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Abstract: A number of anti-angiogenesis drugs have been FDA-approved and are being used in
cancer treatment, and a number of other agents are in different stages of clinical development or
in preclinical evaluation. However, pharmacologic anti-angiogenesis strategies that arrest tumor
progression might not be enough to eradicate tumors. Decreased anti-angiogenesis activity in single
mechanism-based anti-angiogenic strategies is due to the redundancy, multiplicity, and development
of compensatory mechanism by which blood vessels are remodeled. Improving anti-angiogenesis
drug efficacy will require identification of broad-spectrum anti-angiogenesis targets. These strategies
may have novel features, such as increased porosity, and are the result of complex interactions among
endothelial cells, extracellular matrix proteins, growth factors, pericyte, and smooth muscle cells.
Thus, combinations of anti-angiogenic drugs and other anticancer strategies such as chemotherapy
appear essential for optimal outcome in cancer patients. This review will focus on the role of
anti-angiogenesis strategies in cancer treatment.
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1. Introduction

Angiogenesis is a normal and complex process controlled by certain biomolecules produced in
the body. Endogenous local or systemic chemical signals coordinate functions of endothelial cells
and smooth muscle cells to repair damaged blood vessels. The generation of new blood vessels is
from pre-existing blood cells via the “sprouting” of endothelial cells, thus expanding the vascular tree
(Figure 1A) [1,2]. Steps toward angiogenesis include protease production, endothelial cell migration,
and proliferation, vascular tube formation, anastomosis of newly formed tubes, synthesis of a new
basement membrane, and incorporation of pericytes and smooth muscle cells (Figure 1B).

After activation of endothelial cells by angiogenic stimuli, proteolytic enzymes are produced,
which degrade the perivascular extracellular matrix (ECM) and the basement membrane. Endothelial
cells proliferate and migrate into the perivascular area, forming “primary sprouts”. Subsequent
lumenation of these primary sprouts leads to formation of capillary loops, which is followed by
synthesis of a new basement membrane and blood vessel maturation to complete tube-like structures
through which blood can flow [3].

Physiological angiogenesis processes are crucial during embryo development, wound healing,
and collateral formation for improved organ perfusion. However, abnormally accelerated angiogenesis
processes or pathological angiogenesis are associated with various disorders, including ocular
neovascularization, which leads to a loss of vision.
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Figure 1. (A) Angiogenesis is the process of the development of new blood vessels from pre-existing 
vessels, which allows for tumor progression; (B) Steps in angiogenesis. 

In comparison with chemical signals that induce blood formation, there is another type of 
chemical signal known as an angiogenesis inhibitor (Table 1). These signals may systematically 
disrupt blood vessel formation or support removal of existing vessels. Inhibitors function by acting 
on several proteins that have been identified as angiogenic activators, including vascular endothelial 
growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), angiogenin, transforming growth 
factor (TGF)-α, TGF-β, tumor necrosis factor (TNF)-α, platelet-derived endothelial growth factor, 
granulocyte colony-stimulating factor, placental growth factor, interleukin-8 (IL-8), hepatocyte 
growth factor, and epidermal growth factor [4]. It is very important to keep a balance between 
activators and inhibitors, and this balance regulates vascular homeostasis. 

Table 1. Selected list of endogenous angiogenesis inhibitors and mechanisms of action. 

Endogenous Angiogenesis Inhibitors Mechanisms Reference
Soluble VEGF-1 Decoy receptors for VEGF-B [5] 

Angiostatin Suppress EC adhesion, migration, proliferation [6] 
Thrombospondin-1 and -2 Suppress EC adhesion, migration, proliferation [7] 

Angiopoietin-2 Oppose Angiopoietin 1 [8] 
Platelet Factor-4 Inhibit bFGF (FGF2) and VEGF binding [9,10] 

Endostatin Suppress EC adhesion, migration, proliferation [6,11] 
Anti-thrombin III Fragment Suppress EC adhesion, migration, proliferation [12] 

Osteopontin Serve as ligand for integrin binding [13] 
Collagen Substrate for MMPs [14,15] 

Kininogen Domains Suppress EC adhesion, migration, proliferation [16] 
Tissue Factor Pathways Inhibitor Antagonist for Tissue Factor [17] 

Vasostatin Suppress EC adhesion [18,19] 
Calreticulin Suppress EC adhesion [20] 

TIMPs Suppress EC adhesion [21,22] 
A cartilage-derived angiogenesis inhibitor Suppress EC adhesion [23] 

Meth-1 and Meth-2 Suppress EC adhesion [24] 
Maspin Inhibits proteases [25] 

Laminin 511 Suppresses metastases [26,27] 
CCN3 Suppresses EC adhesion [28] 

Endorepellin Suppresses EC adhesion [29] 
MULTIMERIN2 (Endoglyx-1) Suppresses EC migration [30] 

Abbreviations: VEGF: vascular endothelial growth factor; EC: endothelial cells; FGF: fibroblast 
growth factor; MMP: matrix metalloproteinase; TIMP: tissue inhibitor of metalloproteinase. 
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In comparison with chemical signals that induce blood formation, there is another type of
chemical signal known as an angiogenesis inhibitor (Table 1). These signals may systematically
disrupt blood vessel formation or support removal of existing vessels. Inhibitors function by acting
on several proteins that have been identified as angiogenic activators, including vascular endothelial
growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), angiogenin, transforming growth
factor (TGF)-α, TGF-β, tumor necrosis factor (TNF)-α, platelet-derived endothelial growth factor,
granulocyte colony-stimulating factor, placental growth factor, interleukin-8 (IL-8), hepatocyte growth
factor, and epidermal growth factor [4]. It is very important to keep a balance between activators and
inhibitors, and this balance regulates vascular homeostasis.

Table 1. Selected list of endogenous angiogenesis inhibitors and mechanisms of action.

Endogenous Angiogenesis Inhibitors Mechanisms Reference

Soluble VEGF-1 Decoy receptors for VEGF-B [5]
Angiostatin Suppress EC adhesion, migration, proliferation [6]

Thrombospondin-1 and -2 Suppress EC adhesion, migration, proliferation [7]
Angiopoietin-2 Oppose Angiopoietin 1 [8]
Platelet Factor-4 Inhibit bFGF (FGF2) and VEGF binding [9,10]

Endostatin Suppress EC adhesion, migration, proliferation [6,11]
Anti-thrombin III Fragment Suppress EC adhesion, migration, proliferation [12]

Osteopontin Serve as ligand for integrin binding [13]
Collagen Substrate for MMPs [14,15]

Kininogen Domains Suppress EC adhesion, migration, proliferation [16]
Tissue Factor Pathways Inhibitor Antagonist for Tissue Factor [17]

Vasostatin Suppress EC adhesion [18,19]
Calreticulin Suppress EC adhesion [20]

TIMPs Suppress EC adhesion [21,22]
A cartilage-derived angiogenesis inhibitor Suppress EC adhesion [23]

Meth-1 and Meth-2 Suppress EC adhesion [24]
Maspin Inhibits proteases [25]

Laminin 511 Suppresses metastases [26,27]
CCN3 Suppresses EC adhesion [28]

Endorepellin Suppresses EC adhesion [29]
MULTIMERIN2 (Endoglyx-1) Suppresses EC migration [30]

Abbreviations: VEGF: vascular endothelial growth factor; EC: endothelial cells; FGF: fibroblast growth factor; MMP:
matrix metalloproteinase; TIMP: tissue inhibitor of metalloproteinase.
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Among them, VEGF is a powerful angiogenic agent in neoplastic tissues, and VEGF receptors
(VEGFR) have been widely studied in the field of neoplastic vascularization. For example,
by generation of VEGF and its secretion into neighboring tissue, the tumor cells will be able to
feed on the new blood vessels.

Although it was thought for many years that the spread of cancer cells and growth of localized
tumors beyond a few millimeters in size requires local angiogenesis in which tumor cells produce new
blood vessels by releasing pro-angiogenic chemical signals, recent studies have reported that tumors
like brain, lung, and liver can co-opt and grow along existing vessels without evoking new vessel
growth [31]. Normal cells proximal to cancer cells may also support a pro-angiogenic response via
signaling molecules. Local neovascularization supplies growing tumors with oxygen and essential
nutrients, supports tumor extension and invasion into nearby normal tissue, and is essential to distant
metastasis [32,33].

2. Angiogenesis Mechanism in Cancer

It is well known that in healthy cells, oxygen tension is key in the regulation of angiogenesis,
and endothelial cells (ECs) and smooth muscle cells (SMCs) have various oxygen-sensing
mechanisms, including oxygen-sensitive NADPH oxidases, endothelial nitric oxide synthase (eNOS),
and heme-oxygenases [34]. Vascular cells also express a different class of oxygen sensors that interface
with the hypoxia-inducible transcription factor (HIF) family, which in turn is an important molecular
interface for relaying adaptations to changes in oxygen tension. Each of the three isoforms of HIFα
(HIF-1–3) can heterodimerize with the aryl hydrocarbon receptor nuclear translocator (HIFβ/ARNT)
subunit to form an active transcriptional complex that initiates expression of hundreds of genes,
including those regulating cell survival, metabolism, and angiogenesis [35]. In order to grow or locally
metastasize, tumor tissue also needs oxygen and nutrients that will be provided by blood vessels [32]
because the primary function of blood vessels is to carry the oxygen that we breathe. The presence
and abundance of oxygen correlates with the metabolism of endothelial cells in which oxygen can be
consumed to form either sprouts in vitro [36] or a vascular network in vivo [37]. Because oxygen is
key in cell growth (both healthy cells and cancer cells), hypoxic tumor cells (tumor cells that have been
deprived of oxygen) will not divide (Figure 2). In growing cancers, endothelial cells are vigorously
active because of the release of many proteins, such as EGF, estrogen, basic and acidic FGF, IL-8,
prostaglandin E1 and E2, TNF-α, and VEGF, that can activate endothelial cell growth and motility
when the anti-angiogenic factors’ production is reduced [32,38]. VEGF and bFGF are particularly
important to tumor angiogenesis [32], but the redundancy of (other) pro-angiogenic factors helps
explain the current suboptimal effectiveness in the oncology of the pharmacological inhibitors of single
endogenous angiogenic agents.

In comparison to other naturally occurring angiogenesis inhibitors such as angiostatin, endostatin,
interferons, IL-1 and IL-12, tissue inhibitor of metalloproteinases, and retinoic acid [38–40],
we previously reported that physiological concentrations of thyroid hormone are pro-angiogenic
by multiple mechanisms. This raises the possibility that thyroid hormone (thyroxine) is a model of
non-protein stimulators of angiogenesis that may contribute to clinical resistance to anti-angiogenesis
drugs [41–43]. We also introduced compound MR-49 as a novel pro-angiogenesis modulator that is
synthesized from tetraiodothyroacetic acid (tetrac), a deaminated derivative of thyroxine hormone.
MR-49 expressed a pro-angiogenic rather than an anti-angiogenic activity of tetrac [44]. Prostaglandin
E2 (PGE2) as a mitogen in epithelial tumor cells is another example of a non-protein stimulator of
angiogenesis in the vascular endothelium. It has also been also shown that the overexpression of
cyclooxygenase-2 (an enzyme for conversion of arachidonic acid to prostaglandin H2) is accompanied
by enhanced expression and production of angiogenic factors such as VEGF, FGF-2, HIF-1, matrix
metalloproteinases (MMPs), and adhesion receptors of the integrin families. Therefore, it has been
found that, with a high output of PGE2 via expression of cyclooxygenase-2, angiogenesis causes tumor
development [45,46]. Furthermore, the CCN family of matricellular proteins are cytokines linking
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cells to the extracellular matrix. CCN3 is pro-angiogenic, while CCN5 is anti-angiogenic [47–50].
Multimerin 2 (MMRN2) has anti-angiogenesis effects, and its down-modulation occurs in the context
of tumor-associated angiogenesis [51,52].
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3. Side Effects in Anti-Angiogenic Therapy

It has been reported that angiogenesis inhibitors might potentially interfere with many normal
body processes such as wound healing [53], blood pressure [54], kidney function, fetal development,
reproduction, and increased risk of clots in the arteries that would result in stroke or heart
attack [53,55,56]. As an example, hypertension is one of the most observed side effects of systemic
inhibition of VEGF signaling, which is also one of the most manageable side effects with the use of
standard anti-hypertensive medications. Treatment of cancer by the inhibition of VEGF signaling
will cause endothelial dysfunction by decreasing the level of VEGF, which will eventually result
in hypertension.

Under normal conditions, VEGF is known to release vasodilator nitric oxide (NO) in vessel
walls by upregulating endothelial nitric oxide synthase (eNOS) and prostacyclin (PGI2), resulting
in vasodilation, through the activation of the mitogen-activated protein kinase (MAPK) and
phosphatidylinositol 3-kinase (PI3K) downstream pathways [57–60]. Therefore, by inhibition of
VEGF, the production of NO will be decreased, which will promote vasoconstriction, increase the
peripheral resistance and eventually elevate blood pressure [61].

Because angiogenesis is required for wound healing, high levels of VEGF are produced during
the repairing of normal wound. It has been reported that the inhibition of VEGF in angiogenesis
therapy could interfere with normal angiogenesis and cause a disruption in the angiogenesis process
or lead to a delay of the wound-healing process. In this regard, the treatment of patients having
metastatic colorectal cancer with bevacizumab showed an increase in post-surgical wound healing
complications, including wound dehiscence and impaired wound healing [62]. It was thought earlier
that anti-angiogenesis strategies by blocking tumor angiogenesis would limit permeability of its own
and other adjunct therapies. However, data demonstrated that treatment with anti-angiogenic drugs
results in a more efficient normalized vasculature that might allow for improved tumor delivery of
drugs [63–70]. Additionally, other anti-angiogenesis strategies such as anti-αvβ3 integrin have been
exploited for enhanced active targeted delivery into tumors [71,72].

4. Examples of Angiogenesis Inhibitors for Cancer Therapy

Angiogenesis inhibitors can be designed to block the formation of new blood vessels, and the
growth of tumors would thereby be halted but not eliminated; hence, anti-angiogenesis monotherapies
are not effective in humans as was hoped for [73,74]. Thus, combinatorial treatments with conventional
chemotherapy drugs are required. These inhibitors sometimes may not eliminate tumors and in order
to achieve optimal treatment, a combination of anti-angiogenesis and conventional chemotherapy may
be required.
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In general, angiogenesis inhibitors can be classified into two main group of inhibitors: (i) direct
inhibitors that target endothelial cells in the growing vasculature, and (ii) indirect inhibitors that target
either tumor cells or the other tumor-associated stromal cells [75].

In direct inhibition of angiogenesis, inhibitors such as angiostatin, endostatin, arrestin, canstatin,
and tumstatin are known as fragments released on proteolysis of distinct ECM molecules and prevent
vascular endothelial cells from proliferating and migrating in response to a spectrum of angiogenesis
inducers, including VEGF, bFGF, IL-8, and PDGF [14,76–78]. It has also been reported that the direct
anti-angiogenic effect can be attributed to integrin receptors accompanied by several intracellular
signaling pathways [14]. For example, Eikesdal et al. identified the critical amino acids (L, V, and D)
within tumstatin, known as an inhibitor of endothelial cell proliferation, that confer anti-angiogenic
and antitumor activity to tumstatin peptide, which is associated with the expression of the adhesion
receptor, αvβ3 integrin, on tumor endothelial cells [79].

As mentioned above, indirect angiogenesis inhibitors will block the expression or activity of
pro-angiogenic proteins like EGFR [80]. For example, Ciardiello et al. evaluated the anti-angiogenic
and antitumor activity of gefitinib (ZD1839; Iressa®), a small molecule known as an EGFR tyrosine
kinase inhibitor (TKI) in human colon (GEO, SW480, and CaCo2), breast (ZR-75-1 and MCF-7 ADR),
ovarian (OVCAR-3), and gastric (KATO III and N87) cancer cells, that co-expresses TGF-α and EGFR
(pro-angiogenic factor) [81]. Additionally, the U.S. FDA has approved a number of angiogenesis
inhibitors for the treatment of cancers (Figure 3, Table 2). R. K. Jain reported that for both direct
or indirect anti-angiogenic therapy, the balance between pro-angiogenic and anti-angiogenic factors
will be restored through the reduction of vessel permeability and hypoxia and enhancement of the
homogeneity of blood flow and perivascular cells coverage [82].
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For example, bevacizumab, a recombinant humanized monoclonal antibody to VEGF and known
by its brand name, Avastin®, blocks tumor cell-derived VEGF-A, impairing the development of
new vessels and leading to tumor starvation and, consequently, growth inhibition [83]. It has been
observed that the side effects of bevacizumab increased when it was combined with chemotherapy.
For example, in the treatment of colorectal cancer treated with IFL (a chemotherapy regimen consisting
of concurrent treatment with irinotecan, leucovorin (folinic acid), and fluorouracil) in combination with
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bevacizumab, bleeding complications were observed [84,85]. Combination therapy of bevacizumab
with carboplatin and paclitaxel improved the overall response and time to progression in patients with
advanced or recurrent non-small-cell lung cancer, but severe or fatal pulmonary hemorrhage has been
observed [86]. In ovarian cancer, the combination of platinum-based chemotherapy with bevacizumab
delayed progression and improved survival for newly diagnosed ovarian cancer patients after initial
surgery [87].

Table 2. FDA-approved inhibitors. These anti-angiogenesis strategies are being used in conjunction
with other anticancer chemotherapeutics.

Generic Name FDA-Approved Indication

Bevacizumab Colorectal, non-small-cell lung, and glioblastoma multiforme
Thalidomide Myeloma
Lenalidomide Myeloma (myelodysplastic syndrome (MDS))

Sorafenib Renal cell and hepatocellular carcinoma
Sunitinib Renal cell and gastrointestinal carcinoma

Temsirolimus Renal cell carcinoma
Axitinib Renal cell carcinoma

Pazopanib Renal cell carcinoma, kidney cancer, and advanced soft tissue sarcoma
Cabozantinib Thyroid cancer

Everolimus Kidney cancer, advanced breast cancer, pancreatic neuroendocrine tumors
(PNETs), and subependymal giant cell astrocytoma

Ramucirumab Stomach cancer and gastroesophageal junction adenocarcinoma
Regorafenib Colorectal cancer and gastrointestinal stromal tumor
Vandetanib Thyroid cancer

Ziv-aflibercept Colorectal cancer

Thalidomide, with the brand name of Immunoprin, is known for the treatment of multiple
myeloma and other types of cancers that express angiogenic cytokines such as VEGF and bFGF [88].
Lenalidomide (Revlimid®) is a derivative of thalidomide, and it is employed for the treatment of
multiple myeloma and a specific type of myelodysplastic syndrome (MDS) [89].

Sunitinib (previously known as SU11248) is a TKI and is used to treat kidney cancer; it was
also approved by the FDA to treat renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal
stromal tumors. Sunitinib also showed promising activity in the treatment of other tumors such as
neuroendocrine tumors [90], advanced non-small-cell lung cancer [91], breast cancer [92], and colorectal
cancer [93]. Sorafenib (Nexavar®) is a TKI drug that is approved for the treatment of liver cancer
(hepatocellular carcinoma) [94], kidney cancer (advanced renal cell carcinoma) [95], and radioactive
iodine-resistant advanced thyroid carcinoma [96].

Temsirolimus (Torisel®) was approved by the FDA in 2007 for the treatment of advanced RCC.
It is an inhibitor of the mammalian target of rapamycin (mTOR), an enzyme that regulates cell growth
and proliferation [97]. By activation of mTOR, c-Myc, and HIF-1α will be stimulated, which results in
an increase in genes that promote VEGF-associated angiogenesis, proliferation (cyclin D1), and cell
survival (survivin) [98]. Temsirolimus is also known to disrupt angiogenesis, which plays an important
role in the development and progression of RCC [99–101]. The combination of temsirolimus with
vorinostat showed higher anticancer activity compared with temsirolimus alone in both in vitro and
in vivo models of RCC. The effectiveness of the combination was due to a decrease of the surviving
levels, apoptotic induction, and improved reduction of angiogenesis [100]. Axitinib (Inlyta®) is another
FDA-approved small molecule TKI shown in clinical trials to induce partial response for the treatment
of RCC and several other tumor types. Phase II trials with this agent alone or in combination with
chemotherapeutic drugs were reported in several types of malignancy [102]. Additional FDA-approved
chemotherapeutic drugs are listed in Table 2.
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5. Conclusions

Angiogenesis plays a significant role in tumor progression. Effective inhibition of tumor
angiogenesis might arrest or halt tumor progression but would not eradicate the tumor as a stand-alone
therapy, especially with a single mechanism anti-angiogenic agent. Hence, the combination of
an anti-angiogenesis agent and chemotherapy might be essential for effective tumor treatment.

Conflicts of Interest: The authors declare no conflict of interest. However, the authors are pursuing the
development of broad-spectrum anti-angiogenesis compounds, which are not dealt with in this review.
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