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The Role of Alliance Network Redundancy in the
Creation of Core and Non-core Technologies

Wim Vanhaverbeke, Victor Gilsing, Bonnie Beerkens and
Geert Duysters
Hasselt University, Belgium; Tilburg University, The Netherlands; Eindhoven University of Technology, The

Netherlands; UNU-Merit, The Netherlands

abstract This paper studies the effect of a focal firm, and its partners’ local alliance actions,
on the creation of technological innovations by the former. More specifically, we study how
two types of redundancy in a focal firm’s ego network affect its ability to create new
technologies in its technology core areas (exploitation) and/or non-core areas (exploration).
We analyse this empirically in three different industry settings: chemicals, motor vehicles, and
pharmaceuticals. One of our key findings is that individual firms can indeed boost both types
of innovative output by shaping the degree of redundancy in their local alliance network, but
that the way in which this should be done differs between the creation of core and non-core
technologies. Next, we find that it is very useful to unpack the rather abstract notion of
redundancy into more specific types of redundancy in ego networks. Overall, these findings
reflect an action-oriented view on the role of individual firms in collaborative networks, which
may complement the dominant view in the alliance literature emphasizing the role of the
overall network structure and firms’ network position within it.

INTRODUCTION

In recent decades, we have witnessed a rapid proliferation of strategic technology
alliances. The unprecedented increase in the number of newly established alliances has
led to the creation of dense alliance networks in which virtually all firms are linked to
each other through direct or indirect relationships. Traditionally, alliance research has
been preoccupied with the study of why and when alliances are formed (Duysters et al.,
2001). In addition, researchers have analysed with ‘whom’ firms are likely to form
alliances (Bae and Gargiulo, 2003; Gulati, 1995a; Gulati and Gargiulo, 1999; Walker
et al., 1997). More recently, several scholars have dealt with the question regarding
which specific network positions enable firms to achieve the highest level of performance
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(e.g. Gulati, 1999; Hardy et al., 2003; Hite and Hesterly, 2001; Uzzi, 1996, 1997). Here,
the debate has been inspired by the seminal works of Coleman (1988) and Burt (1992),
and focuses on the question whether firms should concentrate on developing dense
networks of preferential partners, or should opt for relationships that overarch structural
holes. Scholars in the first tradition often make use of ‘network closure’ arguments
(Coleman, 1988). According to this view, the replication of existing ties leads to the
emergence of highly cohesive groups of firms, which facilitates the development of trust,
commitment, and the free sharing of knowledge. On the other hand, scholars taking on
a ‘structural holes’ perspective (Burt, 1992) suggest that firms may enjoy brokerage
advantages by taking advantage of opportunities that arise from bridging disconnected
parts of a network (Duysters et al., 2003). This allows firms to obtain non-redundant,
high-yield information and facilitates information access, timing, referrals, and control
benefits (Burt, 1992, 2001).

In this debate, empirical contributions have generated a mixed bag of findings. In this
respect, there is an increasing consensus that a ‘contingency approach’ might be most
effective. In other words, the efficiency of a certain network structure depends on the
environmental conditions in which firms operate (Ahuja, 2000; Bae and Gargiulo, 2003;
Burt, 1997; Podolny, 2001; Reagans and Zuckerman, 2001). In this paper, we extend this
contingency approach by arguing that the efficiency of a certain network structure is also
related to the type of innovation activity that firms undertake. We propose introducing
the distinction between explorative and exploitative learning (March, 1991) as an impor-
tant contingency factor. Whereas explorative learning is associated with experimentation
and novel technologies, exploitation is concerned with the refinement and extension of
existing technologies. Although there is increasing consensus in the literature that the
efficiency of a network structure is contingent on the type of learning for which firms
strive (Ahuja, 2000; Burt, 1997; Podolny, 2001), there is still little empirical evidence to
back up this claim. In order to fill this void, we consider these two learning activities
within the context of technological innovation and study the effect of network structure
on each activity’s resulting output. As we will argue and as our empirical findings
indicate, the innovative output of these two types of learning each requires different
network structures.

In the literature, we find different levels of analysis that have been considered regard-
ing this network structure role. Granovetter (1992) was among the first to go beyond the
relational embeddedness level in which firms are characterized in terms of their direct
links with other companies. He emphasized that apart from relational embeddedness, a
firm’s effectiveness in a network also depends on two other mechanisms, i.e. structural
embeddedness and positional embeddedness. Whereas positional embeddedness focuses
on the impact of particular network positions that organizations occupy in the overall
structure of the network, structural embeddedness is concerned with the effects of
indirect ties, or the tendency of actors around the focal firm to cooperate with each other
(Ahuja, 2000; Duysters et al., 2003; Granovetter, 1992). In line with this view, scholars
have taken on an overall network perspective, which has brought a better understanding
of how a particular structure of direct and indirect ties contributes to a firm’s innovation
(e.g. Ahuja, 2000). However, although a focal company can control its own direct ties, it
is usually far beyond its ability to control the establishment of alliances between its
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alliance partners let alone between its partners’ partners, etc. Therefore, in contrast with
most of the work in this area, we will focus on the particular set of actions of the network
that surrounds focal organizations. This forms the so-called ‘ego network’ that, by and
large, falls within ego’s direct sphere of influence. Here, we will build on the work by Bae
and Gargiulo (2003) and focus particularly on local density (at the ego-network level)
rather than on global (network wide) density, as the former has been found to have a
more profound influence on focal firm performance than global density (Garcia-Pont
and Nohria, 2002; Garcia-Pont et al., 2007; Rowley et al., 2000).

In sum, this study analyses how network structure – from a local action perspective –
affects a firm’s performance when creating new technologies in core technology areas
(exploitation) and/or non-core areas (exploration). For our study, we combine a cogni-
tive perspective, rooted in the literature on learning and innovation, with a social
structural perspective with its origins in the sociological literature on networks. Combin-
ing these two strands of literature is also an important contribution of this paper, as the
literature to date has predominantly focused on the role of social factors regarding
alliance formation and the role of network embeddedness (Gulati, 1998), whereas a
cognition-based understanding of these processes has been largely ignored (Moran,
2005; Nooteboom, 2004).

This paper is structured as follows. In the next section we develop our theory, based
on which we formulate four hypotheses that specify how local action in technology
alliance networks affects a firm’s technological innovation. We then proceed by testing
these hypotheses and by presenting the main findings from data on three different
industry settings: chemicals, motor vehicles, and pharmaceuticals. The final section
summarizes and discusses the results and provides suggestions for further research.

THEORETICAL BACKGROUND AND HYPOTHESES

In order to develop our theory and hypotheses, we combine a cognitive view and a social
structural view. We develop this combined perspective in two steps. First we take a
cognitive stance and discuss a few key notions with regard to the creation of technological
innovations. Next, we take a social structural view and consider how inter-firm collabo-
ration may affect this process of creating technological innovations. Here, we particularly
focus on the role of redundancy, as one of the central notions in social network theory,
and analyse how it affects the creation of technological innovations. Following these two
steps, we then analyse how redundancy in the focal firm’s local network (or ego network)
may differentially affect the creation of new core technology and non-core technology.
Based on that, we formulate four hypotheses.

The Creation of Technological Innovations

One of the central notions in the literature on learning and innovation is ‘diversity’
(Nelson and Winter, 1982; Nonaka, 1994), which is considered a crucial condition for the
creation of (technological) innovations. Diversity refers to the heterogeneity of resources
or knowledge and thus yields the potential for novel combinations to emerge (Noot-
eboom, 2004; Schumpeter, 1939). Regarded in this way, new technology is considered as
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originating from the (re)combination of diverse parts of knowledge and/or experiences
(Nelson and Winter, 1982). While diversity increases the number of possible recombi-
nations, too much diversity creates a problem. The greater the degree of diversity
between two people or firms, the more difficult it becomes to understand each other and
the more difficult it becomes to exchange knowledge and (re)combine it (Miller et al.,
2007; Sampson, 2007). The important implication that follows is that firms have to
reconcile two potentially conflicting tasks (Nooteboom et al., 2007). On the one hand,
firms need to develop access to heterogeneous sources of knowledge, as combining these
sources yields a potential for the development of new technology. On the other hand,
they need to ensure that such novel knowledge, once accessed, is also adequately
absorbed (Cohen and Levinthal, 1990). In other words, the creation of a technological
innovation implies a balancing act between accessing novelty and its efficient absorption.
This dual task is relevant for both exploration and exploitation, although it operates
somewhat differently in each of the two (Nooteboom et al., 2007).

As pointed out by March (1991), exploration reflects an entrepreneurial search process
for opportunities in areas that are new to the company. Within the context of techno-
logical innovation, this entails expanding into new domains and yields technological
innovations in areas that are novel to the firm. It entails non-core technology that reflects
a firm’s future business and revenue streams, and thus determines its continuity in the
longer term. To generate such technology requires, in particular, an emphasis on the
acquisition of novel insights. In contrast, exploitation can be characterized as adding to
the existing knowledge base and competence set of firms without changing the nature of
their activities (March, 1991). In comparison with exploration, exploitation requires a
deeper understanding of specific information rather than a wider grasp of more general
information (Rowley et al., 2000). Exploitation entails the deepening of a firm’s core
technologies and yields technological innovations in areas with which the firm is familiar.
It leads to further improvements in the core technology, which strengthens a firm’s
existing business and current revenue streams, enhancing its competitiveness in the short
term. This deepening of its core technologies requires that a firm has a very precise
understanding of novel insights.

In sum, the creation of technological innovations in areas that are non-core to the
company (exploration) specifically requires an emphasis on novelty value relative to its
capability to absorb the technology. In case of the creation of innovations in core areas
(exploitation), a stronger emphasis on absorption is required. As we will argue, a firm’s
alliance network is instrumental in both types of innovations, as it will aid not only
accessing novel sources of knowledge, but also understanding and applying the acquired
new insights. We will now study this in more detail by considering the role of redundancy
in a firm’s alliance network.

A Firm’s Network of Technology-Based Alliances: The Role of Redundancy

As has been elucidated in the literature, one of the key functions of an alliance network
is that it provides access to different sources of knowledge. It brings together a variety of
skills and experience, thus bearing a potential for novelty (Grant and Baden-Fuller, 2004;
Hagedoorn and Duysters, 2002; Inkpen, 2000; White, 2005). This potential for novelty
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originates from the fact that knowledge, values and behaviour are more homogenous
within groups than between groups, so that firms connected across different groups have
more access to alternative ways of thinking, which gives them more options for creating
new combinations (Burt, 2004).[1] Consequently, to create and maintain access to novel
sources of knowledge, firms need to develop ties to companies that are themselves not
connected to a firm’s existing group of partners. In other words, a tie will provide access
to new information to the extent that it offers access to non-redundant sources of
information. Such a tie spans a ‘structural hole’ (Burt, 1992).

On the flip side, however, making use of non-redundant ties carries two risks. Having
access to novel sources of knowledge through many non-redundant ties may lead to a
large volume of (highly) diverse information. This consumes time and resources that
cannot be allocated to absorbing and integrating the obtained novel insights. As a
consequence, abundant exploration and search through non-redundant contacts may
come at the price of limited attention and resources for absorption. Second, a sole focus
on searching for novelty through non-redundant ties may result in a random drift,
causing a firm’s knowledge base to change continuously in different and unrelated
directions, making the accessed novel knowledge difficult to absorb and integrate (Ahuja
and Katila, 2004; Fleming and Sorenson, 2001). In other words, both from a search costs
and cognition point of view, many non-redundant ties will decrease the potential for
novelty absorption.

Here, the second role of a firm’s alliance network, i.e. as an instrument that can also
support absorbing novel findings, comes into play. If one is not able to adequately
understand novel information from a given source, one may need another partner to
triangulate the received information (Gilsing and Nooteboom, 2005). More precisely, if
A remains linked to both B and C, even if there is also a link between B and C, this may
help A to understand C by comparing what A understands of C with what B understands
of C. In other words, even if two of the focal firm’s direct ties are redundant for access
to sources of information, it may still need both in order to understand and absorb
knowledge accessed in the other relation. Moreover, the tacit and experimental nature of
technological innovation further increases firms’ difficulty with recognizing and valuing
the technology of potential partners if they are not connected through a common alliance
partner. In this way, a firm’s alliance network can enhance the firm’s absorptive capacity
by acting as a device for screening and interpreting novel information on such informa-
tion’s potential relevance and value for the firm (Leonard-Barton, 1984, 1992; Stuart,
2000). In addition, even if one does understand one alliance partner’s information, one
may not be able to judge the reliability of that information. Accordingly, one may need
a third party as a source of triangulation (Gilsing and Nooteboom, 2005) and in this way
develop a richer understanding and a better evaluation of the acquired novelty (Rowley
et al., 2000). In addition, a network of redundant ties also facilitates the build-up of trust,
a reputation mechanism, and coalitions to constrain opportunism (Coleman, 1988;
Gulati, 1995b; Hagedoorn and Duysters, 2002). This supports the exchange of tacit
knowledge and the build-up of shared absorptive capacity (Gilsing and Nooteboom,
2005).

In sum, an alliance network structure that is optimal for the generation of technologi-
cal innovations needs to reconcile two conflicting demands. On the one hand, a firm’s
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alliance network should consist of ties to non-redundant partners as they form a key
source of novelty, whereas, on the other hand, it should also be built up of ties to
redundant partners as these are critical in realizing the potential value of this novelty.
Based on these insights into how redundancy affects the creation of technological inno-
vations, we now further analyse how redundancy in a firm’s local network of alliances
affects the creation of core technology (exploitation) and non-core technology (explora-
tion) respectively. In line with a few recent studies (Katila and Ahuja, 2002; Koza and
Lewin, 1998; Mom et al., 2007; Rothaermel, 2001), we consider these tasks as consti-
tuting two different kinds of learning. Consequently, we anticipate redundancy in a firm’s
local alliance network to have a differential effect on each task.

Exploration and Exploitation: A Local Action Perspective

Following a local action view of a firm’s alliance network, we argue that the efficiency of
alliance strategies is primarily dependent on two major factors, i.e. the local actions of a
focal firm (ego) and the local actions of its alliance partners (alters) (Bae and Gargiulo,
2003). Local actions can be associated with the establishment (or dissolution) of direct ties
(ego–alter), whereas the local actions of the alliance partners are associated with indirect
ties (alter–alter). Of course, direct and indirect ties are interrelated. If, for example, the
focal firm adds a direct link with another company that has many direct links with firms
with which the focal company is not connected, this newly added direct link may be very
efficient, as it facilitates the bridging of a structural hole. On the other hand, if an alliance
partner establishes alliances with firms that are already tied to the focal firm, these ties
may be considered redundant. In other words, some of the actions of a focal firm’s
alliance partners may be beneficial, while other actions may have possibly negative
effects for the focal firm. Negative actions of alliance partners may lead to subsequent
reactions by the focal firm in an attempt to neutralize its alliance partners’ moves.[2] This
provides an inherently dynamic setting in which both direct and indirect types of links
are considered important. Owing to the general lack of empirical literature on the
particular effects of local actions in alliance networks, we propose an approach that
focuses on the effects of those particular actions on a focal firm’s innovative performance.

The appropriate network level to analyse the focal organization and its alliance
partners’ combined set of actions is the so-called ‘ego network’ (Bae and Gargiulo, 2003;
Garcia-Pont and Nohria, 2002; Rowley et al., 2000). Rowley et al. (2000) argue that
local density (on the ego-network level) rather than global (network-wide) density influ-
ences the focal firm’s performance. We therefore go beyond the network level, and
descend to the level of the ego network. This provides us with a micro-level analysis of
local actions and enables us to reveal the specific impact of these actions on the inno-
vative performance of companies. More specifically, we seek to clarify how the creation
of new partnerships by a focal firm or by its direct partners influences the degree of
redundancy in its network and how this affects the creation of new technological inno-
vations in a firm’s core areas, as the output of exploitative learning, and/or as in its
non-core areas, as the output of explorative learning.

When considering a firm’s ego network – see Figures 1 and 2 – there are basically two
possibilities for the formation of new partnerships to affect the degree of redundancy. A
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first possibility is that two partners become connected, which had hitherto been uncon-
nected, as in Figure 1, A and B. This results in an increase in redundancy in a firm’s total

ego network. A second possibility is that already connected partners form additional ties
so that their connectivity increases further, as B and C in Figure 1. This leads to an
increment in the degree of redundancy within a part of ego’s network but leaves redun-
dancy in its total network unchanged. This distinction is important for two reasons. First,
it unpacks the rather abstract notion of redundancy by showing that in an ego network,
different types of redundancy can be present. Until now, the distinction in types of
redundancy was between redundancy in an ego network (e.g. network efficiency) and in
a global network (e.g. structural equivalence). Here, we argue that in an ego network, two
different types of redundancy can also operate and that they may have a different impact
on a firm’s technological innovativeness. Second, the locus for initiating a connection
between two partners differs between the two possibilities. Regarding the first possibility,
the focal firm can take action, as it can stimulate its unconnected partners to collaborate
or (try to) inhibit them from doing so. Regarding the second possibility, this lies outside
the focal firm’s influence, as it is up to its partners to increase the redundancy in a local
part of the focal firm’s network.

When comparing these two ways in which redundancy can be increased, it is impor-
tant to bear in mind that the first possibility (connecting hitherto unconnected partners)
differs from the second possibility (further connecting already connected partners), as
in the former case redundancy in ego’s total network increases – whereas the second
possibility leaves this kind of redundancy untouched and only increases redundancy
among already connected partners. Given these differences, we expect each type of
redundancy to have a differential effect on the creation of core technology and non-core
technology. We will consider each type in more detail.

Possibility 1: Connecting hitherto unconnected partners. If all of the focal firm’s partners are
unconnected, it will receive different pieces of knowledge and information. Although

Ego
A

B

C

D

Figure 1. An ego-network perspective
Ego, focal firm.
A, alliance partner who provides access to non-redundant information.
B, alliance partner who only provides access to redundant information due to the existing alliance between
the ego and partner C.
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these alliances may give the firm access to a great deal of novelty, the different pieces of
information may be (highly) unrelated. In this way, ego (the focal firm) may risk an
information overload and be unable to attach meaning to this information in a sensible
way. By connecting some of these unconnected partners, it can accomplish some degree
of coherence in the supply of knowledge and information. This may provide ego with
information that is potentially more meaningful, which can aid him in absorbing this
novel information. Furthermore, following Coleman (1988), an increase in redundancy
instils some degree of trust so that possibilities of opportunism are more constrained. This
facilitates communication and enhances the exchange of tacit knowledge, which spurs
the establishment of a shared, mutual understanding between partners (Gilsing and
Nooteboom, 2005). Consequently, an increase in redundancy among ego’s direct part-
ners reduces the risk of information noise and enhances the supply of high-quality and
fine-grained information (Hagedoorn and Duysters, 2002; Rowley et al., 2000; Shannon,
1957).

This increase in redundancy specifically serves the creation of core technology, as a
very precise and detailed understanding of information forms a key prerequisite for this
activity (Gilsing and Nooteboom, 2005; Rowley et al., 2000). Furthermore, redundancy
among ego’s partners supports the development of trust-based governance (Larson,
1992; Uzzi, 1997) and alleviates the risks associated with opportunistic behaviour (Wil-
liamson, 1985). This feature also seems particularly desirable for the deepening of core
technology, as the focal firm will typically need to exchange highly sensitive technologi-
cal knowledge. This knowledge is sensitive because it relates directly to its core products
and markets, reflecting short-term revenue streams. Collaboration with trusted partners
may therefore enable ego to control outgoing spillovers and to diminish the risk of
freeridership (Gilsing and Nooteboom, 2005). However, these advantages of a redun-
dant structure come at a price, since it also decreases the likelihood that redundant
partners have something new to tell. This limited novelty value does not seem to
constitute a major liability for the creation of core technology, as the major focus here
is on the deepening of the innovating firm’s existing fields of expertise (Nooteboom
et al., 2007; Rowley et al., 2000).

In contrast, as far as the creation of non-core technology is concerned, some degree of
coherence in the supply of novel information is required in order to mitigate the risk
of information overload and to enhance the ability to absorb it (Sidhu et al., 2004). A
further increase, however, will lead to a decline in the novelty value. This will be a major
liability when the focal firm intends to innovate in non-core areas, as the major focus is
here on moving beyond existing areas of expertise into novel domains. Furthermore, as
pertaining to a redundant structure, the potential for trust-based governance and for the
conveying of rich and more specific information may be somewhat less important –
relative to the deepening of core technologies – if one’s knowledge base is broadened into
new, non-core areas (Nooteboom et al., 2007; Rowley et al., 2000).

Based on the arguments as discussed above, we can conclude that increasing
redundancy among a focal firm’s direct partners is especially interesting in respect of
exploitation. It is also instrumental for exploration, but only up to a certain point,
beyond which its negative effects begin to dominate. This leads us to our first two
hypotheses.
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Hypothesis 1: The creation of redundancy by connecting hitherto unconnected
partners is positively related to a firm’s exploitative technology innovation.

Hypothesis 2: The creation of redundancy by connecting hitherto unconnected
partners is curvilinearly related (inverted U-shape) to a firm’s exploratory technology
innovation.

Possibility 2: Connecting locally connected partners. A second possibility is formed when already
connected partners, residing in a part of ego’s network, further increase their mutual
connectivity. See B and D in Figure 1. Although ego can control its own direct ties, it
usually has no or only limited power to control the establishment of new alliances
between its alliance partners (Bae and Gargiulo, 2003). Ties among alliance partners
tend to increase the density of the network surrounding ego. This may result in the
formation of strong, densely connected cliques consisting of firms that are all mutually
connected, which enhances their mutual knowledge exchange and the build-up of trust.
This will facilitate communication among these partners, aid them in triangulation, and
strengthen the absorptive capacity within this part of the network (Gilsing and Noote-
boom, 2005; Lane and Lubatkin, 1998). For the focal firm, an increase in redundancy
in such a local part of its network may bring a further improvement in the coherence and
reliability of the information as received from this part of its alliance network, but at the
price of this information’s declining novelty value. In this respect, given the importance
of high-quality and specific information for the creation of core technology, we anticipate
that such an increase will have a positive effect. However, when the redundancy among
such partners increases even further, there will be little room for additional gains in
coherence and reliability. In fact, the local partners may become overly involved in one
another’s activities and run the risk of ignoring novel information beyond their small
local ‘cluster’ (Duysters and Lemmens, 2003; Uzzi, 1997). This has a detrimental effect
on novelty value, resulting in no further new information emerging from their collabo-
rative efforts.

In other words, an increase in redundancy among locally connected partners may be
beneficial for the creation of core technology but only up to a certain point. However,
beyond this point, a decrease in novelty value will start to dominate, which will ultimately
have a negative effect on the ability to create new, core technology. For the creation of
new, non-core technology, we expect an increase in redundancy among locally con-
nected firms to have a negative effect because of its strong emphasis on novelty value.
Hence, our third and fourth hypotheses:

Hypothesis 3: There is an inverted U-shaped relationship between increasing redun-
dancy among locally connected partners and a firm’s exploitive technology innova-
tion. At lower levels of redundancy the relationship is positive, whereas at higher levels
the relationship is negative.

Hypothesis 4: Increasing redundancy among locally connected partners is negatively
related to a firm’s exploratory technology innovation.
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DATA, VARIABLES AND MODELLING

Data

In order to test the hypotheses, we constructed a panel dataset which consists of the
alliance and patenting activities of companies in the chemicals, automotive, and phar-
maceutical industries. We limited the sample to public firms to ensure the availability and
reliability of the financial data. In order to minimize the influence of survivor bias, we
sampled firms from a list of all publicly held firms doing business in the three industries
from the start of the sample period. Next, we checked this sample for parent companies
and affiliates, using Dun & Bradstreet’s Who Owns Whom. If the listed companies
belonged to the same parent company, we combined the different affiliates with the
parent firm. After checking for duplicates, 116 independent companies were included in
the sample. We refer to these independent companies as ‘focal firms’, to distinguish them
from their partners. In line with other studies on alliance networks, we selected this
sample by ranking them according to industry sales in each of the three industries at the
beginning of the sample period. This sampling method is also in line with other studies
on technology alliance networks (Ahuja, 2000; Gulati, 1995a; Gulati and Gargiulo, 1999;
Sampson, 2007). These firms were observed over a 12-year period, from 1986 until 1997.
The sample is unbalanced because of merger and acquisitions during the period of
observation.

The alliances data were generated from the MERIT-CATI database, which contains
worldwide information on over 13,000 cooperative technology agreements involving
some 6000 different parent companies. The data bank contains information on each
agreement and some information on companies participating in these agreements. In
the CATI database, only those inter-firm agreements are collected that contain some
arrangements for transferring technology or joint research. Mere production or market-
ing joint ventures are excluded. In other words, our analysis is primarily related to
technology cooperation. The most important data sources for this databank are a large
number of trade and technology journals for a broad range of technology fields. Tech-
nology alliances are cooperative agreements between independent (industrial) partners
to transfer technology or to undertake joint research. Technology alliances take the form
of contractual agreements or equity joint ventures. Collection of the data in the CATI
database has been very consistent since 1975,[3] but it is not possible to ‘claim’ full
coverage since firms are not required to report the establishment of alliances[4] (see also
Ahuja, 2000; Gulati, 1995a; Gulati and Gargiulo, 1999; Sampson, 2007).

All alliance network measures were calculated on the basis of the alliance matrices that
were constructed from the MERIT-CATI alliance data. These matrices are required to
calculate the redundancy variables that are instrumental in testing the four hypotheses.
An alliance matrix was constructed for each year for each of the three sectors; these
matrices contain the technology-based alliances that were established by the focal firms
prior to a given year, as well as the alliances established by other companies that belong
to the industry. In constructing network measures, a number of choices were made. First,
different types of alliances were not considered separately. Consequently, there is only
one adjacency matrix per industry-year. Second, the ‘strength’ of strategic alliances (e.g.
a joint venture is a ‘stronger’ tie than a joint development agreement) was not weighted
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as has been done by some other authors (see Contractor and Lorange, 1988; Gulati,
1995a; Nohria and Garcia-Pont, 1991). The third choice relates to the length of the
period during which the existing alliance portfolio is likely to have an influence on the
current technological performance of a company. We chose a moving window approach
in which alliances were aggregated over the five years prior to a given year, unless the
alliance database indicated another life-span (Gulati, 1995a). The life-span of alliances is
usually assumed to be no more than five years (Kogut, 1988, 1989).

All patenting data were retrieved from the US Patent Office Database in respect of all
the companies in the sample, also those based outside the USA. Working with US
patents – the largest patent market – is preferable to the use of several national patent
systems ‘. . . to maintain consistency, reliability and comparability, as patenting systems
across nations differ in the application of standards, system of granting patents, and value
of protection granted’ (Ahuja, 2000, p. 434).[5] Especially in industries where companies
operate on an international or global scale, US patents may be a good proxy for
companies’ worldwide innovative performance.

The financial data on the companies in the three sectors were gathered from World-
scope, COMPUSTAT, and from annual reports. Data on annual revenues were con-
verted into Euros. Furthermore, we included the nationality of each company and its age
as additional control variables.

Variable Definition and Operationalization

Dependent variable. In this study, technological innovation is measured by the weighted
number of patents successfully applied for by a firm in a given year. Consequently, to
calculate ‘weighted patent counts’, each patent is weighed according to the subsequent
citations that it receives, the assumption being that more important patents receive more
citations. Weights are thus determined by the number of forward citations (Trajtenberg,
1990). Although the use of weighted patents as an indicator of innovative output or
performance has been criticized on different grounds (for an overview see Griliches,
1990; Lichtenberg and Griliches, 1989; see also Lanjouw and Schankerman, 2004), they
are generally viewed as an appropriate measure of innovative performance at the
company level (Ahuja and Katila, 2001; Basberg, 1987; Cohen and Levinthal, 1989;
Hagedoorn and Duysters, 2002; Sampson, 2007).

Next, the weighted patent counts were used to derive the two dependent variables.
The technological profile of focal firms was computed to determine whether a new
patent in the year of observation had to be categorized as ‘exploitative’ or ‘explorative’.
A technological profile was created by adding the patents that a firm received in each
patent class during the five years prior to the year of observation.[6] A new patent was
considered to be ‘explorative’ when the innovating company had not filed for a patent
successfully in the primary patent class to which the new patent belongs during the
previous five years. We chose the year when the company filed for a patent rather than
the year when it was granted, as the innovation in the company is realized once the
company files for a patent rather than when it is granted. Since knowledge remains
relatively new and unexplored for a firm immediately after patenting, patent classes keep
their explorative ‘status’ for three consecutive years.[7] All the classes in which a company
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had successfully filed for a patent during the previous five years and successfully applied
for a patent in the year of observation were considered ‘exploitative’ patent classes. This
method of distinguishing exploitative and explorative patents is almost identical to the
one used by Katila (2003) and to Ahuja and Lampert’s (2001) concept of ‘novel
technologies’.

The dependent variables exploitative and exploratory technology innovation were
then composed by adding all the patents that had been successfully applied for in the year
of observation in the explorative and exploitative patent classes respectively.

Independent variables. We had to operationalize two redundancy measures to test the four
hypotheses. The first independent variable estimates the extent to which the direct ties of
a focal firm’s ego network are redundant. Since we only examined ego networks with
first-level alters (i.e. its direct alliance partners), traditional measures of redundancy did
not apply. Such measures take into account larger parts of the network, or the entire
network itself. Therefore, a redundancy-measure was developed that applies to ego
networks, i.e. egonet redundancy. This measure calculates the proportion of direct ties that
are redundant given the ego network. It only considers one tie to a weak component
clique as non-redundant (Bae and Gargiulo, 2003). A weak component clique is a group
of alliance partners that are all connected to the focal firm, and each partner can reach
the other partners in a number of steps without going through the focal firm (Wasserman
and Faust, 1994). The latter can thus reach all its alliance partners in such a weak
component clique through any partner, making all other partners ‘redundant’. Consider
the ego network of Elf-Aquitaine in 1987, represented in Figure 2a. This ego network
contains five weak component cliques, i.e. {A–B–C–D}, E, F, G and H. Elf-Aquitaine
could reach A through B in the weak component clique {A–B–C–D}, and B could be
reached through A. Therefore, only one of these contacts is considered non-redundant.

To calculate the egonet redundancy measure (see Table I for the Elf-Acquitaine numerical
example), we first needed to measure the number of direct ties, ti, linking the focal firm
to its alliance partners in the ego network. This is the focal firm’s degree centrality
(Freeman, 1979).[8] Figure 2b indicates direct ties in solid lines. Next, we needed to
calculate the number of non-overlapping weak component cliques in the focal firm’s ego
network, ci. The solid lines in Figure 2c show five weak component cliques in 1987 and
three in 1995. To calculate how many direct ties were redundant, we subtracted the
number of weak component cliques, ci, from the total number of direct ties of the ego
network ti. However, the number of redundant direct ties only makes sense when related
to the network size. Therefore, we divided the number of redundant direct ties by the
total number of direct ties, ti. Thus, the formula for egonet redundancy is:

egonet redundancy
t c

t
i

i i

i

_ = −
(1)

where i is the focal firm, ti is the number of direct ties in the ego network of the focal firm
i, and ci is the number of components in its ego network. The minimum value of this
variable is zero and it tends asymptotically to one. Increasing values indicate increasing
redundancy.[9]
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(b) Direct ties in Elf-Aquitaine ego networks
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(c) Components in Elf-Aquitaine ego networks
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Figure 2. Elf-Aquitaine networks
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The second independent variable component-density measures the average ‘density’ of
the weak component cliques in an ego network. Increasing ties between partners in a
weak component clique represents increasing density. Consider Figure 2c. In order for
{A–B–C–D} to form a weak component clique, we need at least three ties connecting A
to B, B to C and C to D. All the ties beyond this minimum number needed to connect
the partners within a clique to increase the density of the weak component clique. We
will refer to these ties as within-clique ties. To calculate the average component density
of an ego network, we took the sum of the actual number of within-clique ties of all the
components of the ego network and divided this by the sum of the maximum possible

number of within-clique ties of all the components. The maximum possible number of
within-clique ties per component is (sci - 2)!, where sci is the size of each component in the
ego network of ego firm i. The formula to calculate component density is:

component density
v t c

s
i

i i i

ci

c

c
_

!
= − +( )

−( )
=

∑ 2
1 (2)

where i is the focal firm, vi is the number of indirect ties in the ego network of the focal
firm i, ti is the number of direct ties in this ego network, ci is the number of components,
and sci the size of each component in this ego network.

Table I. Explaining component density and egonet redundancy in the Elf-Aquitaine example

1987 1995

Number of direct ties ti 8 8
Number of components ci 5 3
Number of indirect ties vi 4 8

Maximum within-clique ties (see below: sci

n

c

−( )
=

∑ 2
1

! 3 4

Component density component density
v t c

s

i
i i i

ci

c

c
_ =

− +( )

−( )
=

∑ 1
1

!

0.333 0.750

Egonet redundancy egonet redundancy
t c

t
i

i i

i

_ =
−

0.375 0.625

1987 1995

s1i (s1i-2)! 4 3 4 3
s2i (s2i-2)! 1 0 1 0
s3i (s3i-2)! 1 0 3 1
s4i (s4i-2)! 1 0
s5i (s5i-2)! 1 0

Maximum within-clique ties sci

n

c

−( )
=

∑ 2
1

! 3 4
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The values of component density again range from 0 to 1. High values imply that the weak
component cliques of the focal firm are characterized by high density. A value of one
indicates that maximum density is reached. A numerical example is provided in Table I.
Focusing on the 1995 network in Figure 2c, we find that the maximum within compo-
nent ties (denominator is 2) is 4. The nominator equals 3, as there are eight indirect ties
(five in {A–B–C–D} and three in {F–G–H}), eight direct ties, and three weak compo-
nents. The resulting value for ‘component density’ is 0.75. Full connectivity in compo-
nent {A–B–C–D} would result in nine indirect ties, bringing ‘component density’ to its
maximum value of 1.

Control variables. To control for differences between industries, dummy variables were
included to indicate whether a company is a car manufacturer or chemical firm (default
is the pharmaceutical industry) and to control for differences in the strategic value of
innovation and patenting propensity in the three industries.

Two other types of dummy variables were used. A first variable indicates in which
economic block the company is headquartered. Following the Triad concept of the world
economy (Ohmae, 1985), a company can be headquartered in North America, Asia or
Europe – the default is North America. Firms from a different home country may differ
in their propensity to patent. Moreover, Asian and European firms may be less inclined
to patent in the USA even when the three industries under consideration are widely
recognized as global industries. Annual dummy variables were also included to capture
changes in the propensity of firms to patent their innovations over time.

Furthermore, we included an organizational variable, the natural logarithm of ‘cor-
porate annual sales’, as a proxy for firm size. Larger firms have more financial means and
greater technological and other resources to invest in R&D than smaller firms. There-
fore, large firms will have a higher innovation output than small firms, the assumption
being that there is a positive correlation between technological input and output (Pakes
and Griliches, 1984). However, as returns diminish when R&D investments increase, the
growth in patents is usually not proportional to the increase in firm size. Furthermore,
small(er) firms seem to be less inclined to adapt their alliances if there are governance
misalignments (Arino et al., 2008), which may make it more difficult for them to keep on
reaping learning benefits from their collaborative efforts over time. Technological
capital, i.e. patents received in the five years previous to the year of observation, was also
used as a control variable. Technological capital measures the technological competence
of a company (Narin et al., 1987). Studies on R&D depreciation (Griliches, 1979, 1984)
suggest that knowledge capital depreciates sharply, losing most of its economic value
within five years. Thus, a moving window of five years is an appropriate time-frame for
assessing the technological impact in high-tech industries (Ahuja, 2000; Henderson
and Cockburn, 1996; Podolny and Stuart, 1995; Stuart and Podolny, 1996). Owing to
technology’s cumulative character, the current technological position of a company is
often dependent on its previous level of technological know-how (Teece et al., 1997). A
positive relation is therefore expected between previous technological capital and tech-
nological learning.

Next, the age of a company was also included as a control variable. Ever since
Schumpeter (1939), there has been an unresolved and ongoing debate in the literature on
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the relationship between age and innovative performance. Some authors have addressed
the important role of young entrepreneurial companies in the innovation process,
whereas others have appraised the important role of older, large, efficient companies in
this same process. Finally, we also controlled for firms’ R&D activities. R&D expenditure
is expected to be positively related to patenting (Ahuja and Katila, 2001; Hagedoorn and
Cloodt, 2003; Hall and Ziedonis, 2001). To separate R&D effects from size effects (Hall
and Ziedonis, 2001), we used R&D intensity (the firm’s R&D expenditure divided by its
annual sales) instead of R&D expenditures as a proxy for a firm’s investments in the
innovation process. It seems reasonable to expect the internal innovation efforts of the
organization to have a positive impact on the effectiveness of the innovation strategy of
the organization. Therefore, we expect R&D intensity to have a positive effect on patent
activity.

Model Specification

The dependent variables are count variables and take only non-negative integer values
– i.e. the weighted number of exploitative or explorative patents a firm successfully
filed for in a particular year. A Poisson regression approach provides a natural baseline
model for such data (Hausman et al., 1984; Henderson and Cockburn, 1996). However,
Poisson regressions assume that the mean and variance of the event count are equal. This
assumption is likely to be violated since overdispersion usually occurs in (weighted) patent
count data. Overdispersion is particularly relevant in the case of unobserved heteroge-
neity, i.e. the possibility that identical firms on the measured characteristics are still
different on unmeasured characteristics.[10] Unobserved heterogeneity may be the result
of differences between companies in their innovation generating capabilities, and, con-
sequently, also in their propensity or ability to patent. Such unobserved heterogeneity, if
present and not controlled for, can lead to overdispersion in the data. Including the sum
of the patents for which the firm has successfully filed in the five years before the year of
observation (moving window approach) as an additional variable is a common method
of controlling for unobserved heterogeneity (Heckman and Borjas, 1980). Additionally,
overdispersion requires the use of a negative binomial estimation. A statistical test for
overdispersion (Gourieroux et al., 1984) indicates that the negative binomial estimation
provides a significantly better fit for the data than the more restrictive Poisson model.
Negative binomial regression accounts for an omitted variable bias, while simultaneously
estimating heterogeneity (Cameron and Trivedi, 1986; Hausman et al., 1984).

We chose for a random-effects specification of the negative binomial regression to
control for unobserved heterogeneity (Greene, 2003). The Hausman test (Hausman,
1978) was not significant in all models, indicating that it is safe to use a random-effects
specification. The application of a random-effects negative binomial estimation
addresses concerns of heterogeneity, and allows us to include covariates that tend to be
fairly time invariant, such as the type of industry and national origin.

Differences in patenting behaviour between different years are captured by including
annual dummy variables in the model. These may capture the ever-growing importance
of intellectual capital or changing macroeconomic conditions. The propensity to patent
may also be partly determined by the nationality of the companies or the industry to
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which they belong. To correct for a potential simultaneity bias, we lagged the indepen-
dent variables and control variables such as firms’ financial measures (revenues, and
R&D expenditures), age, as well as technological capital by one year.

RESULTS

Table II describes the variables used in the regressions. Table III provides the descriptive
statistics and the correlations between all the variables for the 100 firms and the 912
observations in the sample. The correlation coefficients between the independent vari-
ables are relatively low, except for component density and egonet redundancy (-0.60).
However, the VIF (variance inflation factor) value, which is a more advanced measure of
multicollinearity than simple correlations, was calculated for component density
(Stevens, 1992). The VIF value for component density was way below the critical level,
indicating that egonet redundancy and component density can simultaneously be
included in the models.

Table II. Definitions of dependent and independent variables

Variable name Variable description

Exploitative technology
innovation

Citation weighted count of the number of patents a firm
successfully filed for in year t within patent classes in which it
was active in the five years prior to year t

Dependent
variable

Exploratory technology
innovation

Citation weighted count of the number of patents a firm
successfully filed for in year t within patent classes in which it
was active in the five years prior to year t

Dependent
variable

Egonet redundancy Share of the direct contacts that are redundant in year t - 1 (range
between 0 and 10)

(Egonet redundancy)2 Squared term of previous variable
Component density Average relative density within the components of a focal firm, i.e.

the actual number of ties within a component divided by the
potential number of ties, averaged over all components of the
focal firm (range between 0 and 10) in t - 1

(Component density)2 Squared term of previous variable
Technological capital Count of the number of patents that a firm successfully filed for

during the previous five years (t - 5 to t - 1)
Age The number of years since a company is founded in t - 1
Firm size (ln revenues) Natural logarithm of the total sales of the firm in t - 1
R&D intensity Total R&D expenditures divided by sales in t - 1
Year Dummy variable indicating a particular year (1986–97)
Chemical company Dummy variable set to one if the firm is a chemical company
Car manufacturer Dummy variable set to one if the firm is a car manufacturer
Europe Dummy variable set to one if the firm is headquartered in Europe
USA Dummy variable set to one if the firm is headquartered in the

USA

Note: All network variables are based on alliance network representing all the technology-based alliances that were
established in an industry during the five years prior to year t.

Alliance Network Redundancy 231

© Blackwell Publishing Ltd 2008



T
ab

le
II

I.
D

es
cr

ip
tiv

e
st

at
is

tic
s

an
d

co
rr

el
at

io
n

m
at

ri
x

V
ar

ia
bl

e
M

ea
n

S
.

D
.

M
in

M
ax

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3

1
E

xp
lo

ita
tiv

e
te

ch
no

lo
gy

in
no

va
tio

n
69

.4
46

12
5.

63
8

0
10

59

2
E

xp
lo

ra
tiv

e
te

ch
no

lo
gy

in
no

va
tio

n
7.

86
4

12
.5

42
0

13
2

0.
32

3
E

go
re

du
nd

an
cy

2.
56

8
2.

81
0

0
91

.6
6

0.
16

0.
12

4
(E

go
re

du
nd

an
cy

)2
14

.4
87

20
.9

7
0

84
.0

3
0.

10
0.

08
0.

95
5

C
om

po
ne

nt
de

ns
ity

8.
04

4
3.

36
8

0
10

-0
.2

3
-0

.1
8

-0
.6

0
-0

.5
5

6
(C

om
po

ne
nt

de
ns

ity
)2

76
.0

51
39

.5
24

0
10

0
-0

.2
2

-0
.1

7
-0

.6
4

-0
.5

9
0.

99
7

Fi
rm

si
ze

(ln
re

ve
nu

es
)

7.
94

9
2.

51
7

-1
.5

70
11

.9
12

0.
42

0.
26

0.
32

0.
31

-0
.2

6
-0

.3
0

8
T

ec
hn

ol
og

ic
al

ca
pi

ta
l

35
2

61
6

0
51

10
0.

95
0.

32
0.

15
0.

08
-0

.2
3

-0
.2

3
0.

43
9

R
&

D
-in

te
ns

ity
0.

17
7

0.
18

5
0

0.
65

1
-0

.0
6

-0
.0

4
-0

.0
2

-0
.0

4
-0

.0
6

-0
.0

4
-0

.4
0

-0
.0

6
10

A
ge

74
47

0
23

9
0.

13
0.

00
0.

09
0.

05
-0

.0
5

-0
.0

8
0.

40
0.

13
-0

.1
5

11
C

ar
m

an
uf

ac
tu

re
r

0.
28

2
0.

45
0

0
1

0.
01

0.
03

0.
26

0.
31

-0
.2

1
-0

.2
1

0.
37

0.
00

-0
.0

9
0.

04
12

C
he

m
ic

al
co

m
pa

ny
0.

28
8

0.
45

3
0

1
0.

07
0.

00
0.

12
0.

06
-0

.0
6

-0
.0

8
0.

11
0.

07
-0

.1
0

0.
17

-0
.4

6
13

E
ur

op
ea

n-
ba

se
d

fir
m

0.
22

3
0.

41
6

0
1

-0
.2

4
-0

.0
6

0.
15

0.
12

-0
.0

4
-0

.0
7

0.
02

-0
.2

1
0.

07
-0

.0
8

0.
13

0.
09

14
U

SA
-b

as
ed

fir
m

0.
43

2
0.

49
6

0
1

0.
03

0.
04

-0
.2

5
-0

.2
3

0.
10

0.
13

-0
.2

1
0.

04
0.

02
-0

.0
9

-0
.1

7
-0

.1
5

-0
.4

6

W. Vanhaverbeke et al.232

© Blackwell Publishing Ltd 2008



Table IV(a) provides an overview of the results of the regression analysis, explain-
ing the determinants of the creation of core technology in the period 1986–97.
Table IV(b) presents the results of the determinants of non-core technology as the
dependent variable. Model 1 represents the basic model in which only the control
variables are introduced. Some results are worth mentioning. The coefficient of firm
size is positive and significantly related to the innovative performance. Since the inde-
pendent variable is the natural logarithm of the revenues, the coefficient can be con-
sidered an elasticity: increasing firm size results in increasing innovative output but at
a decreasing rate as firm size grows, since the coefficient is smaller than one. This is
in line with previous research (Acs and Audretsch, 1991; Henderson, 1993). It is
worthwhile mentioning that the effect of firm size is significantly larger (p < 0.001) for
exploitation compared to exploration, indicating that decreasing returns to scale are
much larger in the case of explorative learning. This reflects the idea that small firms
have relatively less problems exploring new technological areas successfully than large
firms do. This finding is in line with the organizational learning literature: established
organizations have difficulties in exploring new technological areas, as they inhibit
experimentation and favour specialization along existing technological trajectories
(Ahuja and Lampert, 2001; Levinthal and March, 1993; March, 1991). Next, we find
a positive and significant relation between the existing technological capital and a
firm’s innovative performance. This indicates that the current technological position of
a company is shaped by the path it has travelled, due to the cumulative character of
technology (Teece et al., 1997). When companies build on their past developed knowl-
edge investments, we expect a higher innovation rate for firms with strong technologi-
cal capital. We do not find a significant difference in the impact of this variable on the
creation of core and/or non-core technology. This indicates that the accumulated
knowledge base is equally important for the creation of both core and non-core
technologies.

Furthermore, R&D intensity also improves the innovative performance when com-
panies deepen their competencies in their existing knowledge domains. However, there
is no direct link between R&D intensity and the exploration of new technological fields.
This remarkable finding might be explained by the fact that, on average, there is no
linear relation between an increase in R&D and the explorative learning of firms. The
bulk of the R&D investments in a company targets incremental innovations to improve
the existing technologies, products, and processes. R&D investments in more explor-
ative, long-term oriented innovations at the periphery of a firm’s technology core only
account for a minor part of R&D expenditures. Moreover, subject to the financial slack
and strategic priorities of the top management, investments in explorative research
fluctuate strongly over time.

Age has a negative effect on the exploitative learning of innovating firms. Hence, older
firms have more problems in coming up with high quality innovations in their existing
technology areas. However, we do not find any significant relationship between age and
explorative innovations. The fact that age does not affect explorative learning can be
explained by two compensating factors. On the one hand, young firms are less condi-
tioned by their existing technology base than older firms and will explore new technolo-
gies more easily than their older counterparts. On the other hand, young firms have to
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deepen their core technologies first in order to be competitive before they can ‘diversify’
into new technologies. Conversely, older firms have accumulated the required compe-
tencies over time and incentives to diversify when their core markets tend to mature.

As for regional dummy variables, there are significant differences between the three
economic blocks. Finally, there are also significant differences between the three
industries.

Model 2 introduces the linear term for the ‘egonet redundancy’ variable. In line with
Hypothesis 1, the coefficient is positive for exploitation, implying that an increase in
redundancy in the direct contacts of a focal firm’s network stimulates the creation of new
core technology. In contrast, there is no significant linear relationship between egonet
redundancy and the exploration of new technological areas.

Model 3 introduces the squared term for egonet redundancy. In the case of exploit-
ative learning, the quadratic term is not significant, which is in line with Hypothesis 1,
which predicts a linear and not a curvilinear relationship. In the case of exploration, we
find a curvilinear relation between the redundancy in the direct ties of a focal firm
and its explorative learning, which is in line with Hypothesis 2. Hence, higher levels of
redundancy always improve exploitation, whereas redundancy also increases exploration
but only up to a certain point. Beyond this point, the decline in novelty value begins to
have a negative effect on the creation of new, non-core technology.

Model 4 adds ‘component density’ as a regressor. This variable has no effect on
exploitative learning, which is in line with Hypothesis 3, which predicts a curvilinear
relationship. With regard to exploration, the coefficient has the expected negative sign
although it lacks significance. Model 5 adds the squared term of component density to
test for a curvilinear relation. Here we find that increasing redundancy in a part of ego’s
network has the expected curvilinear relationship in respect of exploitative learning. This
corroborates Hypothesis 3. In contrast, we find that component density has no significant
effect – neither linear nor curvilinear – on explorative learning. In other words, Hypoth-
esis 4 cannot be confirmed. We discuss these results in more detail in the following
section.

DISCUSSION AND CONCLUSION

Owing to the lack of empirical literature on the particular effects of local actions in
alliance networks, we have developed an approach – based on Bae and Gargiulo (2003)
– that studies the effect of those particular actions on a focal firm’s ability to create new
technology in its core areas and/or non-core areas. More specifically, we have studied
how redundancy in a focal firm’s network structure affects its ability to create new
knowledge in core and/or non-core technological areas. Here, we have focused on two
types of redundancy in the ego network of innovating firms. The first type reflects ‘ego
redundancy’: these alliances connect two partners or groups of partners of the focal firm
that were otherwise not linked. The other type is ‘component density’: these alliances
between partners do not increase the redundancy in ego’s total network, but increase the
redundancy within a separate group of partners. Given these differences, we anticipated
that each type of redundancy would have a differential effect on the creation of core
technology and non-core technology respectively. This idea was corroborated by the
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Table IV. Determinants of exploitative and exploratory technology innovation, 1986–97

Model 1 Model 2 Model 3 Model 4 Model 5

(a) Exploitative technology innovation
Egonet redundancy 0.028*** 0.059** 0.063** 0.061**

(0.010) (0.0274) (0.028) (0.029)
(Egonet redundancy)2 -0.005 -0.005 -0.006

(0.004) (0.004) (0.004)
Component density 0.004 0.071**

(0.007) (0.035)
(Component density)2 -0.006**

(0.003)
Control variables

Firm size (ln sales) 0.612*** 0.605*** 0.609*** 0.609*** 0.613***
(0.045) (0.045) (0.046) (0.046) (0.046)

Technical capital/100 0.024*** 0.021*** 0.022*** 0.022*** 0.022***
(0.004) (0.004) (0.004) (0.004) (0.004)

R&D intensity 0.270*** 0.260*** 0.259*** 0.261*** 0.266***
(0.045) (0.046) (0.046) (0.046) (0.046)

Age -0.006*** -0.006*** -0.006*** -0.006*** -0.006***
(0.002) (0.002) (0.002) (0.002) (0.002)

Car manufacturer -1.289*** -1.352*** -1.316*** -1.312*** -1.321***
(0.170) (0.174) (0.176) (0.176) (0.176)

Chemical industry 0.484*** 0.452*** 0.407** 0.416** 0.414**
(0.159) (0.160) (0.163) (0.164) (0.164)

Europe 0.268 0.239 0.257 0.256 0.281
(0.178) (0.178) (0.178) (0.178) (0.178)

USA 1.357*** 1.340*** 1.339*** 1.346*** 1.349***
(0.151) (0.153) (0.152) (0.153) (0.151)

Constant -4.517*** -4.441*** -4.496*** -4.537*** -4.604***
(0.382) (0.379) (0.383) (0.391) (0.392)

Year dummy variables Included Included Included Included Included
Observations (firm-year) 667 667 667 667 667
Number of firms 74 74 74 74 74
Log-L -4,689.32 -4,685.74 -4,684.98 -4,684.85 -4,681.98
LR-test 7.16*** 1.52 0.26 5.74**

(b) Exploratory technology innovation
Egonet redundancy 0.011 0.1826*** 0.177*** 0.176***

(0.086) (0.047) (0.049) (0.049)
(Egonet redundancy)2 -0.006*** -0.023** -0.023***

(0.305) (0.006) (0.006)
Component density -0.005 0.281

(0.013) (0.067)
(Component density)2 -0.003

(0.006)
Control variables

Firm size (ln sales) 0.336*** 0.333*** 0.344*** 0.327*** 0.325***
(0.049) (0.049) (0.048) (0.048) (0.048)

Technological capital/100 0.023*** 0.023*** 0.023*** 0.023*** 0.022***
(0.006) (0.005) (0.005) (0.006) (0.006)
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empirical findings. The results in Table IV show that egonet redundancy has a linear
effect on the creation of core technology. There is an inverted U-shape relation in respect
of non-core technology. Component density has a curvilinear effect on the creation of
core technology but has no effect on the development of non-core technology. Overall,
these results clearly indicate that innovating firms’ actions to structure their ego network,
and egonet redundancy in particular, have a significant effect on both types of innovative
output. Given the fact that ego network redundancy largely lies within a focal firm’s
sphere of influence, contrary to its component density, these findings indicate that
individual firms can indeed improve their innovativeness by shaping the degree of
redundancy in their local alliance network. Overall, this points to the usefulness of an
action approach for developing a more action-oriented view on the role of individual
firms in collaborative networks. Such a view could serve as a complementary perspective
to the traditional view on alliance networks, with its emphasis on the overall network
structure and firms’ network position (Bae and Gargiulo, 2003, 2004; Garcia-Pont and
Nohria, 2002).

Furthermore, these findings indicate that the creation of new technology forms a
balancing act between building and maintaining access to novelty, on the one hand, and
nurturing shared absorptive capacity, on the other hand. Whereas novelty access is
provided for by non-redundant partners in a focal firm’s alliance network, the corre-
sponding ability to absorb novel technology is enhanced by redundancy in its network.

Table IV. Continued

Model 1 Model 2 Model 3 Model 4 Model 5

R&D intensity 0.066 0.061 0.039 0.037 0.0038
(0.110) (0.111) (0.118) (0.118) (0.012)

Age 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001 (0.001)

Car manufacturer 0.335** 0.343** 0.336** 0.332** 0.333**
(0.147) (0.157) (0.248) (0.158) (0.158)

Chemical industry 0.724*** 0.667*** 0.660*** 0.659*** 0.661***
(0.132) (0.138) (0.137) (0.137) (0.144)

Europe 0.425*** 0.461*** 0.416*** 0.416*** 0.410***
(0.141) (0.145) (0.144) (0.144) (0.145)

USA 1.117*** 1.118*** 1.133*** 1.131*** 1.129***
(0.120) (0.127) (0.125) (0.125) (0.125)

Constant -4.978*** -5.149*** -5.209*** -5.156*** -5.160***
(0.405) (0.427) (0.48) (0.444) (0.444)

Year dummy variables Included Included Included Included Included

Observations (firm-year) 667 667 667 667 667
Number of firms 74 74 74 74 74
Log-L -3,226.47 -3,226.21 -3,218.88 -3,218.82 -3,218.69
LR-test 0.52 14.66*** 0.12 0.26

Notes: Standard errors in parentheses.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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By influencing the degree of each type of redundancy, firms can further boost the
creation of both core and non-core technology respectively. Here we have considered
how each type of redundancy impacts the creation of the two types of new technology
separately.

This also raises the question regarding how far a focal firm can make use of its local
network structure with a view to boosting the two types of technology jointly. Following
our findings, the best way forward seems to be the following: most important is to
increase redundancy among ego’s direct ties (i.e. egonet redundancy) up to the optimal
level for exploration – 3.8 on a scale from 0 to 10 (calculation based on Model 5 in
Table IV(b)). In this way, ego can benefit – in respect of both activities – from an increase
in coherence in supplied information and from a diminished risk of information over-
load. However, beyond the optimal level, a focal firm should be careful, as a decrease in
novelty value becomes a serious problem for exploration here. Although exploitation
could still benefit from such an increase, a more sensible strategy is to increase the
network density between a focal firm’s partners to create stronger group coherence and
better information flows between them, thus improving the former’s innovation rate in
core technologies. However, there is only a positive effect for lower component density
levels. When partners are already well connected to each other (high component density
levels), the impact of a further increase has a negative effect on exploitation. Firms can
develop a strategy of stimulating tie density between partners because exploration is not
negatively affected by changes in component density. This is, admittedly, more difficult
than increasing egonet redundancy, as it lies beyond ego’s direct sphere of influence:
focal firms can only influence component density by using their power/status in the
network (which only applies to more prominent firms) and through social control within
densely connected groups.

In conclusion, it seems that balancing novelty access and its corresponding absorption,
which follows from a cognitive perspective, also induces the need for a balancing act
between local redundancy and local non-redundancy from a social structural perspec-
tive. This is an important point that has implications for various strands of literature. The
learning and innovation literature, although clearly acknowledging the importance of
inter-firm collaboration and ‘interactive learning’ processes, still has limited insights into
what the associated social structural implications of technological innovation processes
are (Malerba, 2004). Here, our logic and findings on the effect of network structure on
both types of innovation not only reveal how networks structure impacts each task
differently, but also why it does so. The balance between novelty access and absorption,
and how that differs between the two types of innovative activities, should be reflected in
focal firms’ network structure. This insight is also highly informative to the alliance
literature, which has predominantly studied how an alliance network acts as a channel
for the diffusion of existing information and knowledge, rather than its potential for new

knowledge creation (Owen-Smith and Powell, 2004; Sampson, 2007). Consequently, our
focus on how ego’s local network structure shapes the creation of core and non-core
technology also provides us with a better understanding of the development of new
knowledge and competencies in unfamiliar domains, which is still a largely unaddressed
topic in the alliance literature (Gilsing et al., 2008; Hagedoorn et al., 2000; Nooteboom,
2004).
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Furthermore, our study has an interesting new insight in respect of the ongoing debate
on the validity of Burt’s arguments versus those of Coleman in the social network
literature. Our in-depth study of network structure from a local action perspective reveals
that the creation of new technology in non-core areas seems to require a dual emphasis on
non-redundant contacts and redundant contacts. This result indicates that innovating
firms that pursue a mixed alliance strategy leading to intermediate levels of ego-network
redundancy outperform firms – as far as the creation of non-core technology is concerned
– that take on pure structural holes or network closure strategies at both ends of the
continuum. Structural hole networking strategies do, of course, have the potential to tap
into novel sources of technological knowledge, but due to the more tacit nature of new
technology, firms might often experience too wide a gap in absorptive capacity when
sourcing technology from their alliance partners (Cohen and Levinthal, 1990). Close and
multiple contacts between partners might be disadvantageous in terms of novelty of
information but they increase absorptive capacity because densely connected firms act
similarly and develop similar preferences (Knoke and Kuklinski, 1982). Similarity leads to
some degree of knowledge overlap between alliance partners and is therefore positively
related to the absorptive capacity of partners (Lane and Lubatkin, 1998). In other words,
it seems that – for the creation of non-core technology – both views convey some truth and
may be regarded as complements instead of opposites as is stressed in the literature (Ahuja,
2000; Hansen, 1999; McEvily and Zaheer, 1999; Rowley et al., 2000).

In contrast, for the creation of core technology, a network closure strategy seems to
work well with regard to a focal firm’s network of direct ties. One of the most successful
firms to employ this strategy is the METRO group, one of the world’s biggest retailers.
With its innovative Future Store Initiative, METRO successfully launched a partner
programme aimed at innovation and knowledge sharing among its partners. The Future
Store Initiative consists of an alliance of 58 innovative companies that jointly develop
new technology-based products for the retail sector. This initiative has evolved into a
very strong and productive knowledge network in which learning effects have greatly
increased for the companies involved, as well as for METRO. The central coordination
is in the hands of METRO, which facilitates face-to-face and electronic communication
among its partners. This has led to a dense network of motivated partners that enhances
the contributions of partners and reduces their incentive to free-ride (see De Man, 2008).

This study has several limitations. First, there is the standard concern whether we can
draw general conclusions based on data from established firms in three industries. Second,
we only focused on the redundancy of the information in the ego network of firms’ alliance
networks. We did not pay attention to the strength of the ties: there is empirical evidence
that the value of strong and weak ties depends on the type of learning (Rowley et al., 2000).
Similarly, some authors have found that the strength of ties (or types of alliances) is an
important explanatory factor in understanding the network structure of social capital (e.g.
Burt, 2000; Nicolaou and Birley, 2003; Podolny and Baron, 1997). Furthermore, we did
not pay attention to the cognitive distance between a company and its partners although,
in contrast to exploitative learning, partners should undoubtedly differ in technology
profile for explorative learning. This raises the question of what the optimal ‘cognitive
distance’ between alliance partners should be when involved in exploitative or explorative
learning (Nooteboom et al., 2007). This, in turn, suggests that determining the conditions
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for exploration and exploitation could be characterized in terms of the relative absorptive
capacity between alliance partners (Lane and Lubatkin, 1998).

The current study offers several opportunities for further research. First, there is a
multitude of alliance types, each of which has a different tie strength. Introducing tie
strength as an explanatory variable can enrich our understanding of the role of redun-
dancy in ego networks. Similarly, different types of partners and the heterogeneity
among partners are other variables that could be introduced to refine the current analysis
(Faems et al., 2005; Rothaermel and Deeds, 2004).

Second, exploration and exploitation have been operationalized in different ways in
the literature (see Gupta et al., 2006 for an overview). Our definition of exploitation
and exploration focuses on the distinction between core and non-core technologies.
This operationalization is in line with March’s (1991) definition and comes close to the
operationalization used by Katila (2003) in which exploration is determined in terms of
entering new patent classes. Other studies define exploitation and exploration in terms of
citations to a firm’s prior patents in new, successfully applied patents (Katila and Ahuja,
2002; Rosenkopf and Nerkar, 2001; Rothaermel and Deeds, 2004). The two approaches
are complementary and it would be interesting to analyse the impact of operationaliza-
tions on the role of redundancy in previously unconnected and connected partners
within the two views of exploration.

Finally, density and redundancy can be defined at different network levels and not
only at the ego-network level. Density at the overall network level may influence the
exploration of new technologies (Gilsing et al., 2008). In a similar vein, cliques of firms –
dense parts of the network that are larger than ego networks – are likely to play a role in
explaining the innovativeness of firms (Baum et al., 2003; Gulati and Gargiulo, 1999;
Rowley et al., 2004, 2005). Blending different network levels in the analysis may reveal
that the impact of ego-network redundancy is contingent on the density and structure at
the clique or overall network level.

In conclusion, our combined cognitive and social structural perspective has proven to
be an important addition to the literature thus far, as we have complemented the
dominant focus on the role of social factors regarding alliance formation and the role
of network embeddedness (Gulati, 1998) with a cognition-based understanding of these
processes (Moran, 2005; Nooteboom, 2004). In this way, we have been able to study how
two types of redundancy in a firm’s ego network affect its ability to be innovative in its
core technologies (exploitation) and/or in its non-core technologies (exploration). In the
literature, redundancy has traditionally been analysed without taking into account
whether partner firms were previously connected to each other or not. We find empirical
evidence that it is important to distinguish between redundancy that links as yet uncon-
nected partners together (ego redundancy) and redundancy that intensifies the relations
among partners that were already linked to each other (component density). Both types
of redundancy play a different role in increasing the innovativeness of firms when they
deepen their knowledge in core technologies or when they broaden their knowledge base
in non-core technologies. The role of redundancy in a broader network has been debated
by Burt (1992) and Coleman (1988). In this article, we have shown that firms can boost
their technological innovativeness by shaping the two types of redundancy in their local
alliance network. Hence, our study argues convincingly that not only the alliances with
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its partners but also the degree of different types of redundancy among its partners
determine a firm’s technological innovativeness. This reflects a more action-oriented
view of the role of individual firms in collaborative networks, which has been ignored by
the alliance literature so far. Such an action-oriented view informs firms how to orches-
trate their networks in such way that they can extract more value out of it (Dhanaraj and
Parkhe, 2006). This approach also requires alliance network scholars to develop a
renewed interest in the management and organization of alliance networks (Bamford
et al., 2003; Gomes-Casseres, 1996), as an action oriented approach can only lead to
more innovation through skilful alliance portfolio management.
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NOTES

[1] Quoting Burt: ‘People who stand near the holes in a social structure are at a higher risk of having good
ideas’ (Burt, 2004, p. 349).

[2] This is echoed in Burt (2001) where a distinction is made between positive and negative third parties.
[3] This long time-span allows us to circumvent left-side censoring problems, as the observation period in

this study only starts in 1986.
[4] Additional information on this data bank can be found in Hagedoorn (1993) and Hagedoorn and

Schakenraad (1994).
[5] See also Basberg (1987) and Griliches (1990).
[6] A moving window of five years is the appropriate time-frame for assessing the technological impact

(Ahuja, 2000; Henderson and Cockburn, 1996; Podolny and Stuart, 1995; Stuart and Podolny, 1996).
Studies on R&D depreciation (Griliches, 1979, 1984) suggest that knowledge capital depreciates
sharply, losing most of its economic value within five years. The classes were determined at a two-digit
level, which resulted in approximately 400 classes.

[7] We also constructed the variable ‘explorative patents’, which was based on maintaining the explorative
status for five years to test the robustness of our results. Changing the dependent variable ‘explorative’
patents in this way did not affect the empirical results.

[8] This and other network variables can be calculated with the network analysis software package
Ucinet 6 (Borgatti et al., 2002).

[9] Ego redundancy is related to the ‘bridging ties’ concept of McEvily and Zaheer (1999). Bridging ties link
a focal firm to other companies that are not otherwise accessible to this firm (they connect a focal firm to
sources of information and opportunities that are not available from other network contacts). In respect
of ‘bridging ties’, low (high) values indicate low (high) non-redundancy – exactly the opposite of
‘proportion density’. We find a correlation of -0.63 between bridging ties and ego-network redundancy,
indicating that, similar to the method used in this paper, bridging ties are a measure of (non-)redundancy.

[10] The presence of overdispersion does not bias the regression coefficients. Rather, the computed stan-
dard errors in the Poisson regression are understated so that the statistical significance is overestimated.
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