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Abstract

Background: Traditional risk factors are insufficient to explain all cases of coronary artery disease (CAD) in patients
with diabetes mellitus (DM). Advanced glycation end-products (AGEs) and their receptors may play important roles
in the development and progression of CAD.

Body: Hyperglycemia is the hallmark feature of DM. An increase in the incidence of both micro-and macrovascular
complications of diabetes has been observed with increased duration of hyperglycemia. This association persists
even after glycemic control has been achieved, suggesting an innate mechanism of “metabolic memory.” AGEs are
glycated proteins that may serve as mediators of metabolic memory due to their increased production in the
setting of hyperglycemia and generally slow turnover. Elevated AGE levels can lead to abnormal cross linking of
extracellular and intracellular proteins disrupting their normal structure and function. Furthermore, activation of AGE
receptors can induce complex signaling pathways leading to increased inflammation, oxidative stress, enhanced
calcium deposition, and increased vascular smooth muscle apoptosis, contributing to the development of
atherosclerosis. Through these mechanisms, AGEs may be important mediators of the development of CAD.
However, clinical studies regarding the role of AGEs and their receptors in advancing CAD are limited, with
contradictory results.

Conclusion: AGEs and their receptors may be useful biomarkers for the presence and severity of CAD. Further
studies are needed to evaluate the utility of circulating and tissue AGE levels in identifying asymptomatic patients
at risk for CAD or to identify patients who may benefit from invasive intervention.

Keywords: Advanced glycation end-products (AGEs), Receptor for advanced glycation end-products (RAGE),
Coronary artery disease (CAD), Diabetes mellitus (DM)

Background
It has long been appreciated that age, gender, hyperlipid-
emia, hypertension, and smoking status contribute to
the risk of developing coronary artery disease (CAD)
(Goff Jr et al., 2013; McClelland et al., 2015). Concurrent
diabetes mellitus (DM) is known to confer additional
risk. Multiple studies have demonstrated that glucose in-
tolerance, insulin resistance, and hyperglycemia are

associated with coronary artery disease pathogenesis
(Turner et al., 1998; de Vegt et al., 1999; DeFronzo &
Ferrannini, 1991). Supporting the role of DM in the pro-
gression of CAD, prospective studies which included pa-
tients with DM treated intensively reported a
significantly lower incidence of CAD long-term com-
pared to those assigned to standard therapy. Interest-
ingly, this reduction in the incidence and progression of
CAD remained even after intensive treatment was
stopped (Lancet, 1998; Nathan, 1993; Duckworth et al.,
2009; Yamagishi et al., 2017).* Correspondence: lporetsky@northwell.edu
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Many studies have demonstrated that the beneficial ef-
fects of intensive glycemic control endure even after rever-
sion to more relaxed blood glucose goals. The landmark
studies “Diabetes Control and Complications Trial/Epi-
demiology of Diabetes Interventions and Complications”
and “United Kingdom Prospective Diabetes Study” dem-
onstrated reductions in diabetic micro- and macrovascular
complications in patients with both type 1 and type 2 DM
correlating with duration of intensive glycemic control
(Diabetes, C., I. Complications Trial /epidemiology of dia-
betes, and G. complications study research, 2016; Diabetes
et al., 2015; Martin et al., 2014; Holman et al., 2008a;
Holman et al., 2008b). By contrast, in patients with long
standing poorly controlled type 2 DM, intensive treatment
did not reduce the risk of major cardiovascular events
(Duckworth et al., 2009; Group, A.C, 2008; Action to Con-
trol Cardiovascular Risk in Diabetes Study, G, 2008;
Saremi et al., 2010). Taken together, these studies suggest
long term effects of glycemic control on the development
and progression of diabetic complications. This idea of
“metabolic memory” has been supported by animal studies
demonstrating continued progression of diabetic retinop-
athy despite correction of hyperglycemia (Engerman &
Kern, 1987). In rats with induced diabetes, animals with
poor glycemic control after 6 months had sustained
increases in markers of oxidative stress as compared to
diabetic rats with good glycemic control initiated shortly
after induction as well as non-diabetic control rats
(Kowluru et al., 2004).
The mechanisms underlying metabolic memory remain

incompletely understood. Many mediators of metabolic
memory have been proposed, including advanced glycation
end-products (AGEs), a class of molecules formed by
non-enzymatic glycation of proteins, lipids, and nucleic
acids. The formation of AGEs is enhanced in the presence
of chronic hyperglycemia due to increased glucose availabil-
ity. It has been hypothesized that early hyperglycemia leads
to a proportional increase in AGE formation and oxidative
stress. Over time, mitochondrial respiratory chain proteins
become increasingly glycated and mitochondrial DNA
damage occurs leading to a self-perpetuating cycle of AGE
formation and oxidative stress independently of hypergly-
cemia (Testa et al., 2017).
AGEs have been linked to the aging process, the pro-

motion of tumor metastasis, and the development of
Alzheimer’s disease in addition to their role in the devel-
opment of diabetic complications (Singh et al., 2014).
These molecules may also play a role in the development
of CAD, both independently and synergistically with
DM (Piarulli et al., 2013; Kanauchi et al., 2001; Schalk-
wijk et al., 2004; Kralev et al., 2009). In this article, we
review the nature of AGEs, their receptors, and the
mechanisms by which they may contribute to the patho-
genesis of CAD.

Main text
What are AGE’s?
Advanced glycation end-products (AGEs) are a hetero-
geneous class of endogenously produced or exogenously
derived glycated proteins and lipoproteins. Endogenous
AGE production occurs through the complex Maillard
reaction in which reducing sugars undergo a series of
non-enzymatic reactions leading to the development of
reactive carbonyl compounds and the subsequent gly-
cooxidation of proteins, lipids, and nucleic acids. Metab-
olism of glucose during glycolysis leads to production of
methylglyoxal, a carbonyl intermediate in the production
of certain AGEs. Under conditions of oxidative stress,
reducing sugars, amino acids, and lipids undergo auto-
oxidation to generate additional reactive carbonyl com-
pounds and increase production of AGEs leading to
tissue accumulation (Chappey et al., 1997; Bunn &
Higgins, 1981; Singh et al., 2001; Ott et al., 2014).
The extent of AGE formation in vivo is proportional

to the availability of substrate (i.e monosaccharides) as
well as the rate of protein turnover. Long lived proteins
with significant lysine and arginine content (for example
collagen and elastin) are particularly susceptible to glyca-
tion. The normal physiological rate of AGE accumula-
tion increases with advancing age, but is markedly
increased in the presence of hyperglycemia, oxidative
stress, and inflammation. AGE production and accumu-
lation are stimulated by a variety of factors, including to-
bacco smoking, transitional metals, and reducing agents
(Chappey et al., 1997; Singh et al., 2001; Nicholl &
Bucala, 1998; Fleming et al., 2011; Cerami et al., 1997).
Exogenous AGEs are found in high levels in the modern
western diet, as a result of food processing methods in-
cluding sterilization, microwaving, and grilling. This is
consistent with the finding that circulating AGE levels
are higher in the western world population (O'Brien &
Morrissey, 1989; Vlassara & Uribarri, 2004).
AGEs can form on virtually all body proteins and ac-

cumulate at higher levels in long-lived tissues such as
skin, crystalline lens, and glomerular basement mem-
brane. There is considerable debate on the optimal ap-
proach to measuring AGEs in relation to clinical
outcomes. Many studies report measurements of circu-
lating AGE levels from peripheral blood samples. Urin-
ary AGE levels measured using fluorescence have been
shown to correlate with circulating levels as expected
given renal excretion of AGEs in individuals with normal
renal function. However, circulating proteins have a rela-
tively short half-life in relation to structural proteins,
and may therefore underestimate the accumulation of
AGEs in tissue. Importantly, the development of diabetic
complications occurs in long lived tissues, however
measurement of AGEs from tissues often requires biopsy
or invasive procedures to obtain sample material. More
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recently, methods have been developed to detect and
measure AGEs with fluorescent properties in skin. This
technique can be performed non-invasively by real-time
measurement of autofluorescence on the skin of the
inner side of an individual’s lower forearm (Meerwaldt et
al., 2004; Fokkens & Smit, 2016).
Of the many known AGEs, Nϵ-(carboxymethyl)lysine

(CML) and pentosidine are the best characterized. CML
is a relatively inert molecule and is commonly used as
an AGE marker in food analysis (Goldberg et al., 2004).
Pentosidine is a ribose-derived glyco-oxidation product
of arginine and lysine residues (Sell & Monnier, 1989); it
is a well-accepted marker of cumulative protein damage
in aging and a variety of disease states including DM
(Sell et al., 1991). Both pentosidine and CML have fluor-
escent properties that allow for their detection in the cir-
culation and in tissue.

Pathological outcomes of AGE accumulation
As mentioned above, AGEs can accumulate in nearly every
tissue including eye, kidney, liver, vasculature, reproductive
tissues, muscle, bone, and brain. The increased concentra-
tion of AGEs in patients with DM may result from a cyclic
process whereby glycated albumin disrupts normal glucose
metabolism in muscle and adipocytes, leading to reduced
insulin mediated glucose uptake and hyperglycemia (Unoki
et al., 2007). Increased AGE levels have been associated with
many microvascular diabetic complications (Genuth et al.,
2015; Monnier et al., 2013); including retinopathy (Nagaraj
et al., 2012; Genuth et al., 2005), nephropathy (Yamamoto
et al., 2005; Makita et al., 1991), and neuropathy (Sugimoto
et al., 2008; Araszkiewicz et al., 2011; Vouillarmet et al.,
2013). Furthermore, the immunosuppressed state observed
in patients with DM may be related to an excess of glycated
immunoglobulins with disrupted functionality (Raghav et
al., 2017). Increasing evidence points to a role for AGEs in
the development of DM associated co-morbidities including
non-alcoholic steatohepatitis (Hyogo & Yamagishi, 2008),
osteoporosis (Wang et al., 2002) and polycystic ovarian syn-
drome (Merhi, 2014). Higher values of circulating CML
levels and skin AGEs have been observed in patients with
peripheral vascular disease and DM as compared to patients
without DM (Raposeiras-Roubin et al., 2015; Bos et al.,
2011; Arsov et al., 2014; de Vos et al., 2014). A causative role
for AGEs in the pathogenesis of many of these outcomes is
emerging.
Many studies have demonstrated an association be-

tween elevated AGE levels and cardiovascular disease in
patients with DM. In a study of 339 patients with type 1
DM, the incidence of cardiovascular events correlated
with baseline circulating AGE levels over a median
follow-up period of 12 years. However, this association
did not remain significant when patients with baseline
nephropathy were excluded (Nin et al., 2011). Similarly,

Koska et al. found a significant association between the
incidence of cardiovascular events and baseline CML
levels in a subgroup of participants from the ACCORD
trial, but this finding was not significant when adjusted
for a history of prior cardiovascular events (Koska et al.,
2018). Two large studies have identified elevated circu-
lating AGEs as an independent risk factor for cardiovas-
cular mortality in women, but not in men (Kilhovd et
al., 2007; Semba et al., 2009a). One prospective study of
over 1000 adults over age 65 followed for a median time
of 6 years demonstrated an association between higher
circulating CML levels and cardiovascular mortality,
which remained significant after adjustment for DM
(Semba et al., 2009b). In patients with DM, elevated cir-
culating pentosidine levels have also been associated
with cardiovascular disease and were shown to correlate
with increased arterial wall stiffness (Yoshida et al.,
2005). Interestingly, in a study of patients with type 1
DM, levels of AGEs in the skin as measured by autofluo-
rescence but not circulating CML levels were associated
with increasing arterial wall stiffness (Llaurado et al.,
2014). Skin autofluorescence has also been associated
with macrovascular complications in patients with type
2 DM (Noordzij et al., 2012).
AGE accumulation has been associated with specific

cardiac pathologies including congestive heart failure
(Hartog et al., 2007), arrhythmias (Raposeiras-Roubin
et al., 2012) and CAD (Kilhovd et al., 1999) in pa-
tients with DM. Elevated AGEs have been associated
with both systolic and diastolic dysfunction in pa-
tients with DM (Hartog et al., 2007; Galderisi, 2006).
AGE levels in patients with DM have been shown to
correlate with the degree of systolic dysfunction
(Steine et al., 2007) as well as indicators of diastolic
dysfunction such as delayed relaxation time and end
diastolic diameter (Kilhovd et al., 1999).
Many lines of evidence suggest that AGE levels may

be useful as a biomarker for the presence and severity
of CAD (Yeboah et al., 2004). In a study from Japan,
circulating AGE levels were higher in patients with
type 2 DM and obstructive CAD than in those with
non-obstructive CAD (Kiuchi et al., 2001). This asso-
ciation was independent of other risk factors for CAD
including smoking, hypertension, hyperlipidemia, and
hyperuricemia. In a large study of 1320 patients with
type 2 DM, Lu et al. demonstrated that elevated gly-
cated albumin levels correlated with the severity of
CAD as measured by quantitative coronary angiog-
raphy (Lu et al., 2009). Circulating AGE levels have
also been associated with in-stent restenosis risk in
patient with DM (Choi et al., 2005; Lu et al., 2008;
Shen et al., 2012). Skin autofluorescence is reportedly
higher in patients with stable CAD as compared to
healthy controls (Mulder et al., 2008).
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More recently, AGEs have been implicated in contribut-
ing to cardiovascular mortality independently of DM
(Semba et al., 2009a). Yozgatli et al., recently reported a
correlation between increased tissue AGE levels as mea-
sured by skin autofluorescence and macrovascular events
(including CAD, peripheral vascular disease, and cerebro-
vascular disease) independently of hemoglobin A1C meas-
urement in a cohort of 563 subjects with type 2 DM
(Yozgatli et al., 2018). In a small study of patients with
confirmed normal glucose tolerance undergoing coronary
angiography, circulating concentrations of AGEs were sig-
nificantly higher in individuals with 3-vessel disease as
compared to individuals with non-obstructive or single
vessel disease (Kanauchi et al., 2001). This finding was
supported by a subsequent study of 101 patients referred
for coronary angiography in which increased circulating
levels of pentosidine were associated with obstructive cor-
onary disease, and were correlated with angiographic
CAD severity, independently of DM status (Kerkeni et al.,
2014). However, larger studies did not find an association
between increased glycated albumin concentrations and
CAD in patients without DM (Lu et al., 2009). Key studies
supporting a role for AGEs in the development of CAD
are summarized in Table 1.

Role of AGE receptors in pathological outcomes
AGEs can bind to a number of extracellular and intra-
cellular proteins in a variety of cell types. Cell surface
AGE receptors can be separated into two main types

depending on the downstream effects of AGE binding
an activation. Those involved in the endocytosis, break-
down, and removal of AGEs from the circulation; and
those that activate a pro-inflammatory cellular response.
AGER1, the prototype for the former class, has an add-
itional role in inhibiting the production of reactive oxy-
gen species and cellular defense mechanisms (Lu et al.,
2004; Villegas-Rodriguez et al., 2016; Vlassara & Striker,
2011). AGER1 expression is upregulated on acute expos-
ure to increased AGE concentrations, but is suppressed
with chronic exposure to oxidative stress and high extra-
cellular AGE levels, consistent with the finding of re-
duced AGER1 levels in patients with diabetes and
chronic inflammatory disease (Vlassara & Uribarri,
2014). Additional cell surface receptors involved in redu-
cing AGE concentrations include macrophage scavenger
receptor I and II, oligosacharyltransferase-48, 80-KH
phosphoprotein, CD36, galectin-3, and LOX-120, though
these molecules have significantly weaker affinity for
AGEs compared to AGER1.
By contrast, receptor for AGE (RAGE), initiates com-

plex signaling pathways when activated by AGE binding.
RAGE belongs to the immunoglobulin superfamily of
molecules and is comprised of a multi-ligand binding
extracellular domain, a membrane spanning domain,
and an intracellular carboxyl-terminal domain (Neeper
et al., 1992). The extracellular domain is composed of
three smaller domains, one V-type domain with hom-
ology to immunoglobulin variable domains, and two

Table 1 The advanced glycation end products (AGEs) and severity of coronary artery disease (CAD)

Reference Type (n) Results

Kerkeni et al.
(Kerkeni et al., 2014)

Randomized
Control Trial

161 Serum pentosidine concentrations were significantly higher in patients with CAD in both patients
with and without DM (p = 0.032 and 0.002, respectively). CML levels did not show a significant
difference in patients with CAD between those with and without DM. The serum pentosidine
concentrations were significantly higher in patients with CAD who had a Gensini score of > 20
compared to those with the score of “1–20” or “0” (p = 0.002 and p < 0.001, respectively). CML
concentration was not associated with the severity of CAD (p = 0.853).

Lu L et al.
(Lu et al., 2009)

Cross Sectional 1320 Elevated glycated albumin and reduced esRAGE levels correlated with the severity of CAD and
progression of the plaque in patients with DM (p < 0.01). There were no significant differences in
glycated albumin and esRAGE concentrations (in patients without DM) between patients with and
without CAD.

Basta et al.
(Basta et al., 2008)

Randomized
Control Trial

81 AGE concentrations were significantly higher in patients with multi-vessel CAD compared to those
with single vessel disease at both day 1 and day 180 after PCI (p =. 0.033 and 0.005, respectively),
but not before PCI (p =. 0.60). There was a significant increase in sRAGE levels at 180 days
(491 μg/ml [374–850]) compared to before and 1 day after PCI (406 μg/ml [266–575] and 393 μg/
ml [222–554] respectively, p = 0.011). There was a correlation between CML levels and the extent
of the stenting on day 1 and day 180 (p = 0.022 and p = 0.012, respectively).

Kiuchi et al.
(Kiuchi et al., 2001)

Randomized
Control Trial

83 AGE concentrations were significantly higher in patients with CAD who had DM compared to
those without DM (2.8 vs. 5.5 mU/mL, respectively (p < 0.0125). However, AGE concentrations did
not show a significant difference in patients without CAD between patients with and without DM.
There was a significant association between AGE levels and severity of CAD in patients with DM
(single vessel: 3.4 mU/mL, two vessels: 5.7 mU/mL, and three vessels: 7.2 mU/mL). There was no
significant correlation between AGE levels and severity of CAD in patients with or without DM.

Kanauchi et al.
(Kanauchi et al., 2001)

Observational 98 There were significantly higher AGE levels in patients with CAD and DM compared to control
individuals (2.42 ± 0.65 vs. 1.96 ± 0.40 mU/mL, p < 0.01). The AGE concentrations significantly
correlated with the severity of CAD (no CAD: 1.98 ± 0.29; 1 vessel: 2.09 ± 0.34; 2 vessels: 2.60 ± 0.73;
and 3 vessels: 3.18 ± 0.58 mU/ml, p < 0.0001).
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C-type domains with homology to the immunoglobulin
constant domains. While RAGE is the product of a sin-
gle gene, multiple alternative splice forms of RAGE exist
leading to isoforms with partial functionality (Hudson et
al., 2008) (Fig. 1). Three isoforms merit specific mention:
N-truncated RAGE lacks an extracellular V-type domain,
preventing binding of AGEs to the receptor; dominant
negative RAGE lacks an intracellular domain, but re-
mains anchored to the cell surface, serving as a decoy
for AGE binding; and endogenous secreted RAGE
(esRAGE), which lacks both a membrane spanning and
an intracellular domain. Additionally, extracellular me-
talloproteinases can cleave the cytosolic portion of cell
surface RAGE on endothelial cells leading to additional
circulating receptor (Galichet et al., 2008). Along with
esRAGE, these isoforms are collectively referred to as
sRAGE. Because of their truncated structures, sRAGE
molecules also serve as decoys for circulating AGEs and
other ligands (Gkogkolou & Bohm, 2012).
RAGE is widely expressed, albeit at low levels, in a variety

of cell types including macrophages, mesangial and mono-
nuclear cells, smooth muscle cells, endothelial cells, certain
neurons, hepatocytes, and podocytes (Mukherjee et al.,
2005) with expression increasing in response to cellular
stress (Goldin et al., 2006; Daffu et al., 2013). In addition,
sRAGE is detectable in bodily fluids such as breast milk,
saliva, tears, and nasal secretions (Schmidt et al., 1994).
It is hypothesized that reduced sRAGE levels and in-

creased cell surface RAGE levels may also contribute to
pathological outcomes. Lower concentrations of sRAGE

have been reported in patients with DM compared to
those without DM, and have been inversely correlated
with HbA1C (Devangelio et al., 2007). Like AGEs, RAGE
has been implicated in the development of diabetic mi-
cro- and macrovascular complications. Polymorphisms
in the RAGE gene have been identified that are associ-
ated with increased risk of diabetic nephropathy (Prevost
et al., 2005), and patients with type 2 DM with lower
plasma sRAGE levels are more likely to have nephropa-
thy and retinopathy (Grossin et al., 2008). Immunohisto-
chemical studies of peripheral nerves in patients with
diabetes demonstrated increased RAGE staining in pa-
tients with neuropathic symptoms (Juranek et al., 2013).
RAGE levels have also been associated with arterial

stenosis and atherosclerosis both in patients with and
without DM. Reduced esRAGE levels have been re-
ported in patients with increased carotid artery intima
media thickness (Katakami et al., 2005; Koyama et al.,
2005), and sRAGE levels have been inversely correlated
with the degree of atherosclerosis present in the carotid
and femoral arteries (Falcone et al., 2005). Immunohisto-
chemical analysis of carotid artery plaques recovered
during endarterectomy demonstrated high positivity for
cell surface RAGE (Cipollone et al., 2003).
The utility of sRAGE as a biomarker for cardiovascular

disease has been studied with conflicting results. In multiple
studies, sRAGE levels have been directly correlated with the
presence and severity of CAD in patients both with and
without DM (Kiuchi et al., 2001; Ha et al., 2013; Cai et al.,
2011; Park et al., 2011; Jensen et al., 2015). However a large

Fig. 1 Major RAGE isoforms. The full length receptor includes one cytoplasmic domain involved in signal transduction, and three extracellular
domains comprised of two c-type domains and one v-type domain. The N-truncated isoform lacks AGE binding properties and is not activated
by ligand binding. Dominant negative RAGE serves as a cell-bound decoy receptor. It lacks a cytosolic domain and is not involved in signal
transduction. Soluble RAGE consists of the complete extracellular domain, produced either via alternative splicing and directly secreted from the
cell, or as a by-product of cleavage of full length RAGE by extracellular proteases. Copied with permission from Lee EJ, Park JH, Genomics and
Informatics 2013
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study of 1201 patients followed for 18 years reported that
lower sRAGE levels increased the risk of DM, CAD, and all
cause-mortality (Selvin et al., 2013). Many of these studies
do not differentiate between esRAGE and soluble RAGE
products resulting from cleavage of cell surface RAGE. Cell
surface RAGE expression may be increased by binding and
activation by AGEs. As such, high levels of sRAGE may re-
flect an increase in full length RAGE production, as op-
posed to an increase in esRAGE expression. Furthermore,
some forms of sRAGE resulting from cleavage of full length
RAGE may not be able to bind AGEs and serve as competi-
tive inhibitors of cell surface RAGE. In addition, accepted
normal values for sRAGE levels have not been established,
as there is significant variability between populations and
age groups (Wautier et al., 2017).
In a cohort of 154 patients, Wagner et al. reported that

low plasma levels of esRAGE were associated with in-
creased cardiovascular mortality in patients, suggesting
that esRAGE is a more predictive biological marker than
the cleaved isoforms of RAGE alone (Wagner et al.,
2006). Neeper et al. (Neeper et al., 1992) demonstrated
that increased levels of sRAGE along with reduced levels
of esRAGE are associated with the development and
progression of heart failure in patients with DM, and
hypothesize that increased sRAGE levels result from in-
creased metalloproteinase activity in patients with heart
failure. Similarly, Yang et al. analyzed a cohort of 576 pa-
tients with type 2 DM and stable CAD undergoing PCI.
They found that lower esRAGE levels were associated
with a significantly higher rate of major cardiovascular
events (Yang et al., 2015). Additional studies have also
demonstrated an inverse correlation between esRAGE
levels with severity of CAD and disease progression in
patients with DM (Lu et al., 2009; Lu et al., 2008; Shen
et al., 2012; Peng et al., 2009). Further studies are needed
to evaluate esRAGE, as opposed to all soluble RAGE
products, as a marker for coronary disease activity.

Possible molecular mechanisms of AGE/RAGE mediated
pathogenesis in cardiovascular disease
AGEs exert their pathogenic effects via three main mo-
lecular mechanisms: Modification of extracellular pro-
teins, modification of intracellular proteins, and activation
of signaling cascades via binding to cell surface RAGE. All
three of these mechanisms may contribute to the develop-
ment and progression of cardiovascular disease.

Extracellular protein modification
Modification of extracellular proteins by AGEs can alter
the structure, function, and properties of normal tissue, as
well as provoke an inflammatory response. Collagen, elas-
tin, and laminin are key structural proteins of basement
membrane and connective tissue. Given their long half-life
and amino acid composition, these molecules are high

susceptible to modification by AGEs. Glycated collagen
molecules are resistant to proteolytic digestion (Bailey,
2001; Zieman & Kass, 2004), and form cross links with
other extracellular proteins. This leads to decreased flexibil-
ity of vessel walls and vascular stiffness (Aronson, 2003).
Glycation of structural extracellular proteins in the myocar-
dial matrix will similarly increase myocardial stiffness, con-
tributing to impaired relaxation and diastolic dysfunction
(Candido et al., 2003). In addition to glycated collagen, gly-
cation of elastin and laminin in basement membrane have
also been shown to impair endothelial cell adhesion and
migration by disrupting cell attachment sites (Haitoglou et
al., 1992). These alterations in cell-matrix interactions are
associated with a reduction in stress-induced nitric oxide
production by endothelial cells and impaired vasodilation.
Glycation of additional circulating factors contributes to

thrombogenesis, hypercoagulability, and decreased fibrin-
olysis. Glycated fibrinogen is significantly more resistant to
degradation (Takenaka et al., 2006; Murakami et al., 1990)
and modification of annexin II and heparin cofactor II ren-
ders these proteins dysfunctional, impairing fibrinolytic sys-
tems (Takenaka et al., 2006; Gugliucci & Ghitescu, 2002;
Ceriello et al., 1990). Glycated low density lipoproteins
(LDL) (Zoltowska et al., 2004) and platelet glycoproteins
(Winocour et al., 1992) can enhance platelet sensitivity to
aggregating agents, enhancing thrombogenesis. In addition,
glycated LDL has been shown to decrease tissue plasmino-
gen activator production in endothelial cells (Zhang et al.,
1998). Extracellular protein glycation can also directly pro-
mote atherosclerosis. Glycation of LDL molecules alters
their structure, inhibiting their uptake by LDL receptors
and clearance from the circulation, allowing enhanced up-
take by monocytes and macrophages, promoting foam cell
generation (Cai et al., 2004; Sobal et al., 2001).

Intracellular protein modification
Intracellular accumulation of AGEs occurs in the endo-
plasmic reticulum, leading to stress which can impair
normal protein folding processes. Cellular mechanisms
exist to identify improperly folded proteins and to acti-
vate the unfolded protein response leading to cell apop-
tosis (Adamopoulos et al., 2014). Intracellular AGEs can
bind to mitochondrial proteins involved in electron
transport, decreasing ATP synthesis and increasing
superoxide and reactive oxygen species production. Fur-
thermore, glutathoine peroxidase and glutathione reduc-
tase, enzymes of the antioxidant system, can be modified
by AGEs leading to decreased enzymatic activity. In car-
diomyocytes, crosslinking of intracellular glycated ryano-
dine receptors and SERCA2a alters calcium homeostasis,
reducing the contractility of the tissue and contributing
to the development of systolic heart failure (Bidasee et
al., 2003; Bidasee et al., 2004).
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AGE mediated signaling cascades
Binding of AGE to full length RAGE activates many
signaling cascades, ultimately resulting in the gener-
ation of pro-inflammatory mediators and reactive oxy-
gen species, and stimulation of proliferative, fibrotic,
and thrombotic pathways leading to vascular inflamma-
tion (Prasad et al., 2012; Brownlee et al., 1988). RAGE
contains a multi-ligand binding extracellular domain
with affinity for multiple AGEs as well as S100, amyl-
oid, and fibrillar protein aggregates, linking RAGE me-
diated signaling to a number of pathogenic processes
including neurodegeneration, amyloidosis, and tumor
growth. By contrast, AGE binding to cell surface
AGER1 inhibits these processes by suppressing and dis-
rupting RAGE signaling. In this way, decreased levels of
AGER1, may contribute to pathogenic outcomes.
The RAGE gene promoter region contains an

NFκβ binding domain, suggesting that expression of
RAGE is upregulated as part of the inflammatory re-
sponse. This creates a positive feedback loop, as acti-
vation of RAGE by AGEs leads to a series of
phosphorylation reactions, including MAPK activa-
tion, and results in translocation of NFκβ to the cell
nucleus and enhanced expression of additional
pro-inflammatory cytokines and proteins including
ras, IL-6, TNFα, TGF-β, and vascular adhesion mole-
cules (VCAM-1, ICAM-1, endothelin-1) (Ramasamy
et al., 2009; Schmidt et al., 2001; Ramasamy et al.,
2005a; Ramasamy et al., 2005b). RAGE activation
also enhances activity of the Jak/Stat signaling path-
way and upregulation of interferon responsive genes
(Ott et al., 2014).
AGE/RAGE interactions lead to activation of NADPH

and nitric oxide synthase (via NFκβ mediated upregula-
tion) perpetuating a cycle of reactive oxygen species pro-
duction, continued enzyme activation, and stimulation
of NFκβ (Ott et al., 2014). Furthermore, AGEs can dir-
ectly inactivate nitric oxide (Hogan et al., 1992), which
at normal low intracellular concentrations functions as
an anti-oxidant, anti-proliferative, and anti-thrombotic
agent and is an important mediator of vasodilation (Stitt
et al., 2002). Reduced concentrations of nitric oxide
allow for an increase in the formation of reactive oxygen
and reactive nitrogen species, stimulating the cellular
oxidative stress reaction (Schmidt et al., 1994; Schreck et
al., 1991). The oxidative stress generated from the AGE/
RAGE interaction can also lead to vascular smooth
muscle apoptosis which contributes to calcifications in
the vessel walls (Prasad et al., 2012). This pathway may
explain the transition of bovine smooth muscle cells to
osteoblast like cells when cells are grown in hypergly-
cemic versus euglycemic conditions (Chen et al., 2006).
Figure 2 summarizes the signaling cascade involving

AGEs and their possible relationship to CAD.

AGEs as a therapeutic target
Multiple in-vitro and animal studies have demonstrated a
beneficial effect of reducing AGE levels and AGE/RAGE
pathway activation in preventing and halting the develop-
ment of DM complications including cardiovascular dis-
ease. Multiple compounds have been shown to reduce the
accumulation of AGEs either by blocking formation or by
increasing removal. Aminoguanidine and pyridoxamine
have anti-oxidant properties that inhibit AGE formation.
While aminoguanidine treatment led to improvements in
vascular and myocardial function in rats (Chang et al.,
2006) and reduced atherosclerotic plaque area in mice

Fig. 2 AGE signaling cascade implicated in the development of
CAD. Both endogenous and exogenously derived AGEs are involved
in a cycle of formation and degradation. AGEs are recognized by
two different classes of receptors which either activate or suppress
the generation of reactive oxidative species. Oxidative stress leads to
activation of NFκβ with multiple effects on vessel function which
contribute to the development of CAD
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(Forbes et al., 2004), clinical trials of aminoguanidine in
humans failed to show significant improvements in diabetes
complications and were hampered by safety concerns
(Bolton et al., 2004; Freedman et al., 1999). In one study,
212 subjects with diabetes and nephropathy treated with
pyridoxamine, a vitamin B6 analog, showed improved
serum creatinine levels with minimal adverse effects
(Williams et al., 2007). Benfotiamine, a lipophilic thiamine
analog, reduces production of AGEs by shunting mono-
saccharide substrates to the pentose phosphate pathway
via activation of the enzyme transketolase (Goh & Cooper,
2008; Huijberts et al., 2008). Clinical studies to investigate
the efficacy of benfotiamine in reducing diabetic compli-
cations have yielded conflicting results (Sanchez-Ramirez
et al., 2006; Stracke et al., 2001; Alkhalaf et al., 2010;
Alkhalaf et al., 2012; Fraser et al., 2012) Alagebrium
disrupts existing AGEs by cleaving carbon-carbon bonds
in carbonyl groups. Small clinical trials suggested a thera-
peutic potential for this drug in improving cardiac dys-
function and diabetic renal disease (Coughlan et al., 2007).
However subsequent larger trials were not able to
replicate these findings, and failed to show an improve-
ment in AGE accumulation (Willemsen et al., 2010;
Nenna et al., 2015).
Blockade of cell surface RAGE results in inhibition of the

pro-inflammatory effects of AGEs (Hori et al., 1996; Schmidt
et al., 1999). Rats and mice treated with sRAGE infusions or
RAGE inhibitors have shown reduced rates of atheroscler-
osis (Ha et al., 2013; Wautier et al., 1996; Bucciarelli et al.,
2002; Soro-Paavonen et al., 2008). Gene knockout studies in
mice have also shown reductions in atherosclerosis, oxidative
stress, and inflammation in mice lacking the RAGE gene
(Yan et al., 1994). Furthermore, cardiomyocytes obtained
from RAGE knockout mice are protected from cellular dam-
age (Shang et al., 2010). Some of the currently available ther-
apies developed to treat DM and CAD have been shown to
impact the AGE/RAGE axis. Tam et al. reported an increase
in esRAGE levels in patients with DM treated with atorva-
statin, with a correlating decrease in LDL levels (Tam et al.,
2010). In a rat model, atorvastatin treatment for 24 weeks
increased the serum and renal sRAGE levels and decreased
renal RAGE expression in rats with DM, resulting in re-
duced accumulation of AGEs (Lu et al., 2011). Rosiglitazone,
an oral insulin sensitizing agent, has been shown to reduce
esRAGE levels with 6 months of treatment (Tan et al.,
2007). In addition, both metformin and pioglitazone can
block AGE formation in vitro (Rahbar et al., 2000). ACE in-
hibitors and angiotensin receptor blockers have also been
hypothesized to have AGE formation blocking activity
(Miyata et al., 2002). Some evidence suggests GLP-1 agonists
reduce RAGE expression (Yamagishi et al., 2015; Yamagishi
& Matsui, 2011). DPP4 inhibitors may protect against dia-
betic nephropathy by suppressing activation of the
AGE-RAGE axis (Nakashima et al., 2014).

Finally, reduced consumption of AGEs from the diet
can significantly reduce systemic inflammation in humans
despite endogenous AGE production being the major
source of circulating AGEs (Vlassara et al., 2002). Sevela-
mer carbonate, a compound frequently used in patients
with advanced kidney disease as a phosphate binder, is a
non-absorbed oral agent that can bind AGEs and may re-
duce intestinal absorption. In one study of 117 patients
with type 2 DM and chronic kidney disease, administra-
tion of sevelamer carbonate was shown to reduce circulat-
ing levels of CML and full length RAGE, and increase
AGER1 levels independently of a reduction in hemoglobin
A1C (Yubero-Serrano et al., 2015; Vlassara et al., 2012).

Conclusions
Increasing evidence supports a role for the AGE/RAGE
axis in the development, severity, and progression of
CAD in patients with and without DM. Additional pro-
spective multicenter randomized controlled studies are
needed to further evaluate the possibility that circulating
AGE or sRAGE levels can serve as a biomarker to diag-
nose CAD and to identify patients who may benefit from
invasive intervention for diagnosis and treatment. The
literature to date evaluating these questions has been
limited by differences in techniques for AGE and RAGE
quantification, and inconsistent measurements of spe-
cific molecules. There is increasing evidence supporting
a role for AGEs and AGE/RAGE signaling in the devel-
opment of CAD and other diabetic complications. De-
velopment of therapeutic agents aimed at reducing
circulating AGE concentrations and blocking of RAGE
activation may reduce the complications of DM and aid
in the treatment of CAD.
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