inoculum. Signaling from P. aeruginosa prevents the tendrils from intersecting, 

even to the point of ceasing the tendril from moving in a direction that is too close to 

another tendril.  

 Swarming requires rhamnolipid section, which is regulated by the Rhl system. 

Rhamnolipids are composed of mono and di-rhamnose moieties coupled to C10 fatty 

acids. The Pqs system participates in regulation of the Rhl system by activating 

transcription of the rhl operon. In our study, we found that quinolone production was 

essential for swarming (Fig 2.7).  
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Figure	2.7	Swarming	of	wild-type	and	pqs	mutants.	Culture	were	inoculated	at	a	
central	point	on	the	agar	and	incubated	overnight.	Pictures	of	the	agar	plates	were	
taken	using	a	gel-dock	with	a	positioned	camera.	Assays	were	performed	in	
duplicate.	Pictures	were	taken	from	the	same	assay.		
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Loss of quinolone production resulted in no movement from the central inoculum 

compared to growing tendrils of PAO1. Production of DHQ maintained some movement 

out from the central inoculum but no differentiated tendrils. These results demonstrated 

DHQ production was able to stimulate some activity from the Rhl system, but 

alkylquinolones may have a predominate role in cross-regulation for rhamnolipid 

production.  

 Biofilm formation also requires QS regulation to coordinate the sessile 

community phenotype. After initial attachment, a transcriptional signaling cascade 

initiates leading to maturation into a biofilm and dispersal of biofilm progenitor cells, 

which are all events that go on throughout the lifecycle of biofilm growth. Biofilms use 

an exopolymeric matrix that acts as ‘glue’ to hold the community together. The 

exopolymeric substance consists of both positively and negatively charged organic 

compounds such as polysaccharides, amino acids, DNA, and lipids. P. aeruginosa 

provides extracellular DNA for the matrix by lysing its own cells. This is known as 

autolysis and is essential for biofilm formation. PQS induces autolysis by acting as a 

oxidant and sensitizes the bacteria to ROS in the environment, which subsequently kills 

bacterial cells [136]. Using a long-term culture of the P. aeruginosa strains, we examined 

how the production of different quinolones affected autolysis (Fig 2.8). PAO1 cultures 

lost bacterial density overtime after initial log and stationary phase growth (after 24 h). 

This was previously established due to the effects of PQS production. Conversely, strains 

∆pqsAB and ∆pqsB did not display as significant of losses in bacterial density and even 

displayed some rebounding over time. Because of the connection between autolysis and 

biofilm formation, we identified similar trends in biofilm formation among the strains.  
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Figure	2.8	Long-term	growth	and	biofilm	formation	of	wild-type	and	pqs	mutants.	
Cultures	were	measured	following	initial	24	h	incubation	at	OD600	nm.	The	
average	from	two	assays	was	plotted	per	strain.	Biofilm	formation	was	assessed	in	
96-well	plates	over	the	indicated	incubation	times.	Biofilm	samples	were	
measured	in	triplicate	with	the	average	and	standard	deviation	listed.		
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PAO1 formed the largest biofilms after 72 h, followed by both ∆pqsAB and ∆pqsB. 

Together, the trends in both autolysis and biofilm formation demonstrated DHQ was not 

involved in autolysis or the signaling involved to initiate those mechanisms.  

Metabolic pathways oxidize and reduce diverse organic substrates in order to 

recycle or synthesize new precursors. As a consequence, electrons may accumulate and 

can be highly toxic if not neutralized. Pyocyanin is a redox molecule and is important for 

P. aeruginosa for virulence and electron shuttling [161]. To detoxify the cells and 

promote respiration under anaerobic conditions, pyocyanin accepts electrons and gives up 

them to other molecules that diffuse away from the cells [162]. The capacity to accept or 

give up electrons can be measured using cyclic voltammetry.  

Data generated from CV experiments identify whether the molecule of interest is 

redox active, and if so, what are the reduction and oxidation peak potentials. To assess 

the oxidized and reduced states of the molecule, the potential of the working electrode 

cycles in reference to a second electrode. The oxidation and reduction peaks for 

pyocyanin were determined to be -84 mV and -294 mV, respectively. Redox properties of 

PQS and DHQ were also tested. PQS displayed a small oxidation peak compared to 

pyocyanin, but did not have a corresponding reduction peak. PQS was previously found 

to have a voltammetric response at 0.768V and 1.182 V using more sensitive apparatus 

[163]. DHQ did not show any changes in potential indicating that DHQ neither gained 

nor lost electrons under the conditions tested (Data not shown). We had hypothesized that 

the large extracellular concentration of DHQ may play a pivotal role protecting the cells 

from electrons during both aerobic and anaerobic conditions. In light of the long-term 

growth study, production of DHQ correlated with increased survival, but the protective 
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mechanism may not be through scavenging ROS. Rather, the mechanism may be from 

not producing ROS. Therefore, the connection between DHQ and long-term survival 

remains an important question.  

DHQ reduced viability of host cells and antagonized cytokine production. 

Zhang et al. showed mouse-derived lung epithelial cells treated with DHQ had reduced 

viability in a dose-dependent manner [93]. In order to determine if DHQ had a similar 

effect on other cell types, we also tested the effect of DHQ on A549 lung epithelial cells 

and RAW264.7 alveolar macrophages for respiration and cell death (Fig 2.9). The MTS 

assay examines cellular oxidoreductase activity, which can reflect metabolism of the cells 

[164]. Sputum samples contained on average 150 µM DHQ from stable and exacerbated 

cystic fibrosis patients and was included in the concentrations tested (Clinical data 

covered in Chapter 4). RAW264.7 cells displayed increased sensitivity to DMSO; 

therefore, we used lower concentration of DHQ for treatment. DHQ reduced the MTS 

colorimetric conversion to formazan from both cell types in a dose-dependent manner, 

but displayed a greater effect towards RAW264.7 cells. Total respiration was lowered by 

25% from A549 cells and 50% for RAW264.7 cells at the highest DHQ concentration 

tested. We predict that the lower total cell counts accounted for the lower A549 

respiration in the MTS assay. This was supported by experiments with confluent cells 

that did display reduced respiration (Data not shown). DHQ supplemented to RAW264.7 

cells affected both cell replication and metabolic activity. The high concentrations of 

DHQ secreted into the environment may be another mechanism used by P. aeruginosa to 

protect itself from the host’s immune system.  
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Figure	2.9	Viability	of	A549	lung	epithelial	cells	and	RAW264.7	macrophages	
treated	with	DHQ.	(A)	Cell	viability	was	assessed	using	a	commercial	kit	for	
respiration.	(B)	Total	and	dead	cells	were	quantified	from	A549	lung	
epithelial	cells	follow	treatment	with	200	µM	DHQ.	(C)	Total	and	dead	cells	
were	quantified	from	RAW264.7	cells	treated	with	100	µM	DHQ.	All	Assays	
were	completed	in	triplicate.	The	average	and	standard	deviation	are	shown	
through	column	height	and	error	bars.	Student’s	T-test	was	used	to	compare	
samples.		



65	

Alkylquinolones HHQ and PQS were previously found to reduce IL-6 and TNF-α 

production following treatment of macrophages with supernatant from wild-type and pqs 

mutants. In the same study, the effect of quinolones on cytokine production identified 

that HHQ and PQS reduced NF-κB binding function as a transcription factor [165].  

It was also determined that PQS reduced IκB degradation, a repressor of NF-

κB[165]. Due to the similarity in structure, we predicted that DHQ may also lower 

cytokine production through the same mechanisms as HHQ and PQS. In order to test the 

effect of DHQ on cytokine production, DHQ was incubated with LPS-activated 

macrophages (Fig 2.10).  IL-6 production was depleted following increased 

concentrations of DHQ, while the same treatment reduced TNF-α production more than 

50%. Because of the antagonistic effect seen by DHQ on cytokine production, a 

significant consequence of DHQ production may be the dramatic alteration of cytokine 

signaling from host cells. The high extracellular concentration of DHQ supports this 

hypothesis, but further clinical work remains in order to elucidate the role of DHQ during 

disease. 
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Figure 2.10 Cytokines measured from LPS-activated macrophages treated with 
DHQ. After treatment, extracellular aliquots were removed and tested using 
separate ELISA kits for both cytokines. Assays were conducted in duplicate 
with at least six replicates per sample. Concentration of cytokines was 
determined after generating a standard curve with purified TNF-α and IL-6. Bar 
graph shows mean and standard deviation of the samples. 
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2.3 Discussion 

 

Our work provides the first evidence that DHQ is involved in P. aeruginosa 

pathogenicity and may have a specialized extracellular role. Those strains only able to 

produce DHQ maintained pathogenicity during infection of C. elegans. Specifically, the 

DHQ-only strain resulted in increased colonization in the nematodes and maintained 

some pyocyanin production compared to the quinolone-null mutant. DHQ was the most 

abundant quinolone regardless of oxygen availability and may be secreted via the 

MexEF-OprN efflux pump. We determined DHQ could participate in swarming, but may 

not have the redox properties to support autolysis and long-term biofilm formation. 

Finally, we found an extracellular effect of DHQ against host cells. DHQ reduced cell 

metabolism of both epithelial cells and macrophages, while having a strong effect on 

reducing cytokine production of macrophages stimulated with LPS.  

 P. aeruginosa and its host are involved in complicated interactions, which no 

infection model can completely resolve. C. elegans is easy to manipulate and has been 

previously studied for bacterial and host mechanisms that are important for infection 

[166]. However, C. elegans lacks tissue diversity and does not have an adaptive immune 

response. These properties limit C. elegans as a model for chronic infections, but C. 

elegans is useful as a model of acute bacterial infections. Results from studies using P. 

aeruginosa and pqs mutants have shown that a functional Pqs system is important for 

infection in C. elegans and other models [167, 168].  

 We compared mutants only able to produce DHQ to a quinolone-null mutant in 

order to determine the function of DHQ apart from the alkylquinolones. However, a 
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mutant that produces the alkylquinolones, but not DHQ would have been an important 

comparison to establish the functions DHQ play within the quinolone system. We were 

unable to identify residues in PqsD from the crystal structure that would block malonyl-

CoA binding, yet maintain interactions with longer fatty acids. For our study, certain 

assays required the use of a quinolone-null mutant supplemented back with 

alkylquinolones.  

 Pyocyanin production was maintained in the ΔpqsB mutant compared to the 

quinolone-null mutant. Similarly, both PAO1 and ΔpqsB culture supernatant 

supplementation increased pyocyanin production when added to a growing ΔpqsAB 

culture. Exogenous supplementation of DHQ did not increase pyocyanin production in 

the ΔpqsAB mutant. We are currently studying the bioavailability of extracellular DHQ 

and whether rhamnolipids are important for solubilizing DHQ to pass through the 

membrane. In solution, multiple species of the quinolones may exist through 

tautomerization between the carbonyl-groups. DHQ is a planar molecule, but may be 

charged in solution, which could affect crossing of the bacterial membrane. Importantly, 

no quinolone has been studied for their ability to cross the membrane, but studies have 

identified the membrane of having a regulatory role with the QS systems [169]. Not only 

are the dynamics with the membrane not understood, but we are still attempting to 

understand the influence of the biofilm matrix and QS molecule retention. QS molecules 

possessing hydrophobic moieties transiently bind to amyloid fibers that can retain the QS 

molecules close to the biofilm [39]. DHQ does not contain a similar hydrophobic group 

and may be retained in a different manner within the matrix.  



69	

The MexEF-OprN efflux pump secretes HHQ; therefore, we hypothesized the 

pump would also secrete DHQ based on structural similarity. We found extracellular 

DHQ decreased and increased based on mutants of the Mex system that either blocked its 

function or increased its activity, respectively.  

 Anaerobic metabolism and regulation of the Pqs system is connected by the 

nitrate reduction system [158]. In our work, we showed that regardless of oxygen 

availability, DHQ was secreted in high concentration. During anaerobic growth, nitrogen 

assimilation systems provide nitrate as an alternative electron acceptor; however, 

regulators of nitrogen assimilation systems reduce activity of the Pqs system. We 

hypothesize that DHQ may maintain low activity of the pqs operon over time, or, DHQ 

may be stored in intracellular pools. Under anaerobic conditions, MexEF-OprN is up-

regulated [101, 170]. In light of the secretion of DHQ through an efflux pump, 

anaerobiosis may be a trigger for a large release of DHQ into the environment. A large 

intracellular pool released under anaerobic conditions would explain why transcription of 

the Pqs system is reduced; yet we see an increase in DHQ concentration. Toxicity of 

DHQ towards host cells provides an extracellular role for DHQ to help P. aeruginosa 

maintain the environment under anaerobic conditions (24). 

 Community behaviors help to protect P. aeruginosa from environmental changes. 

We identified a strain that maintained DHQ production displayed some swarming 

compared to a quinolone-null mutant, but both strains appeared dramatically reduced 

compared to wild-type. This may be due to reduced cross-signaling of DHQ-PqsR with 

the Rhl system. Only PQS-PqsR has established function to activate the Rhl system and 

stimulate rhamnolipid production. After comparing the effects of DHQ on the community 
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behaviors, DHQ may not be primary initiator of multicellular phenotypes, but may 

maintain them under certain circumstances.  

Redox chemistry plays an important role in metabolism and other exploited 

phenotypes from P. aeruginosa. DHQ did not display the same redox properties found 

with PQS as observed through autolysis, long-term biofilm formation, and cyclic 

voltammetry. Although redox of PQS is important for biofilm formation, autolysis 

requires close regulation so that the community is not disturbed by extensive cell 

breakdown. The anaerobic environment, which enriches for extracellular DHQ, may not 

require autolysis or that autolysis has already occurred for community development.

 Our results help to show that different quinolone species may have specialized 

and redundant functions depending on the environment. Previous studies indicate that 

environmental and internal signals regulate QS and expand the functions of the 

molecules. The diversity of quinolones provides another level of complexity to 

understanding Pqs system regulation and activity, but may help to determine why P. 

aeruginosa is a successful human pathogen. 
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Chapter 3: DHQ activates PqsR for transcription of the pqs operon 
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3.1 Introduction  

 QS molecules target transcriptional regulators in order to synchronize community 

phenotypes and pathogenicity. In P. aeruginosa, homoserine lactones activate LuxR-type 

transcriptional regulators, while the alkylquinolones activate a LysR-type transcriptional 

regulator. The QS systems function together in a hierarchal manner, which may play a 

regulatory role between the QS systems [131]. The Las system is initiated earliest during 

growth and positively regulates both the Rhl and Pqs systems. Following the hierarchy, 

the Pqs system and Rhl system differentially regulate each other [87]. Although 

transcriptomic studies elucidated the changes in gene regulation following QS, synthesis 

of the QS molecules and interactions with target transcriptional regulators still remain an 

important area to investigate.  

 PqsR binds with alkylquinolones and is subsequently activated for DNA binding. 

LysR-type transcriptional regulators can function as both positive and negative 

regulators, but all share a similar size of about 300 amino acids and domain composition; 

a C-terminal ligand binding domain and a N-terminal DNA helix-turn-helix binding 

domain. LysR-type transcriptional regulators are often divergently transcribed from their 

target operon and require co-activators, which are part of a feedback loop [171]. PqsR is 

unique in that the regulator associates in the membrane until early stationary phase 

growth and is then released from the membrane into the cytoplasm [171]. Following 

release into the cytoplasm, a target ligand activates PqsR. Of the alkylquinolones, PQS is 

the most potent activator of PqsR; however, HHQ can also activate the transcriptional 

regulator [112]. Importantly, the preference of PqsR for PQS over HHQ includes activity 

with other target genes [112]. No other quinolone has been elucidated for their potential 
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to activate PqsR even though quinolones share a similar structure. Overall, both QS 

molecule production and a functional PqsR are essential for virulence in a model of 

infection [82, 172]. 

Illangova and Williams were the first group to publish a crystal structure of PqsR, 

2.5 Å, of both a native and ligand-bound form [173]. This was a significant increase from 

the previous analysis at 3.25 Å [174].  From the structures, they elucidated two ligand-

binding domains; Domain A and Domain B participate in coordinating alkylquinolone 

binding. While Domain A coordinates with the alkyl-moiety, Domain B encloses the 

bicyclic ring on either side and coordinate the molecule via two leucines and an 

isoleucine. Of the local amino acids, quinolones may form a hydrogen bond with Leu207.  

Following activation, PqsR binds to a consensus region –45bp upstream of the 

pqsA transcription initiation site to coordinate the loading of RNA polymerase for 

transcription of the operon [175]. The -45 region contains the LysR-box, a symmetrical 

purine/pyrimidine dyad, which shares similar sequence homology to promoter regions 

upstream of lasA and rhlA. PqsR regulates transcription of over 200 genes, many of 

which are involved in pathogenicity [171]. Both PQS and HHQ activate PqsR similarly in 

vitro, but PQS was found to be more active in activating production of pyocyanin [138].  

 Our study seeks to understand the interaction of DHQ, the most abundant 

quinolone, with PqsR. We hypothesize DHQ activates PqsR similarly to HHQ and PQS 

for transcription of the pqs operon. Our results will determine whether DHQ plays a 

redundant role to PQS and if DHQ has a specialized function during conditions when 

alkylquinolone synthesis is reduced.  
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3.2 Results 

 Several studies and a crystal structure demonstrated PQS to be a ligand for PqsR; 

however, further work to determine the function of other quinolones remains an 

unanswered question. Quinolones share a similar structure, yet most quinolones remain 

undetermined because of the low concentration found in culture. DHQ is a novel 

quinolone with no previously determined function, while its concentration is highest 

among quinolones produced.  

DHQ activated PqsR for transcription of the pqs operon. To determine how 

DHQ affects pqs operon transcription, we used quantitative real-time PCR (qRT-PCR) to 

monitor the expression of pqsA from PAO1 and pqs mutants grown to early stationary 

phase (Fig 3.1) (OD600 = 1.8). This phase of bacterial growth was selected because we 

had previously determined pyocyanin production at this bacterial density. Using the 

comparative threshold cycle numbers, levels of pqsA transcripts were 47% in the ΔpqsB 

mutant when normalized to PAO1. Comparatively, strains ΔpqsAB, ΔpqsR, and ΔpqsBR 

expressed pqsA at basal levels. We predicted the low transcriptional activity from the 

ΔpqsAB and ΔpqsR strains because it had been established that quinolone production and 

PqsR were required for transcription of the pqs operon [87, 138]. Transcription of pqsA 

from the ΔpqsBR strain, which produces DHQ but not PqsR, demonstrated that DHQ and 

PqsR are both essential for activity from the QS molecule.  

Quinolone-activated transcription of the pqs operon further increases production 

of quinolones and pyocyanin. The later requires both PqsE and PqsR. Therefore, we 

examined if the mutants differentially expressed pqsE. Bacteria transcribe operons to 

create a poly-cistronic transcript.  
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Figure	3.1	Expression	of	pqsA	and	pqsE	in	PAO1	and	pqs	mutants.	Strains	
grown	in	LB	until	cell	density	reached	OD600nm	of	1.8.	House-keeping	gene	
rpoD	was	used	for	normalization.	Relative	abundance	of	pqsA	and	pqsE	
transcript	level	determined	using	∆∆Ct	method	and	compared	with	PAO1,	
which	was	set	at	1.	Experiments	were	performed	in	triplicate	with	data	shown	
as	mean	±	SE.	Expression	of	pqsA	and	pqsE	from	the	∆pqsB	mutant	was	
significantly	different	(p	<	0.05)	compared	to	mutants	of	∆pqsAB,	∆pqsR,	and	
∆pqsBR	using	the	Student’s	T-test.	
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The genes are translated individually because the sequences contain their own ribosomal 

binding site, start site, and translational termination site. Although the general trend of 

expression mirrored what was found with pqsA, we were surprised to determine a 

difference in the expression of pqsA and pqsE from the strains. The ∆pqsB mutant 

maintained similar expression to wild-type, while the other mutants displayed reduced 

expression, although higher than previously expected. The increased expression of pqsE 

may indicate other systems are involved that regulates transcription at the end of the 

operon. However, due to the lack of pyocyanin from some of these strains, a threshold of 

expression may exist as another level of regulation. There may also be cofactors involved 

that are only available with quinolone production. 

 To further investigate the exogenous and endogenous activity of DHQ on PqsR, 

we performed promoter-fusion assays in E. coli and in the P. aeruginosa strains (Fig 3.2). 

The promoter-fusion construct contained the upstream regulatory element (-500 bp) of 

pqsA fused with the coding region of LacZ [176]. The construct also contained a copy of 

the pqsR gene, which was controlled by a tac promoter. DHQ supplemented to E. coli 

containing the reporter construct displayed a dose-dependent increase in LacZ activity. 

However, activity from 100 µM DHQ was significantly less compared to 1 µM PQS 

treatment. We also tested the effect of endogenous quinolone production on LacZ 

expression. DHQ from the ΔpqsB mutant was sufficient to activate LacZ activity similar 

to wild-type, while the ΔpqsAB strain displayed minimal activity.  
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Figure	3.2	Reporter	assay	of	PqsR	activity	in	E.	coli	and	P.	aeruginosa.	(A)	DHQ	
supplemented	to	E.	coli	carrying	the	reporter	construct	pEAL08-2.	LacZ	activity	in	
cells	treated	with	DMSO	was	set	as	the	baseline	(1µM	PQS	–	100		µM	DHQ,	p	=	
0.013).	(B)	Overnight	cultures	of	PAO1	and	pqs	mutants	containing	the	reporter	
plasmid	were	used	to	determine	the	effect	of	endogenously	generated	DHQ	on	PqsR	
activation	of	pqsA	promoter	(no	activity	from	pqsAB	mutant).	(C)	Co-
supplementation	of	100	µM	DHQ	with	30	µM	HHQ	or	30	µM	PQS	in	E.	coli	reporter	
(HHQ	–	HHQ/DHQ,	no	sig.	difference;	PQS	–	PQS/DHQ,	no	sig.	difference).	(D)	
Competition	of	100	µM	DHQ	or	30	µM	PQS	with	250	µM	farnesol	in	the	E.	coli	
reporter	(DMSO/farnesol	–	DHQ/farnesol,	p	=	0.0023).	Data	gathered	from	at	least	
duplicates	of	independent	experiments	and	represented	as	mean	±	SE.	Data	was	
statistically	analyzed	using	the	Student’s	T-test.	
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Due to potential differences in PqsR affinity for DHQ and PQS, we chose to look 

at the interactions of DHQ with HHQ and PQS co-supplemented to the E. coli reporter 

system. DHQ combined with either HHQ or PQS did not significantly alter LacZ 

expression compared to HHQ or PQS alone. No change in activity following co-

supplementation may indicate that PqsR has significantly higher affinity for the 

alkylquinolones compared to DHQ.  

 Various fungal species produce farnesol as a quorum-sensing molecule [177]. 

Farnesol was discovered to be an antagonist of PqsR activity leading to decreased 

transcription and pyocyanin production in P. aeruginosa [176]. In the E. coli reporter 

system, farnesol reduced LacZ level below the background activity that was established 

by vehicle treatment. DHQ supplemented with farnesol rebounded activation of the 

reporter indicating DHQ out-competed the inhibitor of PqsR. The increase in activity was 

similar to what was found when PQS was supplemented with farnesol.  

Taken together, endogenous transcription of pqsA from PAO1 and pqs mutants 

and activity from exogenously supplemented DHQ supplemented both show DHQ is able 

to activate PqsR for transcription of the operon.  

 In vitro assays demonstrate DHQ interacts directly with PqsR to bind with 

the promoter of pqsA. Few studies have investigated the direct interactions of PQS with 

PqsR until a crystal structure was solved [88, 139, 178]. Using this structure, we 

performed in silico docking of DHQ with PqsR to determine if DHQ interacted with 

similar amino acids compared to PQS (Data not shown). Modeling revealed DHQ 

potentially formed hydrogen bond to coordinating amino acids Ile236 and L208 similar to 

PQS, while also making novel hydrogen bonds with Ser196 and Glu194. Because DHQ 
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does not possess an alkylation, we did not observe any coordination to the second 

hydrophobic pocket identified with the alkylquinolones.  

To look at direct binding of activated PqsR with the promoter region of pqsA, we 

used the electrophoretic mobility shift assay (EMSA) with biotinylated-pqsA (Bio-pqsA) 

supplemented to PAO1 and the pqs mutant strains (Fig 3.3). Similar experiments 

identified the interaction of PqsR with the phn operon sequences, so we also sought to 

confirm the interaction with DHQ as the co-activator [172]. Only PAO1 and ΔpqsB cell-

lysates slowed pqsA migration through the gel, while the ΔpqsAB and ΔpqsR mutants 

displayed no interaction with the probe. This result confirmed that factors specific to a 

strain that produced PqsR and DHQ were required to interact with pqsA. Addition of 

unlabeled pqsA to PAO1 and ΔpqsB cell-lysates increased the free pqsA probe 

demonstrating the interaction was specific for pqsA.  

Because other systems within P. aeruginosa may affect the activation of PqsR for 

DNA binding, we recombinantly expressed PqsR in E. coli Rosetta and monitored the 

interaction of the pqsA probe with the cell-lysate. E. coli does not possess a homologous 

quinolone system; therefore, the bacteria can be used to document the interaction with the 

non-native system. Incubation of PqsR-containing lysate with exogenous PQS or DHQ 

initiated binding to pqsA, but not with DMSO alone. Therefore, a quinolone was required 

to activate PqsR for binding to the target region of pqsA. The shifts of the probe were 

compared to a Rosetta strain containing a His-SUMO tag only, which would show any 

non-specific interactions. The activation of PqsR only in the presence of quinolones 

indicated a specific interaction was involved in order to initiate QS and transcriptional 

regulation. 
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Figure	3.3	Electrophoretic	mobility	shift	assay	with	pqsA.	(A) EMSA assays 
with Biotinylated-pqsA (Bio-pqsA) probe incubated with cell-lysates of PAO1 and 
pqs mutants. (B) The interaction was specific for pqsA promoter as unlabeled-pqsA 
competed with Bio-pqsA probe. (C) Both DHQ (200µM) and PQS (30µM) 
promoted the interaction between recombinant PqsR with Bio-pqsA. (D) DHQ (0-5 
µM) and PQS (0-1 µM) promoted recombinant PqsR binding to Bio-pqsA probe in a 
concentration dependent manner. Quantification of free Bio-pqsA was performed 
using ImageJ software and non-linear curve fitting was done using GraphPad Prism 
software to determine the apparent Kd of PqsR for DHQ and PQS.	
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EMSA was previously used to study acyl-homoserine lactones binding with 

QscR, an orphan regulator [179]. We were able to use a similar method to semi- 

quantitatively determine affinity of PqsR to DHQ and PQS by measuring free Bio-pqsA 

with titrations of the quinolones to the system. Increasing concentrations of DHQ and 

PQS resulted in decreased free probe and increased retarded probe. From the curve of 

concentrations with density of free probe, the affinity of PqsR for DHQ was determined 

to be 150 nM and 33 nM for PQS. The difference in affinity was consistent with trends 

found previously with DHQ and PQS supplemented to the E. coli pqsA’-LacZ reporter. 

Compared to other published work, they identified in vitro affinity of PqsR for PQS to be 

around 1 µM [180]. The Kd for the alkylquinolones from these experiments appears to be 

method-dependent. For our purposes, results from the EMSA demonstrate DHQ activates 

PqsR for subsequent transcription of the operon. 

 Saturation transfer difference NMR (STD-NMR) can be used to study protein-

ligand biding in solution [181]. Saturation from the complex is assessed and the ligand 

signals are averaged following the overall effect in the free-state.  A 1D 1H NMR 

experiment is initially run at the thermal equilibrium for the off-resonance of the sample. 

Afterwards, the sample is run for on-resonance, during which some protons are 

selectively irradiated for a given saturation time. The off-resonance and on-resonance 

signals are subtracted, which leads to a positive difference between the molecules that are 

affected. After isolating those peaks that were derived from the ligand, changes in peak 

intensity throughout the titrations determine the Kd and identify residues on the ligand 

that directly interact with the protein.  
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Figure	3.4	STD-NMR	of	DHQ	titrated	to	PqsR-C87.	(A) STD-NMR spectra 
of 1 µM SUMO-PqsR-C87 titrated with 10 nm to 100 µM DHQ. A close-up 
view of the changing spectra was used to highlight the differences in peak 
intensities following increased DHQ concentrations. (B) Peak intensity of 
the most prominent peak (close-up view) versus concentration of DHQ was 
used to determine Kd of binding. (C) STD-NMR of 100 µM DHQ added to 1 
µM SUMO-PqsR-C87 and measured for saturation times in 0.5 sec intervals. 
Intervals selected to show saturation from initial incubation to 5 sec. D-
COSY assignments of DHQ used to map interacting hydrogens (numbered 
in orange).	
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We found PqsR saturation transfer to DHQ after signals appeared in the STD 

experiments (Fig 3.4). Novel peaks in the PqsR spectra were quantified for intensity and 

modeled for single-site kinetic binding. The Kd was semi-quantitatively determined to be 

450 nM. Interestingly, the saturation time showed a strong interaction after 3 seconds, 

while exhibiting fast-exchange interactions from 0.5 to 2.5 seconds. The fast-exchange 

may be explained by hydrophobic interactions within the hydrophobic pocket until DHQ 

is coordinated through hydrogen binding. Using the D-COSY assignments (Fig 3.5), we 

mapped the 1-D hydrogen spectra to show that the meta-hydrogen of DHQ participated in 

hydrogen-binding with PqsR. The ortho- and para-hydroxyl groups were not resolved 

because their hypothesized position was too close to the water peak to tell apart.  

We also determined the interchange of the keto-enol tautomerization. In solution, 

both species exist, which allows for the coordination of the hydrogen through either site. 

PQS can also go through a similar keto-enol tautomerization, but it is not known how the 

keto and enol form would affect the overall function of the molecule. For DHQ, we 

predict the enol form participates in hydrogen binding; however, both in-solution 

chemistry and structure of PqsR bound to DHQ will be required to formally determine 

the precise interactions. 
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Figure	3.5	D-COSY	assignments	for	DHQ	and	predicted	tautomerization	
about	the	substituted	pyridine	ring.	
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3.3 Discussion 

 In order to elucidate the interaction of DHQ with PqsR, we performed assays to 

determine activity of DHQ on PqsR and the effect of DHQ on transcription of the pqs 

operon. Our previous work demonstrated that production of DHQ resulted in phenotypes 

associated with an active Pqs system. Based on the similar structure shard by DHQ and 

the alkylquinolones, we hypothesized DHQ would also activate PqsR for transcription of 

the operon. Both RT-PCR and a reporter construct for pqsA transcription showed that the 

strain only able to produce DHQ maintained transcription of the pqs operon similar to 

wild-type. We also examined the in vitro interaction of DHQ with PqsR using EMSA and 

STD-NMR. Both assays elucidated comparative Kd values for PqsR and DHQ. 

Importantly, the assays found DHQ could perform the similar function as PQS and bind 

within the same pocket on PqsR. Based on the newly identified transcriptional effect of 

DHQ for the Pqs system, we have determined that DHQ shares a role with PQS to 

activate transcription of the system and identified a structural scaffold to use for future 

inhibitor studies with PqsR.  

 QS controls target genes in order to regulate gene expression at certain bacterial 

densities. The mechanism of QS involves a transcriptional regulator, which is normally 

not functional until activated by a cofactor. We determined that production of DHQ 

resulted in similar transcriptional activity compared to a strain that possessed an intact 

Pqs system. However, we were surprised to find differences in the first and last gene 

transcribed in the operon. Previously published work identified a second possible 

transcription start site for the operon before the coding region of pqsB [182]. However, 
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this work was only examined using RNA-seq and RACE. No other group has published 

on this site as a second promoter of the system. Another group also found a short 

sequence in pqsC that can be mutated that results in a promoter with high activity [183]. 

Strains that possess that mutation do not require quinolone signaling for activation of 

transcription. Based on the requirement for both PqsR and a co-activator, we are 

confident our strains function through the traditional signaling system via activated PqsR. 

This is supported through our mutants not expressing Pqs-associated phenotypes unless 

activated by a quinolone at the previously established density.  

 To complement the results from RT-PCR of the pqs operon, we performed assays 

with a reporter plasmid that carried the upstream region of pqsA fused with the coding 

region of LacZ. DHQ supplied to E. coli harboring the plasmid resulted in a dose-

dependent increase in LacZ activity, albeit not the level of a lower concentration of PQS. 

We also found endogenous production of DHQ activated the reporter system and that 

there were no other compensatory mechanisms that could activate the reporter without 

quinolones. Interestingly, we were able to recapture phenotypes associated with DHQ 

supplemented to E. coli, but not to P. aeruginosa. This may be due in part because of 

different membrane composition and the efflux pumps located in the membrane of P. 

aeruginosa. To our knowledge, no other group has elucidated the QS molecule dynamics 

of crossing the bacterial membrane. This is important because we are just beginning to 

understand cross-species and interkingdom signaling. 

 The Pqs system produces a number of different quinolones, but only HHQ and 

PQS have established signaling function. Because DHQ is also produced along with 

HHQ and PQS, it was important to determine whether DHQ has any competitive or 
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synergistic effects with the alkylquinolones on PqsR. DHQ supplemented with HHQ and 

PQS did not alter the level of LacZ activity compared to the alkylquinolones alone. Based 

on the lower activity of DHQ with PqsR, we predicted that higher concentrations of DHQ 

would affect the alkylquinolone binding. These results demonstrated the affinity of PqsR 

for the alkylquinolones were sufficiently higher enough to not be affected by the 

increased concentration of DHQ.  

Yeast secrete farnesol, which inhibits PqsR activity. Yeast such as Candida 

albicans can colonize similar infection environments along with P. aeruginosa. Because 

of their close colonization, it is not surprising that both strains would try to inhibit each 

other [176]. PQS supplemented to a system containing farnesol showed PQS outcompetes 

the inhibitor in order to maintain operation of the Pqs system. We also tested whether 

DHQ could outcompete Farnesol and found DHQ supplementation increased LacZ 

activity despite the presence of the antagonist. The capacity for another organism to 

target PqsR in order to reduce its activity highlights the fact that PqsR is a good target. 

With this in mind, we are still struggling to understand the dynamics of P. aeruginosa 

within a polymicrobial environment. We predict that bacteria are often involved in 

complex synergy and chemical warfare over limited nutrients and space. Over time, 

systems among the microbes evolved so that they can compete with the other species. 

Successful combat would require blocking those systems that are most effective in 

controlling the environment, i.e. pyocyanin and the Pqs system. However, because PqsR 

function is important for establishing an infection and maintaining the local environment, 

P. aeruginosa has developed several redundant mechanisms to ensure its activity.  
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 Molecular docking is a tool that can be used to generate hypotheses for how a 

ligand interacts with a protein. We used docking to determine whether DHQ binds with 

PqsR in silico and what could be the potential coordinating amino acids. We compared 

the structure of PqsR with an alkylquinolone and found DHQ could also bind within the 

same region. The core-quinolone moiety possessed by the molecules binds within an 

interior hydrophobic pocket of PqsR. This was not surprising because of the 

hydrophobicity of DHQ would most likely direct the molecule to the pocket. In order to 

more comprehensively study the interactions of DHQ and PqsR, in vitro methods EMSA 

and STD-NMR can be used to probe separate questions. The EMSA assay determined 

that DHQ was sufficient for activating PqsR to bind with the pqsA promoter. We also 

could measure the Kd by titrating DHQ into the assay and measuring the effect on the 

free-probe. Using software to fit the curve, we were able to elucidate the binding affinity 

of PqsR for both DHQ and PQS. Again, PqsR displayed higher affinity for PQS 

compared to DHQ. Other methods in publications determine affinity of PqsR for the 

alkylquinolones, again in a range from nanomolar to micromolar concentrations. 

Therefore, affinity found from the different experiments may be involved in an intricate 

relationship with the environment used to test the system and the data gathered from the 

assay. 

 STD-NMR can be used to determine the specific moieties involved in binding 

between the protein and ligand. DHQ was titrated into solution containing PqsR-C87, a 

truncation of PqsR missing the DNA-binding domain. The DNA-binding domain 

contains a helix-turn-helix binding motif, which can be insoluble and lead to poor protein 

purification. We found a dose-dependent shift in peaks from PqsR-C87, which indicated 
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DHQ interacts the protein. In order to determine the exact amino acids that are 

responsible for binding, double-labeled proteins can be pulsed using 2D and 3D NMR 

techniques. For our purpose, we solved the structure of DHQ and mapped the peaks of 

DHQ during the titration. Both keto-enol forms of the carbonyl fall too close to the 

central water peak to be identified individually. However, we were able to determine that 

the meta-hydrogen in between the two carbonyl-hydroxyl groups did display an 

increasing peak with higher concentrations of DHQ. The intensity of the peak was 

graphed based on concentration and used to determine the Kd of PqsR for DHQ. The Kd 

discovered from STD-NMR was similar to what we found using EMSA. We hypothesize 

that the increased Kd in STD-NMR is due to the environment of assay. STD-NMR 

requires the use of phosphate-buffered saline, while the EMSA used cell-lysate and 

glycerol. The cell-lysate along with glycerol may maintain the protein in solution better 

compared to the buffer, and therefore, yield higher affinity because of the increased 

stability. 

 Overall, we have found that PqsR binds to DHQ. Using both in vivo and in vitro 

techniques, we demonstrated that DHQ activated PqsR for transcription. It is important to 

note that no other group has discerned which species of quinolone may be required to 

participate in binding. DHQ should readily tautotomerize in solution and display two 

different charged species. Future work in this field should determine the natural state of 

DHQ in the environment and how the different tautomeric forms affect activity with 

PqsR. Similarly, the availability of the quinolones will be an important question to 

answer because charge and mass action kinetics will be involved in the system.  
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Chapter 4: DHQ is the most abundant quinolone in CF patient sputum and correlates 

to patient health.  
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4.1 Introduction 

 

 Cystic fibrosis is a genetic disorder that results in increased sweat chloride and 

mucous production. Overtime, other pathologies predominate such as chronic lung 

infection and increased immune cell infiltration. P. aeruginosa is one of the most 

commonly isolated CF pathogens and becomes the dominant organism in the lungs [184]. 

During chronic colonization, P. aeruginosa infection leads to progressive lung damage 

and respiratory failure [185] 

In vitro methods for studying host-pathogen interactions with P. aeruginosa in the 

lungs are limited. During chronic colonization, P. aeruginosa and the community 

together constantly change due to different selective pressures [186]. Due to the constant 

changes within the microbial community, it is not known how the resultant phenotypic 

changes affect patient health or the best method to assess virulence from the bacteria. 

Overall, the goal for treatment involves either eradication or maintenance of P. 

aeruginosa, but success with current therapies is limited.  

 Bacterial QS controls several community behaviors, which are essential for 

causing an infection. P. aeruginosa utilizes three QS systems to control virulence factor 

production and community lifestyles such as biofilm formation and swarming. Virulence 

factors have been extensively studied in vitro, but their direct involvement in lung 

pathology is not well understood. Biofilm and macrocolony formation, which are 

established antibiotic resistance mechanisms, have been identified from clinical samples 

of CF patients chronically infected with P. aeruginosa [187]. Swarming is less 
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understood, but has been hypothesized as a method for P. aeruginosa to further colonize 

areas in the lung.  

 Understanding the survival and fitness mechanisms from P. aeruginosa between 

different environments has not been well established. Within a planktonic culture, QS 

molecules function through a defined pathway, but these QS systems are altered during 

an infection. HSLs regulate community behaviors from the Las and Rhl systems, while 

quinolones alter behaviors from the Pqs system. Acidic conditions and certain enzymes 

break down HSLs [188]. Host cells may also hydrolyze the lactone ring  of HSLs, which 

acts as a host defense mechanism [189]. Quinolones are more stable and have few known 

enzymes that can affect the ring structure, none of which are produced from a human host 

[190]. Based on the stability of the quinolone, those molecules may accumulate over time 

during chronic colonization. Of the QS molecules, C12-HSL and C4-HSL have been 

quantified from patient samples in order to show P. aeruginosa forms biofilms within the 

lungs [191]. Of the quinolones produced, only PQS has been isolated from patient 

samples [117]. Phenazines, which are regulated by the PQS systems, have also been 

assessed for their impact on P. aeruginosa infection and correlation to patient lung 

function [192]. Because the QS systems are inter-regulated, the consortia of molecules 

may yield a biomarker of P. aeruginosa community phenotype and virulence factor 

production.   

For our investigation, we examined P. aeruginosa QS molecules from patients 

who maintained their lung function compared to those who experienced an exacerbation, 

which was diagnosed as a sudden decrease in lung function and increase in symptoms. 

Patients were enrolled in the study for up to three years and their clinical data was 
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recorded with the QS molecules from their sputum. Clinical data included: patient sex, 

age at the time of sample, genotype, treatment therapies, and microbiology cultures. In 

total, 45 patients were recruited into our study and were monitored for both stable and 

exacerbation periods. During their clinic visits, patient FEV1 was also recorded at the 

time of the sample. Concentrations of the QS molecules were used with statistical 

comparisons in order to determine the relationship of QS molecules with patient health 

status. We predominantly focused on the most abundant quinolone, DHQ, but also 

investigated QS molecules PQS, C4-HSL, and C12-HSL. During the study, we attempted 

to correlate QS molecules with maintenance of lung volume, initial exacerbation event, 

and treatment for an exacerbation.  
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4.2 Results 

 

Inclusion of patients, sputum sample collection, and review of patient medical records 

were approved by the Medical University of South Carolina Institutional Review Board. 

Adult CF patients were sampled during stable periods of lung function and exacerbations 

over three years. Patients were selected using the following criteria: over 18 years old, 

had a positive culture-history of P. aeruginosa, non-smoker, did not culture Burkholderia 

species, readily produced sputum, and received consistent treatment at the Medical 

University of South Carolina Adult CF Center. Those patients included in the study were 

consented and were periodically consulted to discuss their view on their symptoms and 

pathology. Patients who maintained their lung function gave samples during clinic visits, 

and those who underwent an exacerbation gave samples during the hospitalization until 

they could no longer produce sputum. The patients enrolled in the study were assessed 

not only for QS molecules in their sputum, but also for their sex, genotype, age at sample, 

antibiotic therapy, and microbiology cultures (Table 4.1). This study included 45 patients, 

23 female and 22 male, who gave over 80 samples during stable periods of disease and 

over 50 samples during exacerbations.  
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Patients (n1 = 45) Samples Received (n2=80)    

 Sex     23 female, 22 male 
        

 CFTR genotype, n2 (%)a      

 ΔF508/ΔF508    34 (75.5)  
 ΔF508/other    8 (17.8)  

 Other/other    3 (6.7)  
        
 Age at time of sample, yr (+/- SD)b   30.88 (12.15) 

        
Therapy at time of sample, n2 
(%)c      

 single antibiotic    16 (20)  
 two antibiotics    28 (35)  
 three antibiotics    25 (31)  

 Tobramycin (Tobi)    46 (58)  
 Aztreonam (Cayston)     20 (25)  
        

Microbiology (%)d       
 multiple Pa strains    31 (39)  
 Co-culture S. aureus and Pa   29 (36)  

 Co-culture Pa and fungi   29 (36)  
 

 

 

 

 

Table	4.1	Demographic	and	sample	information	for	subjects	enrolled	in	study.	
Patients	were	enrolled	for	three	years	and	were	sampled	at	both	clinical	visits	
and	hospitalizations	(or	when	available).	aPercent	of	total	patients	(45)	for	
comparison	of	CFTR	mutation.	bAge	at	time	of	sample	is	listed	as	mean	and	
(standard	deviation).	cPer	sample	percent	of	antibiotic	treatment	at	the	time	the	
sample	was	given.	dPer	sample	percent	of	microorganisms	found	within	the	
culture	sputum	given	to	the	MUSC	Microbiology	Lab.		
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DHQ was the most abundant quinolone quantified from stable CF patient 

sputum colonized with P. aeruginosa. Stable patient samples contained several QS 

molecules from the three central QS systems in P. aeruginosa (Fig 4.1). Although there 

are several methods to detect QS molecules in a sample, mass spectrometry provides a 

definitive method for quantification [193]. Previously published work demonstrated that 

conditions in the CF lung foster the increased production of C4-HSL and decreased 

production of C12-HSL [191]. Our in vitro work similarly found that increased C4-HSL 

over C12-HSL was indicative of growth under anaerobic conditions. Results from the 

stable CF patient samples were consistent with this trend that P. aeruginosa colonized 

anaerobic areas within the lungs. PQS was quantified from the samples as well, but was 

significantly lower in concentration compared to DHQ. HHQ was detected in the 

samples, but was under the limit of detection, <100nM. Therefore, the rest of the data 

focused on C4-HSL, C12-HSL, PQS, and DHQ.  

QS molecules between stable patient sputum displayed wide ranges in 

concentration (Table 4.2). DHQ was found to have a median concentration of 123 µM 

with an interquartile range of 25 to 464 µM. C4-HSL was another abundant QS molecule 

quantified in the sputum with a median concentration of 162 µM and an interquartile 

range of 41 to 452 µM. Both PQS and C12-HSL were significantly less compared to the 

other quinolone and HSL species, respectively. 
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Figure	4.1	Distribution	of	QS	molecules	from	stable	CF	patients.	Samples	
quantified	from	clinic	visits	and	graphed	using	a	scatter	plot.	Samples	(n=33)	
are	listed	with	mean	and	standard	deviation.	HHQ	is	not	shown	because	the	QS	
molecule	was	below	the	limit	of	detection.	
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QS Molecules (µM) DHQ PQS C4-HSL C12-HSL 

Minimum 0 0.229 0.6 0.829 

25% Percentile 25.3 0.7 41 10.38 

Median  123.2 0.8 162.6 21.65 

75% Percentile 464.3 0.9 452.1 57.5 

Maximum 3192 2.16 1732 507.1 

Mean  560.8 0.917 299.4 54.02 

Std. Deviation 910.5 0.3458 353.5 89.6 

Std. Error  158.5 0.0475 55.2 12.19 

 

 

 

 

 

 

 

 

 

 

 

 

Table	4.2	Descriptive	statistics	for	QS	molecules	in	stable	patient	sputum	
samples	(n=33).		
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DHQ positively correlated with stable patient FEV1. Patient FEV1 is a measure 

of patient lung expiratory volume. Measured volumes estimate lung function and 

provides an ongoing test to monitor progression of the disease [194]. Although there is a 

correlation of increased mortality of CF patients colonized with P. aeruginosa, there is 

currently no published report that directly measures the effect of P. aeruginosa on lung 

tissue. Because P. aeruginosa caused dramatic changes in cultured cells and secreted a 

vast arsenal of virulence factors, we predicted P. aeruginosa destroyed lung tissue either 

through direct or indirect mechanisms.  

P. aeruginosa produces several QS molecules that directly antagonize host cells. Both 

quinolones and HSLs alter host cell viability and cytokine response to LPS-activated 

macrophages [195, 196]. We determined DHQ positively correlated with FEV1, 

indicating higher concentrations DHQ was associated with higher lung function (Fig 4.2). 

No other QS molecule statistically correlated with a change in FEV1. However, C4-HSL 

was the next closest trend (p = 0.12), but demonstrated a negative correlation with FEV1. 

Our previous in vitro data found that DHQ inhibited epithelial cell replication, while 

reducing the viability of macrophages. Another effect on the immune system was 

identified when DHQ dramatically reduced IL-6 and TNF-α production from LPS-

stimulated macrophages. Alveolar macrophages are antigen-presenting cells in the lungs 

that react to foreign bacteria. The cytokines produced from the activated macrophages 

and other immune cells can induce a large influx of other host immune cells, which 

causes collateral damage to the lung tissue in the process. Inhibiting immune cell 

signaling would reduce the damage brought on by the immune system following P. 

aeruginosa infection [197].  
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Figure	4.2	Correlation	of	QS	molecules	with	patient	FEV1.	None	of	the	QS	
molecules	displayed	a	normal	distribution;	therefore,	correlation	of	QS	
molecules	with	FEV1	analyzed	using	Pearsons’s	Correlation	Coefficient	(PCC).	
For	all	samples:	n	=	33.	The	PCC	of	DHQ	=	0.36	(p	=	0.04),	PQS	=	0.03	(p	=	0.5),	
HHQ	=	-0.21	(p	=	0.12),	C12-HSL	=	-0.13	(p	=	0.17).				
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 Genotype and microbiology cultures of patients display changes in DHQ in 

stable patient sputum. Although the largest group of patients was homozygous for  

∆F508, we found that patients with other mutations displayed differences in the 

abundance of DHQ in sputum (Fig 4.3). Other groups have investigated the trend of 

patients based on their genotype and overall mortality; however, we are the first to show 

trends involved with P. aeruginosa QS molecules [198]. We also investigated the 

concentration of DHQ from patients who cultured P. aeruginosa and other 

microorganisms. In co-culture, P. aeruginosa alters QS molecule production and 

subsequent phenotypes in response to other organisms [151]. We found patients who co-

cultured Staphylococcus aureus or fungal species displayed increased DHQ in their 

sputum. This finding was consistent with other published work that demonstrated that the 

Pqs system was upregulated in response to other organisms [151].  

We also examined the change in DHQ concentration based on the number of P. 

aeruginosa colony morphologies cultured from sputum. The diversity of colony 

morphologies is generated, in part, from the Pqs system [199]. We found that the 

increasing diversity of colonies was associated with larger concentrations of DHQ. In 

light of the correlation of different P. aeruginosa features and FEV1, further work is 

necessary to understand the mechanism involved in vivo for the generation of diverse 

colonies either through the selection by antibiotics or the functions of the Pqs system. 
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Figure	4.3	Correlation	of	DHQ	with	genotype,	microbiology	cultures,	and	colony	
variants.	Data	displayed	as	scatter	plot.	Correlation	of	DHQ	with	number	of	
colony	morphologies	was	measured	using	Student’s	T-test	(*	p	=	0.024).	Other	
data	to	be	displayed	as	general	trends	among	the	samples.	
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Figure	4.4	Correlation	of	Age,	FEV1,	and	DHQ	concentration.	Patient	FEV1	at	the	
time	of	sampling	displayed	a	normal	distribution.	For	comparing	FEV1	and	age	and	
also	DHQ	concentration	and	age,	a	Pearson’s	Correlation	Coefficient	(PCC)	was	
used	to	determine	the	statistical	relationship.	No	significant	value	was	determined	
between	either	data	set.	
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Quinolones are made up of two fused benzene rings with a single nitrogen- 

substitution. The nature of the ring structure provides a stable structure that could 

accumulate over time in an environment. Conversely, HSLs are broken down quickly 

over time, especially in acidic environments. We predicted that quinolones accumulate 

over time after patients are colonized with P. aeruginosa. First, we investigated if there 

was a significant trend in FEV1 compared to age of stable patients (Fig 4.4). No 

significant trend existed between FEV1 and age; therefore, we could interpret whether 

age and DHQ concentration could be dependent regardless of FEV1. When we compared 

the age of patients with their respective DHQ concentration, again we found no 

significant trend. We initially hypothesized DHQ would increase overtime due to 

accumulation in sputum and in the lungs, but this did not take into account dynamics of 

QS molecules during acute and chronic periods of disease. The concentration of 

quinolones overall may change based on coughing out sputum and intense lung-clearing 

techniques. Although the concentration of QS molecule may fluctuate overtime, we still 

may be able to determine accumulation of QS molecules after following patients over 

time from their initial positive culture.  

 Concentration of DHQ does not predict an exacerbation event or change 

significantly during and exacerbation. Due to the use of QS systems to regulate 

bacterial pathogenicity, we predicted that increased QS molecule production would 

coincide with decreased lung function. During this time, we would also expect increased 

P. aeruginosa colonization and pathogenicity. Currently, there is no known connection 

between P. aeruginosa colonization and exacerbations.   
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Figure	4.5	Before-and-after	trends	of	QS	molecules	with	exacerbations.	
11	patients	undergoing	an	exacerbation	were	included	in	this	study	
because	they	had	given	sputum	samples	within	7	days	of	their	
exacerbation.	Exacerbation	samples	were	from	samples	given	on	day	1	of	
their	hospitalization.		
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QS molecules and the relationship to pathogenicity may lead to potential biomarkers 

from P. aeruginosa that are related to disease severity. 

 Quinolones and HSLs were compared between stable periods of disease and the 

first day of a diagnosed exacerbation, which was identified as a sudden drop in FEV1 and 

general health (Fig 4.5). None of the QS molecules demonstrated consistent trends 

between stable and exacerbation events. Both of the quinolones monitored showed 

intermixed increasing and decreasing concentrations. Of the HSLs, C12-HSL 

demonstrated a mix of trends between the patient health statuses, while C4-HSL 

displayed an increasing trend during exacerbations in > 70% of the patients monitored (n 

= 11). A much larger sample size is required to elucidate whether this trend is statistically 

significant. Importantly, this data provides initial evidence that the Rhl system is 

upregulated during an infection. Rhamnolipids are critical for both mobility of P. 

aeruginosa on a semi-solid surface and are important for reducing ROS caused by 

antibiotic treatment [119].  
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Figure	4.6	Change	in	QS	molecule	concentration	from	first	day	of	inpatient	
treatment	to	day	7	of	treatment	(n=11).	Samples	displayed	as	a	scatter	plot	with	
mean	and	SEM	listed.		
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During an exacerbation, patients are aggressively treated with antibiotics and 

respiratory therapy. However, P. aeruginosa survival despite therapy or how antibiotic 

treatment affects P. aeruginosa phenotypes in vivo is not known. We monitored QS  

molecules from patients undergoing first seven days of an exacerbation (Fig 4.6). 

Interestingly, the concentration of DHQ and PQS did not significantly change overtime. 

We anticipated a decreasing trend in concentration because the antibiotic therapy should 

reduce P. aeruginosa density and/or increase lung clearance, which would affect the 

concentration of QS molecules in the lungs. We did determine changes to both of the 

HSLs throughout an exacerbation. The changes demonstrated a mix of increasing and 

decreasing concentrations. Overall, the trends identified between the QS molecules 

indicated P. aeruginosa density was not affected despite therapy, while the HSL 

signaling systems were altered during an exacerbation or in the presence of treatment. 
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4.3 Discussion 

 

 Studying QS from P. aeruginosa in CF patient samples will help to show the 

phenotypes of the bacterium during an infection. Because QS regulates community 

behavior and pathogenicity in a density-dependent manner, we wanted to determine the 

dynamics of QS molecule concentrations in order to determine the phenotype of P. 

aeruginosa during disease. We focused on adult patients because the majority of this 

patient population harbored P. aeruginosa for years. However, we were unable to know 

exactly how long the adult CF patients were colonized, which may have affect 

concentrations of the QS molecules in the samples or the relationship to the other 

pathologies. Therefore, our work concentrated on QS molecule and their relationship to 

current patient characteristics and exacerbation events.  

 We determined DHQ had a wide distribution of concentrations from patients who 

maintained their lung function. DHQ accumulated up to milimolar concentrations in 

sputum, which was significantly higher than found in planktonic cultures. It was also 

interesting to find the concentration of PQS was more consistent between samples, but at 

significantly lower concentrations. We predict the low concentration of PQS was related 

to lowered production from P. aeruginosa when grown under microaerophilic to 

anaerobic conditions.  P. aeruginosa is often studied under aerobic conditions; however, 

this bacterium is able to utilize nitrate as a terminal electron acceptor, which is readily 

available in the lungs [200]. Growth within these different environments will alter 

bacterial phenotypes. In comparison among the different quinolones produced, DHQ was 
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secreted in high concentrations both in culture and within the lungs regardless of oxygen 

and may play an important extracellular role during an infection.  

 Our previous work tested the effect of DHQ exogenously supplied to LPS-

activated macrophages and subsequent cytokine production. Other published reports 

indicated that alkylquinolones reduced cytokine production, but those bacterial small 

molecules were not readily available in CF patient sputum. We confirmed DHQ also 

reduced cytokine production from LPS-stimulated macrophages and were able to 

associate our findings with patient FEV1. Although we did not directly test cytokines 

from patient samples, the high concentrations found in sputum support the extracellular 

function of DHQ to reduce host immune cell signaling [201]. Infiltrating immune cells 

cause collateral damage through normal immune processes that occur when the cells are 

fighting an infection [202]. Mice that displayed reduced immune activity did not contain 

as catastrophic lung damage compared to wild-type mice infected with P. aeruginosa 

[203]. Therefore, our findings are similar with P. aeruginosa colonization controlling the 

local immune system by reducing cytokine signaling and preserving the lung 

environment. Overall, patients whose P. aeruginosa strains secrete large amounts of 

DHQ may initially display higher lung function because the anti-inflammatory effect, but 

it is still not known how chronic exposure to DHQ may affect lung pathology.  

 Different CFTR mutations display different deleterious effects on patient lung 

function due to the activity, or lack thereof, from the CFTR [204]. The mutation most 

often found within our patients was ∆F508, but we also included patients that did not 

possess the F508 mutation. We found patients with different CF mutations displayed 

differences in DHQ concentration. However, we did not compare any other patient 
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conditions. Larger enrollment numbers may further elucidate a role for DHQ and the 

properties of P. aeruginosa infection in the different patients. We also identified DHQ 

concentrations change based on other organisms that were co-cultured with P. 

aeruginosa. In the presence of Staphylococcus aureus, P. aeruginosa increased 

expression of the Pqs system in order to produce a potent alkylquinolone-N-oxide [99]. 

We found sputum samples from patients that cultured both P. aeruginosa and S. aureus 

demonstrated increased concentration of DHQ compared to mono-cultures of P. 

aeruginosa. DHQ was also increased when P. aeruginosa was cultured with fungi. Both 

P. aeruginosa and yeast have been studied for their interactions; however, it is not clear if 

P. aeruginosa directly associates with the yeast or reacts to its metabolites in the 

environment [205]. This is an important question for the microbiology of CF patients and 

will help to understand another variable to the environment of P. aeruginosa during 

chronic colonization. In addition, discovery of two-component regulators and other 

sensor systems will be critical for also integrating how P. aeruginosa facilitates its 

interaction with the environment. 

 CF patients undergoing an exacerbation require extensive inpatient care. Based on 

the paradigm of CF pathologies, increasing colonization of bacteria in the lungs may play 

a primary role in initiating an exacerbation. Quorum sensing coordinates bacterial 

community development and virulence factor production; therefore, an increase in QS 

molecule concentration may be found before increased bacterial colonization or alteration 

of the lung environment. We studied QS molecules from the three established systems in 

order to identify how measuring QS molecules can be used as a biomarker for an 

exacerbation event. We found that the quinolones did not demonstrate a consistent trend 
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between stable and exacerbation periods, while the HSLs showed more uniforms trends. 

We initially hypothesized quinolones would show a sharp increase because of their 

relationship to growth under anaerobic conditions and virulence factor production. 

However, C4-HSL increased more often during the first day of an exacerbation. C4-HSL 

is responsible for the regulation of rhamnolipids, which play several roles for P. 

aeruginosa. Rhamnolipids are essential for swarming and may play a role in increasing 

P. aeruginosa colonization. Furthermore, we identified C4-HSL as a molecule that also 

fluctuated during an exacerbation. Limited studies have attempted to understand the 

interactions of the colonizing bacteria and the intense treatment received [206]. Previous 

work has already elucidated bacteria can react to small amounts of antibiotic in the 

environment by increasing biofilm formation [207]. It is reasonable to predict that IV 

antibiotic therapy and increased respiratory clearance will dramatically alter QS molecule 

synthesis from the bacteria, but these predictions remain to be concluded.  

Bacteria within the lungs undergo genetic variation throughout chronic 

colonization. Antibiotic treatment, anaerobic metabolism, and host ROS are all drivers of 

genomic diversification [208]. The variation in the genome is a result from synonymous 

and non-synonymous mutations within genes creating diverse phenotypes within the 

environment that compete for dominance [209]. Mutations are generated through a 

variety of mechanisms, but most mutations may arise from loss of optimal DNA repair 

capability. Therefore, not only is it important to understand how the genome is altered 

throughout an infection, but also how global metabolism changes in response to the 

mutations and downstream effects on lung pathology. Ultimately, these changes are 

guided via selective pressures, which may be both disease and patient specific. 
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 Based on the limited knowledge of bacterial reactions to antibiotic therapy and 

host factors, our data provides some of the initial evidences into understanding how the 

bacteria react to frequent changes in the environment. We provide a similar finding that 

increasing antibiotics caused alterations to the QS molecules secreted in the environment. 

Specifically, the HSLs displayed the most change, while the quinolones were relatively 

unaffected. HSL can signal for biofilm formation, but the link between HSL signaling 

and biofilm formation in vivo remains limited. The relatively small change in quinolones 

was interesting because patients are receiving aggressive therapy with the goal of 

reducing the bacterial concentration. If the bacterial community is reduced, we would 

expect a consequent reduction in QS molecules. This result would be the same for QS 

molecules that have accumulated in sputum. However, the QS molecules remained 

relatively unchanged; thereby, molecules that were removed by physical processes were 

either replaced or maintained in other pockets within the lungs despite treatment. Because 

the homoserine lactones are changing, we expect that those systems are upregulated in 

the presence of treatment. Further work is required to determine how long-term cultures 

are affected by treatment and how QS may be involved in the persistence of P. 

aeruginosa in the CF lungs. 
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Chapter 5: Conclusion and future outlook  
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DHQ and P. aeruginosa pathogenicity  

 

P. aeruginosa produces several different quinolones, but few have designated 

function within the Pqs system. We determined DHQ maintains a redundant ability to 

activate PqsR, but also has specialized function for reducing inflammatory signaling. Our 

initial results to identify the link between DHQ and pathogenicity utilized the C. elegans 

colonization assay and found a strain that only produced DHQ displayed increased tissue 

penetration, which may represent a role during P. aeruginosa colonization. The strain 

only able to produce DHQ also maintained production of pyocyanin providing another 

link to its role in pathogenicity. Apart from the other quinolones, DHQ abundance was 

not affected by anaerobic conditions, which is a component of the environment P. 

aeruginosa frequently colonizes. Although our work did not identify any redox properties 

of DHQ, we did identify a potential role in community behaviors that are essential for 

initiating an infection. Importantly, our work also united the function of DHQ within CF 

patients who were chronically colonized because of reduced cytokine production and cell 

viability. Overall, initial evidence of DHQ and its role within the Pqs system was 

confirmed and demonstrated that the novel quinolone performs key roles during active 

colonization of a host. 

P. aeruginosa stains only able to produce DHQ killed C. elegans significantly 

faster compared to a quinolone-null mutant. We were fortunate to have such polarizing 

results between the wild-type and the quinolone-null mutant in order to document the 

range of virulence. Although the DHQ-producing mutants did not completely display the 

total pathogenicity of the wild-type, the results clearly indicated DHQ was involved in 
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one or more virulence mechanisms that were perpetuated by the Pqs system, which may 

be required in order to activate optimal virulence. Because both DHQ-only mutants had 

similar trends in C. elegans death, we were confident that DHQ played the same role 

regardless of pqs gene deletion. The C. elegans infection only displays trends in total 

virulence, which is affected by both bacterial colonization and secreted virulence factors. 

In order to discern how DHQ production facilitated colonization in C. elegans, we 

monitored the real-time colonization of P. aeruginosa strains in the nematode.  

C. elegans consumes bacteria as its food-source during its maintenance on agar 

plates. Therefore, we were able to incubate C. elegans with the GFP-expressing bacteria 

and assess nematodes overtime. Throughout the experiment, we found increasing 

bacterial density in the central gut-track. At 144 h, we saw a difference between the wild-

type and ∆pqsB compared to the ∆pqsAB mutant. Those strains that produced DHQ 

displayed increased dissemination throughout the gut-track, while the quinolone-null 

mutant only had minimal fluorescence. This result indicated that the integrity of the 

surrounding tissue was compromised as a result of the quinolone or quinolone-mediated 

action. There are several mechanisms that can cause this tissue break-down; DHQ 

participated in this effect and can cause effects against host cells. This result may help to 

explain why CF patients have decreased lung function after reoccurring exacerbations.  

Mammalian cells respond to foreign bacteria through complex signaling and 

direct cytopathic mechanisms. Numerous studies focusing on CF have attempted to find a 

model for chronic infections, but most have not succeeded due to key differences in 

biology [210]. Of the models tested, the Porcine model has had the most success and may 

hold promise for elucidating key interactions found only during chronic colonization 
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[211]. C. elegans does not possess the same immune cell repertoire; thereby, nematodes 

respond to pathogenic bacteria via epithelial cell defensins and other basic regulatory 

signaling cascades (i.e. PAMPs and host damage) [212]. P. aeruginosa traditionally 

activates PAMP TLR4, but some P. aeruginosa strains have been found with altered O-

linked oligoglycosides that may not activate the receptor as strongly [213]. C. elegans 

may primarily respond to P. aeruginosa infection following cell damage caused by the 

bacterium. This aspect of infection response is also found with P. aeruginosa infections 

in humans, which demonstrates another parallel for C. elegans as a model. Although C. 

elegans captures some key cellular attributes in responding to P. aeruginosa infection, 

the model cannot be used to study chronic infections.   

Regardless of oxygen concentration, high concentrations of DHQ secreted into 

the environment demonstrated a unique feature among the quinolones. Anaerobic 

conditions limited all other quinolones, but DHQ was maintained around the same 

concentration compared to aerobic growth. These results provide the first evidence that 

Pqs molecules not only function during aerobic conditions, but also during anaerobic 

conditions. The ability to use quinolones under both conditions helps to show the Pqs 

system plays a role in fitness regardless of environment. 

Due to alkylquinolones HHQ and PQS requiring an active mechanism to leave the 

cell, we also hypothesized DHQ required a secretion system. The initial candidate for 

DHQ secretion was the MexEF-OprN efflux pump because the pump was identified to 

secrete HHQ. The RND-type efflux pumps are known to be promiscuous and may also 

secrete DHQ because of the structural similarity [214]. Results from mutants of the Mex 

system showed that increased expression of the pump displayed higher extracellular 
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concentrations of DHQ, while loss of pump machinery resulted in lower concentrations. 

There is no direct regulatory link between the Pqs system and the Mex system; however, 

environmental systems may affect both concurrently. During anaerobic growth, 

expression of the MexEF-OprN pump is increased, while antibiotic treatment also 

resulted in increased expression [215]. These two environmental changes may both be 

responsible for the increased efflux pump expression that has been isolated from strains 

in CF patient samples. Our preliminary work found that intracellular concentrations of 

DHQ are dramatically affected by anaerobic growth (data not shown). During aerobic 

growth, DHQ intracellular pools remain high, while anaerobic growth resulted in 

depleted intracellular pools. These results mirror those found with Mex efflux pump 

expression. Importantly, this provides an explanation for the anticipated reduced 

expression of the pqs operon during anaerobic growth, yet high extracellular 

concentration of DHQ. Future work may focus on quantifying transcription of both 

systems in order to confirm this conclusion. 

The high extracellular concentrations indicated DHQ might have a specialized 

role for controlling the environment during colonization. QS molecules from P. 

aeruginosa displayed different effects toward host cells, but most demonstrated either 

altered cytokine signaling or reduced viability. We determined DHQ reduced the viability 

of alveolar macrophages and also limited the reproduction of epithelial cells. Both effects 

are advantageous during an infection. Macrophages both consume bacteria as 

professional antigen presenters and secrete signals to increase the localized inflammatory 

response. Limiting epithelial cell reproduction would reduce the loss of limiting nutrients 

to host cells; thereby, allowing for better access for the bacteria. In order to further study 
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the effect of DHQ on damaged epithelial cells, scratch tests may be run in the presence of 

DHQ to determine how DHQ affects both cell migration and multiplication following 

injury. Inability to heal lung tissue following damage would perpetuate the disease and 

provide an explanation for the downward trend in lung function after consistent 

exacerbations. The effect of DHQ on the immune system demonstrated a direct role for 

DHQ with P. aeruginosa colonizing a host. Reducing the local inflammatory signaling 

cascade prevents other immune cells from moving in towards the bacteria in an attempt to 

kill the pathogens. Although a biofilm or other secreted products such as rhamnolipids 

can prevent phagocytosis, a secreted product that was able to reduce inflammation from a 

relative distance would be advantageous and help P. aeruginosa control the environment. 

The dynamics of DHQ in the environment is still not clear. We hypothesize DHQ 

is stable and resists deleterious conditions found with homoserine lactones. Therefore, 

DHQ may accumulate overtime unless transported by physical forces. The dynamics of 

DHQ is easier to understand within a planktonic culture because the molecule would 

exist within the aqueous environment. However, P. aeruginosa can also live as a biofilm; 

thereby, the QS molecules interact directly with constituents of the biofilm following 

secretion. Biofilms are constructed using polymeric substances that possess different 

chemical moieties, which can be hydrophobic, hydrophilic, positively charged, and 

negatively charged. These interactions are further compounded in the lungs of a CF 

patient because biofilms form in mucus. In solution, DHQ tautomerizes leaving both the 

keto and enol form. Based on mass-action kinetics, sequestered DHQ within the biofilm 

may become predominantly charged as the keto form switches to the stabilized enol form. 

However, this arrangement may have altered properties from what is anticipated for a 
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function. These properties include altered signaling, retention in a biofilm, or effect 

against host cells. Alkylquinolones possess a hydrophobic moiety that allows it to interact 

with the lipid components within the biofilm. DHQ does not have this moiety and may 

display different movement within the matrix. No work is available to determine how 

DHQ may or may not accumulate within the biofilm compared to the alkylquinolones. 

The biofilm matrix alone is a dynamic environment that is actively altered by P. 

aeruginosa [216]. Altering the polysaccharides secreted may be one such system 

elucidated in P. aeruginosa for modifying the biofilm matrix [217]. As the chemical 

dynamics of the biofilm changes, the molecules that are associated in the matrix will also 

change. The dynamics of DHQ in a biofilm and the subsequent changes in the biofilm 

demonstrate a niche adaptation mechanism that may be important to resist changes in the 

environment and the dissemination of the infection.  
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DHQ activates PqsR for transcription of the pqs operon 

 

 

Quinolones not only enact extracellular functions, but also activate signaling 

processes via PqsR. We performed several experiments to test whether DHQ is capable 

of activating PqsR. However, PqsR activated by alkylquinolones displayed increased 

activity, which indicated DHQ may only perform the signaling role in a redundant 

manner. With this in mind, we still do not understand the effect or potential for P. 

aeruginosa to possess multiple quinolones that appear to initiate similar functions.  

Initial assessment of pqs operon activity from the mutants identified that the 

production of DHQ increased transcription compared to a quinolone-null mutant. Late 

log/early stationary phase growth was significant because time-course experiments 

showed initial pyocyanin production at that period. Results from qRT-PCR of strains 

grown to late log/early stationary phase found DHQ and PqsR were both required for 

transcription. The difference in activity from pqsA and pqsE demonstrated that other 

mechanisms may be involved in maintaining transcription of the end of the operon. We 

hypothesize that production of pyocyanin may be more beneficial for the cell compared 

to quinolone production because of the bacteria’s preference for maintaining pqsE 

transcription despite quinolone production. 

Data from the real-time experiments were confirmed using a reporter containing a 

fusion of the pqsA promoter region and the lacZ gene. We determined that both 

exogenous supplementation and endogenous production of DHQ increased activity of the 

reporter compared to a vehicle control and quinolone-null control, respectively. 
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Importantly, DHQ supplemented to an E. coli strain containing the reporter demonstrated 

a dose-dependent increase in activity. This result indicated that DHQ directly influenced 

activity. However, supplementation experiments to P. aeruginosa strains did not display 

a significant increase (data not shown). The ability to pass through the membrane may 

account for why DHQ did not affect co-supplementation with HHQ and PQS, which 

possess alkyl-moieties that may become associated with the membrane. We hypothesize 

that the charge of DHQ in solution prevents the molecules from crossing the P. 

aeruginosa membrane or those molecules that enter are quickly secreted. 

In order to cross the membrane, DHQ may require association with another 

molecule to increase its hydrophobicity and decrease its charge. Rhamnolipids could 

increase the solubility of DHQ and help bring the molecule back into the cell. PqsR 

positively regulates the rhl operon for subsequent rhamnolipid production [154]. 

Together, rhamnolipids may play a role with quinolones to help facilitate their transport.   

DHQ supplemented to PqsR in vitro activated the transcriptional regulator to bind 

to the promoter region of pqsA. PqsR alone did not bind to the DNA indicating ligand 

binding was essential for activity. Again, a dose-response in binding demonstrated DHQ 

was another ligand of PqsR and supported the in vivo results from the reporter and real-

time experiments. The EMSAs were performed using cell-lysate, which supported the 

activity of recombinant PqsR. We performed EMSA in both E. coli producing 

recombinant PqsR and in the P. aeruginosa pqs mutants. Both sets of assays concluded 

DHQ was sufficient for activity. PqsR contains an insoluble DNA-binding domain and 

would precipitate from purification buffer quickly under ambient temperatures. Use of 

cell-lysate provided a vehicle to maintain PqsR in solution and may also facilitate the 
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interaction of the transcriptional regulator with DNA because of the more 

physiologically-relevant environment. Future work may investigate the binding of DHQ-

activated PqsR to other regions on the pqs operon. Previously published work has 

identified potential alternative binding sites for PqsR, but those sites remain to be 

substantiated using direct binding assays and defining what conditions those sites are 

used instead of the canonical pqsA promoter.  

 STD-NMR is a powerful structural technique to monitor the interaction between 

small molecules and proteins [181]. This in vitro assay confirmed the interaction of DHQ 

with PqsR and also began to determine the molecular interactions involved. We were able 

to use a truncated form of PqsR containing the ligand-binding domain to determine the 

Kd, residence time of the molecule, and moieties on DHQ responsible for binding. The 

technique relies on measuring the signal from the ligand before and during different 

titrations to a protein. Titrating DHQ to PqsR showed DHQ was in fast-exchange and that 

a certain hybridized C-H on DHQ is the donor group to form a hydrogen bond with PqsR. 

Both in vitro methods, STD-NMR and EMSA, determined the Kd for PqsR with DHQ to 

be in nanomolar concentrations. Further analysis of the interaction should focus on 

showing the structure of PqsR bound to DHQ. PqsR can be double-labeled, which allows 

for higher-order analysis of the structure via 2D and 3D techniques. Double-labeled 

protein can be used with two specific experiments in order to better determine the effects 

of titration on binding and the binding site. Structures of bound and unbound forms of 

PqsR would also show any potential structural changes that take place during binding and 

how that may preference activation for DNA binding.  
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 In a single cycle of QS, QS systems are activated and produce molecules that 

leave the cell. At a certain intracellular concentration following diffusion, transcriptional 

regulators initiate and this process repeats in a positive manner. There is limited 

information as to what may continue to happen within a mature community after initial 

activation of QS systems. Often long term growth requires a balance with the 

environment and cellular stress response systems that can maintain DNA and cell 

integrity despite self-inflicted stress. It is not understood how QS systems are involved 

during long-term growth. We hypothesize the Pqs and Rhl systems continue to be active 

over time and initiate a circadian rhythm by which only one QS system is active and the 

other is repressed. The rationale is that products from these systems are both essential for 

gathering nutrients and also maintaining the local environment. Therefore, QS activation 

of the systems are important because these products may become depleted and need 

replenishing. An interesting question for future research may focus on how 

environmental signals alter QS in order to gather those nutrients to maintain the essential 

or pathogenic systems.  
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DHQ and QS molecule consortia in CF sputum samples 

 

QS is involved in virulence factor production and biofilm formation in response to 

bacterial density in the environment. Most of the data gathered to support these 

interactions were performed in vitro, but only limited experiments have attempted to 

determine the properties of QS in vivo. Work on bacterial density has shown that bacteria 

do not need to grow to large numbers in order to communicate, rather a few cells in a 

small area can synchronize phenotypes [218]. Therefore, only a few bacterial cells are 

needed to enact QS regulation given the right environment together and capacity to 

exchange QS molecules. These small communities are significant because CF sputum 

contains small macrocolonies of bacteria that resemble small biofilm structures.  

We understand QS in a test-tube, but the environment has a dramatic effect on QS 

regulation. Limited nutrients, oxygen, and loss of QS molecules to the environment are 

some examples of different environments that alter QS. The environment that P. 

aeruginosa colonizes in an infection has taken recent interest in the research community 

and will be an area that will help compare QS phenotypes between in vitro and in vivo 

conditions.  

During chronic colonization of the CF lungs, P. aeruginosa undergoes several 

genotypic and phenotypic changes. These changes are both self-inflicted and induced by 

the environment. Following mutation, P. aeruginosa is under constant pressure for 

adaptation. The selective pressures in the lungs create a diverse community of P. 

aeruginosa cells that display different phenotypes and begin to resemble multicellular 

communities [219]. QS systems are frequently mutated throughout chronic colonization, 
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for example, the Las system is often mutated and losses function after colonization [220]. 

The Pqs system is another system that can also be mutated, but this is found much less 

often and requires the other QS systems to maintain function. When considering the 

interactions of QS and long-term growth, chronic colonization adds more complexity to 

understand how QS molecules can be interpreted as the active phenotype.. 

One limitation to studying QS molecules as a connection to disease severity and 

bacterial phenotypes is the poorly understood natural progression of molecules within the 

host environment. Bacteria synthesize QS molecules that accumulate in the environment, 

but the duration and integrity of the QS molecules is less understood. In the environment, 

molecules are subject to chemical conditions, which may cause them to breakdown. QS 

molecules may also be lost to physical processes and degradation by secreted enzymes. 

These changes to QS molecules will alter the concentration quantified from patient 

samples and may not represent the phenotypes found in vitro. The alterations in QS 

molecules will subsequently distort the conclusions reached based on QS molecules as 

biomarkers. Engineered in vitro systems may help to recapitulate those systems found 

within the lungs that alter the concentration of QS molecules and would help to assess 

phenotypes of bacteria.  

In order to assess QS molecule dynamics within the sputum, imaging mass 

spectrometry may be used with sections of mucus to investigate the accumulation of 

molecules [221]. Another future focus for QS biomarker research is mucus production, 

which is affected by several different treatments, i.e. DNases, hypertonic saline, and 

respiratory therapy. Our patient study assessed sputum from different CF patients 

throughout their treatment. We could not control the quality of sputum, time of 
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production, or the therapies the patients received, but we did ensure enough sputum was 

given in order to extract QS molecules. Working with the CF respiratory therapists, we 

were able to gather sputum both independently in the clinic and also following percussion 

therapy. Hospitalized patients gave samples during a morning routine with the respiratory 

therapists as well. Together, sputum sampling offered a convenient mechanism for 

sampling CF patient lungs, but will require further optimization for quality and 

reproducibility.  

 In order to reduce attack from the immune system, P. aeruginosa produces 

molecules that reduce signaling and viability of immune cells. For an opportunistic 

bacterium that resides in diverse natural environments, it is interesting to find a bacterial 

system that regulates host functions so efficiently. An important unanswered question to 

understand is what are the selective pressures that maintain production of DHQ. .We 

have found evidence that DHQ may be actively involved in dampening the host immune 

response. During an infection, reducing macrophage activity limits the inflammatory 

response that P. aeruginosa faces in the lungs. Other QS also affect the inflammatory 

response, which may have an effect on how P. aeruginosa protects its microenvironment 

during an infection. Future studies of the role of QS and inflammation should investigate 

the QS molecules together as a consortium in order to determine the complicated 

interactions that are involved.  
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Future Directions 

 

DHQ plays both specialized and redundant roles for the Pqs system, but most 

importantly, DHQ is produced in high concentrations. Bacteria do not waste resources 

and quickly adapt their phenotypes. Those systems that are not essential for P. 

aeruginosa are selected against overtime. Our research focused on the importance of 

DHQ to P. aeruginosa during an infection. We found that production of DHQ maintained 

pathogenicity towards an infection model when synthesis of the other quinolones was 

stopped. However, DHQ did not perform as a signaling molecule to the same level 

compared to HHQ and PQS. What we did conclude was DHQ played a significant role as 

an extracellular molecule against host cells, regardless of oxygen present. An important 

unanswered question is what role DHQ plays for P. aeruginosa during its colonization of 

a soil or aquatic environment. These environments are the reservoir of P. aeruginosa. As 

an opportunistic infection, P. aeruginosa only causes disease when a barrier is broken 

down. Therefore, P. aeruginosa persists in the environment until it comes into contact 

with a host. For P. aeruginosa to maintain DHQ production host-to-host, DHQ must play 

a role that is not selected against. For most bacterial pathogens, this question is often 

unanswered for secondary metabolites.  

 From the Pqs system, a large group of quinolones is produced. However, apart 

from the alkylquinolones, DHQ is the only terminate non-alkylated product. With this in 

consideration, a future question may involve the evolution of DHQ synthesis away from 

the other quinolones. Two hypotheses provide possibilities as to why DHQ diverged 

within the Pqs system. First, DHQ formation preceded synthesis of alkylquinolones, 
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which were developed for better signaling and transcriptional regulation. Also, the 

lowered ability for signaling may indicate that the extracellular role for DHQ was 

originally utilized by P. aeruginosa followed by some QS activity with the molecule. An 

alternative hypothesis is that DHQ was more recently developed from the Pqs system. As 

the Pqs system became more pivotal for survival, alkylquinolones were produced as an 

expensive signaling molecule. In order to produce quinolones optimally, DHQ was 

synthesized because its precursors are significantly more abundant in an environment. 

Development of DHQ production after establishment of alkylquinolone signaling would 

only come from a selective pressure that DHQ fulfills. The selective pressure for this 

adaptation would likely remain with P. aeruginosa. Research needs to determine what 

environmental factors potentiate the use of DHQ for increased P. aeruginosa survival. 

 The use of DHQ as an anti-inflammatory drug requires further investigation, but 

offers an exciting outlook for the molecule. The extracellular effects of DHQ were 

dramatic against host cells because the results indicated DHQ reduced cellular viability 

and key inflammatory signals. DHQ treated lung epithelial cells displayed reduced 

cellular replication, but no outward effect on cellular morphology or metabolism. 

Reduced MTS reading from the epithelial cells were a result of lower cell number. The 

effects of DHQ against alveolar macrophages were different in that DHQ was toxic 

towards the host cells based on reduced MTS reading and similar cell counts compared to 

vehicle treatment. LPS-activated macrophages also produced fewer cytokines as a result 

of DHQ treatment. Previous work demonstrated quinolones reduced NF-kB signaling, 

which is responsible for activating cytokine production. Future work may also determine 

if DHQ also has an effect on IL-10 production, which is an anti-inflammatory cytokine. 



130	

Because of the low toxicity and low micromolar concentration required to reduce 

cytokines, DHQ is a good scaffold for further development of anti-inflammatory 

compounds.  

Recently published work identified overactive inflammation as an agent of several 

diseases [222]. The reason for over-active inflammation was a result of the inability to 

reduce the signaling cascade after initiation. DHQ may be used in these situations to 

lower patient inflammation, but not critically limit the immune system to the point of 

predisposing those to opportunistic infections.  

 QS systems can be targets for inhibition that would reduce pathogenicity of 

bacteria. Because QS systems are essential for initiating an infection in models, inhibiting 

QS would allow the host’s immune system to kill the bacteria. Several groups have 

identified compounds that block QS in vitro and also have some success in vivo. 

However, no drug has been brought to market as a result of the research. Researchers 

have encountered issues with access to targets, solubility of compounds, and 

identification of targets that have maximum effect. PqsR may be the most effective 

because of its regulation of the pqs and rhl operons [223]. Loss of PqsR would result in 

blocked quinolone production, reduced ability to form communities, and lowered 

pyocyanin production. These are all key factors that make P. aeruginosa a successful 

pathogen. In fact all transcriptional regulators are potential targets for inhibition because 

of their investment in QS, biofilm formation, and virulence factor production [51]. Future 

work can exploit the structural determination of the transcriptional regulators and new 

methods of drug delivery.  
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Methods 

1. Bacterial strains, plasmids, and media 

 P. aeruginosa wild-type strain PAO1, derived mutants, and E. coli strains were 

grown in Luria–Bertani (LB) medium at 37°C in a shaker incubator. Cystic fibrosis 

mimic media was created according to Palmer et al [23]. Hypoxic conditions were 

created by flushing media with N2 for 10 min and incubating cultures within a screw-cap 

vial sealed with a Tephlon© insert. All strains and plasmids used are listed on Table 1. 

When necessary, 200 or 50 µg/ml carbenicillin (CBC), 30 µg/ml kanamycin (Km), and/or 

34 µg/ml chloramphenicol was added to the culture medium.  Culture density was 

assessed by measuring absorbance at 600 nm.  DHQ (2,4-dihydroxyquinoline) was 

purchased from Sigma-Aldrich and PQS (2-heptyl-3-hydroxy-4-quinolone) and HHQ (2-

heptly-4-quinolone) were purchased from Qingdao Vochem Co..  

 

2. Generation of mutants 

 P. aeruginosa mutant strains were generated by homologous recombination using 

a protocol described previously [224]. The mutant alleles were constructed by 

overlapping PCR to contain a gentamicin-resistance cassette flanked by 5’ and 3’ 

fragments of the gene to be deleted. The mutant fragments were inserted into 

pEX18ApGW, a suicide vector, to produce gene knockout plasmids. Each knockout 

plasmid was transformed into E. coli strain SM10 and conjugally transferred from SM10 

to PAO1. The resultant integrants were selected on PIA medium containing 30 µg/ml 

gentamicin. To ascertain resolution of merodiploids, Gmr colonies were streaked for 

single colonies on LB+Gm30 plates containing 5% sucrose. The unmarked deletion 
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mutants were generated by Flp-mediated marker excision utilizing pFLP2. Potential 

mutants were screened by PCR using corresponding flanking primers, and were 

confirmed by sequencing.  

 

3. Generation of protein-expressing plasmids and protein purification 

Gene fragments of PqsR and PqsR-C87 were PCR amplified and digested with restriction 

enzymes. Digested fragments were cloned into ppSUMO before transformation into 

Promega JM109. Colonies isolated following transformation were sequenced to ensure 

integrity and directionality of the insert. BL21(DE3) and Rosetta were transformed with 

the expression plasmids for protein production. Briefly, E. coli containing the expression 

plasmids were grown in LB to OD600 of 0.6 and heat-shocked at 45°C for 45 min, 

followed by induction with 0.1mM isopropyl β-D-thiogalactopyranoside at 16°C for 16 h. 

The cells were harvested by centrifugation and resuspened in Tris-HCL (pH 8.0), 500 

mM NaCl and lysed using sonication (40% amplitude, 15 sec sonication with 45 sec 

break for 5 min). His-tagged protein in the cell-free supernatant was purified using nickel 

affinity chromatography. The fractions containing pure protein were pooled, 

concentrated, and stored either at -80°C or with 50% v/v glycerol at -20°C. Protein 

concentration was determined using the Bradford method [225].  

 

4. Caenorhabditis elegans survival and imaging.  

 Bristol N2 strain of C. elegans was maintained and synchronized on nematode 

growth media (NGM) containing E. coli OP50 according to the worm book [226]. 

Synchronized L4 nematodes (around 30 per plate) were transferred to 60 mm petri dishes 
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with bacterial lawns of the P. aeruginosa strains, which had been incubated overnight at 

37°C. Assays were conducted at 25°C and nematodes were monitored daily for survival. 

Dead nematodes were determined after no movement following stimulation with a 

platinum wire. To assess in vivo bacterial colonization, P. aeruginosa strains carrying a 

GFP-expressing plasmid were used for infection. At the indicated time-points, nematodes 

were removed and allowed to move on fresh agar to remove bacteria attached to the 

outside of the nematodes. These nematodes were placed into a 10 µl drop of water on a 

glass slide and covered with a cover slip. Samples were viewed using a Nikon TE2000-S 

Epifluorescent microscope with CRI-Nuance imaging system. Images were color-

enhanced and analyzed with ImageJ (NIH).  

 

5. Pyocyanin quantification 

 Pyocyanin was measured using a modified protocol from previous work [227]. 

Briefly, 400 µl of overnight culture cell-free supernatant was mixed with 240 µl 

chloroform. After mixing vigorously, 200 µl of the organic phase was transferred to a 

new tube and mixed with 60 µl 0.2 N HCl. Pyocyanin was measured 

spectrophotometrically at 520 nm using a NanoDrop ND-1000 spectrophotometer.  

 

6. Quantitative Real Time PCR (qRT-PCR) 

 P. aeruginosa strains were grown in LB until early stationary phase. Total RNA 

was harvested using 5-Prime PerfectPure Cultured Cell kit according to the 

manufacturer’s instructions. RNA was treated with DNaseI and precipitated overnight at -

20°C using the Ambion DNase treatment and removal kit. cDNA was generated using the 
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Bioline Tetro cDNA synthesis kit and manufacturer’s instructions. Bioline SensiFAST 

SYBR&Fluorescien kit with cDNA and primers for pqsA and rpoD were run on a Bio-

Rad MyIQ RT-PCR detection system. The expression levels of pqsA were measured as 

previously described [228]. 

 

7. pqsA’-LacZ fusion reporter assay 

 LacZ reporter assay was performed in both E. coli and in P. aeruginosa strains as 

previously described [176]. Briefly, overnight cultures of E. coli:pEAL08-2 was diluted 

to OD 600 nm 0.05 and grown in the presence of quinolones for 2 h, followed by 

centrifugation of the cells. P. aeruginosa strains with pEAL08-2 were grown overnight 

after dilution to OD 600 nm 0.05. Cells were lysed and activity was measured using the 

Promega β-galactosidase enzyme assay kit and measured at absorbance 420 nm on a 

BioTek Synergy HT plate reader. 

 

8. Electrophoretic Mobility Shift Assay (EMSA) 

 Protein-DNA gel retention assays were performed using cell lysates from PAO1, 

pqs mutants, and Rosetta strains induced for SUMO or SUMO-PqsR production as 

described [176]. For each sample, 10 µg of cell-lysate was incubated with 0.15 fmol of 

biotinylated-pqsA that was generated from PCR amplification with biotinylated-primers 

with the Pierce LightShift Chemiluminescent EMSA kit (10mM Tris-HCL, pH8.0, 1mM 

EDTA, 50mM NaCl + 1mM Dithiothreitol + 1 µg/µl Poly(dIdC)) and 0.5x Tris Borate 

EDTA (TBE) buffer for 20 min at room temperature (24°C). Unlabeled pqsA was 

generated using the same primers as the Bio-pqsA, but without the biotinylation tag. 
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Samples were run at 100 V for 50 min on a 5% polyacrylamide gel and transferred onto a 

positively-charged nylon membrane at 40 V for 1 h. The nylon membrane was processed 

with the chemiluminescence kit and exposed to either X-ray film or GE ImageQuant RT-

ECL. 

 

9. Saturation Transfer Difference NMR 

STD NMR experiments were prepared with 1 µM SUMO-PqsR-C87 with increasing 

concentrations of DHQ (10 nm to 100 µM). Data was collected at 298K on a Bruker 

Avance III 600 MHz NMR spectrometer equipped with a 5 mm cryogenically-cooled 

QC-Inverse and using a standard STD pulse sequence with 30 ms 8.4 kHz spin lock to 

minimize background protein resonances [229]. Solvent suppression was achieved using 

the excitation sculpting scheme. Saturation of the protein signals was performed using a 

train of 10, 20, or 59 selective 56 dB Gaussian pulses of 50 ms duration with total 

saturation times of 0.25 sec to 5.0 sec. The on-resonance frequency was set up at -0.5 

ppm. STD spectra were acquired from 64 scans, 2050 receiver gain, and 14 ppm sweep 

width.  

 

10. Quantification of quorum-sensing molecules 

 PAO1 aerobic and anaerobic cultures were grown overnight. Cultures were spun 

down and the supernatant was collected and acidified with 0.1% formic acid. HPLC 

purification was carried out using a WATERS HPLC system (HPLC 2767 Sample 

Manager), 1525 WATERS 2996 PDA and WATERS ZQ Single Quadrapole Mass 

Detector outfitted with MASS LYNX software (Waters Corporation, Milford, MA). The 
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HPLC/MS method was water/acetonitrile (ACN) gradient with 0.1% formic acid in both 

solvents. Samples were loaded onto an Ascentis Express C18 (Sulpeco Analytical) 5 µm 

particle size, 150 mm x 21 mm column. The flow scheme conditions were: 0.4 ml/min 

flow rate, 70:30 water/ACN (hold for 2 min). This was followed by a linear gradient over 

30 min to 100% ACN. The 100% ACN was held for 5 min prior to re-establishment of 

original flow conditions. Column temperature was held at 30°C.  

 

11. Cell viability and total cell counts 

 Human A549 lung carcinoma cell line and murine RAW264.7 alveolar 

macrophages were maintained in RPMI supplemented with 10% fetal bovine serum at 

37°C with 5% CO2. Cells were maintained in flasks and transferred at confluency to 96-

well plates (2x104 per well). After transferring, cells were treated with quinolones in 

DMSO. Viability of cells was assessed by MTS assay using the Promega CellTiter 96 

aqueous non-radioactive cell proliferation kit according to manufacturer’s instructions. 

Total cell counts were performed in 24-well plates (2x104 per well for A549 cells and 

3x103 per well for RAW264.7 cells) with a single quinolone concentration for treatment. 

A549 cells were removed for numeration using 0.05% trypsin and RAW264.7 cells were 

removed using a cell scraper. Cells were treated with Trypan blue and counted using a 

haemocytometer.  

 

12. Molecular modeling 

 Docking studies were performed using GOLD software package 5.1. (Cambridge 

Crystallographic Data Centre, Cambridge, UK). The X-ray coordinates of PqsR (4JVD, 
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4JVC, and 4JVI) were downloaded from the Protein Data Bank. The active site was 

determined from both 4JVD and 4JVI. Docking of DHQ with PqsR was energy 

minimized and scored using ChemPLP. Of the possible sites generated by modeling, the 

highest fitness score provided the potential interactions to diagram. Molecular Operations 

Environment (MOE) was used to diagram DHQ within the PqsR hydrophobic binding 

pocket.  

	

13.	Extraction	of	QS	molecules	from	sputum	

	 Sputum	was	measured	for	volume	and	extracted	with	2	volumes	of	ethyl	

acetate.	The	organic	phase	of	the	extraction	was	dried	down	under	nitrogen	and	

rehydrated	in	formic	acid	and	ethanol.	Samples	were	maintained	at	-20⁰C	until	

processed	through	LC-MS.	
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