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Within the bone marrow hematopoietic cells are in close connection with mesenchymal
stromal cells (MSCs), which influence the behavior and differentiation of normal or
malignant lymphoid and myeloid cells. Altered cell metabolism is a hallmark of cancer,
and changes in nutrient pools and fluxes are important components of the bidirectional
communication between MSCs and hematological cancer cells. Among nutrients,
amino acids play a significant role in cancer progression and chemo-resistance.
Moreover, selected types of cancer cells are extremely greedy for glutamine, and
significantly deplete the extracellular pool of the amino acid. As a consequence, this
influences the behavior of MSCs in terms of either cytokine/chemokine secretion or
differentiation potential. Additionally, a direct nutritional interaction exists between MSCs
and immune cells. In particular, selected subpopulations of lymphocytes are dependent
upon selected amino acids, such as arginine and tryptophan, for full differentiation and
competence. This review describes and discusses the nutritional interactions existing in
the neoplastic bone marrow niche between MSCs and other cell types, with a particular
emphasis on cancer cells and immune cells. These relationships are discussed in the
perspective of potential novel therapeutic strategies based on the interference on amino
acid metabolism or intercellular fluxes.

Keywords: leukemia, glutamine, asparagine, mesenchymal stromal cell, bone marrow, arginine, tryptophan,
amino acid transport system

INTRODUCTION

Mesenchymal stromal cells (MSCs) are pluripotent stem cells able to differentiate into osteoblasts,
chondroblasts and adipocytes. Within the bone marrow (BM), they constitute a quantitatively small
population of pivotal importance for hematopoiesis (Li et al., 2016). MSCs secrete several factors
that influence the behavior of either normal or malignant lymphoid and myeloid cells and can,
in selected cases, significantly support the growth of malignant hematological cells. Moreover, a
nutritional interaction and, possibly, a competition exist between cancer cells, MSCs and other
cells of the BM niche. In this context, amino acids play a significant role in cancer progression
and chemoresistance (Vettore et al., 2020). For example, MSCs secrete amino acids that support
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survival and drug resistance in leukemic blasts (Iwamoto et al.,
2007; Zhang et al., 2012; Kwong-Lam and Chi-Fung, 2013; van
Gastel et al., 2020). In other cases, cancer cells are extremely avid
for a particular amino acid, so that the extracellular compartment
is significantly depleted, influencing the behavior of MSCs in
terms of either cytokine/chemokine secretion or differentiation
ability. In addition, a direct nutritional interaction exists between
MSCs and several types of immunity cells, which are themselves
dependent upon selected amino acids for differentiation and
activity. In this review, we discuss the enlarging role of the
metabolic interactions between MSCs and hematological cancer
cells by dissecting the role of selected amino acids in the
bidirectional communications within the BM microenvironment.

ARGININE

Arginine (Arg, R) is a conditionally essential proteinogenic
amino acid needed for several biological processes, such as
protein synthesis, polyamine and nitric oxide (NO) production
and urea cycle (Albaugh et al., 2017). The enzymes that mainly
catabolize Arg are Arginases (ARG1 and ARG2) and Nitric Oxide
Synthetases (NOS1-3) (McGaha et al., 2012) that convert Arg into
ornithine (Orn) or citrulline (Cit), respectively. Arg is especially
needed for T-cell activation, and its depletion cause T-cell anergy
and dysfunction (Zea et al., 2004; Rodriguez et al., 2007). Indeed,
one of the mechanisms elicited by MSCs to repress T-cell
responses is the depletion of extracellular Arg, upregulating,
either separately or in combination, ARG1 and iNOS (Bronte
and Zanovello, 2005). A similar mechanism is exploited by
acute myeloid leukemia (AML) primary blasts, which have an
increased expression and activity of ARG2 (Mussai et al., 2013),
thus favoring an immunosuppressive microenvironment. The
peculiar arginine requirement of T-cell is also at the basis of
the potential efficacy of PEGylated recombinant human Arginase
I (PEG-Arg1), currently in clinical trials (Yau et al., 2015; De
Santo et al., 2018b), in counteracting acute lymphoblastic T-cell
leukemia (T-ALL) (Hernandez et al., 2010; Morrow et al., 2013;
De Santo et al., 2018a).

The cytotoxic effects of PEG-Arg1 have been found
neutralized by MSCs that can secrete citrulline, which is produced
from ornithine through the enzyme Ornithine Transcarbamylase
(OTC) (Kwong-Lam and Chi-Fung, 2013). In turn, the secreted
citrulline is taken up by T-ALL blasts, which, subsequently,
convert it into argininosuccinate and, eventually, into Arg
trough the activity of Argininosuccinate Synthetase (ASS) and
Argininosuccinate Lyase (ASL) (Sugimura et al., 1990).

ASPARAGINE AND ASPARTATE

Asparagine (Asn, N) is a dead-end metabolite in humans
since it cannot be further metabolized into aspartate (Asp, D).
However, Asn is of pivotal importance for several processes
since it is needed for CD8+T-cell activation (Hope et al.,
2021; Wu et al., 2021), osteoblast differentiation (Chiu et al.,
2020b), and vessel formation (Huang et al., 2017). The only

enzyme able to synthetize Asn is Asparagine Synthetase (ASNS)
that utilizes Asp for the carbon skeleton and the amino acid
glutamine as the obliged nitrogen donor (Chiu et al., 2019).
The majority of B-cell ALL blasts lack the expression of ASNS,
are auxotroph for Asn and must take up the amino acid
from the extracellular space. This auxotrophic phenotype is the
rationale for the use of L-asparaginase, which rapidly hydrolyzes
plasma Asn and, at a lower rate, glutamine, as a drug in ALL
therapy. In combination with other drugs, such as vincristine
and prednisone, asparaginase achieves a remission rate of more
than 90% (Tabe et al., 2019). While there is no correlation
between L-asparaginase resistance and ASNS gene induction in
ALL blasts (Appel et al., 2006), it has been demonstrated a
clear-cut protective, pro-leukemic role of MSCs, which secrete
Asn rescuing Asn-starved blasts (Iwamoto et al., 2007). More
recently, it has been observed a bidirectional crosstalk among
leukemic and stromal cells upon L-asparaginase administration,
with ALL blasts increasing Glutamine Synthetase (GS) expression
and releasing glutamine, utilized by MSCs for the synthesis of
Asn, which is then secreted to sustain ALL cell viability (Chiu
et al., 2017). Interestingly, the fact that ASNS is upregulated
in MSCs at diagnosis and does not further increase during
L-asparaginase treatment (Dimitriou et al., 2014) suggests that
MSCs must supply Asn to ALL blasts even before therapy, raising
the possibility that Asn auxotrophy is somehow advantageous in
the transformation pathway.

A somewhat similar behavior is observed in a murine model of
AML, where MSCs fuel the synthesis of pyrimidine in leukemic
blasts by producing Asp, thus supporting nucleotide biosynthesis
and the resistance to cytarabine and doxorubicin chemotherapy
(van Gastel et al., 2020).

CYSTEINE

Cysteine (Cys, C) is crucial for cell redox balance, given its role as
a substrate for the synthesis of the tripeptide glutathione (GSH),
the most concentrated hydrophilic antioxidant in human cells.
At neutral pH, Cys is unstable, and its thiol group spontaneously
oxidizes thus producing cystine (Dewey and Beecher, 1965).
However, while Cys uptake is mainly mediated by the ASC
transporter systems, ASCT1 and ASCT2 (Kilberg et al., 1979),
in most mammalian cells cystine influx is due to the antiport
xCT, an heterodimeric transporter whose light chain is coded
by SLC7A11 gene, and occurs in exchange with intracellular
glutamate (Kim et al., 2001). It has been shown that primary
blasts of chronic lymphocytic leukemia (CLL), have an absent-
to-low expression of xCT and, thus, lack a substantial device for
cysteine import (Zhang et al., 2012). This behavior is the rationale
for the use of Cyst(e)inase (Cystathionine-γ-lyase, Cystathionase,
the enzyme that converts cystathionine derived from methionine
into Cys) to control CLL growth (Cramer et al., 2017). Indeed,
MSCs take up cystine, convert it into Cys and release the amino
acid through the ASCT2 transporter to support GSH synthesis,
relieve oxidative stress and favor chemoresistance in CLL blasts
(Zhang et al., 2012). On the other hand, tumor associated MSCs
are able to generate immunosuppression interfering with Cys
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FIGURE 1 | Mesenchymal stromal cells (MSCs) and amino acid crosstalk in leukemia. See text for explanation. MSC, mesenchymal stromal cell; ALL, acute
lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; ASNS, asparagine synthetase; ASL, argininosuccinate lyase; ASS,
argininosuccinate synthetase; AST, aspartate aminotransferase; OTC, ornithine transcarbamylase; GLS, glutaminase; GS, glutamine synthetase; ASNase,
l-asparaginase from E. coli. Erwinase, l-asparaginase from E. chrysanthemi; PEG-Arg I, PEGylated recombinant human arginase I; ASCT2, alanine serine cysteine
transporter 2; CAT, cationic amino acid transporter; LAT, large neutral amino acid transporter; X-CT, cystine/glutamate transporter.

metabolism of T-cells, that lack both xCT (Gmunder et al.,
1991) and Cystathionase (Eagle et al., 1966), and require Cys
supplementation from macrophages or dendritic cells (Gmunder
et al., 1990). By secreting the immunosuppressive cytokine IL-10,
MSCs repress the expression of Cystathionase in dendritic cells
thus interfering with Cys supplementation needed by T cell for a
full activation (Ghosh et al., 2016).

GLUTAMINE

Glutamine (Gln, Q) is a pleiotropic substrate needed for
several metabolic reactions. Besides its role in protein synthesis,
in several types of metabolically active normal and cancer
cells Gln is utilized as an anaplerotic substrate to replenish
TCA cycle with 2-oxoglutarate obtained from glutamate (Glu,
E), through Glutamate Dehydrogenase (GDH) or one of the
aminotransferases. In most cells, Gln is a major source of
Glu by means of the activity of one of the glutaminases.
Through glutamate, Gln sustains the synthesis of GSH (also
fueled by cysteine/Glu exchange, see above) and several non–
essential amino acids (NEAAs). Moreover, Gln is a precursor

for nucleotides and glucosamine and behaves as a compatible
osmolyte to maintain cell volume under hypertonic conditions
(Chiu et al., 2020a). In addition, through its capability to interact
with several active and exchange transporters, it is accumulated
at high levels into the cell and can fuel by exchange the uptake
of many NEAA and essential amino acids (EAAs). The main
enzymes involved in Gln metabolism found dysregulated in
cancers are glutaminases (GLS and GLS2, each with at least two
isoforms) and Glutamine Synthetase (GS), the only mammalian
enzyme which operates the endoergonic reaction between Glu
and free ammonium to produce Gln (Mates et al., 2019).

Several hematological cancer cells rely on extracellular Gln
supplementation for their growth. This is particularly evident
for several kinds of AML blasts (Willems et al., 2013; Emadi
et al., 2014; Jacque et al., 2015; Ni et al., 2019) and for
multiple myeloma cells (MM) (Bolzoni et al., 2016; Giuliani
et al., 2017; Thompson et al., 2017; Gonsalves et al., 2018,
2020), where GLS is usually up-regulated and GS down-
regulated. Altered Gln metabolism has been also found in
Del11q-positive CLL (Galicia-Vazquez et al., 2018), a deletion
associated with poor-prognosis, and in Notch-driven T-ALL
(Nguyen et al., 2021), where the up-regulation of Notch1 has
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been found associated with a GS downregulation. Consistently,
an asparaginase preparation used in clinics, isolated from Erwinia
chrysanthemi and endowed with higher affinity for Gln than
that the enzyme from E. coli (Parmentier et al., 2015), has
been found effective in counteracting both AML (Emadi et al.,
2018, 2020) and multiple myeloma growth (Bolzoni et al., 2016;
Soncini et al., 2020).

Adipocytes, one of the BM cell populations that can derive
from MSCs, are able to counteract l-asparaginase effects on
ASNS-positive ALL cells by providing Gln, newly synthetized
by GS (Ehsanipour et al., 2013). Although the effects of
Gln depletion on adipogenic differentiation have not been
investigated, it is known that obesity implies poor prognosis also
in childhood ALL (Butturini et al., 2007).

In the case of myeloma, besides being an Achille’s heel
potentially targetable in clinics, the huge consumption of Gln
by cancer cells causes a partial depletion of the amino acid
in the BM, where Gln concentration decreases in vivo from
0.6 to 0.4 mM (Bolzoni et al., 2016). This change triggers
a nutritional competition with nearby cells that may have
heavy consequences. For instance, it severely impairs MSCs
differentiation into osteoblasts (Chiu et al., 2020b), since
Gln is required to sustain ASNS-dependent Asn synthesis
during osteoblastogenesis (Yu et al., 2019; Shen et al., 2021),
thus potentially contributing to the osteolytic bone disease
characteristic of the disease. On the other hand, Gln depletion
it is known to up-regulate GS in mesenchymal and immune cells,
where GS induction leads to M2-like macrophages polarization
(Palmieri et al., 2017; Menga et al., 2020). If this would
occur in myeloma, the consequent immunosuppression should
be sensitive to GS inhibition, which has been demonstrated
in murine models to skew macrophages toward M1-like
polarization (Palmieri et al., 2017; Menga et al., 2020). Although
this issue awaits further investigation, it is interesting that Gln
restriction in differentiating MSCs changes the expression of
cytokines and chemokines involved in monocyte recruitment
(Chiu et al., 2020b).

TRYPTOPHAN

Tryptophan (Trp, W) is an essential amino acid and its
availability is controlled by absorption and degradation, mainly
due to Indoleamine 2,3-dioxygenase (IDO), which converts
the amino acid into kynurenine (Badawy, 2017). IDO is
expressed in antigen presenting cells (APCs) and was firstly
described to promote immunotolerance during pregnancy to
avoid fetal rejection (Munn et al., 1998). Interferon-γ increases
IDO expression also in bone marrow MSCs, which, hence,
hinder T cell responses (Meisel et al., 2004; Aggarwal and
Pittenger, 2005; Liang et al., 2018), a mechanism crucial to
promote immunosuppression. Indeed, both Trp depletion and
kynurenine are able independently to cause T-cell anergy and
trigger apoptosis (Platten et al., 2012). This mechanism has
been exploited also by cancer cells given that MSCs within the
tumor microenvironment express IDO and reduce CD8+T cell
infiltration (Ling et al., 2014). Moreover, kynurenine is able to

skew the differentiation of T-cells to Treg cells (Nguyen et al.,
2010), thus further favoring tumor immune evasion. A positive
correlation has also been found between IDO expression in
AML and Treg induction (Wells et al., 2021). While clinical
trials of IDO inhibitors in patients with solid cancers, although
well-tolerated, have been dismissed given their unclear benefit
(Jung et al., 2019; Long et al., 2019; Reardon et al., 2020), these
drugs have been found promising for myelodysplastic syndrome
(Komrokji et al., 2019), and a specific trial for AML is ongoing
(NCT02835729) (Wells et al., 2021), opening new perspectives for
its exploitation in hematological cancers.

CONCLUSION

In this review we recapitulated the involvement of some amino
acids in the complex cross-talks existing among hematological
cancer cells and MSCs within the BM context (Figure 1). Drugs
producing a selective amino acid depletion seem promising for
the control of several kinds of hematological cancers, either
auxotrophic for a given nutrient or requiring large amounts of
a given amino acid. Moreover, metabolic interactions between
MSCs and hematological cancer cells, as well as immune system
cells, are often complex and should be taken into account to avoid
or counteract possible protective activities during chemotherapy.
Several approaches aimed at blocking the trophic activities of
MSCs on blasts appear worthy of future investigations, such
as, for example, GS inhibitors for ALL (Ehsanipour et al.,
2013; Chiu et al., 2017), OTC inhibitors for T-ALL (Kwong-
Lam and Chi-Fung, 2013) and Cyst(e)inase for CLL (Cramer
et al., 2017). On the other hand, MSCs may be also targeted
to mitigate tumor-induced immunosuppression, blocking Arg
or Trp depletion by stromal cells (Bronte and Zanovello, 2005;
Platten et al., 2012). Exploiting drugs involved in amino acid
metabolism, cancer-independent effects of amino acid depletion
on MSC population themselves should also be considered,
given, for example, the specific requirement for Gln and Asn
during MSC differentiation into osteoblast (Chiu et al., 2020b).
Thus, an intense experimental work on the biology of both
the normal and the neoplastic BM niche will be necessary
to achieve successful combined therapies of hematological
cancers, based on metabolic suppression and specific amino
acid supplementation.
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