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Abstract: The vascular endothelium acts as an important component of the vascular system. It is
a barrier between the blood and vessel wall. It plays an important role in regulating blood vessel
tone, permeability, angiogenesis, and platelet functions. Several studies have shown that amino acids
(AA) are key regulators in maintaining vascular homeostasis by modulating endothelial cell (EC)
proliferation, migration, survival, and function. This review summarizes the metabolic and signaling
pathways of AAs in ECs and discusses the importance of AA homeostasis in the functioning of ECs
and vascular homeostasis. It also discusses the challenges in understanding the role of AA in the
development of cardiovascular pathophysiology and possible directions for future research.
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1. Introduction

The vascular endothelium is a single layer of flattened cells distributed in the inner
layer of blood vessels. There are approximately 10 billion ECs in an adult, covering an area
of more than 4000 m2 and accounting for 1.5% of total body weight [1]. The luminal side
of the endothelium directly contacts the blood or lymphatic fluid, while the basal side is
connected to the subendothelial tissue by substrates (collagen, elastin, fibronectin, etc.) [2].
The unique anatomical location of the vascular endothelium allows it to not only serve as an
important barrier separating the blood from tissues and organs but also integrate physical
and neurohumoral signals from blood and surrounding tissues and organs to regulate
vascular tone, coagulation, substance exchange, immune responses, and angiogenesis,
which are important pathophysiological features of various diseases [3,4]. Under normal
physiological conditions, ECs are in a long-term quiescent state, and when stimulated by
ischemia, hypoxia, or inflammation, ECs exhibit migration, proliferation, and angiogenesis.
In recent years, numerous studies have identified key roles of AA metabolism in vascular
system lesions. In this article we discuss the most widely studied AAs and their role in the
light of endothelial function.

2. Amino Acid in Biology and Function of Endothelial Cells

AAs are organic compounds containing basic amino and acidic carboxyl groups. There
are 500 different AAs found in nature, only 20 of which are involved in constituting the
proteins required for animal nutrition [5]. According to nutritional classification, AAs
can be classified as essential AAs (externally ingested, EAA), conditionally essential AAs
(self-synthesized and externally ingested), and non-essential AAs (self-synthesized, NEAA).
In humans, AAs are involved in the synthesis of tissue proteins and can be converted into
fat for energy storage, oxidized into carbon dioxide and water for energy, or transformed
into enzymes, hormones, antibodies, and acids to participate in the regulation of the body
fluid, which is crucial for metabolism and growth.
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2.1. Non-Essential Amino Acids
2.1.1. Glycine

Glycine is an AA with the lowest molecular weight and simplest structure. It is
extremely hydrophilic. Glycine is considered an NEAA in the human body. However,
premature infants and adults on a low-protein diet do not synthesize enough glycine to
meet the body’s daily needs and exogenous supplementation is required [6,7]. As a result,
it can also be considered a conditional EAA. Glycine is primarily produced endogenously
from serine in the liver via serinehydroxymethyltransferase-2 (SHMT) in the mitochondrial
matrix [8,9] (Figure 1). Besides being incorporated into proteins, glycine also has roles
in neurotransmission inhibition, cell proliferation, and cell and organ protection [10–14].
Glycine transporters (GlyT) and glycine receptors (GlyR) have been detected on ECs,
suggesting that glycine may be involved in the regulation of endothelial biology and
function [15,16].

Figure 1. Schemetic diagram of AA metabolism in endothelial cells. Abbreviations used:
α-KG: alpha-ketoglutarate; ASNS: asparagine synthetase; ARG: arginase; GLS: glutaminase;
GSAL: L-glutamate-γ-semialdehyde; GSALDH: GSAL dehydrogenase; NOS: nitric oxide syn-
thase; OAT: ornithine δ-amino acid transferase; P5C: 1-pyrroline-5-carboxylate; P5CS: P5C syn-
thase; PHGDH: phosphoglycerate dehydrogenase; PSAT1: phosphoserine aminotransferase; P5CR:
pyrroline-5-carboxylate reductase; PRODH: proline dehydrogenase; PSPH: phosphoserine phos-
phatase; SR: serine racemase; SHMT: hydroxymethyltransferase; TAC: tricarboxylic acid cycle; 3PG:
3-phosphoglycerate; 3PHP: 3-phosphohydroxypyruvate; 3PS: 3-phosphoserine.

Over the past two decades, glycine has been shown to regulate endothelial function
through the following pathways: (i) inducing the expression of the anti-apoptotic protein
Bcl2 on the mitochondrial membrane and inhibiting EC apoptosis [17], (ii) inhibiting nu-
clear factor-kappaB (NF-κB) signaling to downregulate the expression of inflammatory
factors such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, (iii) increasing nitric
oxide (NO) bioavailability [18,19], and (iv) promoting glutathione synthesis (GSH) to exert
anti-oxidative stress, which protects the vascular endothelium [20,21]. Yu et al. investigated
the relationship between glycine and endothelial metabolism and found that exogenous
glycine induced EC proliferation and survival and inhibited angiogenesis [22]. Glycine can
inhibit EC growth and exert anti-angiogenic effects by binding GlyR on ECs to downregu-



Cells 2022, 11, 1372 3 of 27

late vascular endothelial growth factor (VEGF) signaling [23,24]. In addition, VEGF also
stimulates EC migration, proliferation, and angiogenesis via the GLT1-glycine-mammalian
target of rapamycin (mTOR)-voltage-dependent anion channel 1 (VDAC1) axis [25]. These
contrasting effects of glycine were thought to be related to the concentration of glycine.
To test this hypothesis, Tsuji-Tamura et al. [26], determined the effect of different glycine
concentrations in vascular development and found that glycine had a dose-dependent
biphasic effect on vascular development: low glycine concentration induced angiogenesis
and high concentration exerted an anti-angiogenic effect. Furthermore, the biphasic effect
was found to be associated with the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR sig-
naling pathway inhibition of the PI3K/Akt/mTOR pathway inhibits the angiogenic effects
of low glycine concentrations but acts synergistically with high glycine concentrations and
promotes anti-angiogenesis [27].

2.1.2. Proline

Proline is a cyclic and nonpolar AA. Like glycine, proline is also an important con-
stituent of collagen and has been reported to account for approximately 10% of all AAs in
collagen [28]. Proline is a multifunctional AA that plays an important role in the regula-
tion of dehydration stress, redox, cell proliferation, differentiation, and apoptosis [29,30].
Proline is mainly derived from glutamine but intermediate products for proline synthe-
sis can also be obtained through the tricarboxylic acid (TCA) cycle and urea cycle [28].
Glutamate derived from glutamine metabolism and the TCA cycle produces glutamic-γ-
semialdehyde catalyzed by pyrrololine-5-carboxylate synthetase, which is spontaneously
cyclized to 1-pyrrololine-5 carboxylate (P5C) [28]. P5C can also be produced from argi-
nine catalyzed by arginase and ornithine aminotransferase. Finally, in the presence of
nicotinamide adenine dinucleotide phosphate (NADPH), P5C is converted to proline by
the action of pyrrololine-5 carboxylate reductase (P5CR, also known as PYCR in humans),
a process closely related to the activation of glycolysis [31]. P5C is also an intermediate
product of proline metabolism. Proline is broken down to P5C catalyzed by proline dehy-
drogenase/proline oxidase (PRODH/POX), and P5C is then converted to glutamate by the
action of POX [30], and finally enters the TCA cycle (Figure 1).

Collagen, the most abundant protein in the body, is essential for the normal structure
and strength of connective tissues such as skin, cartilage, and blood vessels. Increased
activity of arginase I and II in ECs has been shown to lead to increased production of
proline [32]. As proline is an important component of collagen and the extracellular matrix,
it may play an important role in vascular remodeling [32]. The ability of proline analogs
to induce EC migration and angiogenic responses was discovered as early as the 19th

century [33]. Since then, further studies have found that proline can upregulate mRNAs of
VEGF, VEGFR, NOS2, and NOS3 in the mouse placenta, indicating that proline is involved
in the regulation of vascular development [34].

2.1.3. Serine

Serine is an important NEAA discovered by the German chemist Emil Cramer in
1865. L-serine has a very high synthesis rate; it can undergo secondary conversion and
act as a precursor for the synthesis of many substances; for example, serine is converted
to glycine catalyzed by SHMT and to D-serine catalyzed by serine racemase [35,36]. In
humans, L-serine can be derived from food, the conversion of glycine, degradation of
proteins and phospholipids, and the serine synthesis pathway (SSP); of these, the SSP is the
primary source of L-serine. The intermediate product of glycolysis, 3-phosphoglycerate
(3-PG), initiates the SSP [36,37]. 3-PG is converted to L-serine catalyzed by phosphoglyc-
erate dehydrogenase (PHGDH), phosphoserine aminotransferase 1, and phosphoserine
phosphatase (PSPH) [37] (Figure 1).

The SSP is an important metabolic pathway for growth and development. Abnormali-
ties in the SSP lead to multiple organs and vascular dysfunction [38]. In neonatal mouse
ECs lacking PHGDH (a key enzyme of the SSP pathway), electron transport chain (ETC)
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enzyme activity is inhibited, mitochondrial dysfunction is observed, and EC proliferation
and survival are reduced, leading to abnormal vascular development [38]. This effect is
related to the dependence of EC on SSP for heme synthesis to maintain mitochondrial
respiration and homeostasis [39]. The treatment of ECs with L-serine followed by oxidative
stress leads to increased expression of antioxidant factors such as nuclear factor-erythroid-
related 2 factor (NRF2), heme oxygenase-1 (HO-1), and NO, and increased EC viability and
survival [40], suggesting the role of serine in mediating oxidative stress response. L-serine
can also regulate endoplasmic reticulum activity, downregulate inflammatory responses
and oxidative stress, and improve endothelial function by inhibiting homocysteine (HCY)
uptake by ECs [41]. In addition, studies have shown that acute intravenous administration
of L-serine in mice activates calcium-activated potassium (KCa) channels on ECs that pro-
mote vasodilation in small arteries, leading to antihypertensive effects [42–44]. Numerous
studies have shown the cardioprotective effects of L-serine in animals. Whether exogenous
administration of serine in humans can produce the same clinical effect as in animal models
is yet to be determined.

2.1.4. Cysteine

Cysteine, a sulfur-containing AA, is involved in the regulation of protein secondary
structure and conformation. Cysteine occupies the active site of several enzymes that
can be regulated by redox reactions of sulfhydryl residues to protect cells from oxidative
stress [45]. In addition to participating in regulating protein structure, cysteine plays a role
in the synthesis of redox cofactors, such as glutathione and hydrogen sulfide (H2S), which
are important in regulating intracellular oxidative stress [45].

Excessive production of reactive oxygen species (ROS) is a leading cause of endothelial
dysfunction (ED) and the progression of cardiovascular disease in diabetic patients. ROS
can induce leukocytes to adhere to the vessel wall, changing the signaling of the vascular
endothelium and leading to increased permeability of the vessel wall [46]. Studies have
shown that oral cysteine prevents NF-κB activation and reduces the expression of vascular
inflammatory cytokines by inhibiting ROS production, improving diabetes-induced vas-
cular inflammation in rat models of diabetes [18,47]. In high glucose-induced EC injury,
exogenous treatment with cysteine protected ECs from oxidative stress injury by increas-
ing glutathione production and downregulating the expression of intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and monocyte-EC
adherence [48–50]. Cysteine is an important component of dietary protein and plays an
important role in regulating the function of blood vessels. In a study assessing the ef-
fects of the 20 standard AAs on the growth of human corneal ECs, L-cysteine deficiency
induced apoptosis of corneal ECs [51]. Alban et al. found that restriction of the intake
of sulfur-containing AAs such as cysteine in mice leads to the activation of the general
control non-repressed 2 (GCN2)/activating transcription factor 4 (ATF4) in ECs [52,53],
leading to an upregulation of VEGF expression and increased expression of the trans-sulfur
pathway enzyme cystathionine-γ-lyase (CSE), leading to increased production of H2S
that promotes angiogenesis by inhibiting mitochondrial electron transport and oxidative
phosphorylation [52,53].

Endogenous H2S is mainly produced by cysteine in the presence of cystathionine-β-
synthase (CBS) and CSE. Both H2S enzymes are highly expressed in the vascular system
such as vascular ECs and vascular smooth muscle cells [54–56]. H2S has been shown to
induce vasodilation, improve vascular permeability, and promote angiogenesis [55,57–61].
Notably, there is a synergistic effect between H2S and NO; H2S activates vascular NO
signaling. Similarity, impairment of eNOS/cGMP signaling led to a significant reduction in
the cardiovascular protective effect of H2S [62].

2.1.5. Glutamine and Asparagine

Glutamine is the most abundant free AA in the body, accounting for approximately
50% of total free AAs in the plasma. It is mainly synthesized from glutamate and ammonia
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(NH3) under the action of glutamine synthetase (GS) [63]. Besides being incorporated into
proteins, glutamine catabolism provides a large source of energy and carbon/nitrogen for
cells. Glutamine is catabolized into glutamate and NH3 by glutaminase. Glutamate is
metabolized to α-ketoglutarate (α-KG) by the action of glutamate dehydrogenase; α-KG
is used as a carbon source to supplement the TCA cycle for the synthesis of NEAAs and
lipids or to produce adenosine triphosphate (ATP) (oxidation of 1 mol of glutamine yields
1 mol of GTP and 5 mol of ATP) [64]. In addition, glutamate is used in the synthesis of
glutathione, and it is also converted to ornithine to produce NO and polyamines (Figure 1).

The glycolytic pathway’s lactate production/glucose consumption ratio is 2, but in
human umbilical vein ECs (HUVEC) it is only 0.1, indicating that glycolysis is not the
primary source of energy in HUVEC [64]. One study discovered that when glucose was
unavailable, EC’s oxidative capacity for glutamine and glutamate increased [65]. Further-
more, of all AAs, glutamine is the most readily consumed by ECs during proliferation [66].
Intracellular ATP levels in ECs were significantly reduced when glutamine was depleted
or catabolism was inhibited, and HUVECs proliferation was inhibited and exhibited a
senescence-like phenotype [64,67,68], implying that glutamine catabolism may be an im-
portant energy source for ECs. It has been reported that glutamine metabolism accounts for
70% of the carbon supply to the TCA cycle in HUVECs, while glucose metabolism accounts
for only 20%. Impaired glutamine metabolism leads to a significant decrease in the TCA
intermediate α-KG, leading to TCA cycle blockage. TCA cycle blockage in ECs leads to
an inability in biomass synthesis, resulting in decreased EC proliferation [67]. Exogenous
supplementation of α-KG in HUVEC cultured in glutamine-free medium only partially
restored the proliferative capacity of ECs, which may be because unlike glutamine, α-KG,
does not provide a nitrogen source for biomass synthesis. Huang et al. [66] showed that
glutamine-derived nitrogen is involved in the synthesis of asparagine. Several studies have
shown that glutamine promotes the repair of vascular endothelial function by downregulat-
ing inflammatory responses, inhibiting oxidative stress, improving mitochondrial function,
mobilizing peripheral circulating endothelial progenitor cells, and inducing the expression
of heat shock protein 70 [69–72].

Asparagine is an AA with a structure very similar to that of glutamine. In most species,
asparagine or glutamine can be deamidated by the action of asparaginase or glutaminase
and be supplied to the TCA cycle [73]. α-KG combined with asparagine treatment has
been shown to completely restore ED due to impaired glutamine metabolism [66]. Pavlova
et al., [73] also showed that exogenous supplementation of asparagine rescued glutamine-
deficient ED proliferation. These findings suggest that asparagine may play an important
role in angiogenesis. Consistent with this hypothesis, EC proliferation was impaired when
the expression of asparagine synthase (the enzyme that catalyzes asparagine synthesis) was
inhibited [66]. Supplementation with asparagine activates the mTOR pathway and inhibits
the endoplasmic reticulum stress response to promote EC proliferation. In addition, the
metabolic process of glutamine is also involved in the aging of EC [64].

NH3 has long been considered a toxic substance as a high NH3 concentration can cause
saponification reactions, leading to tissue mucosa damage. Interestingly, NH3 produced
during glutamine metabolism has been shown to promote EC survival by inducing HO-1
expression in ECs via activation of the ROS-NRF2 pathway; HO-1 exerts protective effects
on ECs by producing carbon monoxide [74].

2.1.6. Arginine

Arginine belongs to the glutamic acid family. It is synthesized using glutamic acid as a
substrate catalyzed by a variety of enzymes. Arginine is largely considered a conditionally
EAA because it cannot be synthesized in preterm infants and needs to be obtained exoge-
nously [75]. Arginine is metabolized in the body in the following two ways: (i) it is broken
down into urea and ornithine by arginase, or (ii) it is broken down into equal molecules
of citrulline and NO by NO synthase (NOS) (Figure 1). Urea is excreted as a metabolic
end product, while ornithine can enter the urea cycle as an intermediate product or as a
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precursor for the synthesis of polyamines that are important for regulating cell growth and
development.

The arginine-NO pathway plays an important role in vascular endothelial function.
NO is a small signaling molecule and the most potent endogenous vasodilator known. In
vascular ECs, NO can diffuse through the guanylate cyclase pathway to vascular smooth
muscle cells, and cause vasodilation and an increase in blood flow. Additionally, NO
regulates vascular endothelial function by other aspects such as modulating EC activity,
proliferation, migration, and angiogenesis [76].

The Michaelis–Menten constant (Km) of NOS has been reported to be around 2.9 µM
in the plasma of healthy adults [77], but the concentration of arginine ranges from 0.8 to
2 mM, which far exceeds the value of Km = 2.9 µM. This difference suggests that NOS
is in a saturated state under normal physiological conditions and arginine supplementa-
tion may not lead to a further increase in NO production. However, exogenous arginine
supplementation increases NO production even when NOS is supersaturated [78–80], a
phenomenon known as the arginine paradox. This may be due to the presence of a NOS
inhibitor, asymmetric dimethylarginine (ADMA), which binds NOS competitively. Argi-
nine supplementation further increases the concentration of arginine in the body, thereby
increasing the rate of arginine binding to NOS. Therefore, based on this phenomenon,
arginine supplementation may be a potential therapeutic approach for the treatment of
vascular diseases. However, some studies have shown that arginine supplementation does
not increase NO production in healthy subjects [81,82]. Moreover, arginine exerts toxic
effects by promoting the formation of NO and peroxynitrite (ONOO-) [83]. Therefore,
findings in this regard are contradictory; arginine activity may be dependent on its dose
and form of supplementation. However, the precise mechanism of action of arginine is not
well understood and needs to be studied further.

2.2. Essential Amino Acids

EAAs are those that cannot be synthesized in the body or cannot be synthesized at a
rate sufficient to meet the body’s needs and must be supplied via diet. Most EAAs, such
as histidine, lysine, methionine, phenylalanine, threonine, and tryptophan, are degraded
primarily in the liver, while the degradation of branched-chain AAs (BCAAs), namely,
isoleucine, leucine, and valine, occur primarily in the kidney and muscle. These EAAs
can produce glucose via gluconeogenesis pathway, provide energy through oxidation, and
serve as a source of nitrogen for other molecules.

2.2.1. Tryptophan, Methionine, and Phenylalanine

Tryptophan is an EAA that is obtained via the diet. Tryptophan absorbed through
intestinal digestion enters the systemic circulation through the portal vein [84]. Trypto-
phan is partly used for protein synthesis and partly degraded. It has been shown that
tryptophan can be catabolized via the kynurenine pathway (KP) and the serotonin path-
way, with the KP accounting for 95% of tryptophan catabolism [84]. Three important
rate-limiting enzymes, namely, indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and IDO2),
and tryptophan-2,3-dioxygenase (TDO) utilize tryptophan as a substrate, and generate
N-formylkynurennine [85]. N-formylkynurennine is rapidly converted to L-kynurenine
(Kyn) by the action of formylaminase. Kyn can be further broken down into various biolog-
ically active metabolites, such as 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid
(3-HAA), kynurenic acid (KA), xanthurenic acid, and quinolinic acid [85,86].

In a study exploring the relevance of tryptophan metabolism in coronary heart
disease, free tryptophan concentration in the serum was found to be reduced and the
Kyn/Tryptophan ratio was elevated in patients with coronary heart disease [87]. High
concentrations of KA were also detected in unstable atherosclerotic plaques, suggesting
the involvement of tryptophan metabolism in cardiovascular disease [88]. Detection by
liquid chromatography-tandem mass spectrometry revealed that tryptophan catabolism
was associated with ED, such that inhibiting IDO1 expression in ECs reduced the diastolic
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effect of vascular endothelium [89,90]. In insulin-resistant conditions, tryptophan depletion
increases fatty acid oxidation and induces ED via the ROS pathway [91]. Interferon-γ
also impairs glucose metabolism in the vascular endothelium by altering tryptophan
metabolism [92]. Kyn, the first intermediate in the tryptophan degradation pathway,
decreases EC viability in a dose-dependent manner [93]. 3-HK impairs EC viability by
upregulating NADP-derived superoxide anions and accelerating EC apoptosis [94]. 3-HAA,
a product with antioxidant effects produced during tryptophan metabolism, also exerts
anti-inflammatory effects and protects ECs by inhibiting monocyte chemotactic protein-1
(MCP-1) secretion and VCAM-1 expression by promoting HO-1 expression [95].

Another important AA involved in the regulation of endothelial function is methio-
nine. Methionine is an EAA obtained via the diet and is involved in the synthesis of
proteins in the body. However, both an excess and deficiency of methionine affect normal
vascular growth [52]. In a methionine loading experiment, a single intake of 100 mg/kg
of methionine led to a significant increase in HCY levels in humans [96]. HCY causes
oxidative stress by producing nitrotyrosine and decreasing endothelial NO concentration,
leading to impaired vascular endothelial function [97]. Even a small intake of methionine
(10 mg/kg) can induce ED [98].

L-phenylalanine promotes tetrahydrobiopterin synthesis and increases nitrite levels
by activating guanosine triphosphate cyclase hydrolase (GTPCH, the first rate-limiting
enzyme in tetrahydrobiopterin synthesis)/tetrahydrobiopterin (an essential cofactor for
NOS metamorphosis, which helps stabilize the NOS dimer structure and increases the
affinity of NOS for the substrate) pathway, thereby attenuating ROS and increasing NO
levels, leading to improved endothelial function [99–102].

2.2.2. Branched-Chain Amino Acids

BCAAs are important components of human skeletal muscle proteins and are mainly
used as nitrogen carriers to assist the synthesis of other AAs required by muscles [103]. Re-
cent studies have shown that BCAAs are clinically useful biomarkers for vascular diseases
as their concentration is positively correlated with cardiovascular disease risk [104,105].
This may be related to the ability of BACCs to induce the expression of inflammatory
factors and ROS through activation of the NF-κB pathway and oxidative stress, which
inhibit the endothelium-dependent vasodilatory response and trigger ED [106]. In addition,
the three BACCs—leucine, valine, and isoleucine—act independently. Leucine increases
the synthesis of glucosamine, an inhibitor of endothelial NO synthesis, by enhancing
rapamycin signaling and the expression of fructose-6-phosphate aminotransferase (the
rate-limiting enzyme of glucosamine synthesis), thereby inhibiting NO synthesis in ECs
and leading to vascular ED [107]. Interestingly, a related study showed that leucine supple-
mentation alleviates atherosclerosis by suppressing inflammatory responses and regulating
lipid levels [108,109]. Leucine also prevents hyperglycemia-induced ED by promoting
insulin secretion [110], which is conflicting with previous findings. Leucine treatment has
shown damaging effects in vitro and protective effects in vivo; this may be due to a more
complicated leucine metabolic pathway in vivo or leucine treatment concentration. Further
experiments are needed to gain clarity in this regard. Valine regulates lipid metabolism
to protect the integrity of the vascular endothelium [108]. Isoleucine can interfere with
angiogenesis by inhibiting VEGF production [111].

3. Amino Acid Homeostasis Disruption as a Risk Factor of Vascular Complications in
Ischemic Heart Disease

AA homeostasis is crucial for the maintenance of normal physiological functions. Like
other metabolites, AAs in the body are in relative equilibrium through AA intake, synthesis,
and metabolism. Indeed, AA concentrations are much higher intracellular than in the
plasma, suggesting that physiological concentrations of AAs in the cytoplasm and plasma
can also be maintained through membrane transport.
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AA homeostasis is regulated by two signaling pathways, namely, the mechanistic
target of rapamycin complex 1 (mTORC1) and GCN2/ATF4 pathways. A low concentration
of AAs switches off mTORC1 signaling and upregulates ATF4 expression to induce the
expression of AA synthesis genes to restore AA homeostasis [112,113]. When intracellular
AAs are at normal levels, mTORC1 binds to GTPase Rheb to induce mTORC1 activation
which in turn inhibits AA input [114,115]. The role of AAs as the main materials for peptide
and protein synthesis is well studied and known, however, AA function as signaling
molecules in the maintenance and regulation of metabolic homeostasis has received much
attention in recent years.

3.1. Macrovascular and Microvascular Complications in Diabetes

Diabetes is an endocrine metabolic disorder characterized by elevated blood glucose
due to impaired insulin secretion or utilization. Diabetes can result in a variety of complica-
tions, of which diabetic vasculopathy is the most common. The risk of vascular disease is
2–8 times higher in patients with diabetes than in normal subjects [116]. Diabetic vascu-
lopathy includes macroangiopathy and microangiopathy. Diabetic macroangiopathy refers
to diabetes-induced atherosclerosis of the aorta, coronary arteries, and peripheral arteries
of the limbs, resulting in various cardiovascular diseases. Diabetic microangiopathy refers
to diabetes-induced thickening of the microvascular basement membrane with hyaline-like
material deposition, which leads to diabetic nephropathy, retinopathy, and diabetic neuro-
logical diseases. In clinical practice, the main cause of death in diabetic patients is diabetic
vascular disease.

Patients with diabetes have abnormal glucose metabolism due to an absolute or
relative lack of insulin in the body, which is also accompanied by abnormalities in lipid
and protein metabolism, which mainly manifest as alterations in the circulating levels
of many metabolites [117] (Table 1). Drabkova P et al. examined serum from patients
with diabetes and found that levels of glycogenic AAs such as serine, glycine, arginine,
threonine, and asparagine were significantly lower, while those of ketogenic AAs (including
leucine and isoleucine) were higher than normal in diabetics [118], indicating that diabetes
affects AA homeostasis. The higher levels of ketogenic AAs are likely due to elevated
pyruvate dehydrogenase kinase isoform 4 (PDK4) expression in patients with diabetes that
interferes with the conversion of pyruvate to acetyl coenzyme A, leading to the conversion
of ketone bodies to ketogenic AAs [116]. Yuan et al. [119] applied Deuterium isobaric Amine
Reactive Tag (DiART) labeling and liquid chromatography–mass spectrometry to detect
the metabolic changes of intracellular amine derivatives in a diabetic macroangiopathy
cell model and found that although there was no significant change in EC activity in
ECs exposed to high sugar medium for a short period (0–6 h), the intracellular levels of
alanine, proline, glycine, serine, and glutamine increased. When ECs were cultured in high
glucose for 7 days, EC activity decreased and the levels of AAs metabolites increased. In
another study, Disrupted glycine homeostasis ECs derived from diabetic human induced
pluripotent stem cells (hiPSCs) showed disrupted glycine homeostasis [16].

Table 1. Relationship between amino acids and diabetic vasculopathy.

Risk Factors Experimental Model Amino Acids Findings Reference

Diabetes Patients with T2Ds Serum AAs

Significantly decreased levels
of arginine, asparagine,
glycine, serine, threonine, and
significantly increased levels of
alanine, isoleucine, leucine,
and valine in diabetics.

[118]
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Table 1. Cont.

Risk Factors Experimental Model Amino Acids Findings Reference

Hyperglycemic human
aortic ECs AAs metabolism

ECs exposed to short-term
hyperglycemia showed
increased levels of alanine,
proline, glycine, serine, and
glutamine. AAs oxidative
stress metabolites significantly
increased when ECs exposed
to glucose for 7 days.

[119]

HiPSC lines from
patients with T2Ds Glycine

Dia-hiPSC-ECs had disrupted
glycine homeostasis, increased
senescence, and impaired
mitochondrial function and
angiogenic potential as
compared with healthy
hiPSC-ECs.

[16]

Patients with T2Ds and
healthy controls Plasma AAs

The ratios of
ornithine/citrulline and
proline/citrulline were 60%
and 95% higher, respectively,
in patients with diabetes than
in controls. The plasma
ornithine/arginine ratio was
36% higher in patients with
diabetes, indicating increased
arginase activity.

[120]

3587 men and women(a
case-cohort study)

Plasma AAs
(phenylalanine,

isoleucine, glutamine,
leucine, alanine,

tyrosine, histidine, and
valine)

Phenylalanine was positively
associated with the risk of
macrovascular disease, while
histidine was inversely
associated; higher tyrosine and
alanine levels were associated
with decreased risk of
microvascular disease.

[121]

Rats with experimental
chronic renal failure

L-tryptophan levels
and plasma

concentrations in
kidney, liver, lung,

intestine, and spleen
homogenates.

In animals with renal
insufficiency, the plasma
concentration and the content
of l-tryptophan in
homogenates of the kidney,
liver, lung, intestine, and
spleen were significantly
decreased, while the plasma
concentration and tissue levels
of l-tryptophan metabolites in
the kidney, liver, lung,
intestine, spleen, and muscles
were increased.

[122]

859 patients with type 1
diabetes (baseline

eGFR 30–75
mL/min/1.73 m2)

Plasma AAs

The patients showed decreased
tryptophan/kynurenine,
threonine, methionine, and
tryptophan levels.

[123]

Legend: AA: Amino acid; EC: Endothelial cell; HiPSCs: Human induced pluripotent stem cells; Dia-hiPSCs:
Diabetic human induced pluripotent stem cells; T2D: Type 2 diabetes.

The ratios of ornithine/arginine and ornithine/citrulline have been shown to be
increased in the plasma of patients with type 2 diabetes and macroangiopathy [120]. Or-
nithine and citrulline are products of arginine metabolism and are formed under the action
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of arginase and NOS, respectively. Therefore, macroangiopathy is associated with arginine
metabolism. Hyperglycemia induces increased arginase activity, which competes with
NOS to bind arginine, leading to the decreased bioavailability of NO, ultimately leading to
diabetic vascular dysfunction [120,124]. Furthermore, hyperglycemia raises ADMA levels,
which compete with NOS to bind arginine, resulting in decreased NO production and
aggravating diabetic vasculopathy [120,124].

Analyses of the Action in Diabetes and Vascular Disease: Preterax and Diamicron
Modified Release Controlled Evaluation (ADVANCE) trial data revealed that the risk of di-
abetic macrovascular disease was positively associated with phenylalanine and negatively
associated with histidine. Tyrosine and alanine were associated with the risk of diabetic
microangiopathy events and negatively correlated with the risk of diabetic microangiopa-
thy events [121]. Diabetes-induced renal impairment promotes tryptophan metabolism,
leading to increased kynurenine production, leukocyte activation, oxidative stress, and
inflammatory responses [122,123,125].

3.2. Hypertension

Hypertension is a leading cause of cardiovascular disease and death worldwide.
Antihypertensive drugs and lifestyle interventions are currently being used to treat hyper-
tension. Diet, especially the AA composition of dietary proteins, has been shown to play a
key role in hypertension [123,126,127] (Table 2). In a study investigating the relationship
between 24-h urinary BCAAs and blood pressure (BP) in elderly patients with hypertension,
valine was found to be negatively correlated with systolic and diastolic BP and isoleucine
was positively correlated with diastolic BP [128].

Table 2. Relationship between amino acids and hypertension.

Risk Factor Experimental Model Amino Acids Findings Reference

Hypertension

4288 participants aged
20–70 years without
hypertension (3-year

follow-up)

Dietary intakes of
BCAAs (valine, leucine,

and isoleucine)

Higher BCAA intake,
particularly valine, is
associated with a higher
risk of incident
hypertension.

[129]

8589 Japanese subjects Plasma AAs

Higher intake of aromatic
AAs is associated with s
significantly higher risk of
developing hypertension.

[130]

4287 adults (41.9% men),
aged 20–70 years. Dietary intake of AAs

High dietary intake of
Leu.Ser/Thr.Trp ratio is
associated with a higher
risk of incident
hypertension.

[131]

172 South African
adolescents (105 girls, ages

13 to <18 years)

Circulating HCY
concentrations

Of these adolescents, 40%
had elevated BP, of whom
37% fell in the lowest and
38% in the highest HCY
tertiles.

[132]
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Table 2. Cont.

Risk Factor Experimental Model Amino Acids Findings Reference

Normotensive or
spontaneously

hypertensive rats

L-Tyrosine,
Tryptophan, Leucine,

Isoleucine, Valine,
Alanine, Arginine, and

Aspartate

In spontaneously
hypertensive rats, tyrosine
(50 mg/kg) reduced BP by
about 12 mmHg, while 200
mg/kg reduced BP by
about 40 mmHg.
Tryptophan injection (225
mg/kg) reduced BP in
spontaneously
hypertensive rats, but only
by about half as much as
an equivalent dose of
tyrosine. Other AAs have
no effect on BP.

[133]

Spontaneously
hypertensive rat L-tyrosine

Intraventricular injection of
15 micrograms of l-tyrosine
results in a significantly
lower BP in the
spontaneously
hypertensive rat.

[134]

4680 persons aged 40–59
years from China, Japan,

the United Kingdom, and
the United States

Dietary AA (glutamic,
proline, phenylalanine,

serine, and cystine)

Dietary glutamic acid
(percentage of total protein
intake) was inversely
related to BP.

[135]

Legend: BCAA: Branched-chain amino acid; AA: Amino acids; Leu: Leucine; Ser: Serine; Thr: Threonine; Trp:
Tryptophan; BP: Blood pressure.

Mirmiran et al. [129] collected the dietary intake data of BCAAs from 4288 participants
without hypertension and followed their clinical course for three years to determine the
morbidity associated with hypertension and found that the intake of BCAAs, especially
valine, was positively associated with the risk of developing hypertension. A high intake
of aromatic AAs also led to a significantly higher risk of developing hypertension [130,131].
Methionine is metabolized to HCY, which impairs endothelial function inducing an increase
in BP [132]. Under pathological conditions of hypertension, endothelial arginase activity
is elevated and competes with NOS for binding substrate arginine, leading to decreased
arginine concentration, uncoupling of eNOS, and impaired NO production, ultimately
leading to endothelium-dependent diastolic dysfunction [83]. Recently, abnormalities
in phenylalanine metabolism have been found in patients with primary hypertension,
according to which inherited abnormalities in AA metabolism may be one of the key factors
contributing to primary hypertension [136].

In another systematic analysis of eight observational studies, a negative association
was found between plant protein intake and hypertension [137]. Tyrosine accelerates
the release of norepinephrine and epinephrine in the central nervous system to exert hy-
potensive effects [133,134]. Tryptophan can regulate NOS activity through the synthesis of
5-hydroxytryptophan leading to a decrease in BP [133,138]; it can also be metabolized to
kynurenine in ECs to activate adenosine and soluble guanylate cyclase to induce arterial
diastole [139]. Glutamate inhibits oxidative stress and lowers BP by inducing glutathione
synthesis [135,140]. Cysteine exerts its antihypertensive effects by regulating oxidative
stress, glucose metabolism, insulin resistance, NO production, and glutathione synthe-
sis [141]. Furthermore, low-protein diets during pregnancy have been shown to be consis-
tent with increased susceptibility in offspring to hypertensive disorders [142]. Therefore,
AA homeostasis disruption is closely related to the development of hypertensive disorders.
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3.3. Hypercholesterolemia

Hypercholesterolemia is mainly associated with a decreased clearance of low-density
lipoprotein cholesterol (LDL-C) in the body. LDL-C binds low-density lipoprotein receptor
(LDLR) and apolipoprotein B (ApoB) on the cell membrane to form a complex, which
is endocytosed into the cell through the mediation of LDL receptor bridging protein 1
(LDLRA1). This complex is degraded within the lysosome and LDLR is recirculated to the
cell membrane [143]. Mutations in genes encoding for the aforementioned proteins and
enzymes lead to increased LDL-C levels in the body and hypercholesterolemia.

Hypercholesterolemia is a direct cause of many cardiovascular diseases such as
atherosclerosis, coronary artery disease, and stroke [144,145]. Currently, the clinical treat-
ment of such cardiovascular diseases is often based on lipid-lowering drugs, such as statin
but are ineffective in some patients with hypercholesterolemia [146,147]. Therefore, the
search for novel treatments is urgent

In recent years, it has been found that hyperlipidemia is not only a disorder of lipid
metabolism but is also associated with abnormalities of glucose metabolism and AA
metabolism [148] (Table 3). Analysis of hepatic metabolic expression profiles of hyper-
cholesterolemic rats revealed that a hypercholesterolemic diet leads to decreased levels
of glycine, serine, threonine, and histidine and increased levels of asparagine and va-
line [149]. In addition, spermidine and S-adenosyl-methionine levels have been shown
to be reduced in hypercholesterolemic rats, suggesting that hypercholesterolemia af-
fects spermidine and methionine metabolism [149]. Similarly, another study revealed
that the levels of spermidine decreased and those of spermidine metabolites such as
ornithine and spermidine increased in hypercholesterolemia [150]. This is because the
activities of high-affinity cationic amino acid transporters (CAT) and arginase on the
surface of neutrophils are enhanced in hypercholesterolemia, where arginine enters the
cell via CAT and is broken down into urea and ornithine by the action of arginase. Or-
nithine then enters the urea cycle as an intermediate or as a precursor for the synthesis of
polyamines [5,83,151]. Hyperlipidemia-induced interferon-γ secretion by ECs activates
IDO activity in macrophages and dendritic, which promotes tryptophan metabolism, lead-
ing to an increased kynurenine/tryptophan ratio and enhanced immune response, which
may be an important mechanism of hypercholesterolemia-induced endothelial and renal
impairment [5,150]. In addition, IDO and kynurenine are also involved in the immune
response in the development of atherosclerotic disease by regulating IL-10 production [88].

Table 3. Relationship between amino acids and hypercholesterolemia.

Risk Factors Experimental Model Amino Acids Findings Reference

Hypercholes
terolemia

Hypercholesterolemic
Wistar Rats Liver AAs

A hypercholesterolemic diet
resulted in decreased levels
of glycine, serine, threonine,
and histidine, and increased
concentrations of asparagine
and valine.

[149]

Hypercholesterolemic
Wistar Rats Plasma AAs

A hypercholesterolemic diet
led to a decrease in
spermidine level and an
increase in the level of the
spermidine metabolites such
as ornithine and spermidine.

[150]

Legend: AA: Amino acids.

4. Drugs That Restore Amino Acid Homeostasis for Improvement of Endothelial
Dysfunction

Several drugs are known to restore AA homeostasis in ECs, including aspirin eugenol
ester (AEE), folic acid, and Astragali Radix (Table 4). AEE, such as aspirin, is widely used
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in clinical practice because of its antipyretic and antiplatelet aggregation properties. Re-
cently, AEE, formed by combining aspirin and eugenol, has been found to have stronger
antithrombotic, antioxidant, and anti-atherosclerotic effects than aspirin alone. A study
investigating the therapeutic utility of AEE in rats with acute blood stasis (ABS) [152]
revealed that plasma concentrations of phenylalanine, isoleucine, valine, and tryptophan
were significantly increased in rats in the ABS group. Consistent with this result, Zou
et al. [153] also found an increase in many EAAs such as isoleucine, lysine, and valine
in blood stasis rats. Phenylalanine can manifest vasoconstrictive effects through its con-
version to tyrosine, a precursor of catecholamines, which can further exacerbate blood
stasis [152]. This effect can be reversed by combined AEE treatment. In mice chronically fed
a high-fat diet, body AA levels are significantly altered. In such mice, AEE can lower blood
lipids and treat atherosclerosis by inhibiting the production of tyrosine metabolite hydrox-
yphenyllactic acid and tryptophan metabolite xanthurenic acid [154], increasing valine and
leucine levels to promote the TAC cycle, reducing impaired energy metabolism [155], and
normalizing abnormal AA metabolism to reduce oxidative stress and the inflammatory
response [156] (Table 4). The protective effect of AEE on vascular endothelium can be
achieved by the following: (i) inducing an increase in the level of methionine metabolic
intermediate 5′-methylthioadenosine (A1 receptor agonist), which inhibits apoptosis of vas-
cular ECs [157,158], (ii) increasing the level of indole acetaldehyde, a tryptophan metabolite,
to inhibit EC proliferation [157,159], (iii) upregulating glutathione, L-lysine, and valine to
regulate the oxidative stress response to promote vascular endothelial repair [157,160,161],
and (iv) inhibition of iNOS expression and activity to reduce NO production [162].

Table 4. Drugs that regulate amino acids homeostasis.

Medication Experimental Model Amino Acids Findings Reference

Aspirin eugenol ester

Blood stasis in rat Plasma AAs

AEE treatment showed a
favorable inhibition of the
increase of phenylalanine,
isoleucine, valine, and
tryptophan.

[152]

Hyperlipidemic rat Plasma and urine AAs

AEE inhibits hyperlipidemia
by inhibiting the production of
tyrosine metabolite,
hydroxyphenyllactic acid, and
tryptophan metabolite,
xanthurenic acid.

[154]

Atherosclerotic hamster Plasma and urine AAs

AEE promotes the TCA cycle
and attenuates energy
metabolism impairment by
ameliorating blood lipid
profile, reducing GLU and
citric acid, as well as elevating
the level of valine and leucine.

[155]

Hyperlipidemia
hamster Liver and feces

AEE may improve lipid and
bile metabolism, and reduce
oxidative stress and
inflammation, which were all
beneficial for hyperlipidemia
treatment.

[156]
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Table 4. Cont.

Medication Experimental Model Amino Acids Findings Reference

Folic acid 126 patients with
H-type hypertension Serum HCY

After 3 months’ treatment with
an FA dose adjusted according
to methylene tetrahydrofolate
reductase C677T genotype,
HCY and ET-1/NO levels were
significantly decreased in the
intervention group and were
lower than those after the first
treatment phase and lower
than in the control group (p <
0.01).

[163]

Astragali Radix

Acute phase
endothelial dysfunction

induced by HCY
HCY

AR and ASP protected
endothelium-dependent
relaxation against acute injury
from HCY through NO
regulatory pathways, in which
antioxidation played a key
role.

[164]

Low-dose
DOX-induced toxicity

rat model
Rat brain AAs

The levels of six AAs,
including glutamate, glycine,
serine, alanine, citrulline, and
ornithine, correlated with
brain oxidative damage caused
by DOX and rescued by AR.

[165]

Legend: AA: Amino acids; AEE: Aspirin eugenol ester; TCA: Tricarboxylic acid cycle; GLU: Glutamic acid; HCY:
Homocysteine; FA: Folic acid; ET-1: Endothelin-1; NO: Nitric oxide; AR: Astragali Radix; ASP: Astragalus saponin;
DOX: Doxorubicin.

HCY is a sulfur-containing AA produced during the metabolism of methionine; HCY
is mainly metabolized in the body through methylation to methionine. Folic acid is an im-
portant cofactor in the metabolism of HCY. Folic acid deficiency results in the accumulation
of HCY, which is excreted extracellularly causing elevated plasma HCY levels. High con-
centrations of HCY have been shown to be an important factor contributing to ED [166–168].
Folic acid supplementation improves endothelial function by promoting HCY metabolism,
increasing NOS coupling, and improving NO utilization by EC [163,169,170] (Table 4).

Astragali Radix (AR) is the root of the legume Astragalus mongolica, which has been
used as a drug for over 2000 years. According to the Pharmacopoeia of the People’s
Republic of China, there are 163 Chinese medicinal preparations containing AR. Astra-
galus membranaceus tablets, extracts, and compound preparations are currently widely
used in the treatment of cerebral infarction, coronary heart disease, and heart failure, as
well as other cardiovascular diseases in clinical practice [171,172]. Astragalus saponin,
the main component of AR, protects ECs from HCY damage by antioxidant stress and
NO pathway modulation [164] (Table 4). Astragaloside IV downregulates inflammatory
responses by inhibiting the NF-κB pathway, inhibits protein kinase C activation to improve
EC barrier function, and activates the NO-cyclic guanosine monophosphate pathway to
promote endothelium-dependent vasodilation [173–175]. The isoflavones in Astragalus
inhibit apoptosis of ECs [176]. In addition, AR extract has been shown to promote EC
migration, proliferation, and induction of angiogenesis through activation of the VEGF and
PI3K/eNOS pathways [177]. AR has also been shown to ameliorate adriamycin-induced
systemic multi-organ damage by inhibiting oxidative stress by modulating AA homeosta-
sis [165,178–180]. Angiotensin converting enzyme2 and glucagon have also been shown to
be involved in the regulation of AA homeostasis [181–184], but there is no evidence that
they can improve ED by regulating AA homeostasis, and must be studied further.
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5. Amino Acid Supplement for Improvement of Endothelial Dysfunction in Clinic

Due to its ability to produce NO in response to eNOS enzymes, arginine is thought to
play an important role in the regulation of vascular endothelial function. The “arginine
paradox” states that arginine intake should be proportional to NO blood concentrations.
Although some clinical trials have shown that arginine supplementation improves endothe-
lial function [185–189], other trials have failed to improve endothelial function [190–194].
We do not believe that the effect of arginine on improving endothelial function was related
to the dose or duration of arginine supplementation because arginine was given in a wide
range of doses (3 g/day to 20 g/day) and for a long period of time (1 day to 6 months)
in these negative clinical trials [190,192,193]. In the previous section describing arginine,
we mentioned ADMA, which competes with arginine for binding to NOS, resulting in a
decrease in NO production. We suggested that arginine’s modulatory effect on endothelial
function is related to ADMA levels in vivo. Monti LD, et al. treated 144 middle-aged
patients with impaired glucose tolerance and metabolic syndrome for 18 months with
L-arginine or placebo and found that L-arginine supplementation significantly reduced
ADMA levels and improved endothelial function compared to the placebo group [195].
Several other clinical trials have shown similar results [196–198] (Table 5).

Table 5. Clinical study on the regulation of endothelial function by AA.

Amino
Acid

Experimental
Model Dose TreatmentTime Findings Reference

Arginine

Stable CAD patients 2 times/d (10 g/d) 4 weeks

Oral l-arginine
supplement improved EF
and reduced LDL
oxidation in stable CAD
patients.

[185]

Healthy young
smokers 3 times/d (21 g/d) 3 days

Oral l-arginine improves
EF and vascular elastic
properties of the arterial
tree during the acute
phase of smoking.

[186]

Healthy male
subjects

Intravenous
l-arginine (10 g) 20 min

FMD assessment leads to
impairment of EF by
inducing an increase in
ADMA, which is reversed
by l-arginine
administration.

[187]

Healthy overweight
adults with the HTW 3 times/d (4.5 g/d) 4 weeks

Supplementation with
low-dose SR-arginine
alleviates postprandial ED
in healthy HTW adults
when the baseline plasma
arginine concentration is
relatively low.

[188]

Patients with
peripheral arterial

disease

50/100/500 mg
l-arginine

intra-arterially
once

Infusion of l-arginine
increases blood flow and
enhances the EF in
diseased lower extremity
human arteries.

[189]

Patients with heart
failure 20 g/day 28 days

Oral administration with
l-arginine was ineffective
in influencing EF in these
patients with heart failure.

[190]
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Table 5. Cont.

Amino
Acid

Experimental
Model Dose TreatmentTime Findings Reference

Healthy males 20 g/day 28 days

Oral supplementation
with l-arginine does not
affect EF in normal
healthy adults.

[191]

Healthy young
males 3 g once

In healthy men, meal
arginine only slightly
enters the NO pathway
and has no effect on basal
EF.

[192]

Patients with
intermittent

claudication due to
PAD

3 g/day 6 months

In patients with
intermittent claudication
and PAD, oral l-arginine
was less effective.

[193]

Patients with severe
malaria 12 g once

L-arginine infused at 12 g
over 8 h was safe but did
not improve lactate
clearance or endothelial
NO bioavailability

[194]

Patients with
impaired glucose

tolerance and
metabolic syndrome

6.4 g/day 18 months

L-arginine increased the
levels of EPCs and ADMA
in subjects, suggesting
that l-arginine can
increase the expression
levels of genes involved in
metabolic and EF.

[195]

Patients with CSX 0.125 g/min 120 min

Acute l-arginine infusion
increases NO availability,
decreases endothelin-1
levels, and improves EF in
CSX patients.

[196]

Clinically
asymptomatic

elderly subjects
3 g/day 3 weeks

Simvastatin does not
enhance EF in subjects
with elevated ADMA, but
its combination with oral
l-arginine improves EF in
subjects with high ADMA.

[197]

Patients with
cardiovascular

disease previously
submitted to an
aortocoronary

bypass

6.4 g/day 6 months

Long-term oral l-arginine
improves EF, decrease
ADMA levels, and
ameliorates insulin
sensitivity and glucose
tolerance.

[34,198]
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Table 5. Cont.

Amino
Acid

Experimental
Model Dose TreatmentTime Findings Reference

Taurine

Prehypertensive
individuals 1.6 g/day 12 weeks

Long-term taurine
supplementation exerts
antihypertensive effects by
improving vascular
function.

[199]

Asymptomatic male
diabetics 3 times/d (1.5 g/d) 2 weeks

Taurine supplementation
reverses early, detectable
conduit vessel
abnormalities in young
male diabetics.

[200]

Healthy men 3 g/day 2 weeks

Taurine and Mg
supplementation
significantly increased
EPC colony numbers and
significantly decreased
free radical levels in
healthy men.

[201]

Healthy men 6 g/day 2 weeks

2 weeks of taurine
supplementation
significantly increased
vascular EF at rest.

[202]

Tyrosine
Young (25 ± 3 year)

and older (72 ± 8
year)

150 mg/kg once

Tyrosine supplementation
was found to improve the
contractile response of
skin vessels to cold
stimuli.

[203]

Citrulline

Healthy volunteers 2 times/d
(0.75/1.5/3 g) 1 week

Oral l-citrulline
supplementation raises
plasma l-arginine
concentration and
augments NO-dependent
signaling.

[204]

Subjects with
prehypertension

2 times/d
(l-citrulline/l-
arginine: 1.35

g/0.65 g)

6 weeks

WMJ supplementation
improved aortic
hemodynamics in
middle-aged adults with
prehypertension.

[205]

Acute
hyperglycemia in

healthy adults

WMJ (500
mL/day) 2 weeks

WMJ supplementation
improved FMD and
microvascular function
during acute
hyperglycemia in healthy
adults.

[206]

Leucine Male volunteers 25 g once

Leucine administration
prevents hyperglycaemia-
mediated ED probably
due to enhanced insulin
secretion.

[110]

Legend: AA: Amino acid; CAD: Coronary artery disease; EF: Endothelial function; LDL: Low-density lipoprotein;
FMD: Flow-mediated dilation; ADMA: Asymmetric dimethylarginine; SR: Sustained-release; ED: Endothelial dys-
function; HTW: Hypertriglyceridemic waist; NO: Nitric oxide; PAD: Peripheral arterial disease; Mg: Magnesium;
EPC: Endothelial progenitor cell; CSX: Cardiac syndrome X; WMJ: Watermelon juice.
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Taurine is a sulfur-containing AA that is widely distributed in all tissues and organs
of the body [207]. Numerous experimental and clinical studies have shown that taurine
has anti-inflammatory properties and that high levels of taurine can prevent cardiovas-
cular disease [207,208]. In various cardiovascular diseases, such as hypertension, oral
taurine (1.6 g/day) for 12 weeks significantly improved endothelium-dependent and non-
endothelium-dependent vasodilation to lower BP, which may be related to taurine’s ability
to inhibit calcium influx mediated by transient receptor potential channel subtype 3 in
arteries [199]. In diabetic patients, continuous taurine supplementation (1.5 g/day) for
2 weeks improved ED [200]. Taurine has even been shown to improve vascular endothelial
function in healthy people [201,202] (Table 5).

Tyrosine supplementation (150 mg/kg) was found to improve the contractile response
of skin vessels to cold stimuli in a randomized, double-blind trial designed by James A
Lang [203,209]. Citrulline supplementation influences vascular endothelial function via
NO circulating metabolism to form arginine [204–206]. By promoting insulin secretion,
leucine administration prevents hyperglycemia-mediated ED [110] (Table 5).

6. Current Challenge and Future Directions

The human genome encodes for 50 different AA [210,211], which is significantly
higher than the number of protein-derived AAs. This suggests that there is competition
and overlap between intracellular and extracellular AA function and transport. Although
we know that the main biological role of AAs is incorporation into proteins, AAs and their
metabolites are involved in several other processes, including energy supply, glucose, and
lipid metabolism, as well as the regulation of hormone secretion under physiological and
pathological conditions; however, the precise mechanisms underlying these roles are yet to
be explored.

The metabolic pathways of multiple AAs are interconnected. It is necessary to clarify
the potential cross-regulation between different AA-sensing pathways to fully understand
the mechanism of action of each AA.

It is well known that the concentration of AAs in the cytosol is significantly higher than
that in the blood [212,213]. This is achieved by antiporters and Na+-dependent symporters
in the cytosolic membrane that maintains AA homeostasis [211]. However, AA roles
and mechanisms in the development of ED and associated diseases, such as diabetes,
hypertension, and atherosclerosis, are largely unknown. An integrated approach using
genetics, metabolomics, and biochemistry may help characterize the mechanisms by which
AAs regulate endothelial function.

Although primary human ECs are the cells of choice for studying ED, their use is
limited by restricted sources and cell isolation techniques. ECs differentiated from disease-
specific hiPSC lines reprogrammed from patient somatic cells are potential sources for
disease modeling and drug screening and discovery in vitro [214]. We found that ECs
differentiated from hiPSCs (hiPSC-ECs) derived from patients with T2DM (dia-hiPSC-ECs)
have signature phenotypes of ED: disrupted glycine homeostasis, ED (increased protein
expression of ICAM-1 and enhanced secretion of endothelin-1), increased cell senescence,
and impaired mitochondrial function [16,215]. Thus, ECs differentiated from diabetic
hiPSCs may be good cell models for studying and screening drugs for the treatment of ED.
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