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Abstract

We exploit the multi-model ensemble produced by phase 5 of the Coupled Model Intercom-

parison Project (CMIP5) to synthesize current understanding of external forcing of Sahel

rainfall change, past and future, through the lens of oceanic influence. The CMIP5 multi-

model mean simulates the twentieth century evolution of Sahel rainfall, including the mid-

century decline toward the driest years in the early 1980s and the partial recovery since. We

exploit a physical argument linking anthropogenic emissions to the change in the temperature

of the sub-tropical North Atlantic Ocean relative to the global tropical oceans to demonstrate

indirect attribution of late twentieth century Sahel drought to the unique combination of

aerosols and greenhouse gases that characterized the post-WorldWar II period. The subsequent

reduction in aerosol emissions around the North Atlantic that resulted from environmental

legislation to curb acid rain, occurring as global tropical warming continued unabated, is

consistent with the current partial recovery and with projections of future wetting. Singular

Value Decomposition (SVD) applied to the above-mentioned sea surface temperature (SST)

indices provides a succinct description of oceanic influence on Sahel rainfall and reveals the

near-orthogonality in the influence of emissions between twentieth and twenty-first centuries:

the independent effects of aerosols and greenhouse gases project on the difference of SST

indices and explain past variation, while the dominance of greenhouse gases projects on their

sum and explains future projection. This result challenges the assumption that because

anthropogenic warming had a hand in past Sahel drought, continued warming will result in

further drying. In fact, the twenty-first century dominance of greenhouse gases, unchallenged

by aerosols, results in projections consistent with warming-induced strengthening of the

monsoon, a response that has gained in coherence in CMIP5 compared to prior multi-model

exercises.
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1 Introduction

The Sahel witnessed an outstanding climatic shift with the abrupt onset of drought in the late

1960s. The magnitude and spatial extent of the downward trend in precipitation over the

twentieth century (Greene et al. 2009) and the persistence of years of deficient rainfall through

the 1970s and 1980s (Lamb 1982; Nicholson 1983; Dai et al. 2004; Ali and Lebel 2009) led

scientists to hypothesize that Sahelian drought may be a sign of anthropogenic change. Some

pointed to the local pressure of rapid population growth on vegetation cover and the conse-

quent impact of an increase in albedo on the atmospheric energy budget (Charney 1975).

Others linked drought to the nascent preoccupation with the impact of global anthropogenic

emissions, of greenhouse gases (GHGs), and other pollutants, on the general circulation of the

atmosphere (Bryson 1973).

We reconcile the just-mentioned arguments about the role of anthropogenic emissions in

Sahel drought, and more recent arguments attributing global precipitation changes to aerosols,

natural and anthropogenic (Robock and Liu 1994; Gillett et al. 2004; Liepert et al. 2004;

Lambert et al. 2004; Zhang et al. 2007; Haywood et al. 2013) with demonstration that the

dominant cause of Sahel drought lies in changes in the surface temperatures of the global

oceans (Folland et al. 1986; Giannini et al. 2003). We do so by linking the unique post-World

War II combination of aerosol and greenhouse gas emissions to the patterns of sea surface

temperature (SST) known to affect Sahel rainfall.

On interannual to millennial time scales, Sahel rainfall variations have been ascribed to

interhemispheric differences in SST, whether global, restricted to the Atlantic, or to the tropical

Atlantic Ocean (Lough 1986; Shanahan et al. 2009; Park et al. 2015; Lindzen and Nigam

1987; Kang et al. 2008; Schneider et al. 2014). Recent work attempting to explain the

disagreement in the sign of projected twenty-first century rainfall change (Biasutti and

Giannini 2006) with differences in projected SST change added the explicit consideration of

oceanic warming, resulting in a linear regression model that describes Sahel rainfall as a

function of two regional SST indices: the difference of tropical North and tropical South

Atlantic SST averages and the average of tropical Indo-Pacific sector SSTs (Biasutti et al.

2008). This regression model was further distilled into a single predictor, the North Atlantic

Relative Index (NARI; Giannini et al. 2013), computed as the difference between SST

averages over the sub-tropical North Atlantic (10°N–40°N, 75°W–15°W) and the global

tropical oceans (20°S–20°N). Here, we denote these as NA and GT, respectively, so that

NARI = NA −GT. In this difference, the tropical SST average (GT) captures global vertical

stability (Chou and Neelin 2004): the stabilization effect of warming SSTs is communicated

vertically through deep convection and is spread laterally by upper-atmosphere wave dynam-

ics, given the weak temperature gradient constraint (Chiang and Sobel 2002). The sub-tropical

North Atlantic SST average (NA) counters stabilization through moisture supply (Giannini

et al. 2008; Seth et al. 2013). To the extent that Sahel rainfall variations on different time scales

are the result of the underlying oceanic forcing’s preferred time scales of variation, our

physical interpretation of NARI follows the paradigm that convection is in quasi-equilibrium

with its environment (Emanuel et al. 1994). This assumption eliminates the need to consider

time scales of variation separately, as long as these are longer than the time scales of

convective adjustment (including the adjustment in the coupled ocean-atmosphere system

described in Chiang and Sobel (2002)). In addition, it should be noted that a Brelative index^

effectively detrends variations (Vecchi et al. 2008), in the sense that insofar as both SST time

series express GHG-induced warming, taking their difference largely removes it. In
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observations, NARI explains ~ 50% of the variance in twentieth century Sahel rainfall

variability, all time scales included (Giannini et al. 2013).

In the BCMIP5 simulation of Sahel rainfall^ section, we show that the CMIP5 multi-model

mean reproduces the twentieth century evolution of Sahel rainfall, rendering discussion of its

attribution to external forcing possible. In the BClimate change in the Sahel through the lens of

oceanic influence^ section, we propose an explanation that reconciles studies of variability,

which typically seek to relate oceanic forcing and regional rainfall response, with studies of

change, which typically seek to attribute regional response to external forcing, natural or

anthropogenic, by developing an argument for indirect attribution of Sahel rainfall, through the

influence of anthropogenic emissions on sea surface temperatures. In the BTransformation of

predictors^ sub-section, we exploit Singular Value Decomposition (SVD) to describe the

linearly independent linear combinations of the two SST predictors defined above, i.e., the

averages of sub-tropical North Atlantic and global tropical SSTs. In the BLinear regressions of

Sahel rainfall^ sub-section, we use the resulting singular vectors in bivariate linear regressions

that describe their influence on Sahel rainfall. We present explicit formulas for these SVD-

based predictors in the bivariate case; although, as noted by Preisendorfer (1988), such

formulas had been available since a publication by Pearson (1901), their presentation in terms

of non-dimensional parameters, introduced here, helps to visualize the underlying relationships

and facilitates the interpretation of results. In particular, we show that when the ratio of

standard deviations of the original predictors is close to one, the bivariate SVD rotation results

in the sum and difference of these original predictor time series. In our case, this means that

NARI, the difference of NA and GT, which we defined above based on a physical argument, is

nearly proportional to one of the SVD predictors and is exhaustively complemented by the

other, which is nearly proportional to the sum of the same SST indices, and represents global

warming. The derivation of all necessary formulas is relegated to the Appendix. In the

BConclusions: Past is not prologue^ section, we conclude with a synthesis that finds coherence

in attributing past Sahel drought to anthropogenic emissions, while lending credence to

projections of a wetter future.

2 CMIP5 simulation of Sahel rainfall

The multi-model ensemble produced by the Coupled Model Intercomparison Project in

support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

(IPCC), referred to as CMIP5 (Taylor et al. 2012), reproduces the observed twentieth century

evolution of Sahel rainfall and projects wetter end of twenty-first century conditions more

coherently than its CMIP3 predecessor (e.g., compare Biasutti and Giannini (2006) with

Biasutti (2013)).

We restrict our analysis to 29 models participating in CMIP5, because only these have all

the thermodynamic and dynamical variables necessary to evaluate their moisture budget (the

subject of a parallel study). The models used are named in the tables in Supplementary

Material. We focus on ensemble means, because we are interested in attribution of observed

twentieth century Sahel rainfall variability, i.e., in describing its externally forced component,

whether the external forcing is natural (i.e., due to variations in incoming top of the atmosphere

insolation and spikes in aerosol concentration from volcanic eruptions) or anthropogenic (most

notably, emissions of aerosols and GHGs from fossil fuel burning). Single-model ensemble

sizes range between 1 and 10 in the historical simulations of the twentieth century and in the
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RCP8.5 scenario simulations of the twenty-first century. (In the case of the pre-Industrial

control, typically, one simulation is run per model, albeit of varying length.) For each model

and type of simulation, when more than one is available, we average realizations in the model’s

ensemble mean. We then compute the multi-model mean as the average of the single models’

ensemble mean, a procedure which further suppresses the manifestation of internal variability.

The top panels in Fig. 1 display standardized Sahel rainfall (the precipitation average for

land points in 10°N−20°N, 20°W−40°E, in each model’s original resolution, over July–

September (Nicholson 1983; Giannini et al. 2003)): twentieth century (1900–1999) time series

are depicted on the left-hand side and twenty-first century (2006–2099) time series on the

right-hand side. To facilitate comparison, we standardize all the time series: each model’s

Fig. 1 Time series of standardized Sahel rainfall (top) and time series of the dominant and trailing SVDmodes of

the predictors’ space p1 (middle) and p2 (bottom) for the single-model ensemble means of 29 CMIP5 models (thin

green, turquoise, and orange lines) and for the multi-model ensemble mean (thick yellow, brown, and blue lines),

from the historical simulations (1900–1999) in the left panels, and from the RCP8.5 simulations (2006–2099) in

the right panels. The red lines represent observations
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ensemble mean, in the thin green lines, is standardized by its own mean and standard

deviation. The multi-model mean, in the thick yellow line, is first computed as the average

of the original (non-standardized) single-model ensemble mean precipitation time series and

then standardized. The reason for proceeding in this order is that we wish to characterize the

externally forced component of Sahel rainfall. Since the models’ ability to capture the relevant

physical processes varies, if we computed the multi-model mean on the standardized single-

model ensemble means, we would give all models, Bgood^ and Bbad,^ equal weight. Con-

versely, if the multi-model mean is taken on rainfall anomalies, the internal variability that

dominates models that do not respond to external forcing is weighted out, because by

definition it does not have a preferred temporal sequencing. This allows the temporally

coherent response to external forcing to emerge. For a comparison to non-standardized time

series, i.e., Sahel rainfall anomalies in units of mm/day, the reader is referred to Fig. 2 in
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Fig. 2 Scatterplots of sub-tropical North Atlantic and global tropical ocean temperatures in observations (1901–1999)

colored by standardized values of Sahel rainfall, with depictions of the angle of rotation ϕ, standard deviations of the

original (σ1, σ2) and SVD-based predictors (λ11/2, λ21/2) and the concentration ellipse (dotted): see text for details
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Biasutti (2013): there it can be seen that (i) the amplitude of variations in the multi-model mean

is smaller than that in observations, as expected, given that the single real-world realization

expresses the combination of internal variability and externally forced change. However, (ii) the

observed evolution falls within the envelope defined by individual ensemble member simula-

tions. The thick red line in the left panel of our Fig. 1 represents observed Sahel precipitation

(Becker et al. 2013). Its correlation with the multi-model mean is 0.37 and is corroborated by a

visible qualitative match: the first half of the century is characterized by variations around the

mean, and is followed by a precipitous decline that lasts until the mid-1980s, and a partial

recovery since. Standardization, because it normalizes the amplitude of variation, makes it

possible to clearly discern the minimum in the multi-model mean, which occurs in 1982 and

coincides with the first of three driest consecutive years in observations, 1982–1984, and with

the eruption of El Chichón (Robock and Liu 1994). In contrast, the twenty-first century multi-

model mean (top, right panel of Fig. 1) shows an upward trend, albeit with periods characterized

by interannual-to-decadal variations that mask the trend, most notably at the end of the century.

3 Climate change in the Sahel through the lens of oceanic influence

We build an argument for indirect attribution based on the influence of external forcing—

external to the coupled ocean-atmosphere system—on the SST patterns that affect Sahel

rainfall. In the BTransformation of predictors^ sub-section, we concisely describe oceanic

influence using SVD applied to our set of two original predictors for Sahel rainfall, sub-

tropical North Atlantic and global tropical SSTs. In the BLinear regressions of Sahel rainfall^

sub-section, we use the resulting singular vectors as predictors in bivariate regression. Results

of the analyses of the multi-model means and observations are reported in Tables 1 and 2.

Results of the analyses of the single-model ensemble means are collected in tables in

Supplementary Material. The Appendices provide a brief review of the nomenclature and

definitions for SVD in the general m-dimensional case (Singular Value Decomposition of an

m-dimensional predictors’ space) and for linear regression (Use of time-dimensional singular

vectors as predictors), as well as the derivation of the explicit form for the parameters of SVD

in the bivariate case (Singular Value Decomposition of a two-dimensional predictors’ space;

derivation of Eqs. (1)–(5)).

Table 1 Predictors’ space characteristics for the multi-model means from CMIP5 simulations and for twentieth

century observations

Century CMIP5

simulation

σ1, °C

GT

σ1, °C

NA

ϱ k ϕ,

arc°

λ1
°C2

λ2
°C2

λ1/

(λ1 + λ2)

%

λ2/

(λ1 + λ2)

%

19th PI control 0.03234 0.04195 0.369 0.771 62.75 0.0020 0.0008 71.90 28.10

20th Historical 0.13150 0.12475 0.955 1.054 43.42 0.0321 0.0007 97.74 2.26

21st RCP8.5 0.86711 0.83118 0.999 1.043 43.79 1.4422 0.0005 99.96 0.04

1901–1999 Observations 0.19565 0.22748 0.619 0.860 51.86 0.0734 0.0166 81.52 18.48

Columns from the left to right show the simulated century and the type of CMIP simulation (or observational

reference period), the standard deviations of the original predictors, σ1 and σ2, in °C (for GT and NA,

respectively), their correlation coefficient, ρ, the ratio of their standard deviations, k = σ1/σ2, angle ϕ from Eq.

(3), in arc degree, variances λ1 and λ2, in (°C)2 , respectively, explained by the leading and trailing modes,

corresponding to time series p1 and p2, and the same in percent of the total variance λ1 + λ2
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3.1 Transformation of predictors

We relate differences between our predictors’ covariance structures to differences in the

external forcing applied to the pre-Industrial control and twentieth and twenty-first century

simulations. The latter two types of simulations are run with time-varying external forcing,

natural and anthropogenic: variations in each realization of a single model’s ensemble are a

combination of internal variability and externally forced change, and their ensemble mean is

taken to filter out internal variability. The former are run with constant external forcing,

including CO2 concentrations held fixed at pre-Industrial levels (280 ppm), the intent being

to provide a truthful estimation of each model’s internal variability. We repeat analyses on each

model’s first 100 years of the pre-Industrial control simulation (typically, there is only one such

simulation per model, of variable length) and on each model’s ensemble mean (with ensemble

sizes varying between one and ten) for the twentieth and twenty-first century simulations.

When there are only two predictors—in our case, x1 =GT and x2 =NA—standardized and

mutually uncorrelated SVD-based predictors p1, p2 are obtained from the original predictors x1,

x2 by orthogonal rotation in the x1x2 plane followed by rescaling:

p1 ¼ x1cosϕþ x2sinϕð Þ=
ffiffiffiffiffi

λ1

p

ð1Þ

and

p2 ¼ x2cosϕ−x1sinϕð Þ=
ffiffiffiffiffi

λ2

p

ð2Þ

where the rotation angle ϕ and squared rescaling coefficient λ1, λ2 are given by:

ϕ ¼

1

2
arccot k−k−1

� �

=2ρ
� �

: ρ > 0

π=2 : ρ ¼ 0; 0 < k < 1

0 : ρ ¼ 0; k≥1
1

2
arccot k−k−1

� �

=2ρ
� �

þ π=2 : ρ < 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð3Þ

and

λ1 ¼
1

2
σ2
1 þ σ2

2 þD
� �

;λ2 ¼
1

2
σ2
1 þ σ2

2−D
� �

;D ¼ σ2
1−σ

2
2

� �2 þ 4ρ2σ2
1σ

2
2

h i1=2
: ð4Þ

Table 2 Regression coefficients and skill for Sahel rainfall in CMIP5 multi-model means and in twentieth

century observations

Century CMIP5

simulation

a b Correlation coefficient

of y, ŷ

19th PI-control 0.054 0.312 0.317

20th Historical −0.320 0.477 0.574

21st RCP8.5 0.783 0.171 0.801

1901–1999 Observations −0.182 0.607 0.633

Columns from the left to right show the simulated century and the type of CMIP simulation (or observational

reference period), regression coefficients a and b of Sahel rainfall on the time series p1 and p2, respectively, and

the correlation coefficient between y, Sahel rainfall simulated in CMIP5, or observed, and its predicted values

from regression model (6): ŷ = ap1 + bp2
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In Eqs. (3)–(4), k = σ1/σ2 is the ratio of standard deviations σ1 and σ2 of x1 and x2, respectively,

and ρ is their correlation coefficient. Incidentally, k and ρ are the two non-dimensional

parameters, characterizing the variance-covariance matrix of x1 and x2 up to a constant factor;

to represent the same in terms of p1 and p2, one such parameter is ϕ, while the relative value of

either of λ1 or λ2 where λ1 > λ2, can be another:

λ2

λ1 þ λ2

¼ 1

2
−
1

2

k−k−1

k þ k−1

� �2

þ 2ρ

k þ k−1

� �2
" #1=2

: ð5Þ

Derivation of Eqs. (1)–(5) is given in BSingular Value Decomposition of a two-dimensional

predictors’ space; derivation of Eqs. (1)–(5)^.

Figure 2 illustrates these relationships in twentieth century observations (see the last row of

Table 1 for the values of relevant parameters). The observed values of the original predictors

are the coordinates of the color triangles on the (x1, x2) plane, with the corresponding

standardized values of Sahel rainfall shown by color. The thick segments shown on the x1,

x2 axes indicate sample standard deviations, σ1 and σ2, of these original predictors. Their

values are approximately 0.20 and 0.23 °C, respectively, and their ratio is k = σ1/σ2 = 0.86. The

correlation coefficient of the original predictors is ρ = 0.62. SVD-based predictors p1, p2,

whose corresponding axes are shown by dash lines, are obtained by orthogonal rotation of

the original predictors x1, x2 with rotation angle about ϕ = 52°, indicated by the arc connecting

the x1 and p1 axes. The thick segments on the p1 and p2 axes show standard deviations (in our

notation, λ1
1/2 = 0.27 °C and λ2

1/2 = 0.13 °C) of the data projections on these axes. The

variance of projections is maximized for p1, among all possible directions on the x1, x2 plane,

therefore λ1 > λ2, necessarily. Also by construction, the in-sample correlation coefficient

between p1 and p2 is zero; since there are only two predictors, p2, being the Blast^ of them,

minimizes the variance among all directions on the x1, x2 plane. Therefore, p2 only explains λ2/

(λ1 + λ2) = 18.5% of variance in the sample (while p1 explains the other 81.5%). These features

of the data and predictors’ pairs are illustrated by the shape of Bconcentration ellipses^ (von

Storch and Zwiers 1999; see their example 2.8.12, p. 43). The 95% concentration ellipse is

shown by the dotted line in Fig. 2; its major semiaxes are 2.45λ11/2 and 2.45λ2
1/2. It should be

noted that λ1 and λ2 do not necessarily determine the relative importance of the predictors p1
and p2 in modeling other variables: as color changes among triangles in Fig. 2 demonstrate, p2
is much more important than p1 in describing Sahel rainfall changes over 1901–1999. This is

confirmed by the calculation of the regression coefficients in the last row of Table 2.

In models, since the ratio, k, of standard deviations of global tropical and sub-tropical North

Atlantic SSTs is also close to 1 in the twentieth and twenty-first centuries, and the correlation

coefficient of the SST indices, ρ, is positive (Table 1), the angleϕ in Eq. (3) is close to 45°. That the

diagonal is the direction along which is expressed the greatest covariance between x1 =GT and

x2 =NA can also be clearly seen in Fig. 3. The remaining variance, orthogonal to it by construction,

is larger in the twentieth (blue dots in Fig. 3) than in the twenty-first century (red squares). Since

sinϕ = cosϕ for ϕ = 45o, p1 and p2, respectively, in Eqs. (1) and (2), become nearly proportional to

the sum and difference of the original predictors, and specifically, p2 approximates NARI. The time

series of p1 are depicted in the middle panels of Fig. 1: indeed, p1 represents a Bglobal warming^

mode, evident in both sub-tropical North Atlantic and global tropical ocean temperatures. p2
(~NARI) explains more variance in the twentieth than in the twenty-first century. Its standardized

form is depicted in the bottom panels of Fig. 1. In the middle and bottom left-hand side panels,

thick red lines represent the principal components in observations (Kaplan et al. 1998).
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Our original predictors, GT and NA, are highly correlated in the twentieth and

twenty-first century simulations, less so in the pre-Industrial control simulations

(Fig. 3 and Table 1). As a consequence, the percent of variance explained by the

leading mode, λ1 in Eq. (4), increases in the simulations with time-dependent external

forcing, as compared to those with constant forcing. The correlation further increases

from twentieth to twenty-first century and consequently so does the relative variance

of the leading mode, λ1/(λ1 + λ2) = 1 − λ2/(λ1 + λ2), see Eq. (5). This behavior repre-

sents one prominent way in which external forcing expresses itself: it forces a positive

Fig. 3 Scatterplots of sub-tropical North Atlantic and global tropical ocean temperatures in 100 years of pre-

Industrial control (green circles), in the twentieth century/historical (blue dots), and in the twenty-first century/

RCP8.5 (red squares) simulations. The first 29 panels correspond to single-model ensemble means, and the last

panel (in the lower right corner) corresponds to the multi-model mean
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correlation between the two predictors, through their common, GHG-induced warming.

In addition, the relative cooling of the North Atlantic associated with aerosols contributes

to the co-variability of indices with a second, preferred direction along which variance is

expressed, which by construction is orthogonal to the first. This direction expresses more

variance, visible in the scatter plots in Fig. 3, in the twentieth (blue dots) than in the

twenty-first century (red squares).

3.2 Linear regressions of Sahel rainfall

Our SVD analysis of the original predictors confines any trend entirely to the

leading mode time series, p1, i.e., the Bsum^ or Bwarming^ mode, while the residual

mode, p2, i.e., the Bdifference^ or NARI, is completely devoid of any significant

trend. We model standardized Sahel rainfall y, our predictand, by linear regression

on p1 and p2 (see Section BUse of time-dimensional singular vectors as predictors^

in the Appendix):

ŷ ¼ ap1 þ bp2 ð6Þ

Regression coefficients a and b and the correlation coefficients between simulated

and predicted Sahel rainfall for the multi-model mean and for observations are

reported in Table 2. Since the SVD-based predictor time series are standardized

and mutually uncorrelated, and predictand time series are standardized, the regres-

sion coefficients, a and b, are precisely the correlation coefficients of the predictand

and corresponding predictors. In the twentieth century, correlation of the multi-

model mean simulation of Sahel rainfall with its SST-based regression is 0.574

and correlation in observations is 0.633. Both terms in the regression contribute,

but p2 contributes more (since b > a): late twentieth century Sahel drought is

explained by the absence of North Atlantic warming, relative to warming of the

global tropical oceans. The (positive) sign of b, the regression coefficient multiply-

ing p2 (NARI), is consistent across centuries. However, its magnitude and explan-

atory power vis à vis Sahel rainfall are drastically diminished in the twenty-first

century. Over the twenty-first century, the correlation between the simulated Sahel

rainfall and its in-sample prediction is 0.801. The multi-model ensemble achieves

this high a correlation essentially through a positive correlation between Sahel

rainfall and warming, captured by p1. This happens because the coherence among

models in projections of twenty-first century precipitation change has increased

considerably from CMIP3 to CMIP5 (Biasutti 2013): a majority of models in

CMIP5 project a future increase in Sahel rainfal to go along with warming

(Schewe and Levermann 2017), in analogy to paleoclimate reconstructions of the

BGreen Sahara^, when summer insolation was stronger than now (de Menocal et al.

2000). Among the models with a twenty-first century correlation coefficient between

p1 and Sahel rainfall larger than 0.45 (thus explaining ~ 20% of the variance with

the single predictor p1), seven of nine project future wetting (Table S3 in

Supplementary Materials). In sum, regression models between centuries are nearly

orthogonal: p2, analogous to the difference of predictors or NARI, explains a larger

fraction of twentieth century variation, while p1, analogous to the sum of predictors

or warming, alone explains the externally forced twenty-first century change.
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4 Conclusions: Past is not prologue

Our analysis of the multi-model mean by design emphasizes the externally forced response

and leads us to propose the following indirect attribution argument for Sahelian climate

change, past and future. In the second half of the twentieth century, as global dimming

(Stanhill and Cohen 2001; Liepert 2002) opposed global warming in the northern hemisphere,

a unique combination of anthropogenic emissions contributed to the late twentieth century

drying of the Sahel through their effect on sea surface temperatures: aerosols by cooling the

North Atlantic and greenhouse gases by warming the tropical oceans, especially the Indian

Ocean. Warming of the global tropical oceans Bupped the ante^ for deep convection (Chou and

Neelin 2004; Held et al. 2005), while the absence of warming in the North Atlantic reduced the

moisture supply to the monsoon and thus its potential to meet the Bupped ante^ and to trigger

vertical instability (Giannini et al. 2008). Our argument is distinct from others previously

proposed, which attributed late twentieth century Sahel drought solely to aerosols, whether

through cooling of the North Atlantic or of the entire northern hemisphere (Rotstayn and

Lohmann 2002; Kawase et al. 2010; Ackerley et al. 2011; Booth et al. 2012; Hwang et al.

2013; Park et al. 2015; Wang et al. 2016), in three ways. First of all, we argue for an indirect

effect of anthropogenic emissions, i.e., mediated by sea surface temperatures. Linking emis-

sions to Sahel rainfall through SSTs has the added advantage that it allows the synthesis in a

single physical explanation of natural variability and anthropogenic change. Secondly, our

argument is not about the role of interhemispheric gradients in SST shifting the latitudinal

location of the Intertropical Convergence Zone and by extension rainfall in the Sahel. Rather, it

is about quasi-equilibrium in convection as the world warms. The observed late twentieth

century drying of the Sahel was more profound—longer lasting and of greater amplitude—

than, e.g., the early twentieth century drought around 1910, despite the North Atlantic being

cooler during the early period. This observation justifies the search for additional factors in

drought, which we identify in greenhouse gas-induced tropical warming, which in the

twentieth century occurred simultaneously with North Atlantic cooling. Therefore, thirdly,

we argue for the combined drying effect of the two contrasting anthropogenic influences in

twentieth century: drought was not caused by aerosols alone or by the cooling of the North

Atlantic alone. Neither could it have been caused by greenhouse gases alone, as is made

evident in simulations which include only the latter forcing (Biasutti 2013; Dong and Sutton

2015; Gaetani et al. 2017; Hill et al. 2017). Rather, drought resulted from the combination of

aerosols and greenhouse gases. One influence cooled and reduced the moisture supply, while

the other, warming, raised the threshold for convection—a double jeopardy. In the twenty-first

century, external influence is dominated by GHG-induced warming, of both the North Atlantic

and global tropical oceans. NARI, their difference, tends to zero, leaving all response to

external forcing to be explained by their sum.

SVD rotation of the original predictors to their weighted sum and difference and the relative

sizes of their regression coefficients (Table 2) expose the near-orthogonality of the twentieth

and twenty-first centuries in the response of SSTs and rainfall to external forcing. The oceans’

translation of external forcing of predominantly anthropogenic nature leads to contrasting but

not inconsistent outcomes in the past and the future. Late twentieth century drying and twenty-

first century projections of wetting are consistent with different balances in the influences of

aerosol and greenhouse gas emissions on regional energy and moisture budgets, underlined by

one coherent physical explanation rooted in the dynamics of quasi-equilibrium in convection.

The fact that emissions need to be considered holistically, not additively, explains how it is
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possible that while anthropogenic warming had a role in past drought, continued warming in

the twenty-first century gives rise to a strengthening of the monsoon. As aerosol emissions

have abated, especially around the North Atlantic, it is the combination of warmings of

both North Atlantic and global tropical oceans that explains the strengthening of the

monsoon: the upped ante can now be met. This situation is consistent with understanding

of monsoon response to warming on paleoclimate time scales: when the ocean warms

enough to contribute to an Bupped ante^ with increased moisture supply but not enough

to shift the favored locus of convection from land to ocean (Chou et al. 2001), it

reinforces the monsoon, as is the case for West Africa (Braconnot et al. 2012). With

the usual caveats related to uncertainty in multi-model mean projections, that further

warming may result in wetting of the Sahel is a conclusion worth reinforcing, in equal

parts because it has gained in coherence between CMIP3 and CMIP5 (Biasutti 2013),

and because the recovery of the rains is being experienced on the ground, in a fashion

that is remarkably consistent with expectation from anthropogenic warming (West et al.

2008; Lodoun et al. 2013).
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Appendix. Methods

Singular Value Decomposition of an m-dimensional predictors’ space

Suppose an n ×m matrix X contains, by columns, centralized samples of m variables x1, x2, ...,

xm (our original predictors), each observed at the same n >m times. The well-known thin

Singular Value Decomposition (SVD) presents X as:

X ¼ UΣET

whereU is an n ×mmatrix of orthonormal columns, E is anm ×m orthogonal matrix, andΣ is

a diagonal matrix with non-negative diagonal elements in non-ascending order, called singular

values (Golub and Van Loan 1996). Superscript T denotes matrix transposition. The columns

of U and E are called left and right singular vectors. Rescaling the left singular vectors by

P ¼
ffiffiffiffiffiffiffiffi

n−1
p

U and introducing Λ =Σ2/(n − 1), we rewrite X as:

X ¼ PΛ1=2ET ð7Þ

By construction, the columns of P are standardized, mutually uncorrelated time series. Each

column is associated with a pattern of loadings (from the corresponding column of matrix E)
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on the original m variables and with the amount of variance (given by the corresponding

diagonal element inΛ) that it explains within the total variance of them original variables. The

latter is easy to see from observing that the variance-covariance matrix of the original

variables:

C ¼ XTX= n−1ð Þ ¼ EΛET ð8Þ

has its eigenvalues and eigenvectors equal to diagonal elements of Λ and to columns

of E, respectively. The columns of E are also known as Empirical Orthogonal

Functions (EOFs), while the columns of V = PΛ1/2 are known as Principal Compo-

nents (PC) of the data set contained in matrix X. Decomposition of the data set into

EOFs and PCs:

X ¼ VET

is often used in climate science to represent the overall co-variability of the original

variables as the superposition of linearly independent modes, with several leading

modes usually explaining most of the total variance in the system (von Storch and

Zwiers 1999).

Singular Value Decomposition of a bivariate predictors’ space; derivation of Eqs.

(1)–(5)

We centralize our predictors, denote them x1 and x2, respectively, arrange them column-wise in

matrix X = [x1x2], and perform the SVD of X in the form of Eq. (7). The columns of matrix

P = [p1 p2], called singular vectors, are obtained from the columns of X by an orthogonal

rotation with 2x2 matrix E, followed by their normalization by the square roots of diagonal

elements of 2x2 matrix Λ:

P ¼ XEΛ−1=2 ð9Þ

By construction, p1 and p2 are standardized, mutually uncorrelated time series.

When there are only two predictors, x1 and x2, it is possible to present the elements of

matrices E andΛ of the canonical decomposition of the predictors’ variance-covariance matrix

C =XTX/(n − 1) =EΛET as functions of its elements.

Let standard deviations of x1 and x2 be σ1 and σ2, respectively, and their correlation

coefficient be ρ, then their variance-covariance matrix is:

C ¼ σ2
1 ρσ1σ2

ρσ1σ2 σ22

	 


: ð10Þ

Note that:

C ¼ σ2
1 þ σ2

2

2
Iþ σ2

1 þ σ22
2

� �2

þ ρ2σ2
1σ

2
2

" #1=2
cos2ϕ sin2ϕ

sin2ϕ −cos2ϕ

	 


;

where I is a 2x2 identity matrix, and ϕ from the interval [0, π) is determined by:

cot 2ϕð Þ ¼ σ2
1−σ

2
2

� �

= 2ρσ1σ2ð Þ: ð11Þ
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Introducing a non-dimensional parameter k = σ1/σ2, and expressing ϕ from Eq. (11) as a

function of k and ρ, we obtain Eq. (3).

Using the identity:

cos2ϕ sin2ϕ

sin2ϕ −cos2ϕ

	 


¼ cosϕ −sinϕ

sinϕ cosϕ

	 


1 0

0 −1

	 


cosϕ −sinϕ

sinϕ cosϕ

	 
T

we rewrite:

C ¼ cosϕ −sinϕ

sinϕ cosϕ

	 


λ1 0

0 λ2

	 


cosϕ −sinϕ

sinϕ cosϕ

	 
T

with λ1 and λ2 defined by Eqs. (4). Therefore, the canonical decomposition of C is performed

with eigenvector and eigenvalue matrices, E and Λ, as follows:

E ¼ cosϕ −sinϕ

sinϕ cosϕ

	 


; Λ ¼ λ1 0

0 λ2

	 


ð12Þ

where ϕ is given by Eq. (3) and λ1 and λ2 by Eq. (4).

Inserting expressions for E and Λ from Eq. (12) into Eq. (9), we write them out in the

component form for an arbitrary row of matrix P to obtain Eqs. (1)–(2).

Preisendorfer (1988) noted that Eqs. (11) and (4) are known since Pearson (1901). Equation

(3) derived above gives an explicit form for the angle ϕ, expressing it through the non-

dimensional parameters k and ρ of the original predictors’ variance-covariance matrix, making

it more convenient for interpretation. A traditional non-dimensional parameter of such matrix

for SVD-based predictors p1, p2, the portion of variance explained by one of the predictors,

follows from Eq. (4). For p1, it is expressed through k and ρ as:

λ1

λ1 þ λ2

¼ 1

2
þ 1

2

k−k−1

k þ k−1

� �2

þ 2ρ

k þ k−1

� �2
" #1=2

: ð13Þ

For the predictor p2 with the smaller variance, λ2, since λ2/(λ1 + λ2) = 1 − λ1/(λ1 + λ2), using

(13) results in Eq. (5). The general structure of the dependence of the angle ϕ, characterizing

the rotation of the original predictors toward uncorrelated singular vectors, and of ratio λ2/

(λ1 + λ2), characterizing the relative variance of the second (trailing) predictors’mode, on non-

dimensional parameters of the original predictors’ variance-covariance matrix, ρ, the correla-

tion coefficient of the original predictors x1 and x2, and k, their ratio of standard deviations, are

illustrated in Fig. 4, with points corresponding to the data samples of multi-model means from

CMIP5 simulations and from observations, as listed in Table 1.

Finally, the relationships between parameters of variance-covariance matrices in the (x1, x2)

and (p1, p2) predictor planes are illustrated by the shape of Bconcentration ellipses,^ which are

described by equation:

x21=σ
2
1−2ρx1x2= σ1σ2ð Þ þ x22=σ

2
2 ¼ 1−ρ2

� �

q αð Þ

in (x1, x2) coordinates and by equation:

p21=λ1 þ p22=λ2 ¼ q αð Þ
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in (p1, p2) coordinates. Here, q(α) is the α% quantile of the χ2(2) distribution with two degrees

of freedom, so that if (x1, x2) observations obey a bivariate normal distribution, α% of the data

points is contained within this concentration ellipse (von Storch and Zwiers 1999, see their
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Fig. 4 Dependence of the angle ϕ (white contours) and of ratio λ2/(λ1 + λ2), in percent (color shading) on the

correlation coefficient ρ and ratio of standard deviations k of GT and NA. White dot, circle, square, and triangle

show points on the (ρ, k) plane corresponding to the multi-model means of CMIP5 pre-Industrial control,

historical, and RCP8.5 scenario simulations and of observations, respectively. Note that ϕ(ρ, k) is discontinuous

at all points of the ray {(ρ, k) : ρ = 0, k ≥ 1}. In particular, while the definition in Eq. (3) made ϕ right-continuous

at ρ = 0 for all k > 1, since ϕ(0, k) =ϕ(0+, k) = 0, the left limit of ϕ in these points is different: ϕ(0−, k) = π
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example 2.8.12, p. 43). An example of such an ellipse, expected to contain (for normally

distributed data) α = 95% of the data, is shown in Fig. 2.

Use of time-dimensional singular vectors as predictors

In regression studies, it often proves advantageous to use as predictors a set of standardized

and mutually uncorrelated variables, like p1, p2, ..., pm (their time series pi, i = 1, 2, ..., m, are

given by columns of matrix P and represent rescaled time-dimensional (left) singular vectors

of X), instead of the original variables that lack these properties, leading to more tractable and

easier to interpret results. Indeed, consider the regression model:

y ¼ a1p1 þ a2p2 þ…þ ampm þ ε ð14Þ

where ε is a random error and, for simplicity, the predictand y is assumed standardized. The

vector of unknown regression coefficients a = (a1, a2,…, am)T has to be found by the least-

squares best fit to the system

y ¼ Pa

where y is an n-dimensional vector—a column that contains the standardized data sample for

variable y. Dividing normal equations

PTP
� �

a ¼ PTy

by n–1, we find, since PTP/(n −1) = I (where I is an n × n identity matrix),

a ¼ PTy n−1ð Þ ¼ ρ1; ρ2;…; ρmð ÞT ;
.

where ρi, for each i = 1, 2, ..., m, is the sample correlation coefficient between pi and y

(ρi ¼ pTi y= n−1ð Þ, since y and columns of P are all standardized). Therefore, regression model

Eq. (14) results in the prediction:

ŷ ¼ ρ1p1 þ ρ2p2 þ…þ ρmpm ð15Þ

for which the sample estimate ρ̂ of its correlation coefficient with the actual value of y satisfies

the relationship:

ρ̂
2

¼ ρ21 þ ρ22 þ…ρ2m;

making it easy to see how the inclusion of time series pi of each individual mode i into the

regression model contributes to the overall skill of prediction. Another measure of in-sample

skill estimate for prediction Eq. (15), the standard deviation ê, of the difference ŷ−y, can be

expressed through ρ̂ as ê ¼
ffiffiffiffiffiffiffiffiffiffi

1−ρ̂2
p

.
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