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During the past two decades growing evidence indicates that brain oscillations in the

alpha band (∼10 Hz) not only reflect an “idle” state of cortical activity, but also take a

more active role in the generation of complex cognitive functions. A recent study shows

that more than 60% of the observed inter-subject variability in perceptual learning can

be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha

oscillations for perceptual learning and hence motivates to explore the potential underlying

mechanisms. Hence, it is the purpose of this review to highlight existent evidence that

ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review,

we disentangle the alpha rhythm into different neural signatures that control information

processing within individual functional building blocks of perceptual learning. We further

highlight computational studies that shed light on potential mechanisms regarding how

alpha oscillations may modulate information transfer and connectivity changes relevant

for learning. To enable testing of those model based hypotheses, we emphasize the

need for multidisciplinary approaches combining assessment of behavior and multi-scale

neuronal activity, active modulation of ongoing brain states and computational modeling

to reveal the mathematical principles of the complex neuronal interactions. In particular

we highlight the relevance of multi-scale modeling frameworks such as the one currently

being developed by “The Virtual Brain” project.
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INTRODUCTION

Perceptual learning, a form of implicit learning and adult brain

plasticity, allows us to tune our perception to efficiently select rel-

evant sensory signals. It ultimately determines our success when

adapting and interacting with the dynamic and complex envi-

ronment. A glimpse into our daily life is enough to realize that

learning efficacy varies greatly across human beings but also

changes over time in a single person. A recent study on perceptual

learning has shown that ongoing brain activity, more specifically,

electrical oscillations in the alpha frequency band (∼8–12 Hz), are

able to predict up to 64% of the observed variability in the learn-

ing outcome in a perceptual task (Freyer et al., 2013). Although

perceptual learning and brain function in general have been tra-

ditionally approached through the study of task-related brain

activity, Freyer et al. (2013) and other recent studies demonstrate

a growing awareness for a potential role of resting-state fluctua-

tions (Biswal et al., 1995) for perceptual learning (Sigman et al.,

2005; Lewis et al., 2009; Baldassarre et al., 2012; Freyer et al.,

2013). Revealing the interaction between ongoing brain activity

and learning could yield a new understanding of human cogni-

tion. This may lead to new strategies to modulate actively ongoing

brain activity and to optimize brain states to manipulate the

learning outcome in the clinical setting and everyday life.

In the present review we focus on the role that the alpha

rhythm plays in perceptual learning. At the same time one can

regard the alpha rhythm and perceptual learning as exemplary for

other types of ongoing neural activity and cognition. They serve

to illustrate how we can approach the endeavor to understand

how the brain gives rise to cognition more generally. We show the

need to build two bridges: One links neuronal activity to behavior

and cognition; the other links neuronal activity to the underlying

complex computational biophysical mechanisms spanning cellu-

lar, regional as well as large-scale network interactions. Imaging

and neurofeedback studies addressed in this review are a good

example of the first bridge. The computational modeling stud-

ies at different spatial scales presented here are examples of the

second bridge.

Since cognition emerges through a temporal series of network

operations, the temporal and the spatial aspects of brain activity

need to be disentangled. Hence the alpha rhythm—like any other

neural process of the brain—may play differential roles depend-

ing on the neuronal populations involved and the time point or

temporal (cognitive) context. In other words, alpha oscillations

may play different roles during the sequence of processes. They

indicate or encode different aspects of information processing in

the brain. In the present article we address how alpha oscillations
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may modulate perceptual learning. Based on recent computa-

tional models implementing biophysical plausible mechanisms,

we hypothesize that high alpha ongoing activity in learning-

related areas could play an “active” role, promoting learning by

improving the encoding capabilities and memory formation. In

more general terms, we illustrate the iterative process of empiri-

cal and modeling work that is necessary to infer knowledge about

the interplay of intrinsic brain activity and external stimuli. This

interplay constitutes the foundation of perceptual learning and in

general of human cognition.

PERCEPTUAL LEARNING

Generally, learning occurs in different forms. Some forms explic-

itly require memorizing information (declarative learning, i.e.,

information we can describe), while others occur implicitly by

exposition or practice (non-declarative or procedural learning,

i.e., acquiring skills) (Gilbert et al., 2001). Perceptual learning

is a form of implicit learning that can occur independent of

declarative processes and is very similar in several aspects to

non-declarative learning (Fahle and Poggio, 2002; Sagi, 2011).

The term perceptual learning has a broad meaning. It cap-

tures learning at a great variety of conditions and occurs even

in the absence of training (for a recent review see Beste and

Dinse, 2013). When referring to perceptual learning in this

review, we generally consider any change in perception and sen-

sory guided behavior as a consequence of sensory experience

(Fahle and Poggio, 2002).

In the visual system for example, learning can modify the per-

ception of simple features such as orientation (Shiu and Pashler,

1992; Vogels and Orban, 1994), motion (Ball and Sekuler, 1982,

1987), contrast (Dorais and Sagi, 1997; Yu et al., 2004) as well

as complex objects (forms) such as faces (Hussain et al., 2011,

2012; Herzog et al., 2012). A general scheme shown in Figure 1

illustrates how perceptual learning relates to other forms of learn-

ing. As different neuronal pathways are implicated in declarative

and non-declarative forms of learning and memory (Squire and

Zola, 1996), Figure 1 includes the main brain regions tradi-

tionally associated with these learning and memory processes

(bottom part), locating perceptual learning in the neocortex. This

association is important when considering regional interactions

between ongoing alpha activity and perceptual learning.

CELLULAR AND REGIONAL SUBSTRATES OF PERCEPTUAL LEARNING

Perceptual learning can restructure cortical networks on a large-

scale accessible by non-invasive imaging methods within hours

or even minutes (e.g., Caroni et al., 2012; Freyer et al., 2012a;

Sagi et al., 2012), and can result in functional changes through-

out the cortex (Gilbert et al., 2009; Sasaki et al., 2010). Plastic

changes involved in improving for example the discrimination

of an attribute are likely to occur at the primary sensory pro-

cessing level representing specific features, i.e., in cortical regions

where receptive fields are selective to those attributes (Tsodyks

and Gilbert, 2004; Carmel and Carrasco, 2008). Nevertheless,

alterations induced by perceptual learning can go beyond primary

and secondary sensory cortices. In the visual system for exam-

ple, numerous regions have been implicated in visual perceptual

learning such as V1/V2, V3, V4, the middle temporal area (MT),

the lateral intraparietal area (LIP), and areas related to attention,

decision making, and default mode networks (Yang and Maunsell,

2004; Mukai et al., 2007; Law and Gold, 2008; Lewis et al., 2009;

Sasaki et al., 2010; Shibata et al., 2011). Plastic changes induced by

perceptual learning may occur widespread throughout the cortex

or only in local neuronal dynamics (Jones et al., 2007; Sasaki et al.,

2010).

Perceptual learning is considered to be a manifestation of

external stimulus-driven neural plasticity in the brain (Carmel

and Carrasco, 2008) and has recently been linked to long-term

potentiation (LTP) and long-term depression (LTD) (e.g., Beste

et al., 2011; Sale et al., 2011; Aberg and Herzog, 2012; Ditye et al.,

2013). LTP and LTD are long-lasting alterations in the efficiency

of synaptic transmission, typically induced by brief periods of

coordinated, high (LTP), or low (LTD) frequent neuronal activ-

ity at a synapse (see Malenka and Bear, 2004 for a review). Since

the pioneering work of Bliss and colleagues (1973), LTP and later

LTD became key candidates for neuronal plasticity and learning

in almost any part of the mammalian brain (Bliss and Gardner-

Medwin, 1973; Bliss and Lomo, 1973; Nicoll et al., 1988; Lynch,

2004; Malenka and Bear, 2004; Citri and Malenka, 2008).

FIGURE 1 | Perceptual learning among other forms of learning classified

according to the memory systems implicated (Figure adapted with

permission from Squire and Zola, 1996. Copyright (1996) National

Academy of Sciences, U.S.A). Brain regions traditionally associated

with each form of learning/memory are presented at the bottom part of the

figure.
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ROLE OF ATTENTION IN PERCEPTUAL LEARNING

One candidate for a link between alpha and perceptual learning is

attention (see section Alpha Rhythm and Attention). Generally,

learning, attention, and memory appear to be strongly related

(Gilbert et al., 2001). More than 30 years ago, Schneider and

colleagues (Schneider and Shiffrin, 1977; Shiffrin and Schneider,

1977) proposed that learning the automatic detection of visual

categories reduces the dependence of performance from atten-

tional control, resulting in the automatization of the task. Later

on, several studies in the nineties reported that attention is often

required for the consolidation of non-declarative memory in

visual perceptual learning (Shiu and Pashler, 1992; Ahissar and

Hochstein, 1993; Fahle and Morgan, 1996; Braun, 1998; Ito et al.,

1998). More recent studies observed visual perceptual learning

exclusively when subjects were consciously involved in a task, sug-

gesting the interplay of top-down guided processes (Ahissar and

Hochstein, 2004) with relevant influence of attention (Roelfsema

et al., 2010). In experiments in which subjects were asked to

give a response depending on different visual features of the

presented stimuli, it was demonstrated that observers show per-

ceptual learning only for the features that were attended (Shiu

and Pashler, 1992; Ahissar and Hochstein, 1993). In this line,

long-range coupling has been reported between frontal and sen-

sory areas during attention (Gregoriou et al., 2009). At the same

time, the alpha rhythm has been implicated in the long-range

communication between cortical areas (Von Stein and Sarnthein,

2000). As detailed further below, electrophysiological studies in

cats investigating the coupling between different brain areas iden-

tified signals in the theta-alpha range (4–12 Hz) to be relevant

in top-down modulation of incoming stimuli (Von Stein et al.,

2000). However, evidence is accumulating indicating that per-

ceptual learning can also occur when subjects are not involved

in a task and exert no conscious effort. In these cases top-down

attention has less or no influence (Zajonc, 1968; Skrandies and

Fahle, 1994; Watanabe et al., 2001, 2002; Seitz and Watanabe,

2003; Nishina et al., 2007; Gutnisky et al., 2009; Seitz et al.,

2009; Rosenthal and Humphreys, 2010; Shibata et al., 2011).

In some cases this type of perceptual learning, usually referred

to as “task-irrelevant perceptual learning,” requires reward and

reinforcement signals (Seitz et al., 2009 for example used, food

and water deprivation to manipulate the reward) to consolidate

information about incoming stimuli (see Sasaki et al., 2010 for

review).

PERCEPTUAL LEARNING VIA TIME-DEPENDENT SENSORY

STIMULATION

Recent work suggests that active training may not be required

in perceptual learning (see Beste and Dinse, 2013 for review).

Instead, changes in perception can be effectively induced by mere

exposure to repetitive sensory stimulation (RSS). Such training-

independent sensory stimulation induces lasting changes in per-

ception and goal-directed behavior without any explicit task

training. RSS protocols are regarded as “passive stimulation”

since no attentional effort is required (Dinse et al., 2011). Ragert

et al. (2008) translated stimulation protocols used in brain slice

preparations into tactile high-frequency stimulation (HFS) to

drive perceptual changes. HFS consisted of pulse trains that were

applied to the tip of the right index finger with a stimulation fre-

quency of 20 Hz using either cutaneous or electrical stimulation.

Ragert et al. (2008) found that 20 min of HFS induced a lowering

of tactile discrimination thresholds, indicating improved tactile

acuity, whereas the left index finger of the non-stimulated hand

showed no changes in acuity.

For the visual modality, recent studies have shown that time-

dependent stimulation can affect visual performance (Beste et al.,

2011; McMahon and Leopold, 2012). Beste et al. (2011) used

an LTP- and LTD-like visual stimulation to improve or impair

performance of a change-detection task (see Figure 2). Task rel-

evant or irrelevant features of the stimuli were used for high-

or low-frequency stimulation. HFS (20 Hz) comprising a 40 min

presentation of the relevant feature stimuli caused an increase

in performance (Figure 2A). Low-frequency stimulation (LFS,

1 Hz) involving the relevant feature, as well as HFS using the

irrelevant feature caused impairment (Figure 2B). In another

approach, time-dependent stimulation was applied in human

observers to mimic spike-timing-dependent plasticity to induce

plasticity in high-level vision (McMahon and Leopold, 2012). The

authors used asynchronous presentation of faces to influence the

perception of face identity.

EEG AND BOLD CORRELATES OF PERCEPTUAL LEARNING

The neural correlates of perceptual learning in humans have been

investigated in several studies using functional magnetic reso-

nance imaging (fMRI) or electroencephalography (EEG) record-

ings. The majority of studies have focused on the visual modality

(see Sagi, 2011 for a review). Using a paradigm in which sub-

jects were trained to discriminate different visual textures, it

was shown that fMRI BOLD (blood-oxygen-level dependent)

responses elicited by the trained textures in V1 were stronger

when viewed with the trained eyed as compared to the untrained

eye (Schwartz et al., 2002). Changes in V1 as a consequence

of training were also confirmed by subsequent studies (e.g.,

Furmanski et al., 2004; Walker et al., 2005; Yotsumoto et al., 2009).

By comparing subjects’ ability to learn image-statistical regular-

ities and distinguish targets in clutter, another study identified

the BOLD correlates of two different brain plastic signatures that

underlie these two forms of visual perceptual learning (Zhang

and Kourtzi, 2010). In addition to fMRI studies, plasticity in low

visual areas as a consequence of perceptual training has also been

investigated using other methods such as EEG (e.g., Skrandies and

Fahle, 1994; Casco et al., 2004; Furmanski et al., 2004; Walker

et al., 2005; Pourtois et al., 2008) and diffusion tensor imaging

(DTI) (Yotsumoto et al., 2010). In a recent study, Mayhew et al.

(2012) compared human performance with the performance of

pattern classifiers using fMRI/EEG signals recorded simultane-

ously. They found evidence of distinct brain mechanisms that

underlie the improvement of the ability to perceive uncertain (i.e.,

noisy) visual stimuli.

The neural correlates of perceptual changes induced through

RSS protocols have also been found in the somatosensory cor-

tex (Pleger et al., 2001; Freyer et al., 2013). Assessing the

effect of a RSS protocol on tactile discrimination behavior and

somatosensory-evoked potentials, Pleger et al. (2001) demon-

strated a correlation between individual perceptual improvement
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FIGURE 2 | Performance in a luminance detection task in which

changes in the orientation of the stimuli (bars) were used as a

distractor in some so-called “competitive trials.” Performance in

competitive trials is plotted for each time point: baseline (base), 90 min

later (90 min), 24 h later (24 h), and 10 days later (10 d). Each panel

shows the results of different experiments depending on the

visual-stimulation protocols used. Stimulation of the relevant (luminance)

or irrelevant (orientation) feature could be LTP (A)- or LTD (B)-like,

applied to both (bilateral) or only the right eye (unilateral). Black and

white circles represent performance on the right and left side of the

fixation cross, respectively. Error bars are standard errors of the mean.

Figure adapted with permission from Beste et al. (2011).

and localized activity in somatosensory cortex. These effects

were also confirmed using fMRI where cortical reorganization in

primary and secondary somatosensory cortex (S1 and S2) was

observed after the same stimulation protocol (Pleger et al., 2003).

COMPUTATIONAL MODELS OF PERCEPTUAL LEARNING

The majority of computational models that describe neuronal

interactions within and between populations underlying percep-

tual learning focus primarily on the visual system. These models

can be classified into two groups. The first group of models

implements learning in early visual processing areas, such as V1,

inspired by the retinotopic organization of those areas (e.g., Adini

et al., 2002; Teich and Qian, 2003; Zhaoping et al., 2003). The

second group of models achieves learning by changing the rep-

resentation of higher-level cortical areas or by modifying the

connections between low-level areas and higher-level associa-

tion areas, such as those implicated in decision-making processes

(Poggio et al., 1992; Dosher and Lu, 1998; Sigala et al., 2005; Serre

et al., 2007; Lu et al., 2010).

The wide range of modeling approaches raises a major open

question: does perceptual learning induce changes in early sen-

sory areas or rather a reweighting of connections between

primary sensory cortices and higher-cortical areas involved in

decision-making processes. Most of the computational models

on perceptual learning use feedforward models with recurrent

interactions (Poggio et al., 1992; Dosher and Lu, 1999; Eckstein

et al., 2004; Sigala et al., 2005; Serre et al., 2007). In such archi-

tectures learning can be implemented using a training signal that

in principle guides the reweighting of the connections between

units at different processing stages. In these models, feedback

about decision errors is fundamental (Poggio et al., 1992; Herzog

and Fahle, 1997, 1999). Other learning strategies have followed

an unsupervised or semi-unsupervised approach. A possibility in

such cases is to build feature detectors capable of changing their

tuning properties, and to adapt them to the statistical properties

of the training set (Sigala et al., 2005; Serre et al., 2007). In a recent

publication, Solgi et al. (2013) propose a model that explains

generalization (transfer) learning effects to untrained features.

According to this model, transfer learning occurs since particu-

lar tasks are able to trigger neuronal recruitment in lower-feature

and higher-association areas, relevant for both the trained and the

untrained conditions.

THE ALPHA RHYTHM AND ITS IMPACT ON INFORMATION

PROCESSING

In this section we focus on different aspects of the alpha rhythm

that may be relevant for the understanding of its role in percep-

tual learning. We address the cellular and regional correlates of

alpha oscillations. We highlight generative computational models

that yield alpha activity and explore accumulated evidence link-

ing alpha oscillations to cognition, generally agreeing with the

available hypothesis that situate the alpha rhythm as an inhibitory

mechanism which gates resources necessary for information pro-

cessing (Jensen and Mazaheri, 2010).

GENERAL ASPECTS OF THE ALPHA RHYTHM

The alpha rhythm refers to brain oscillations within a frequency

range of 8–12 Hz. This rhythm was first observed when Hans

Berger recorded electrical activity from the scalp (EEG) in 1929

(Berger, 1929). Other frequency bands discovered later were also
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labeled using Greek letters, the boundaries of which were arbi-

trarily drawn: delta, 0.5–4 Hz; theta, 4–8 Hz; beta, 12–30 Hz;

gamma, >30 Hz (Buzsaki, 2006). Opening and closing the eyes

modulates the amplitude of alpha oscillations (see Pfurtscheller

et al., 1996 for a review). Given the observed attenuation (also

referred to as “desynchronization”) of the alpha band signal

caused by opening the eyes, some investigators concluded that the

alpha band reflects an “idling” state in which the underlying cor-

tical regions are not engaged in any task or processing of sensory

information (Pfurtscheller et al., 1996). Nowadays the “idling”

role of alpha oscillations has been overtaken by the so-called inhi-

bition hypothesis (see Klimesch et al., 2007 for a review). This

hypothesis is supported by the observation that the amplitude of

alpha oscillations is suppressed in specialized sensory areas when

devoted to the processing of sensory stimuli (Nikouline et al.,

2000) while it emerges in areas that are not explicitly involved in

the respective task (Worden et al., 2000; Kelly et al., 2006; Thut

et al., 2006).

Although alpha oscillations are most prominent in visual

areas, i.e., they exhibit highest amplitudes in electrodes placed

over occipital brain areas, they are generally widespread in the

cortex but regionally attenuated depending on different stim-

uli and tasks (Buzsaki, 2006, p. 198–200). Hence alpha rhythms

have presumably distinct functional roles and mechanisms of

generation. Alpha waves can be recorded in electrodes near the

frontal eye fields, cortical areas responsible for eye movements

(Niedermeyer and Da Silva, 2004, Ch. 9), above the sensory-

motor cortical area (usually referred to as µ, “Rolandic” or

somatosensory alpha rhythm) (Gastaut, 1952; Kuhlman, 1978;

Salmelin and Hari, 1994), over the supplementary motor area

(Pfurtscheller and Berghold, 1989), as well as above the auditory

(midtemporal) cortex (“tau” rhythm) (Lehtela et al., 1997). In

view of these findings it is very likely that synchronized oscilla-

tions in the alpha band are a common feature of cortical activity

especially in sensory cortices, making them key candidates for

modulating cognitive functions such as perceptual learning.

CELLULAR AND REGIONAL SUBSTRATES OF THE ALPHA RHYTHM

Initial evidence suggested that alpha oscillations originate solely

from thalamo-cortical interactions (Andersen and Andersson,

1968). More recently, Bollimunta et al. (2011) argued that alpha

activity in V1 appears to be generated by thalamo-cortical interac-

tions that possibly also influence alpha oscillations in higher cor-

tical areas along the stream of visual processing. Neurons in the

thalamus possess the biophysical features (Lopes Da Silva et al.,

1980; Hughes and Crunelli, 2005; Lorincz et al., 2009; Bollimunta

et al., 2011; Hughes et al., 2011) and the anatomic connectivity

(Jones, 2002) that enable them to shape cortical alpha oscilla-

tions. In addition to the talamic lateral geniculate nucleus (LGN),

which is supposed to drive occipital alpha rhythms (Hughes and

Crunelli, 2005), especially the pulvinar nucleus is considered to

exert an influence over cortical alpha rhythms (Lopes Da Silva

et al., 1980) modulating the synchrony between cortical areas

according to the locus of attention (Saalmann et al., 2012).

Other studies locate the origin of alpha oscillations in deep

layer cortical neurons and networks (Da Silva et al., 1973; Lopes

Da Silva and Storm Van Leeuwen, 1977; Steriade et al., 1990;

Flint and Connors, 1996; Castro-Alamancos and Rigas, 2002;

Bollimunta et al., 2011; Ronnqvist et al., 2013). An in vitro prepa-

ration by Silva et al. (1991) showed that synchronized oscillations

especially in the alpha band can be generated solely by neurons

of cortical layer 5, which possess all the necessary intrinsic prop-

erties and synaptic connections to generate alpha oscillations.

Bollimunta et al. (2008) found alpha generators in layers 3, 4, and

5 of the macaque visual cortex and suggested that in general layers

with higher spontaneous activities seem to contain the pacemak-

ers of the alpha rhythm. The sites of alpha generators differ not

only along the stream of processing but also for different modali-

ties. In the primary motor cortex (M1) for example, oscillatory

activity in the alpha range (Rolandic µ rhythm) is supposedly

mainly generated in layer 3 (Ronnqvist et al., 2013).

Numerous feedforward and feedback modules (Callaway,

1998; Jiang et al., 2013) enable complex interactions between

cortical layers and columns. Therefore, cortical oscillations in dif-

ferent frequency bands are closely linked. A recent study by Spaak

et al. (2012) for example, showed an “intimate relationship”

between alpha and gamma band dynamics within the primate

V1 cortical microcircuits. Driven by deep layer alpha generators,

gamma band activity in superficial granular and supragranu-

lar layers is modulated in a suppressive, phase-specific manner

(Spaak et al., 2012).

Taken together, empirical evidence demonstrates that the

alpha rhythm can be generated through cortical interactions with

or without the need for thalamic input. Results vary substantially

depending on whether neural assembles are studied in vitro or

in the intact brain, as well as on the particular animal model,

task and hence brain region investigated. As will be shown in

the section on microscopic, mesoscopic, large-scale, and full-

brain computational models, alpha activity can be generated with

or without the need for thalamic activity, i.e., using exclusively

cortical interactions (see Figure 3).

IMAGING THE ALPHA RHYTHM AND OTHER FEATURES OF ONGOING

BRAIN ACTIVITY

Using combined recordings of EEG and BOLD fMRI activity

(Ritter and Villringer, 2006; Becker et al., 2009; Ritter et al., 2010)

it has been possible to observe thalamic and cortical BOLD activ-

ity in relation to the alpha rhythm in human subjects. Several

studies have reported higher alpha-rhythm amplitudes in occip-

ital (Goldman et al., 2002; Moosmann et al., 2003; Feige et al.,

2005; Goncalves et al., 2006; De Munck et al., 2007; Difrancesco,

2008) and sensorimotor cortex (Ritter et al., 2009) associated

with negative BOLD fMRI signals in sensory areas (Ritter and

Villringer, 2002). There exist distinct relations between fMRI

resting-state network (RSN) fluctuations and EEG global fields

(i.e., average activity of all EEG channels) for different frequency

bands (Mantini et al., 2007). Considering also the space structure

of the EEG, i.e., identifying ICA components with distinct topo-

graphic distributions, reveals that alpha oscillations of a single

frequency band yet with independent time structure and dif-

ferent space structure (topography) may be linked to different

BOLD-RSNs (Becker et al., 2009). This may explain topographic

and qualitative variability of fMRI correlates of EEG rhythms.

De Munck et al. (2007) have demonstrated such variability.
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FIGURE 3 | Schematic depiction of two mesoscopic computational

models capable of simulating oscillations in the alpha frequency range.

Left: Cortico-thalamic model adapted from Freyer et al. (2011) involving the

thalamus to generate alpha activity in a network of cortical excitatory neurons

and inhibitory interneurons; Right: Cortico-cortical model adapted from

Naruse et al. (2010) generating alpha activity without the thalamic control by

interconnecting cortical macro-columns composed of excitatory pyramidal

neurons accompanied by excitatory and inhibitory interneuron networks.

Other groups reported alpha correlates in fronto-parietal net-

works (Laufs et al., 2003a,b, 2006) or over Rolandic (sensorimo-

tor) areas (Ritter and Becker, 2009). Simultaneously recording

BOLD and EEG signals, Scheeringa et al. (2011) observed that the

BOLD response elicited by a short visual stimulus was modulated

by the phase of the ongoing alpha oscillations. Additionally for

evoked potentials, alpha amplitude (Becker et al., 2008; Reinacher

et al., 2009) and phase dependencies have been demonstrated

(but see Ritter and Becker, 2009). Using EEG-triggered sensory

stimulation (Reinacher et al., 2009) together with simultaneous

BOLD measurements, another study demonstrated that sponta-

neous alpha-rhythm fluctuations in power could largely explain

the evoked fMRI response variance observed in extrastriate, tha-

lamic, and cerebellar areas (Becker et al., 2011). As depicted in

Figure 4, Becker et al. (2011) showed that BOLD responses to

visual stimuli in clusters of visual responsive voxels are modu-

lated by the state of the ongoing alpha activity. Technical advances

in simultaneous EEG–fMRI acquisition nowadays allow record-

ing of a wide range of oscillations including the gamma band and

subtle ultrafast population spikes (Ritter et al., 2008; Freyer et al.,

2009b) and setting those different frequency bands in relations in

terms of their spatial and temporal features (Schultze-Kraft et al.,

2011).

ALPHA RHYTHM AND PERCEPTION

In the last decade several studies investigating the functional

role of alpha oscillations have focused on their relation with

perception (summary in Table 1). Using visual stimuli near the

detection threshold, Ergenoglu et al. (2004) observed that tri-

als with detected stimuli contained significantly less power in

the alpha band than trials with undetected stimuli. Hanslmayr

et al. (2007) also showed that successful perceptual performance

in a visual task is related to little alpha power during the pres-

timulus interval. Investigating the effect of competing stimuli in

the somatosensory modality, Schubert et al. (2009) demonstrated

that some features of the ongoing EEG activity (e.g., ∼10 Hz)

before stimulus presentation predicted whether weak stimuli

could be consciously perceived after masking it with a stronger

distractor.

Instead of lower alpha activity, Babiloni et al. (2006) observed

a stronger power component in frontal, parietal, and occipi-

tal alpha in trials in which stimuli were perceived (interest-

ingly Linkenkaer-Hansen et al., 2004 found an inverted U-shape

association between alpha power and consious detection in

the somatosensory modality). Using magnetoencephalograms

(MEG) and analyzing signals at the source level using spa-

tial filters, Van Dijk et al. (2008) showed in a visual dis-

crimination task that an increase in posterior alpha power

previous to stimulus presentation correlated with less sen-

sitivity. In a paradigm in which somatosensory stimulation

was used to bias visual perception, Lange et al. (2013)

found that prestimulus alpha activity is related to improved

perception of illusory stimuli. The authors suggested that

alpha activity is generally linked to enhancement of excitabil-

ity of visual cortex, rather than improving perception as

such.

While all studies mentioned above concentrated on alpha

amplitude, other studies have focused on studying the phase of

alpha signals (Callaway and Yeager, 1960; Dustman and Beck,

1965; Varela et al., 1981; Becker et al., 2008; Busch et al., 2009;

Mathewson et al., 2009; Ritter and Becker, 2009; Busch and

Vanrullen, 2010; Hanslmayr et al., 2011). Mathewson et al. (2009)
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FIGURE 4 | (A) BOLD deactivations (red) within a visual ROI (gray) projected

onto a brain template. (B) Time courses of the responses in the clusters

selected showing responses in the high alpha-state (black line),

alpha-independent (gray line) conditions, and the difference of both

(high-alpha stimulus response modulation, red line). Figure adapted with

permission from Becker et al. (2011).

Table 1 | Overview of studies showing correlations between features of alpha oscillations (i.e., amplitude, power, phase) and perception.

Alpha and perception

Modality/task Region Time interval Correlation with

behavioral performance

Power or amplitude Phase

Ergenoglu et al., 2004 Visual/detection Parietal/occipital Stimulation Negative

Hanslmayr et al., 2007 Visual/discrimination Parietal/occipital Pre-stimulus Negative �

Schubert et al., 2009 Somatosensory/detection

(masking)

Pericentral sensorimotor Pre-stimulus Negative

Babiloni et al., 2006 Visual/visuospatial Frontal, parietal and occipital Pre-stimulus Positive

Linkenkaer-Hansen et al.,

2004

Somatosensory/detection Sensorimotor parietal Pre-stimulus Intermediate amplitude.

Large amp.

Van Dijk et al., 2008 Visual/discrimination Parietal/occipital Pre-stimulus Increase leads to less

sensitivity

Lange et al., 2013 Visual + somatosen-

sory/discrimination

Occipital Pre-stimulus Negative

Callaway and Yeager,

1960

Visual/reaction-time Occipital Stimulation �

Dustman and Beck, 1965 Visual/reaction-time Occipital Stimulation �

Mathewson et al., 2009 Visual/detection Posterior Stimulation Positive �

Palva et al., 2005 Somatosensory/detection Somatosensory �

Becker et al., 2011 Visual/detection Posterior Pre-stimulus change Positive

For each study (rows) we indicate (columns) the sensory modality investigated, task employed, brain region implicated, and time interval analyzed. Additionally we

indicate whether the power or amplitude of the alpha band positively (+) or negatively (−) correlated with behavioral performance. In the last column on the right

part we used a tick to indicate that performance correlated with alpha phase.

demonstrated that flashed stimuli were more likely to be detected

when presented at the positive peak than at the negative peak

of the alpha waves in trials where alpha amplitude was high.

Recent studies further highlighted the importance of ongoing

oscillatory alpha phase in the perception of illusory (Dugue et al.,

2011) and near-threshold visual stimuli (Mathewson et al., 2011;

Vanrullen et al., 2011), as well as in the conscious access to

visual stimuli (Pincham and Szucs, 2012). Using near-threshold

tactile stimuli, Palva et al. (2005) showed stimulus locking in

the alpha band (8–14 Hz) in somatosensory regions, dominant
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for consciously perceived stimuli but almost unobservable for

unperceived stimuli.

Besides their role in target detection, alpha oscillations have

been also found to correlate with multi-stable perception. A

decrease of alpha power has been observed to precede percep-

tual reversals of bistable visual stimuli, such as the Necker cube

(Isoglu-Alkac et al., 2000; Isoglu-Alkac and Struber, 2006). Using

ambiguous motion, Mathes et al. (2010) reported a perceptual

reversal-related desynchronization of alpha activity in posterior

locations. This is interesting since it highlights the potential rele-

vance of alpha activity for intrinsic brain state switches (see Freyer

et al., 2009a,b for a characterization of alpha modes and computa-

tional models that capture those). Those alpha state switches may

occur unrelated to external events but have significant input on

our perception and cognition.

ALPHA RHYTHM AND ATTENTION

Using audiovisual stimuli, (Foxe et al., 1998) observed that the

alpha rhythm is related to visual attentional gating in the pres-

ence of a relevant auditory stimulus. In a spatial cueing paradigm

with purely visual stimuli, Worden et al. (2000) noticed that alpha

activity during the cue-stimulus interval increased in the occipital

cortex contralateral to the “to-be-ignored” direction (ipsilateral

to the cued location). This pattern of results has been interpreted

as a signature of an inhibitory process that helps to prepare activ-

ity in places where stimuli are expected and visual processing is

required (Worden et al., 2000; Kelly et al., 2006; Handel et al.,

2011).

Other investigators have found a decrease in alpha activity

(event related desynchronization or ERD) over posterior elec-

trodes contralateral to the attended side (Kelly et al., 2006; Thut

et al., 2006; Rihs et al., 2007; Wyart and Tallon-Baudry, 2008;

Yamagishi et al., 2008; Mathewson et al., 2009; O’connell et al.,

2009; Rihs et al., 2009; Snyder and Foxe, 2010; Mo et al., 2011).

Since this desynchronization effect correlated with subsequent

behavioral performance, alpha ERD has been associated with

an enhanced excitability of cortical areas in charge of process-

ing stimuli in the attended visual field. Supporting this idea,

Rohenkohl and Nobre (2011) have also reported alpha ERD in

a task in which temporal expectations were manipulated.

Idling states of alpha are also investigated in terms of directed

and non-directed attention (non-specific alertness). To explain

the role of alpha in non-directed attention Sadaghiani et al.

(2010) proposed a generalized “windshield wiper” mechanism.

The authors suggest that alpha oscillations rhythmically and syn-

chronously clear sensory information on a rapid time-scale from

specific channels that are require for the detection of novel and

relevant incoming sensory information (Sadaghiani et al., 2010).

If the above hypothesis is indeed true, then this would sug-

gest that alpha activity can bias cortical processing in favor of

strong and recent sensory signals. In both cases, non-directed and

directed attention, alpha increases responsiveness of some areas

but decreases responsiveness of others. Low-frequency but high

amplitude alpha oscillations show larger impact on target popu-

lations. Yet during desynchronization of faster oscillations (such

as gamma) population gain increases, most likely, in accord with

the gradual release of inhibition and amounts to specific and focal

disruption of this global effect. The abovementioned theory for

selective attention is supported by a large pool of literature show-

ing that in directed attention, regions representing the attended

site exhibit ERD while the others (non-attended) exhibit ERS

(Klimesch, 2012).

CAUSAL ROLE OF THE ALPHA RHYTHM

Alpha activity correlates with important processes underly-

ing information processing, including perceptual learning. Yet,

whether these correlations indicate a causal relation between

behavior and the alpha rhythm remains unknown. Intervening

brain activity through neurofeeedback and/or non-invasive brain

stimulation can shed light on the causal relation between alpha

rhythm and perceptual learning. Transcranial magnetic stimula-

tion (TMS) has proven to successfully modulate ongoing alpha

oscillations, eventually modulating visual perception (Romei

et al., 2010; Thut et al., 2011; see Neuling et al., 2012 for the

auditory modality; Romei et al., 2012; see Thut et al., 2012 for a

review). Neurofeedback training on the other hand, is a protocol

in which subjects learn to generate specific brain patterns of activ-

ity interpreted through a so-called “brain-computer interface”

(BCI). Neurofeedback has been used in clinical applications (e.g.,

Hardt, 1978; Saxby and Peniston, 1995; Birbaumer et al., 1999;

Gruzelier et al., 1999; Sterman, 2000) but also to boost the perfor-

mance of healthy subjects in a wide variety of tasks (see Vernon,

2005 for a review) such as those reflecting cognitive performance,

for example working memory (Vernon et al., 2003) and mental

rotation tasks (Vernon et al., 2003; Hanslmayr et al., 2005; Zoefel

et al., 2011). Ros et al. (2010) combined neurofeedback training

and TMS to show that alpha oscillations contribute significantly

to cortical plasticity in motor cortex, causing brain changes that

outlast their phase of entrainment. The authors speculate that the

plasticity effects they observe could be explained by mechanisms

related to long-term and short-term potentiation, which in turn

could interact with alpha oscillations in the context of perceptual

learning.

A number of reasons have been proposed to explain the dif-

ficulty when using neurofeedback to control the alpha rhythm

and cognitive performance. One is the fact that the peak of the

alpha frequency varies among subjects, the identification of which

is necessary to select the exact frequency band that needs to be

enhanced (Klimesch et al., 1993). The alpha frequency can be

further separated into different sub-bands of differential rele-

vance for different cognitive tasks. These sub-bands include lower

alpha 1 (6–8 Hz), medium alpha 2 (8–10 Hz), and upper alpha

(10–12 Hz). Lower alpha is related to attentional demands, whilst

the upper alpha is associated with semantic memory (Klimesch

et al., 1994, 1998). By making such a distinction between alpha

sub-bands it has been recently shown, for example, that training

of the upper alpha band increases cognitive control in a mental

rotation task (Zoefel et al., 2011).

The computer-model guided self-regulation of precisely local-

ized brain activity with control of high-resolution temporal

information appears to be a promising approach to controlling

cognitive performance. Combining EEG and fMRI utilizing their

synergies in terms of spatial and temporal resolutions with ana-

lytical tools that account for the space-time structure of the brain

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 36 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Sigala et al. Alpha-rhythm states in perceptual learning

(Schultze-Kraft et al., 2011) seems particularly appealing in this

context. The development of real-time fMRI (rtfMRI) techniques

(Decharms, 2008; Laconte, 2011; Weiskopf, 2012) and real time

EEG during fMRI (Becker et al., 2009) makes it feasible in prin-

ciple. The online self-regulation of brain areas localized through

fMRI and EEG can significantly contribute to the understanding

of the causal relations between physiology and behavior.

COMPUTATIONAL MODELS OF THE ALPHA RHYTHM

Computational models of brain function exist with different

granularity depending on the targeted neural processes. In this

section we highlight a selection of microscopic, large-scale, and

full-brain computational models of the alpha rhythm.

Microscopic neuronal network models

Microscopic models of the alpha rhythm deal with impor-

tant cellular processes leading to changes in synaptic activity.

Fundamental biophysical insights gained from in vitro experi-

ments (Silva et al., 1991; Flint and Connors, 1996) have been

summarized in models of neocortical networks of excitatory and

inhibitory neurons that display remarkable concordance with

alpha-like rhythms (Jones et al., 2000; Karameh et al., 2006;

Neymotin et al., 2011). In a model proposed by Jones et al.

(2000), inward currents (known as h and T currents, modulating

the period in which neurons membrane potential remains in a

subthreshold state) in layer 5 pyramidal neurons were able to reg-

ulate the alpha rhythm and exhibit asynchronous firing patterns

that matched the experimentally observed spatial asynchrony of

the alpha rhythm. Karameh et al. (2006) in their model showed

that modifications of intrinsic currents of layer 5 cells led to

resonance-like behavior in neuronal populations. More recently

Vijayan and Kopell (2012) proposed a 2-fold model of thalamic

alpha activity governing cortical alpha to either facilitate pro-

cessing or prevent stimuli from reaching the cortex. Interestingly,

Vijayan et al. simulated these thalamic processes by mimicking the

action of muscarinic acetylcholine receptor or metabotropic glu-

tamate receptor 1 agonists on thalamic reticular, thalamocortical,

and high-threshold thalamocortical cells.

Mesoscopic and large-scale network models

Modeling attempts using large-scale networks to understand the

emergence of cognitive states rely heavily on the approximation

of the dynamics of a neural ensemble. In line with this idea, large-

scale models lump the activity of millions of neurons to emulate

realistic brain signals (Freeman, 1977; Nunez and Silberstein,

2000). This modeling approach initiated by Lopes Da Silva et al.

(1974) has been widely used to predict the macroscopic electri-

cal activity of the brain. (Freeman, 1978; Stam et al., 1999; Valdes

et al., 1999; Wendling et al., 2000; Robinson et al., 2001; David

and Friston, 2003; David et al., 2004; Naruse et al., 2010). A large

number of these mesoscopic models have been devoted to char-

acterize the alpha rhythms (Lopes Da Silva et al., 1974; Jansen and

Rit, 1995; Stam et al., 1999).

Widely studied neural population models are able to gen-

erate oscillatory activity (e.g., in the alpha band) through

purely cortical connectivity (Wilson and Cowan, 1972) as well

as with cortico-thalamic interactions (Lopes Da Silva et al.,

1974; Robinson et al., 1997, 2001). More recently, Naruse et al.

(2010) proposed a model based on excitatory lateral interactions

between coupled cortical macrocolumns serving as alpha genera-

tors (Jansen and Rit, 1995). This model was able to reproduce the

alpha rhythm, as well as ERPs, and ERS/ERD of the alpha rhythm

without involving the thalamus (see Cortico–cortico model in

Figure 3).

In a study with EEG resting-state recordings, characteristic

non-linear features of the alpha rhythm power were reported

(Freyer et al., 2009a). These features are bistability, scale invari-

ance, and dwell time cumulative distributions with the shapes of

stretched exponentials. Freyer et al. (2011) were able to reproduce

all the above features of empirical alpha oscillations by adding

a cortico-thalamic feedback in the extended thalamo-cortical

neural field model (see Thalamic-cortico model in Figure 3)

(Robinson et al., 1997, 2001). The underlying neural field model

incorporated the detailed mathematical description of biophysi-

cal factors, such as synaptic and dendritic dynamics, non-linear

firing responses, and axonal delays. These temporal features can

also be extracted from a simple generic model as shown in

Freyer et al. (2012b). The canonical description offers a systematic

insight into stochastic and non-linear contributions providing a

strong link between empirical data and computational models.

Moreover, through model inversion, it is possible to determine

the critical point of alpha mode switching in the resting-state.

Recently, Lundqvist et al. (2013) used a bistable cortical attrac-

tor model to study the effect of prestimulus alpha oscillations

on the perception of weak stimuli. In this model alpha oscilla-

tions are produced in a default state characterized by low-rate

diffuse activity before stimulus onset. Such a state represents

a kind of readiness to process stimuli. After stimulation, the

network transits other coding states characterized by elevated

spiking activity in areas selective to the stimuli. During activa-

tion the model produces gamma oscillatory activity in trials with

successful detection. Interestingly, the network transitions were

modulated by both, the phase and power of the alpha oscilla-

tions. The attractor model by Lundqvist et al. (2013) constitutes

a plausible theoretical demonstration of the effects that alpha

oscillations before stimulus onset have on detection performance.

Full-brain models

The spatial structure of resting-state activity investigated in

numerous studies predominantly reflects gross anatomical con-

nectivity between brain areas but cannot be understood in those

terms alone. Large-scale computational models have studied the

relation between anatomical structure and intrinsic node dynam-

ics (Honey et al., 2007; Ghosh et al., 2008; Deco et al., 2009; Freyer

et al., 2012b; Ritter et al., 2013). These models often used realistic

neuroanatomical information from the macaque brain provided

by the CoCoMac data base (Kotter, 2004) and/or from the human

provided by diffusion weighted MRI or dwMRI (DTI/ Diffusion

Spectrum Imaging) techniques (Hagmann et al., 2008). In partic-

ular, Ghosh et al. (2008) and (Deco et al., 2009) considered the full

space-time structure of the problem (neuroanatomical connec-

tivity matrix, conduction delays and noise) such that they were

able to explain the formation and dissolution of slow fluctuat-

ing RSNs by considering very simple local oscillatory dynamics at

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 36 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Sigala et al. Alpha-rhythm states in perceptual learning

each node. As an extension, Deco et al. (2009) and Deco and Jirsa

(2012) formulated and studied a detailed and realistic spiking

attractor network structured in brain areas and connecting these

local networks using a neuroanatomical large-scale connectivity

matrix obtained from human subjects via dwMRI tractography.

Cognition results from interactions between functionally spe-

cialized but spatially distributed brain areas. As multiple brain

areas are involved in such computations, full-brain models are

necessary to account for the mechanisms leading to cognitive

states. In this regard, a newly developed simulation platform, The

Virtual Brain (TVB, http://thevirtualbrain.org), provides the nec-

essary tools to perform full-brain simulations (Jirsa et al., 2010;

Ritter et al., 2013; Sanz Leon et al., 2013). This neuroinformat-

ics platform simulates full-brain network dynamics taking into

account biologically realistic connectivity information. The plat-

form integrates the large-scale structure of brain connectivity;

it spans brain regions modeled with descriptions at microscopic

and mesoscopic levels (neural networks and neural masses), using

realistic local cortical connectivity. Thus, regional dynamics can

be evaluated in the context of long-range spatio-temporal inter-

actions and at the same time preserving the perspective on global

dynamics of the brain. Models of the microcircuit can finally

be put into the functional context, and the large body of the-

ory developed in computational neuroscience on the microscopic

scale can be exploited for the investigation of large-scale brain

function. Such model-based inferences would establish a strong

link across brain scales between the underlying neurophysiolog-

ical mechanisms and the macroscopic large-scale brain signals

observed in different imaging modalities.

THE ROLE OF THE ALPHA RYTHM IN PERCEPTUAL

LEARNING

Since ongoing brain oscillations such as the alpha rhythm emerge

from the underlying brain architecture (see section Cellular and

Regional Substrates of the Alpha Rhythm), changes in the struc-

tural neural connectivity induced by learning are likely to alter

ongoing oscillatory activity. At the same time, plastic mechanisms

underlying learning can be boosted during specific brain states

defined by spatial patterns of ongoing oscillatory activity (Freyer

et al., 2013). While recent studies support this circular relation

between learning and ongoing brain activity (e.g., Lewis et al.,

2009; Freyer et al., 2012a, 2013), the exact mechanisms behind

this interaction are still unclear. Empirical evidence (Freyer et al.,

2012a, 2013) shows that perceptual learning is alpha state depen-

dent and that perceptual learning alters locally the coherence of

spontaneous alpha activity. However, based on the empirical data

alone we cannot answer how local plastic changes alter large-

scale brain activity, and how ongoing oscillations affect the neural

mechanisms underlying learning. In this section we address these

issues. Due to the existing empirical evidence we focus here on

the relation between the alpha rhythm and perceptual learning.

Perceptual learning can be induced via time-dependent stimula-

tion (Beste and Dinse, 2013), in which case it can be associated

to alpha oscillations (Freyer et al., 2012a, 2013). This leads us to

believe that the effect of alpha oscillations on perceptual learning

is related to time-dependent cellular plasticity. This hypothe-

sis is further detailed in section How Oscillatory Brain States

Facilitate Learning. In section How Learning Shapes Ongoing

Activity we present evidence showing that learning systematically

alters the activity of large-scale functional networks. In addition,

we highlight recent computational findings demonstrating that

modifications of large-scale functional connectivity may result

from plastic alterations in local cortical circuits.

HOW OSCILLATORY BRAIN STATES FACILITATE LEARNING

Information processing in general and plasticity in particular

depend on time-precision that can be provided by periodic sig-

nals such as brain rhythms. Neural oscillations are often phase

entrained; they can index naturally spike timing and, therefore,

they can influence spike-timing dependent plasticity (STPD). In

fact, several computational models have successfully linked STDP

(see for a review Caporale and Dan, 2008) and brain oscillations

(Hosaka et al., 2008; Masquelier et al., 2009; Neymotin et al.,

2011). At the same time, large-scale neural oscillations provide

spectral fingerprints for neuronal interactions across brain areas

underlying visual perceptual learning or other cognitive processes

(Engel et al., 2001; Salinas and Sejnowski, 2001; Varela et al.,

2001; Siegel et al., 2012). Experiments in animals and humans and

computational models have stressed the importance of timing-

dependent neural processes for information processing and learn-

ing. Extracellular recordings in awake animals have demonstrated

that neural spiking activity with respect to the phase of local field

potentials (LFP) recorded simultaneously carries complementary

information about sensory stimuli (Montemurro et al., 2008;

Kayser et al., 2009). In a more recent study, Ng et al. (2013) inves-

tigated the relationship between phase of ongoing oscillations and

cognitive variables. The authors report that stimulus selective fir-

ing patterns imprint on the phase rather than on the amplitude of

slow EEG and LFP oscillations. Stimuli that can be discriminated

based on firing rates can also be discriminated via oscillatory

phase patterns but clearly not via oscillatory amplitude.

Concurrent modeling work demonstrates the importance of

rhythmic input and STDP on downstream learning (Masquelier

et al., 2009). Masquelier et al. (2009) showed how a single down-

stream neuron equipped with STDP can decode a repetitive input

pattern encoded in the oscillatory phases of a subset of affer-

ents (∼10%). While a role of STDP in pattern detection is well

established (Masquelier et al., 2008), the demonstration that the

encoding of patterns in oscillatory phases facilitates learning is

novel. An interesting finding of this work is that, while oscilla-

tions in the alpha range proved to be good for STDP-learning,

oscillations in the gamma range (>40 Hz) turned to be not opti-

mal. Figure 5 illustrates these ideas by showing the behavior of

a neuron equipped with STDP that learns to detect a target

shape. This “output” neuron receives inputs from three differ-

ent “orientation-selective” neurons. Depending on their receptive

fields, input neurons respond to different parts of the shapes.

In one situation (Figure 5A), the only external force driving

the responses of the input neurons are the stimuli. In the sec-

ond situation (Figure 5B), the spikes generated by the input

neurons depend on two external forces, the stimuli and an

oscillatory signal (LFP) that modulates the membrane poten-

tial of the input neurons. In contrast to the former case, in the

later case the LFP oscillations influence the spiking probability
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FIGURE 5 | Illustration of a potential active role of alpha oscillations for

perceptual learning, based on recent computational work (Masquelier

et al., 2009). (A) STDP-dependent perceptual learning without background

alpha oscillations. Learning is illustrated by the ability of a “shape-selective”

neuron (or “output neuron”) equipped with STDP to detect the appearance of

a target shape (red <), which appears more frequently than two other

shapes. As it is illustrated on the left side of the figure, the output neuron

receives input from three “orientation-selective” neurons. The three input

neurons are connected to the output neuron sharing the same synaptic

strength before the stimulation starts. The top row in the central panel

illustrates the presentation of the stimuli (shapes), which stimulate the three

input neurons. The three input neurons are arranged in a column, responding

in this way to specific regions of the shapes (receptive fields). The second

row in the central panel indicates that there are no oscillations (LFP) driving

the spiking activity of the input neurons. The following rows show the spiking

activity of the three input neurons and the output neuron. Since the output

neuron is equipped with spike-timing-dependent-plasticity (STDP), the

strength of the synapsis connecting the input neurons to the output neuron

can change throughout the stimulation according to standard Hebbian rules.

During the course of the stimulation, synaptic weights are reinforced

whenever input and output spikes coincide within a certain time window,

indicated by the gray rectangles. Coincidence of spikes marked in the gray

rectangles result in synaptic reinforcement that facilitates the recognition of

the target shape (red <). The dashed rectangles indicate some cases in

which the spikes of the output neuron don’t lead to synaptic reinforcement.

At the end of the stimulation, synaptic weights connecting input neurons I

and III to the output neuron are reinforced. This reinforcement improves the

detection of the target shape. (B) STDP-dependent perceptual learning with

background alpha oscillations. Spikes of the input neurons are driven by the

stimulus and by ongoing oscillations (alpha LFP), which modulate the

membrane potential of the input neurons producing “in-phase” spikes.

Output neurons equipped with STDP can learn better to detect coincidences

of in-phase spikes, compared to the case where no oscillations are involved.

At the end of the stimulation, connections between output neurons and

neurons I and II are stronger in the presence of alpha oscillations (B) than

without (A), as indicated on the right side of the figure. This implies that the

output neuron in case (B) can detect better the presence of the target shape

(red <) than the output neuron in (A).

of the input neurons, which in turn generate “in-phase” input

spikes, as illustrated on the left side of the figure. Given the

phase information carried by in-phase spikes, neurons capable

of STDP can learn better to detect the target shape. The effect

of oscillatory information in the inputs of neurons with STDP

can be generally applied to achieve different forms of learning.

Based on the idea that “phase-of-firing coding” has a major

impact on downstream learning and decoding when associated

with well established STDP, we hypothesize an “active” role of

alpha oscillations in stimuli encoding and memory acquisition.

Furthermore, we consider that alpha oscillations could fulfill a

similar role modulating the efficacy of perceptual learning, as a

particular case of the mechanisms proposed by Masquelier et al.

(2009).
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It is likely that the interaction between alpha oscillations and

perceptual learning occurs by means of time-dependent informa-

tion processing. However, this interaction might occur at different

times of the learning process, and involving brain mechanisms

that work at different time scales. Consequently, alpha oscilla-

tions and perceptual learning may interact differently before,

during and after training or stimulation. Analogously, this inter-

action may differ depending on whether we consider 1 min, 1 h,

or 1 day before or after learning. A recent study on a visual

perceptual task (Hamame et al., 2011) investigated the relation

between perceptual learning and alpha oscillations at different

epochs of the learning process. They found an intriguing rela-

tionship between alpha and perceptual learning by correlating

changes in performance with different oscillatory features during

training. They observed a complex modulation of the ampli-

tude of both, the alpha and gamma bands, along the course of

training. Another recent study set out to investigate the effect of

neural oscillations on perceptual learning before sensory stimula-

tion was applied (Freyer et al., 2013). Freyer et al. (2013) asked

to what extent different ongoing neuronal states of individual

subjects before repetitive somatosensory stimulation are able to

explain individual differences in the learning success (Freyer et al.,

2013) (Figure 6). The authors found that ongoing alpha oscil-

lations over sensorimotor areas contralateral to the stimulated

side before stimulation positively correlate with the learning out-

come induced by the stimulation. The higher the alpha power was

before the stimulation, the more the subjects improved their tac-

tile sensitivity after the stimulation. Performance improvement

and the correlation with the alpha rhythm was present only

FIGURE 6 | Correlation between two-point discrimination (2PD)

change and alpha band resting-state EEG power before perceptual

learning (left column: stimulated side, i.e., right finger; right column:

control side). (A) Top row, scalp distributions with Pearson’s correlations

coefficients (R and P-values). Black dots: significant cluster of channels.

Gray diamond: maximum correlation. (B) Scatter plot, single subject values

at channels CP1/CP2 (green: successful learners, red: bad learners). Figure

adapted with permission from Freyer et al. (2013).

in the stimulated finger and the alpha power in the contralat-

eral somatosensory region. Neither the behavioral improvement

nor the correlation with alpha was observed in the control con-

dition (in the non-stimulated finger of the other hand). This

pattern of results suggests that the effects of alpha in learn-

ing cannot be explained by global fluctuations of attention or

vigilance. Instead, these finding indicates alpha band specific plas-

tic mechanisms localized in the sensorimotor cortex and other

areas implicated. According to the theory “gating-by-inhibition”

(Jensen and Mazaheri, 2010), high alpha activity before stimu-

lation in the study by Freyer et al. (2013) could reflect an “idle

state” or inhibited state in learning-relevant areas. Such a state

can be regarded as a standby mode that allows the system to reor-

ganize rapidly when stimulation starts. Beyond this, considering

the “timing role” of alpha oscillations detailed above, prominent

alpha activity before stimulation could contribute to generate

the necessary oscillatory background that combined with STDP

facilitates learning in sensorimotor areas once the stimulation

starts.

HOW LEARNING SHAPES ONGOING ACTIVITY

Under resting-state conditions –in the absence of a particular

task or stimulation– the brain yields networks of coherently

fluctuating ongoing activity that delineate various well-known

functional neural networks (Fox and Raichle, 2007; Smith et al.,

2009). While resting-state brain activity predicts behavioral per-

formance in various tasks (Hampson et al., 2006; Fox et al., 2007;

Mennes et al., 2011; Zou et al., 2013), sensory experience and

learning leave traces in the ongoing brain activity (Harmelech

and Malach, 2013). For example, changes in RSNs have been

demonstrated following semantic-matching (Wang et al., 2012)

and classification (Stevens et al., 2010), short- and long-term

motor learning (Albert et al., 2009; Ma et al., 2011; Taubert et al.,

2011; Vahdat et al., 2011), or associative encoding (Tambini et al.,

2010). Experiments on visuomotor coordination have shown that

learning lead to plastic changes that can be observed in electri-

cal oscillations recorded with EEG during the resting-state and

during sleep. Following learning in a visuomotor task, investiga-

tors observed an increase in sleep slow wave activity (EEG power

density between 0.5 and 4.5 Hz) in the right parietal area (Huber

et al., 2004; Maatta et al., 2010; Murphy et al., 2011). During

wakefulness in contrast, an alpha decrease over the same region

and an increase over left parietal and right frontal areas has been

reported (Landsness et al., 2011). The authors report correlations

between the behavioral outcome of learning and the EEG sig-

natures during wakefulness and sleep. This results evidence the

impact of learning on large scale functional networks in visuo-

motor coordination (Landsness et al., 2011). Taken together, as

Harmelech and Malach (2013) hypothesize in their recent review,

spontaneous brain activity not only reflects “external statistical

structures” but they also seems to reflect “the entire set of indi-

vidual inner cortical and cognitive biases” which partially depend

on past experiences (learning).

In this line, several studies show that perceptual learning

affects large-scale resting-state BOLD signals (Lewis et al., 2009;

Baldassarre et al., 2012; Ventura-Campos et al., 2013). Using a

shape identification task, Lewis et al. (2009) show learning-related
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modulations in resting-state BOLD functional connectivity. They

demonstrate that visual perceptual learning can modify networks

that are recruited during the course of training. Lewis et al.

(2009) report increased resting-state fMRI functional connec-

tivity between parietal and visual cortex after visual perceptual

learning. Additionally, after perceptual learning the visual cor-

tex and fronto-parietal attention areas were negatively correlated.

The higher the (negative) correlation was, the more subjects

improved their performance. Ventura-Campos et al. (2013) com-

bined task-related and resting-state fMRI to investigate their rela-

tion to phonetic learning. The authors showed that resting-state

functional connectivity between the left insula/frontal operculum

and the left superior parietal lobe measured before training pre-

dicts individual learning outcomes. Using EEG measurements, a

recent study revealed altered functional connectivity after 30 min

of HFS –capable of inducing perceptual improvement (Pleger

et al., 2001; Freyer et al., 2013)—as indicated by an increase of

local resting-state alpha coherence within distributed sensorimo-

tor cortical areas, contralateral to the stimulated side (Freyer et al.,

2012a). Despite the sensory stimulation is applied to the of tip

a single finger, in the study by Freyer et al. (2012a) clear large-

scale effects on oscillatory alpha activity could be observed over

distributed sensorimotor regions.

To understand the interaction between long-range brain com-

munication and local synaptic processes, full-brain models such

as the TVB are suitable simulation frameworks (see section Full-

Brain Models). Currently, such models are able to reproduce

coarse/general aspects of spatiotemporal brain dynamics that are

present in the majority of experimental data. In these mod-

els, brain activity can be constrained by individual large-scale

connectivity parameters derived from dwMRI. This allows sci-

entists to simulate the effects that large-scale plastic changes

have on emerging brain dynamics. Our hypothesis of how plas-

tic changes in sensory areas elicited by perceptual learning affect

large-scale information processing is based on a recent study of

our group, that shows results of full-brain simulations (Roy et al.,

in preparation). In this study, Roy et al. (in preparation) propose

ways to incorporate plasticity mechanisms in existing computa-

tional models that are capable of generating ongoing spontaneous

activity as a function of transmission delays, noise and connec-

tivity. In those simulations, plasticity in local populations can

change the dynamical stability of global functional networks dis-

tributed across multiple brain areas. The main findings are: (1)

Local network activity in the absence of plasticity is characterized

by irregular oscillations between a low-amplitude asynchronous

and a high amplitude synchronous state. (2) Alterations in local

synapses (due to STDP), in the order of few milliseconds, induce

changes in the local connectivity of the brain areas where plas-

ticity is implemented. Such changes alters distinct features of the

global functional connectivity (FC). (3) The interaction between

those regions is organized systematically in correlated and anti-

correlated networks depending on the choice of the model

parameters. These parameters include plasticity parameters as

well as the amplitude, frequency of the background oscillatory

state. Anti-correlated networks after time dependent plasticity

show significantly and highly correlated BOLD spatiotempo-

ral activity. In particular, simulations show that the intrinsic

alpha oscillations generated by local cortical neurons efficiently

influence the learning outcome of brain areas connected struc-

turally. While this model does not target exclusively brain areas

involved in perceptual learning, it proposes a general mechanism

able to explain the effect of perceptual learning on resting-state

activity, as it is the case in some of the studies presented above. In

the near future, based on individual subject/patient parameters,

this kind of model simulations will help to predict the impact

that interventional actions, which evoke plasticity will have on

evolving brain dynamics. Ultimately, similar brain simulations

will aid scientists in the planning of experimental learning pro-

tocols as well as clinicians developing therapeutic strategies, in

order to reveal the complex relation between perceptual learning

and large-scale ongoing brain activity.

CONCLUSIONS AND OUTLOOK

The current view on how alpha oscillations relate to cognitive

abilities, such as perceptual learning, is becoming far more com-

plex compared to the initial view which associates alpha activity

to an “idle” brain state. Although the role of alpha oscillations

in spatial attention, working memory, and perception is well

documented, and despite initial evidence indicating that alpha

oscillations influence perceptual learning, the detailed role of

alpha rhythm in perceptual learning and its contribution to the

observed variability in learning outcome needs further empirical

and theoretical assessment. Changes in perception due to per-

ceptual learning develop under a variety of conditions such as

training, sensory or even central stimulation, with and without

attention, showing complex degrees of spatial specificity and tem-

poral persistence. This suggests that a variety of neural processes

and brain areas are implicated in perceptual learning (Sasaki et al.,

2010) that may be subject to interaction with alpha oscillations.

Alpha oscillations prior to and after learning may increase the

gain of neurons through a dynamic balance of excitation and

inhibition (Haider et al., 2006; Raichle, 2006). Increasing the

gain of neurons has an effect on their responsiveness to input

which is critically important for perception and attention (Salinas

and Thier, 2000)—both processes that interact with perceptual

learning. Another potential interaction mechanism may be time-

dependent plasticity. Phase information could serve as an internal

reference for spike trains representing input signals, improving

input processing, and memory consolidation (Masquelier et al.,

2009). The combination of different measures including behav-

ior, brain activity with high temporal and spatial resolution, as

well as computational modeling will be crucial to overcome the

difficulties of understanding the precise link between ongoing

oscillations such as alpha activity and perceptual learning, and for

utilizing those insights in the clinical and real-life setting.
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