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Abstract. Coronary artery disease and cerebrovascular
disease due to the rapid progression of atherosclerosis is
the principal cause of death in diabetes mellitus.
Modification of low-density lipoproteins (LDL) by
advanced glycosylation end-products (AGE) may play a
central role in the development of atherosclerosis,
especially in diabetic patients. An AGE-modified form of
LDL (AGE-LDL) has been found to circtulate in human
plasma, and AGE modifications have been identified as
being present on both the apoprotein (ApoB) and the
phospholipid components of LDL. By utilizing an
AGE-specific ELISA, we measured the AGE attached to
the ApoB and lipid components of LDL from normal
controls and diabetic patients with or without end-stage
renal disease (ESRD), as well as lipid oxidation.
AGE-ApoB, AGE-lipid and oxidized LDL (Ox-LDL) in
diabetic patients were significantly higher than those in
patients without diabetes. The correlation between
AGE-ApoB and AGE-lipid were highly significant. An
especially marked elevation of AGE-LDL was found in
diabetic patients with ESRD. The correlation between
the serum total cholesterol and the AGE-LDL
(AGE-ApoB and AGE-lipid) was significant. In
addition, based on the known biological properties of
AGE-modified peptide (AGE-peptide), we have
proposed that these chemically reactive circulating
AGE-peptides contribute to tissue injury by reattaching
to susceptible target proteins both within and outside the
vasculature, and that this process accelerates vascular
pathology in diabetic patients. These data indicate that
AGE-modified LDLs may represent a particularly
atherogenic form of LDL, and AGE-LDLs as well as
AGE-peptides are likely to contribute to the develop-
ment of atherosclerosis in diabetic patients.
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Introduction

Diabetic patients suffer a high incidence of athero-
sclerotic disease, including coronary heart disease
(CAD) and cerebrovascular disease. The principal
cause of death in diabetic patients is atherosclerotic
macrovascular disease. Although this high incidence
and morbidity in diabetic patients has yet to be
explained, persistent hyperglycaemia, which is a major
hallmark of diabetes, might play an important role in
the acceleration of atherosclerosis. There is a missing
link between chronic hyperglycaemia shown in diabetic
patients and diabetic complications, including macro-
and microvascular complications. A growing body of
evidence has linked the accumulation of the late
products of glucose-protein interaction (AGEs) to a
variety of chronic complications [1,2]. In contrast to the
'early' Amadori products, which do not result in
pathological changes, a significant correlation has been
shown between the tissue AGEs and the presence and
severity of diabetic complications [1,2]. Recent research
findings suggest that circulating AGE-peptide and
intermediate substances such as 3-deoxyglucosone play
an important role in the formation and acceleration of
AGE in vivo. Also, there is substantial evidence to
indicate that modified low-density lipoproteins (LDL),
including oxidized LDL (Ox-LDL) and AGE-LDL,
contribute to atherogenesis by a number of mechan-
isms. The elevated plasma AGE-LDL in diabetic
patients due to persistent hyperglycaemia and increased
AGE-peptide is likely to act to produce the rapidly
progressive vasculopathy of diabetes or end-stage renal
disease in concert with Ox-LDL [3,4].

Circulating AGE-peptide and AGE-LDL

The development of radio receptor [5,6] and enzyme-
linked immunoassay methods [7] for measuring AGEs
led to the observation that circulating serum AGEs
increase markedly in diabetic patients with end-stage
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renal disease (ESRD) [8]. Circulating AGEs comprise
both serum protein-bound AGEs and low-molecular-
weight AGEs (AGE-peptide) which might be
degradation products of tissue AGEs [6,8]. The
existence of AGE-peptide in circulation has been
confirmed by two independent laboratories [9,10].
Current renal replacement therapies including haemo-
dialysis and CAPD have been shown to be insufficient
for removing AGEs that bind rapidly with proteins [8].
Increased AGE-peptide in diabetic ESRD might
explain the rapid progression of atherosclerosis shown
in diabetic ESRD. Also, these circulating AGE-peptides
have been postulated to be an important class of
uraemic toxic substances.

We recently described that amino-containing
phospholipids as well as apoproteins react with glucose
to initiate AGEs, forming lipid-linked AGEs (AGE-
lipid) and apolipoprotein-linked AGEs (AGE-ApoB)
[3]. AGE-lipids have also been found to promote fatty
acid oxidation of LDL. This process, termed AGE
oxidation, appears to result from the inter- and
intramolecular oxidation-reduction reactions that are
an inherent feature of AGEs [3,4]. The predominant
site of AGE was found to lie within a single,
67-amino-acid region located 1791 residues amino-
terminal of the putative LDL receptor binding domain
[11]. These data provide further evidence for important
structural interactions between the LDL receptor
binding domain and remote regions of the ApoB
polypeptide.

Figure 1 shows a current scheme for the formation of
AGE in vivo. AGE formation occurs not only through
Amadori products but also through reactive
intermediates on decomposition of reactive sugar,
Schiff base or Amadori products [12]. Also,
AGE-peptide, which is a degradation product from
tissue AGE, might act as an accelerator for the rapid
formation of AGE. This pathway and mechanism of
AGE reaction may explain the relatively rapid
formation of AGE in vivo.

AGE and diabetic atherosclerosis

Patients with diabetes or renal insufficiency suffer a
high incidence of atherosclerotic disease. The decreased
survival of diabetic patients treated by dialysis therapy
is not surprising, in light of their extensive extrarenal
vascular disease and their acceleration of athero-
sclerosis. There is a missing link in the explanation of
the dramatic acceleration of atherosclerosis in diabetic
patients with ESRD in contrast to non-diabetic patients
with ESRD. The clue lies in the persistent
hyperglycaemia found in diabetic patients. Recently,
studies of atherosclerosis have been influenced by the
hypothesis that human LDL oxidation may initiate the
atherosclerotic lesion or worsen its course [12].
Ox-LDL could be the in vivo counterpart of chemically
modified forms of LDL. For example, AGE-modified
LDL may play an important role in the pathogenesis of
atherosclerosis in diabetics. We have recently shown that
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Fig. 1. Schematic representation of the formation of AGEs.

upon incubation of LDL with glucose, AGE formation
occurs in both the apoprotein B (ApoB) and lipid
components of LDL [3]. Also, in vitro glycation of
lipids is shown to result in fatty acid oxidation [3].
Based on the known biological properties of AGEs, we
have proposed that these chemically reactive circulating
AGE-modified peptides contribute to tissue injury by
reattaching to susceptible target proteins both within
and outside the vasculature, and that this process
accelerates vascular pathology in diabetic patients.

In order to confirm that the diabetic serum
AGE-peptide can also react with LDL, we isolated the
low-molecular-weight AGE-peptide fraction by passing
the serum through an ultrafiltration device. When these
human serum-derived AGE-peptides were exposed to
normal LDL, a dramatic and rapid increase in
AGE-LDL formation was observed compared with
glucose-induced AGE-LDL. At the same time, LDL
oxidation mimicked the AGE-LDL modification [4].
In the presence of the AGE-cross-link inhibitor
aminoguanidine, the AGE development on either ApoB
or the lipid component of LDL was inhibited [4].
This further confirmed the covalent attachment of
AGE-peptide onto the LDL components. To address
the potential mechanism for the lipid disorder of
diabetes and ESRD, we investigated the possibility that
circulating AGE-LDL formed by AGE-peptide
prevents recognition by LDL receptors [4].

We first measured AGE-ApoB and AGE-lipid in
circulation [3]. Marked elevations in AGE-ApoB as well
as AGE-lipid were present in plasma from diabetic as
well as non-diabetic patients with ESRD compared
with patients with normal renal function. We evaluated
the association between circulating AGE-LDL and
renal function in vivo. The correlation between circu-
lating AGE-ApoB or AGE-lipids and serum creatinine
was significant.

Direct histochemical evidence for the accumulation
of AGEs in coronary atheroma in diabetic haemo-
dialysis patients was demonstrated by using AGE-
specific antibody [14]. There is positive AGE staining
throughout much of the plaque in transverse sections
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Fig. 2. Possible mechanism for diabetic atherosclerosis.

of a coronary artery from a 72-year-old diabetic
haemodialysis patient. Control sections showed no
positive staining.

Figure 2 shows our current hypothesis for the
explanation of atherosclerosis in diabetic patients
with or without ESRD. In diabetics without ESRD,
persistent hyperglycaemia could cause increased AGE
accumulation and protein-protein cross-linking by
AGEs in their tissues. Enhanced oxidized LDL and
AGE-LDL may also contribute to the formation of
atherosclerosis. On the other hand, diabetics with
ESRD have the additional burden of poor removal of
toxic AGE. Elevated AGE-peptides and AGE-proteins
worsen AGE accumulation, cross-linking by AGEs and
increased oxidized AGE and AGE-LDL. These
mechanisms may explain the dramatic acceleration of
atherosclerosis found in diabetic patients with ESRD.
Also, AGE inhibitors might represent a new class of
drug which may interdict the diabetic complications
including atherosclerosis.
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