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Over the last decade, an increasing number of reports underscored the importance of

epigenetic regulations in brain plasticity. Epigenetic elements such as readers, writers

and erasers recognize, establish, and remove the epigenetic tags in nucleosomes,

respectively. One such regulation concerns DNA-methylation and demethylation, which

are highly dynamic and activity-dependent processes even in the adult neurons. It is

nowadays widely believed that external stimuli control the methylation marks on the

DNA and that such processes serve transcriptional regulation in neurons. In this mini-

review, we cover the current knowledge on the regulatory mechanisms controlling in

particular DNA demethylation as well as the possible functional consequences in health

and disease.
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INTRODUCTION

Among several other epigenetic tags, methyl tags on the DNA were generally considered as

repressive marks. However, an increasing number of studies showed that the DNA methylation at

intergenic regions as well as gene regulatory regions might enhance gene expression (Bayraktar and

Kreutz, 2017). How, the key enzymes in DNA methylation, DNA methyltransferases (DNMTs),

are differentially regulated and perform the DNA methylation are well characterized (Goll and

Bestor, 2005; Bayraktar and Kreutz, 2017). However, the removal of methyl tags from the DNA

has been more perplexing. The reversal of DNA methylation can take place passively by diluting

the DNA methylation of both copies of the genome following multiple rounds of cell division in

the absence of maintenance of DNAmethylation (Inoue and Zhang, 2011). In postmitotic neurons,

other mechanisms must be in place. Current opinion disfavors the direct removal of the covalent

bond between the methyl groups and cytosines (Ooi and Bestor, 2008). A unifying mechanistic

process on how active DNA demethylation is still lacking. We, therefore, discuss how active DNA

demethylation is achieved by the interplay of DNA oxidative reactions and repair mechanisms.

MECHANISMS OF ACTIVE DNA DEMETHYLATION

Several proteins have been identified that are part of neuronal demethylation machinery. These

include Growth Arrest and DNA Damage-inducible (GADD) 45 proteins (GADD45A and

GADD45B) that in neurons take part in active DNA demethylation processes (Barreto et al.,

2007; Ma et al., 2009). Termed initially as the MyD118 (myeloid differentiation), Gadd45b was
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identified as an immediate gene whose expression was induced

following the induction of long-term potentiation (LTP)

in vivo (Hevroni et al., 1998). GADD45B mediated activity-

dependent demethylation was first shown for the promoter of

fibroblast growth factor 1, isoform B (Fgf1B) and Brain-derived

neurotrophic factor (Bdnf) 9. It is nowadays widely believed that

GADD45B contributes to demethylation in conjunction with

other modifiers which will be discussed below.

5-hydroxymethyl cytosine (5hmC) was first described in

the 1972 (Penn et al., 1972) and more than three decades

later enzymatic activity of Ten-eleven translocation (TET)

proteins was discovered to biochemically convert 5mC to 5hmC

(Tahiliani et al., 2009; Ito et al., 2010). The characterization

of TET enzymes (Tahiliani et al., 2009; Ito et al., 2010)

and 5hmC in the brain (Kriaucionis and Heintz, 2009) also

advanced our understanding of active DNA demethylation

in neurons. In successive oxidation steps 5mC is initially

converted to 5hmC which is followed by the conversion to

5-formylcytosine (5fC) and subsequently 5-carboxylcytosine

(5cC). Each of these steps requires one of the three TET

enzymes (Ito et al., 2011; Figure 1). 5fC and 5caC can

be recognized and excised by Thymine DNA Glycosylase

(TDG) generating an apyrimidinic (AP) site (He et al., 2011;

Maiti and Drohat, 2011). The AP site is then corrected

by specific base-excision repair mechanism (BER) with the

replacement of cytosine in mammals (Zhu, 2009). TDG

depletion in embryonic stem cells causes enhanced levels of

5fC and 5caC at proximal and distal gene regulatory elements

(Raiber et al., 2012; Shen et al., 2013). TDG knockout or

catalytical inactivation leads to embryonic lethality in mice

and hypermethylated CpG islands (Cortellino et al., 2011).

Along these lines, the perturbation of BER enzymes by

genetic and pharmacological inhibition results in the partial

block of global DNA demethylation in mouse germ line

(Hajkova et al., 2010). Collectively this evidence suggests that

BER has an evolutionarily conserved role in active DNA

demethylation.

The finding that TDG rapidly processes the oxidation

products by TET enzymes corroborated the view of a TET-

initiated, TDG-processed and BER-terminated active DNA

demethylation mechanism. In support of this picture and

the surmised recruiting function of GADD45B, Li et al.

(2015) reported that GADD45A as well as GADD45B promote

demethylation of an in vitro methylated promoter through

TDG. TDG physically interacts with GADD45 and in the

presence of the triple complex, GADD45B, TDG and TET2,

a complete demethylation of reporters could be achieved (Li

et al., 2015). TDG has several interesting and yet not well-

understood features. It interacts with DNMT3A either via the

PWWP or the catalytic domain of DNMT3A (see Figure 2).

This interaction enhances TDG activity possibly by facilitating

the binding of TDG to the mismatch sites while binding to

TDG at the same time represses DNMT3A methyltransferase

activity (Li et al., 2007). TDG is one of the two enzymes

that together with the methyl-CpG binding domain protein 4

(MBD4) is known to initiate this repair mechanism (Hardeland

et al., 2001; Krokan et al., 2002). Both TDG and MBD4 possess

FIGURE 1 | Pathways of active DNA demethylation. Since the formerly

hypothesized demethylase to directly convert 5-methylcytosine (5mC) to

cytosine (Cyt) has not been identified, we depict here the current view how

active DNA demethylation might take place. 5mC is oxidized by ten-eleven

translocation (TET) family of dioxygenases to generate

5-hydroxymethylcytosine (5hmC). In successive steps TET enzymes further

hydroxylate 5hmC to generate 5-formylcytosine (5fC) and 5-carboxylcytosine

(5caC). Thymine DNA glycosylase (TDG) recognizes intermediate DNA forms

5fC and 5caC and excises the glycosidic bond resulting in an apyrimidinic (AP)

site. In an alternative deamination pathway 5hmC can be deaminated by

activity-induced cytidine deaminase/apolipoprotein B mRNA editing complex

(AID/APOBEC) deaminases to form 5-hydroxymethyluracil (5hmU) or 5mC can

be converted to Thymine (Thy). 5hmU can be cleaved by TDG,

single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1),

Nei-Like DNA Glycosylase 1 (NEIL1), or methyl-CpG binding protein 4 (MBD4).

AP sites and T:G mismatches can be efficiently repaired by Base Excision

Repair (BER) enzymes. Dotted lines indicate a proposed but not

experimentally proven path.

low levels of 5mC DNA glycosylase activity in vitro (Zhu et al.,

2000a,b).

Deamination of 5mC and 5hmC by Activity Induced

Cytosine Deaminase (AID) or apolipoprotein B mRNA editing

complex (APOBEC) is an alternative path to successive

oxidation reactions by TET enzymes for the initiation of DNA

demethylation (Figure 1). The modified nucleotide can then be

replaced by BER. Shortly after the discovery of AID (Muramatsu

et al., 1999), a functional role in DNA demethylation by
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FIGURE 2 | Schematic presentation of the known domain structures of proteins involved in DNA methylation/demethylation. DNMT3A1/2: ADD domain of

DNMT3A1/2 is involved in the allosteric control of the enzyme. TET enzymes: DNA binding CXXC motif is present in TET1 and TET3. Double-stranded β-helix (DSβH)

is the fold core oxygenase domain is preceded by a cysteine (Cys)-rich domain. Sumo-binding motifs (SBM) and catalytic residues (in blue) of TDG is represented.

PWWP: Pro-Trp-Trp-Pro; CXXC: Cys-X-X-Cys motif.

deamination was proposed (Rai et al., 2008; Bhutani et al.,

2010). The identification of AID in a ternary complex with

GADD45A and TDG also indicates a contribution of AID

in the demethylation process (Cortellino et al., 2011). On

the contrary, several independent studies revealed that 5mC

and 5hmC are poorer substrates for AID as compared to

cytosine (Larijani et al., 2005; Nabel et al., 2012; Rangam et al.,

2012; Abdouni et al., 2013). The contribution of AID for the

deamination pathway to demethylate 5mC in association with

BER mechanism is rather elusive since the enzyme cannot

efficiently deaminate 5mC (Wijesinghe and Bhagwat, 2012).

However, the same study showed efficient 5mC deamination

capability of APOBEC3 (Wijesinghe and Bhagwat, 2012). In

conclusion, the role of AID in DNA demethylation particularly

in the adult brain is still unclear (for review, see Bochtler et al.,

2017).

REGULATION OF NEURONAL GENE
EXPRESSION BY ACTIVE DNA
DEMETHYLATION

In the long-lived nature of postmitotic neurons, genomic

stability needs to be maintained for decades while at the

same time their remarkable plasticity has to be kept at a

poised state ready to respond (Baker-Andresen et al., 2013).

How are stability and permissiveness for changes in DNA

methylation achieved upon enhanced neuronal activity? It

is tempting to speculate that due to its plastic nature the

basal epigenomic state of hippocampal neuron determines

the permissiveness for an initial wave of transcription of

DNAmodifiers, including demethylation machinery component

expressions, which precedes effector gene expression (Oliveira,

2016). An example for a methylation mark keeping the gene

in a silent but in a transcriptionally poised state is the

promoter methylation of the Bdnf gene that is quite well

investigated in the context of synaptic plasticity and learning

(Miller and Sweatt, 2007; Lubin et al., 2008). In differentiated

neurons, the Bdnf promoter is methylated at basal conditions

and thereby kept in a repressed state by the occupation

of repressor complex involving RE1-Silencing Transcription

factor corepressor (CoRest), methyl CpG binding protein 2

(MeCP2), histone deacetylases (HDAC) 1 and 2. The repressor

complex dissociates following phosphorylation of MeCP2 and

nitrosylation of HDAC2 in response to Ca+2 influx (Chen

et al., 2003; Nott et al., 2008). Activity-induced deaminase (AID)

regulates the induced expression of Bdnf IV in a stimulus-

dependent manner (Ratnu et al., 2014). However, the yet unclear

status of AID in DNA demethylation makes it hard to directly

link the effect of AID on Bdnf expression to activity-dependent

DNA demethylation.

Unfortunately, conflicting reports have been published on

the role of GADD45B in learning and memory processes. Fear

conditioning induces Gadd45b gene expression (Keeley et al.,

2006) and deletion of the gene results in hippocampus-dependent

long-term memory deficits including fear conditioning

(Leach et al., 2012). However, others found improved long-term

memory following Gadd45b knockout mice employing a similar

contextual fear-conditioning paradigm (Sultan et al., 2012).

Of note, the mice strains used in the latter two studies had a

different genetic background (C57BL/6 and B6:129VJ mice)

which might account for the discrepant results. Moreover,

targeted siRNA delivery to transiently knock down Gadd45b

expression in the neonatal rat amygdala results in altered juvenile
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behavior with consequences for the expression of Bdnf, MeCP2

and Reelin (Kigar et al., 2015). NF-κB, which is known to

be important in hippocampus-dependent memory formation

(Kaltschmidt and Kaltschmidt, 2015), was proposed to regulate

Gadd45b gene expression and thereby DNA demethylation

activity (Jarome et al., 2015). Interestingly, overexpression of

TET1 leads to enhanced expression of several memory-related

genes but surprisingly to impairment of contextual fear memory

(Kaas et al., 2013). It is possible that TET proteins might have

functions independent of DNA hydroxymethylation. TET3,

for instance, was recently shown to have a functional role in

scaling-down synaptic strength in hippocampal neurons (Yu

et al., 2015).

Interestingly, 5hmC is not only an intermediate DNA

demethylation form but also an epigenetic mark on its own,

which is enriched within promoters and gene bodies (Kaas

et al., 2013). This enrichment correlates with a depletion of

5mC in actively transcribed genes. Moreover, gene body 5mC

and gene expression are inversely correlated (Mellen et al.,

2012). Recent advances in whole epigenome analysis identified

gradually accumulating non-CGmethylation (mCH, H =A/C/T)

from post-natal week one onwards in the genome peaking

in the adult mouse brain (Xie et al., 2012; Lister et al.,

2013) and at several hundred genomic positions in the adult

human brain (Varley et al., 2013). Genes expressed in the

mammalian brain are devoid of intragenic and promoter mCH

(Xie et al., 2012) and mCH correlates with decreased gene

expression in a highly cell type-specific manner (Mo et al.,

2015). mCH accumulation is implicated in X chromosome

inactivation and might therefore contribute to gender specific

gene expression (Keown et al., 2017). Reconfiguration of

the global DNA methylome during development coincides

with synaptogenesis, a period in which mCH accumulates in

neurons but not in glial cells (Lister et al., 2013). On the

other hand, methylated CpG-rich DNA regions are not only

found in transcription initiation sites but also in gene bodies

and intergenic regions (Jones, 2012). Collectively these studies

illustrate that it is important to identify the location and

type of DNA methylation to assess its contribution to gene

expression.

Another critical issue is cell-type specificity of DNA

demethylation. In most studies brain tissue that contains

different neuronal and glial cell types was used. The current

knowledge on how the DNA demethylation machinery functions

in different cell-types and responds to neuronal activity is

therefore very limited. DNA methylation patterns vary between

neurons and non-neuronal cells. Ventromedial prefrontal cortex

neurons have higher global DNA methylation levels compared

to non-neuronal cells (Li et al., 2014a). Early life stress

(ELS) alters DNA methylation and Bdnf expression in medial

prefrontal cortex neurons in a cell-type and sex-specific manner

(Blaze and Roth, 2017). The expression of Bdnf IX and

Fgf1B genes, which are crucially involved in neurogenesis

and plasticity, is also regulated by Gadd45b in an activity-

dependent manner in granule cells of the dentate gyrus (Ma

et al., 2009). Furthermore, Halder et al. (2016) showed that

DNA methylation and changes in histone acetylation occur

in parallel following contextual fear conditioning learning and

alterations in DNA methylation may also arise in non-neuronal

cells potentially supporting an epigenetic code for memory

formation. Interestingly, in contrast to hippocampal neurons,

TET3 but not TET1 is expressed in cortical neurons in an

activity-dependent manner (Li et al., 2014b). Gephyrin stabilizes

GABA receptors to postsynaptic membrane and takes part in

fear extinction (Chhatwal et al., 2005). Li et al. (2014b) further

validated the enhanced expression of TET3 on the gephyrin locus

where they showed increased occupancy of TET3 in association

with an accumulation of the demethylation intermediate mark

5hmC.

ROLE OF DNA DEMETHYLATION IN
NEUROLOGICAL DISORDERS

Given the principal functions of chromatin modifications in

regulating gene transcription programs, it’s not surprising that

the number of studies, which report the involvement of DNA

demethylation machinery in neurological disorders, is steadily

increasing. Enhanced GADD45B levels were reported in two

different cohorts of major psychotic patients (Gavin et al., 2012).

However, reduced occupancy of GADD45B on the Bdnf IX

promoter was found, which is in line with reduced Bdnf IX

expression (Gavin et al., 2012). Recently, GADD45B expression

was shown to be regulated by transforming growth factor

beta (TGFB) signaling and protein levels of GADD45B are

reduced in a model of chronic mild stress (Grassi et al., 2017).

Moreover, a reduction in expression levels of the immediate

early gene Arc was also associated with reduced levels of

GADD45B and DNA demethylation in this stress model (Grassi

et al., 2017). Although its neurobiological underpinnings have

not been fully understood, electroconvulsive therapy (ECT)

is currently in clinical practice for the treatment of several

psychiatric diseases including depression (Singh and Kar, 2017).

In an animal model ECT reduces the methylation levels of

Bdnf 9 promoter, hence inducing the mRNA expression of

the gene, however, in the transgenic mice model in which

Gadd45b was knocked out the effect of ECT on the Bdnf IX

promoter methylation level is abolished and mRNA expression

is perturbed (Ma et al., 2009). Prenatally stressed mice exhibit

not only similar behavioral traits like psychotic patients but

also similar epigenetic signatures (Dong et al., 2015). DNA

methyltransferase1 and TET1 enzyme level increase in prenatally

stressed mice correlates with enhanced 5mC and 5hmC in

the regulatory DNA regions and hence decreased Bdnf gene

expression (Dong et al., 2015). Samples from patients that

suffered from bipolar disorder and schizophrenia show enhanced

methylation of associated gene promoters resulting in suppressed

expression (Grayson and Guidotti, 2013). This is linked to the

enhanced expression of DNMTs (Veldic et al., 2004; Zhubi

et al., 2009). However, it’s not clear whether the lack of

active DNA demethylation can also be responsible for the

disease etiology in some cases. The contribution of methylation

and active DNA demethylation in Alzheimer’s disease (AD)

remains to be determined. The varying global methylation levels
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reported in the postmortem brain samples can be region specific

(Roubroeks et al., 2017). There are conflicting studies on the

increase in 5mC and 5hmC in the hippocampus whereas no

changes in the entorhinal cortex in AD as compared to controls

were reported (Bradley-Whitman and Lovell, 2013; Lashley

et al., 2015). Contradictory evidence on the global decrease in

methylation levels in the hippocampus and entorhinal cortex

was published by others (Mastroeni et al., 2010; Chouliaras

et al., 2013). In a complex disease like AD, the readout from

brain samples and genome-wide association studies on various

chromatin modifiers is hard to interpret because of the readout’s

variability due to the initiation, progression or terminal stage of

the disease.

CONCLUDING REMARKS

Based on the initial GADD45B-dependent demethylation

hypothesis (Gavin et al., 2012), current data suggest that active

demethylation in postmitotic neurons is initiated by TET

family enzymes in conjunction with TDG. While GADD45B

apparently lacks enzymatic activity, it seems to recruit

demethylation machinery components to certain promoters

by yet unknown mechanisms. The cascade of events in active

DNA demethylation finally requires the contribution of BER

mechanism to generate mark-free cytosine. There are several

gaps in our understanding of the DNA demethylation pathway

in neurons. For instance, how are the DNA demethylation

components targeted to specific genomic sites? Finally, it is

yet unclear how one can interfere with this machinery to

regulate activity-dependent gene expression and whether this

machinery has druggable pathways in the context of neurological

disorders.
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