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Abstract

Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extra-
ordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the 
most prominent components of the plant immune system. These small and usually basic peptides are deployed as a 
generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name 
implies a function against microbes, the range of plant-associated organisms affected by these peptides is much 
broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We dem-
onstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism 
of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their wide-
spread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent 
to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an 
important topic of research due to their significance in allowing plants to thrive and for their enormous potential in 
agronomical and pharmaceutical fields.
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Introduction

In their natural ecosystems, plants co-exist with a wide vari-
ety of micro-organisms and pests. In order to survive, plants 
have evolved sophisticated mechanisms that allow them to 
mount an e�ective defense response against harmful agents 
such as bacteria, fungi, nematodes, insects, and large herbi-
vores. Among these mechanisms are physical barriers such as 
waxy cuticular layers and trichomes capable of deterring ini-
tial agent infection (Glas et al., 2012; Malinovsky et al., 2014), 
intricate cell surveillance systems that recognize speci�c for-
eign threats (Spoel and Dong, 2012; Gust et al., 2017), a com-
plex network of plant hormones that interact to trigger the 

most advantageous defense responses (Pieterse et  al., 2012; 
Campos et al., 2014), a myriad of transcriptional pathways that 
are wired to �nely tune plant development in response to 
attack (Tsuda and Somssich, 2015; Chae et al., 2016; Birkenbihl 
et al., 2017), and a cocktail of diverse proteins and secondary 
metabolites capable of providing a toxic barrier to the threat 
(Howe and Jander, 2008). Together, these mechanisms com-
pose the defensive layers that are crucial for plant survival, 
the so-called ‘plant immune system’ (Jones and Dangl, 2006; 
Dodds and Rathjen, 2010; Spoel and Dong, 2012; Dangl et al., 
2013; Campos et al., 2014).
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Research on the plant immune system and plant immunity has 
extensively focused on the molecular mechanisms involved with 
microbial pathogen recognition and activation of proper defense 
responses. Insights from decades of plant–pathogen interaction 
studies have demonstrated that the initial alert for the presence 
of an intruding organism and rapid activation of basal resist-
ance is mediated by plant transmembrane pattern-recognition 
receptors (PRRs) that are capable of detecting slowly evolving 
microbial-associated molecular patterns (MAMPs) such as frag-
ments of the bacteria cell wall or �agellum, components of the 
fungi cell surface, and secreted growth factors (Chisholm et al., 
2006; Jones and Dangl, 2006; Boller and He, 2009; Dangl et al., 
2013; Wang et al., 2014). To circumvent this MAMP-triggered 
immunity, pathogenic microbes produce polymorphic e�ector 
proteins that can be secreted at the pathogen–plant cell interface 
or directly injected inside the plant cell through needle-like pro-
tein complexes (Chisholm et al., 2006; Jones and Dangl, 2006; 
Dangl et al., 2013; Liu et al., 2013; Wang et al., 2014). Those e�ec-
tors promote virulence by mimicking or inhibiting plant cellu-
lar functions. To counteract this e�ector-triggered susceptibility, 
plants employ disease resistance (R) proteins that speci�cally 
recognize microbial e�ectors and activate more robust defense 
responses such as hypersensitive cell death at the site of infection 
(Jones and Dangl, 2006; Boller and He, 2009; Spoel and Dong, 
2012; Dangl et al., 2013). As in an evolutionary arms race, natural 
selection drives pathogens and plants to constantly develop new 
e�ector or R proteins to promote e�ector-triggered susceptibil-
ity or e�ector-triggered immunity, respectively. This model of 
plant immunity has been constantly extended to include speci�c 
herbivore and damage-derived danger signals that are also rec-
ognized by associated PRRs, demonstrating that the mechanism 
for how plants perceive and mount defenses against complex 
attackers is remarkably similar to those observed for microbial 
organisms (Felton and Tumlinson, 2008; Howe and Jander, 2008; 
Mousavi et al., 2013; Campos et al., 2014). Additionally, it is now 
becoming evident that, upon attack, conserved signaling com-
ponents of the plant immune system interact to �nely tune its 
activity and the �tness cost of unnecessary defense responses 
(Hatsugai et al., 2017; Nobori et al., 2018).

While there is a wealth of knowledge on recognition of 
attackers and the early steps in the activation of the plant defense 
responses, a less understood part of the plant immune system 
involves the action of more generalist host defense strategies 
that are used to provide direct and durable resistance against 
a large spectrum of pests and pathogens. These chemical and 
morphological defense traits are characterized by a high level 
of heteromorphism among plant species and heterogeneous 
mechanisms of action (Table  1). One of the most promin-
ent generalist chemical barriers employed to fend o� infect-
ive agents is that provided by antimicrobial peptides (AMPs). 
These are distinguished by their overall basic nature and small 
size (up to 100 amino acid residues). Most plant AMPs present 
an ‘amphipathic design’, a conformation where the hydropho-
bic and cationic amino acids are clustered into distinct seg-
ments of the peptide (Jenssen et al, 2006; Fjell et al., 2012; Fox, 
2013; Wang et al., 2016). Interestingly, some AMPs adopt this 
amphipathic conformation only when interacting with their 
targets (Zaslo� et al., 2002). Moreover, AMPs can be derived 

from single gene-encoded precursor molecules (the pre-pep-
tide), from inactive precursor proteins (zymogens), or from the 
internal sections of mature proteins (encrypted AMPs), all of 
which are cleaved and frequently post-translationally modi�ed 
to generate the mature peptide (Brogden et  al., 1997; Tailor 
et  al., 1997; Silverstein et  al., 2005; Toke, 2005; Utkina et  al., 
2013; Tam et al., 2015; Ramada et al., 2017).

The ever-increasing number of AMPs isolated from plants, 
the wide range of plant attackers whose development is in�u-
enced by these peptides, the novel �ndings on their diverse 
mechanisms of actions, and the recent observation that plant 
signaling peptides may have evolved from ancient AMPs all pro-
vide an impetus to consider immunity from the perspective of 
these molecules (Lay and Anderson, 2005; Gruber et al., 2008; 
Pelegrini et  al., 2011; Tavormina et  al., 2015; Bircheneder and 
Dresselhaus, 2016; Bolouri Moghaddam et al., 2016; Wang et al., 
2016; Ageitos et al., 2017). In this review, we focus on the advances 
in our understanding of the role of AMPs in plant immunity. We 
highlight evidence to support the proposal that these chemical 
shields compose an essential and constantly evolving branch of 
the plant immune system. We show that AMP e�ciency as a 
defense barrier is achieved by an astonishing heterogeneity in 
host peptide composition and a vast diversity in mechanisms of 
action, allowing plants to utilize these molecules as weapons to 
combat a broad spectrum of pests and pathogens. Readers are 
also referred to a wealth of excellent review articles focusing on 
the structural properties of plant AMPs as well as the signaling 
hubs involved with plant immunity (Tossi and Sandri, 2002; Sels 
et al., 2008; Howe and Jander, 2008; Desai et al., 2010; Maróti 
et al., 2011; Pelegrini et al., 2011; Dangl et al., 2013; Viana et al., 
2013; Campos et al., 2014; Kim et al., 2014; Conrath et al., 2015; 
Tam et al., 2015; Bolouri Moghaddam et al., 2016; Ageitos et al., 
2017; Ramirez-Prado et al., 2018).

AMPs comprise a fundamental section of 
the plant immune system

A number of features underscore the role of AMPs in plant 
defense against pest and pathogen attack, further emphasizing 
how these peptides comprise a distinct and elementary branch 
of the plant immune system. First, spatiotemporal analysis of 
AMP gene expression demonstrates that some are constitu-
tively found in all plant organs, whereas others are detected 
only in a condition- and/or tissue-speci�c manner (Broekaert 
et al., 1997; Berrocal-Lobo et al., 2002b; Silverstein et al., 2007; 
Pelegrini et al., 2011; Tam et al., 2015). This heterogeneous pat-
tern of expression indicates that while some AMPs are imme-
diately available at any site of infection, other are deployed only 
upon attack to deter organ-speci�c invaders. The observation 
that these di�erent expression mechanisms operate along-
side one another is probably a strategy to maximize resistance 
against constantly evolving harmful agents. This idea is further 
corroborated by the observation that AMP-mediated defense is 
not achieved by the presence of a unique AMP in the damaged 
organ but rather by a complex cocktail of peptides with di�er-
ent expression patterns and action mechanisms (Zaslo�, 2002; 
Spelbrink et al., 2004; Barbeta et al., 2008; Poth et al., 2011).
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A fundamental feature of the vertebrate immune system 
involves responses that are capable of adjusting to the attack-
ing organisms. This adaptive immune system relies on somatic 
cells that employ antigen receptors not encoded in the germ 
line but generated de novo in each individual upon contact with 
the pathogen (Iwasaki and Medzhitov, 2010). Even though 
plants lack this type of somatic adaptive defense—a major 
di�erence between plant and animal immune systems—their 

immune system does show a form of ‘adaptation to attack’ 
as many morphological and chemical defense shields can be 
raised (i.e. have their production increased) when the plant 
is challenged. The majority of AMP genes show this type of 
adaptive response, given that their expression is quickly up-
regulated upon microbial or herbivore attack (Lee et al., 2000; 
Berrocal-Lobo et al., 2002b; Lay and Anderson, 2005; Jenssen 
et al., 2006; Utkina et al., 2013; Chapman et al., 2016; Herbel 

Table 1. Overview of the main classes of plant antimicrobial peptides

Class name Structural hallmark Size and 
mass

Mode of action References

α/β-thionins Two antiparallel α-helices and one 

antiparallel double-stranded 

β-sheet. Three to four disulfide 

bonds.

45–48 aa, 

~5 kDa

Interaction with membrane lipids followed by 

increase in cell membrane permeability and 

lysis.

Thevissen et al., 1996; Stec 

et al., 2004; Stec, 2006; Tam 

et al., 2015.

Defensins (γ-thionins) One α-helix and three antiparallel 

β-sheets. Four to five disulfide 

bonds.

45–54 aa,

~5–7 kDa

Interaction with specific membrane 

components to trigger intracellular signaling 

cascades that hinder pathogen growth. 

Can also inhibit the action of insect 

digestive proteins.

Pelegrini and Franco, 2005; 

Pelegrini et al., 2008a; 

Lacerda et al., 2014.

Heveins One antiparallel β-sheet and 

sporadic short α-helices. Three to 

five disulfide bonds.

30–45 aa, 

~5 kDa

Inhibit bacterial and fungal growth through 

interaction with the machinery involved 

with microbial cell wall biosynthesis and 

pathogenicity. Also promote defense 

against large mammals by working as 

allergens.

Koo et al., 1998; Blanco, 2003; 

Odintsova et al., 2009; Porto 

et al., 2012; Slavokhotova 

et al., 2014.

Knottins Three antiparallel β-sheets 

connected by hypervariable loops. 

Three disulfide bonds forming a 

conserved ‘knotted’ structure.

28–37 aa, 

~4 kDa

Bind to various molecular targets including 

microbial membrane and intracellular 

components. Also work as α-amylase or 

protease inhibitors.

Hwang et al., 2010; Cândido 

et al., 2014; Nguyen et al., 

2014.

Cyclotides Characterized by the same ‘knotted’ 

arrangement found in knottins 

but with the N- and C-terminals 

covalently joined by a peptide 

bond to form a circular structure.

28–37 aa, 

~4 kDa

Can disrupt the biological membranes of 

specific pathogens, interact with specific 

membrane lipids to internalize into the 

target cells to modify the activity of 

internal cellular components and alter 

the physiological properties of arthropod 

digestive systems.

Gruber et al., 2008; Burman 

et al., 2015; Weidmann and 

Craik, 2016; Craik and Du, 

2017.

Lipid transfer proteins Four α-helices linked by flexible 

loops held in a compact fold by 

four disulfide bonds. A large and 

internal tunnel-like cavity along the 

axis of the molecule forms a lipid-

binding site.

70–90 aa,

~9–10 kDa

Possibly interact with microbial membranes to 

‘cage’ their lipid molecules into the peptide 

lipid-binding site. Such interactions would 

lead to loss of membrane integrity and 

increase membrane permeabilization.

Maldonado et al., 2002; 

Carvalho and Gomes, 2007; 

Yeats and Rose, 2008; 

Conrath et al., 2015; Safi 

et al., 2015.

Snakins Helix–turn–helix domain and a short 

helical region located between 

two large loops, which are held in 

place by three disulfide bonds.

60–70 aa,

~7 kDa

Mechanism of action remains to be 

elucidated. Capacity to disrupt microbial 

membranes is ruled out due to their inability 

to interact with artificial lipid membranes.

Porto and Franco, 2013; Yeung 

et al., 2016; Oliveira-Lima 

et al., 2017.

α-harpinins Helical hairpin structure where both 

α-helices are oriented antiparallel 

and connected by two disulfide 

bonds.

31–50 aa,

~4–5 kDa

Mechanism of action remains to be 

elucidated. Present antimicrobial and 

trypsin-inhibitory activity.

Nolde et al., 2011; Rogozhin 

et al., 2012; Tam et al., 2015.

2S albumins Five α-helices arranged in a right- 

handed superhelix. Three to four 

disulfide bonds.

Up to 100 aa,

~3–10 kDa

Mechanism of action remains to be 

elucidated. Present antimicrobial and 

allergenic activity.

Pantoja-Uceda et al., 2004, 

Maria-Neto et al., 2011.

Short non-disulfide  

rich peptides/

Glycine-rich proteins

Few or no cysteine residues. May 

present a high percentage 

of glycines in their primary 

sequence. Structure varies from 

simple random coils to complex 

peptides with more than 10 

helices.

7–50 aa,

<7 kDa

Interact with multiple targets such as 

the microbial cell surface, internal cell 

structures, and the nuclei to modulate the 

metabolism of pathogens.

Pelegrini et al., 2008b; Tavares 

et al., 2012; Zottich et al., 

2013; Cândido et al., 2014; 

Santana et al., 2015.
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et al., 2017). The e�ectiveness of this strategy is observed in 
transgenic plants where the overexpression of AMP genes 
is associated with enhanced tolerance to pathogen attack 
(Almasia et al., 2008; Maróti et al., 2011; Mohan et al., 2014; 
Ji et al., 2015).

The plant immune system is usually described as a set of dan-
ger-recognition systems in which an input signal—the stressful 
condition—is recognized and translated by a conserved core 
signaling module to activate the appropriate defense outputs 
(Fig. 1) (Campos et al., 2014; Bolouri Moghaddam et al., 2016). 
According to this model, danger signals generated by biotic 
stressors are initially perceived by PRRs located at the plant 
cell surface. The relevance of this initial step of recognition for 
plant defense is evidenced by the vast diversity of danger sig-
nals whose cognate plant receptors have already been identi�ed 
and are currently under study (Mousavi et  al., 2013; Campos 
et al., 2014; Choi et al., 2014; Kim et al., 2014; Saijo et al., 2018; 
Wang et al., 2018). PRRs are coupled to a network of signal-
ing cascades whose activation converts the danger signals into 
the most suitable defense responses. A characteristic of this core 
signaling module is the convergent utilization of ubiquitously 
occurring cellular messengers, such as reactive oxygen species 
(ROS), calcium sensors, nitric oxide (NO), mitogen-activated 
protein kinases (MAPKs), electric signals, and plant hormones, 
to orchestrate large-scale transcriptional reprogramming that 
ultimately leads to the production of a wide array of defense 
traits (Pedley and Martin, 2005; Kim et  al., 2014; Tsuda and 
Somssich, 2015; Bolouri Moghaddam et al., 2016; Gilroy et al., 
2016). Recent research has indicated that AMP genes are 
integrated within this immunity-signaling network, as their 
expression appears to be an output governed by the same core-
signaling module responsible for the control of several other 
plant defense responses (Fig. 1). For example, plant hormones 

that act as central regulators of plant immune responses, such 
as jasmonic acid, ethylene, and salicylic acid, are frequently 
described as potent up-regulators of AMP gene expression 
in numerous plant species (Lee et  al., 2000; Kiba et  al., 2003; 
Nahirñak et al., 2012; Tesfaye et al., 2013; Bolouri Moghaddam 
et  al., 2016; Herbel et  al., 2017). These hormones are known 
modulators of transcription factors whose activity is essential 
for AMP responses upon pathogen attack (Berrocal-Lobo et al., 
2002a; Hiruma et  al., 2011). Indeed, the correlation between 
defense hormones and AMP induction is so evident that some 
AMP genes, such as Thi2.1 and PDF1.2, are established as 
important marker genes to study the activation of plant hormo-
nal and immune system signaling pathways (Zander et al., 2010).

Plant AMPs also interact with ROS and MAPK signaling 
cascades to regulate defense responses, although in a fashion 
that is still poorly understood (Bolouri Moghaddam et  al., 
2016). For example, microbial pathogen recognition by plant 
PRRs activates multiple MAPK signaling cascades that culmi-
nate in up-regulation of AMP genes (Asai et al., 2002; Meng 
et al., 2013). At the molecular level, it has been demonstrated 
that MAPKs are responsible for activation of transcription fac-
tors involved with the expression of plant AMPs (Meng et al., 
2013). In agreement with this observation, MAPK-knockout 
mutant plants show signi�cant reductions in the expression 
patterns of speci�c AMP genes, even after treatment with 
potent AMP elicitors such as jasmonic acid, which may lead to 
increased susceptibility to pathogen infection (Petersen et al., 
2000; Meng et  al., 2013; Bolouri Moghaddam et  al., 2016). 
Furthermore, components of a ROS-activated MAPK sign-
aling cascade can physically interact with AMPs as a poten-
tial strategy to regulate plant defense processes (Damon et al., 
2012; Bolouri Moghaddam et  al., 2016). Alternatively, plant 
AMPs can also work as modulators of the cellular redox status, 

Fig. 1. Antimicrobial peptide (AMP) genes are integrated into the plant immune system signaling cascade. Stressful conditions induced by biotic attack 
engender danger signals that are perceived by specific pattern-recognition receptors (PRRs) located at the plant cell surface. PRRs are coupled to a 
conserved signaling module that utilizes ubiquitously occurring cellular messengers (such as ROS, MAPK, Ca2+ sensors, nitric oxide, electric signals, and 
plant hormones) to translate the danger input signals into a large-scale transcriptional reprogramming that ultimately leads to the production of the most 
appropriate defense responses. AMP genes are integrated within this immunity-signaling network, as their expression appears to be governed by the 
same signaling cascade responsible for the control of other plant defense responses. Interestingly, AMPs can also function as signaling molecules that 
modulate the action of some components of the immunity-signaling module (dashed red line and arrow), suggesting that some of these peptides may 
play a fundamental role as components of feedback loops that regulate the duration and intensity of a plant defense response. Abbreviations: NO, nitric 
oxide; ROS, reactive oxygen species; MAPK, mitogen-activated protein kinase.
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whether by converting plant-generated ROS to other less 
reactive compounds or, in an opposite fashion, by inducing the 
accumulation of ROS (and NO) in microbial cells as a strategy 
to trigger apoptosis and eliminate the threat (Aerts et al., 2007; 
Huang et al., 2008; van der Weerden et al., 2008; Mello et al., 
2011). Surprisingly, it has been reported that, besides their role 
as an antimicrobial shield, some AMPs can also act as antioxi-
dant enzymes, thus being directly involved in the control of 
redox status (Huang et  al., 2008). However, the mechanisms 
utilized by AMPs to modulate ROS are still poorly under-
stood. Taken together, these �ndings indicate that the same 
signaling cascade utilized by plants to orchestrate the immune 
responses to pest and pathogen attack governs the expression 
and activity of AMPs. Interestingly, recent �ndings that plant 
AMPs can further regulate the activity of the aforementioned 
cellular messengers involved with the immune system signaling 
module (reviewed by Bolouri Moghaddam et al., 2016)—for 
example, by activating MAPK and ROS signaling cascades—
suggest that these peptides may play a role as components of 
feedback loops that regulate the duration and intensity of a 
plant defense response (Fig. 1).

The e�cacy of a speci�c immune response is re�ected in 
the extent to which pathogens and pests have evolved e�ec-
tive counter-measures that allow them to evade that particu-
lar defensive barrier. Given the e�ectiveness of plant AMPs as 
chemical shields, it is not surprising that many plant-harming 
agents have developed inducible mechanisms to evade inter-
action with plant AMPs. For example, as we discuss later, the 
antibacterial action of AMPs is highly dependent on electro-
static interactions between the plant AMP (positively charged) 
and the outermost layer of the bacterial cells (negatively 
charged). Upon contact with the plant peptides, some Gram-
positive and Gram-negative bacteria can activate the expres-
sion of speci�c regulons whose gene products are involved in 
the process of remodeling cell wall lipopolysaccharides and 
membrane lipids (Rio-Alvarez et al., 2012; Pandin et al., 2016). 
Such modi�cations on their outermost layers alter the bacte-
rial surface charge in order to avoid AMP interactions, thus 
leading to resistance to the peptide and promotion of patho-
genesis (Gunn, 2008; Rio-Alvarez et  al., 2012; Pandin et  al., 
2016). Modi�cation of the electrostatic environment is actu-
ally a recurring strategy of AMP resistance in bacteria, as it has 
been demonstrated that some of these micro-organisms can 
secrete cationic exopolysaccharides that cause charge repulsion 
of AMPs or anionic exopolymers that sequester and aggregate 
the peptides away from the bacteria (Otto, 2006). Eukaryotic 
organisms have also evolved mechanisms to avoid or detoxify 
plant AMPs upon interaction. For example, plant AMPs are 
capable of inhibiting the action of digestive enzymes present in 
the gastrointestinal tract of herbivores in order to lower nutri-
tional gain from herbivory (see section below). Insects com-
bine multiple strategies to overcome this mechanism of action: 
they can overproduce the existing digestive enzymes, increase 
the expression of inhibitor-insensitive protease isoforms, and 
even activate the production of enzymes that hydrolyse and 
disarm plant inhibitors (Zhu-Salzman and Zeng, 2015). A 
more indirect counter-measure utilized by many pathogens 
and arthropods to avoid AMPs (and also other plant defense 

responses) involves the hijacking and modulation of plant hor-
monal pathways involved with the activation of the immune 
system (Thatcher et  al., 2009; Rahman et  al., 2012; Campos 
et al., 2014; Zhang et al., 2017). This mechanism relies on the 
observation that the regulation of plant AMP genes is largely 
dependent on plant hormones, as already discussed (Fig. 1).

Finally, from a holistic perspective, the relevance of AMPs 
for immunity is highlighted by their ubiquitous presence not 
only in land plants but throughout all kingdoms of life (Tossi 
and Sandri, 2002; Zaslo�, 2002; Jenssen et al., 2006; Wang et al., 
2016). This widespread occurrence indicates that these pep-
tides are ancient weapons of defense that appeared early in the 
history of life and still play a fundamental role in the battle 
against pest and pathogen attack.

AMPs are ancient, widespread, and 
dynamically evolving weapons of defense

Millions of years of constant interactions with harmful organ-
isms have led to the evolution of an astonishing collection of 
defense strategies in plants. Among these, AMPs excel as one 
of the most e�cient and prevalent chemical weapons utilized 
to provide resistance against pest and pathogen attack (Perron 
et al., 2006; Peschel and Sahl, 2006). This view is based on the 
widespread incidence of AMPs in plant genomes. In Arabidopsis 
thaliana, rice, and alfalfa, for example, it is estimated that AMP-
coding genes comprise up to 3% of the whole gene repertoire 
(Mergaert et  al., 2003; Silverstein et  al., 2005, 2007). Indeed, 
the diversity of AMPs discovered in plants is so striking that 
it is di�cult to categorize them except on the basis of their 
tridimensional structure: Table 1 provides a broad overview of 
the main classes of plant AMPs (Broekaert et al., 1997; Cândido 
et  al., 2014; Nawrot et  al., 2014; Tam et  al., 2015; Goyal and 
Mattoo, 2016).  This diversity becomes more impressive when 
it is observed that many AMP genes are taxon-speci�c, appear-
ing only in particular botanical families or groups (Silverstein 
et al., 2005, 2007; Gruber et al., 2008). Comprehensive infor-
mation on hundreds of AMPs identi�ed from several plant 
families can be found in antimicrobial peptide databases such 
as APD (http://aps.unmc.edu/AP/) and PhytAMP (http://
phytamp.hammamilab.org/main.php), whilst recent use of 
computational prediction tools points to a tremendous increase 
in this number in the near future (Silverstein et al., 2005, 2007; 
Hammami et al., 2009; Niarchou et al., 2013; Tam et al., 2015; 
Wang et al., 2016; Porto et al., 2017).

The ubiquitous occurrence of these AMPs not only in 
plant species but also throughout all kingdoms of life is strong 
evidence that these peptides are ancient weapons of defense 
(Tossi and Sandri, 2002; Zaslo�, 2002; Brogden, 2005; Toke, 
2005; Jenssen et al., 2006; Perron et al., 2006; Peschel and Sahl, 
2006; Wang et  al., 2016). Indeed, it is reasonable to specu-
late that the origin of these AMPs precedes the transition 
of plants from water to land. Despite their ancient lineage, 
AMP genes have evolved in a particular manner in plants, 
possibly as a consequence of the unique evolutionary pres-
sures experienced by these organisms and distinctive dynamics 
in their genome evolution (e.g. high tolerance of changes in 
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chromosome number). For example, it has been demonstrated 
that sequence-related subgroups of AMP genes are clustered 
in speci�c regions of the genome of plants as an outcome 
of successive rounds of local duplications (Silverstein et  al., 
2005, 2007). These studies have also demonstrated that AMP 
mature sequences, secondary structures, and sizes are usu-
ally hypervariable whereas there is strong conservation in the 
sequence of the AMP signal peptide, the intron position, and 
the cysteine motifs.

Plant AMPs are characterized by an unusually high content 
of cysteine residues (Zaslo�, 2002; Silverstein et al., 2005, 2007; 
Hammami et  al., 2009; Poth et  al., 2011; Maróti et  al., 2015; 
Tam et al., 2015). These cysteine motifs are conserved among 
AMP classes, allowing the formation of an unusual and highly 
stabilized topology that confers high thermal, chemical, and 
enzymatic stability to the peptides (Colgrave and Craik, 2004; 
Wang et al., 2009; Tam et al., 2015). As we discuss below, this 
structural rigidity provided by the multiple disul�de bonds 
(see Table  1) is crucial for plant AMPs to act as a defensive 
shield. Interestingly, the high content of cysteine residues may 
also explain the enormous diversity of AMP genes in plants. 
In a genome-wide analysis performed in di�erent species, 
Silverstein et  al. (2007) demonstrated that distinct classes of 
plant AMPs are subjected to frequent internal duplications 
and rearrangements of their cysteine motifs. Such events 
would permit a peptide to accept di�erent types of bene�-
cial mutations while still folding to its native structure (Bloom 
et al., 2006), thus allowing a recurrent emergence and main-
tenance of new AMPs in plant genomes. This theory can be 
extended to a more comprehensive perspective, as it is now 
becoming clear that the frequent appearance of plant peptides 
with novel and non-defense related functions may be a conse-
quence of gene-duplication and neo-functionalization events 
that occurred in polymorphic AMP ancestors. In fact, it has 
been demonstrated that signaling peptides involved with plant 
development, reproduction, metal tolerance, and even commu-
nication with symbiotic bacteria evolved from ancient plant 
AMPs (Silverstein et al., 2005; Stotz et al., 2009; Van de Velde 
et  al., 2010; Maróti et  al., 2011, 2015; Marshall et  al., 2011; 
Bircheneder and Dresselhaus, 2016; Arnold et al., 2017; Parisi 
et al., 2018). For example, in the Brassicaceae and Poaceae, self-
incompatibility responses between the male and female repro-
ductive organs are mediated by peptides of the defensin family, 
which utilize a signaling cascade to arrest pollen tube growth 
that is remarkably similar to the one utilized by other AMPs to 
halt the growth of fungal hyphae (Takayama et al., 2001; Amien 
et al., 2010; Marshall et al., 2011; Bircheneder and Dresselhaus, 
2016). In Medicago truncatula, nodule-speci�c defensin-like pep-
tides are able to control the di�erentiation of bacterial endos-
ymbionts into nitrogen-�xing bacteroides while still retaining 
some antimicrobial activity (Stotz et al., 2009; Tiricz et al., 2013; 
Maróti et al., 2015). The observation that some plant AMPs still 
retain a direct defense role but are also able to interact with 
plant transcription factors whose activity is associated with 
both defense and non-defense-related responses may represent 
an intermediary step in the evolutionary transition between 
a defense-related and a development-related peptide (Damon 
et al., 2012).

Plant AMPs confer resistance to a large 
spectrum of plant attackers

Classical studies on the plant immune system often rely on 
attacker challenge assays and phenotypic characterization of 
loss-of-function mutants. Similar experiments performed in 
single-AMP knockout or knockdown plants fail to detect any 
altered phenotype, even after pest or pathogen attack (Stotz 
et al., 2009; De Coninck et al., 2010). These observations suggest 
a high degree of functional redundancy among AMP genes and 
further support the idea that plants utilize a complex cocktail 
of peptides to optimize defense (Zaslo�, 2002; Spelbrink et al., 
2004; Barbeta et  al., 2008; Poth et  al., 2011). For this reason, 
much of the knowledge about the protective e�ects of AMPs 
comes through homologous and heterologous overexpression 
of single genes and/or puri�cation of the peptide and evalua-
tion of its activity in vitro (Spelbrink et al., 2004; de Zélicourt 
et  al., 2007; Ji et  al., 2015). These studies have demonstrated 
the crucial role of AMPs in plant immunity: even though the 
fundamental principle of AMPs is to present activity against 
microbial pathogens, the number of plant-associated organ-
isms whose development is a�ected by these peptides is much 
broader than that (Table  2). Among them are Gram-positive 
and Gram-negative bacteria, phytopathogenic fungi/oomycetes 
with di�erent lifestyles (e.g. the necrotrophic Rhizoctonia solani 
and the hemibiotroph Phytophthora infestans), nematodes, mol-
lusks, piercing-sucking insects (aphids), leaf-chewing insects, 
and even the parasitic plant Orobranche cumana. In fact, the anti-
infective action of AMPs is so broad that some authors favor the 
term ‘host-defense peptides’ when discussing the role of those 
molecules in immune systems (Mayer et al., 2010).

The chemical barrier: mechanisms of 
action of plant AMPs

The ability of plant AMPs to function as a chemical barrier 
that grants resistance against a large spectrum of attackers is 
based on two fundamental principles: (1) their remarkable 
structural stability, and (2) the diversity in their mechanisms 
of action (Table  1). The compact structure and the preva-
lence of disul�de bonds allow plant AMPs to maintain their 
conformation and activity even in harsh environments such 
as inside the plant vacuole or the digestive systems of her-
bivores (Montesinos, 2007; Pelegrini et  al., 2011; Tam et  al., 
2015). Moreover, one of the most fascinating features of plant 
AMPs is their ability to assume di�erent functions depending 
on the di�erent conditions or targets with which they interact. 
This ‘peptide promiscuity’ (reviewed by Franco, 2011) allows 
AMPs to operate through di�erent mechanisms of action in 
order to exploit di�erent weak spots depending on the attack-
ing organism.

The capacity to interact with bacterial membranes is a 
classical feature of microbial, animal, and plant AMPs. This 
mechanism relies on the perturbation of the so-called ‘bacte-
rial Achilles heel’, their cellular membrane (Zaslo� et al., 2002; 
Toke, 2005). In contrast to the outermost layer of the bacte-
rial membranes, which maintains a negative transmembrane 
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potential and is predominately composed of negatively 
charged phospholipid headgroups, AMPs typically have a posi-
tive charge (Shai, 1995; Stec et al., 2004; Toke, 2005; Fjell et al., 
2012; Tam et al., 2015). This electrostatic di�erence promotes 
the association between AMPs and the bacterial membrane, 
which is followed by perturbation of surface tension, disloca-
tion of lipids, and modi�cation of the membrane organiza-
tion (Fig. 2A). Alternatively, after a threshold concentration is 
achieved, AMPs can also form a cylindrical structure similar to 
a pore or staves in a barrel (Bocchinfuso et al., 2009; Bobone 
et al., 2012; Harris et al., 2016). In both cases, AMP–membrane 
interaction leads to leakage of cellular components and fatal 
disruption of the microbial membrane. Moreover, AMP–mem-
brane associations can be additionally promoted by the capac-
ity of some peptides to adopt an amphipatic design, which 
further allows them to interact with and permeate lipid layers 
(Matsuzaki et al., 1995; Shai, 1995; Tossi et al., 2000; Tam et al., 
2015). The signi�cance of those electrostatic interactions for 

AMP antimicrobial activity is evidenced by the observation 
that these peptides act without requiring a membrane receptor, 
and also the relatively lower activity of AMPs on the mem-
branes of plants and animals, which are composed of lipids with 
no net charge, which maintain weaker membrane potential, 
and which contain cholesterol, a sterol capable of stabilizing 
the lipid bilayer and reducing peptide interactions (Matsuzaki 
et al., 1995; Zaslo� et al., 2002; Fox, 2013).

Plant AMPs can also target more speci�c structural compo-
nents of the cell surface, such as certain types of lipids of the 
plasma membranes or building blocks of the cell walls (Wilmes 
et  al., 2011). This binding speci�city allows certain classes of 
AMPs to act in a more directed manner against particular groups 
of pathogens. For example, the defensins—a widespread group 
of AMPs found in plants—act as potent antifungal peptides 
by interacting with speci�c sphingolipids present in the fun-
gal cell membrane (Thevissen et al., 2000; Wilmes et al., 2011; 
Hegedüs and Marx, 2013; Lacerda et al., 2014). Di�erently to 

Table 2. Plant-associated organisms whose development is affected by antimicrobial peptides (AMPs) produced by plants

Organism Source plant (Family) AMP Type of experiment References

Phytopathogenic bacteria (Gram-negative)

Burkholderia plantarii Oat (Poaceae) Thionin Heterologous expression Iwai et al., 2002

Pseudomonas syringae Wheat (Poaceae) β-purothionin Heterologous expression Oard and Enright, 2006

Pectobacterium carotovorum Potato (Solanaceae) Snakin-1 Overexpression Almasia et al., 2008

Pectobacterium atrosepticum Potato (Solanaceae) Snakin-2 Overexpression Mohan et al., 2014

Phytopathogenic bacteria (Gram-positive)

Clavibacter michiganensis Potato (Solanaceae) Snakin-2 In vitro challenge Berrocal-Lobo et al., 2002b

Buckwheat (Plygonaceae) Fa-AMP1/Fa-Amp2 In vitro challenge Fujimura et al., 2003

Curtobacterium flaccumfaciens Buckwheat (Plygonaceae) Fa-AMP1/Fa-Amp2 In vitro challenge Fujimura et al., 2003

Phytopathogenic fungi/Oomycetes

Alternaria brassicicola Sunflower (Asteraceae) HaDEF1 In vitro challenge de Zélicourt et al., 2007

Alternaria solani Nicotiana megalosiphon (Solanaceae) NmDef02 In vitro challenge Portieles et al., 2010

Fusarium graminearium Alfalfa (Fabaceae) MsDef1 In vitro challenge Spelbrink et al., 2004

Fusarium oxysporum Wheat (Poaceae) β-purothionin Heterologous expression Oard and Enright, 2006

Pythium graminicola Rice (Poaceae) OsTHI7 Overexpression Ji et al., 2015

Phytophthora infestans Nicotiana megalosiphon (Solanaceae) NmDef02 Heterologous expression Portieles et al., 2010

Rhizoctonia solani Potato (Solanaceae) Snakin-1 Overexpression Almasia et al., 2008

Verticillium dahliae Nicotiana megalosiphon (Solanaceae) NmDef02 In vitro challenge Portieles et al., 2010

Alfalfa (Fabaceae) alfAFP Heterologous expression Gao et al., 2000

Nematodes

Meloidogyne spp. Capsicum annuum (Solanaceae) CaSn In vitro challenge Mao et al., 2011

Colocasia esculenta (Araceae) CeCPI Heterologous expression Chan et al., 2010

Rice (Poaceae) OsTHI7 Overexpression Ji et al., 2015

Molluscs

Pomacea canaliculata Oldenlandia affinis (Rubiaceae) Kalata B1 In vitro challenge Plan et al., 2008

Oldenlandia affinis (Rubiaceae) Kalata B2 In vitro challenge Plan et al., 2008

Viola odorata (Violaceae) Cycloviolacin O1 In vitro challenge Plan et al., 2008

Insects

Aphis gossypii Pea (Fabaceae) PA1b Artificial feeding assay Gressent et al., 2007

Callosobruchus chinensis Mungbean (Fabaceae) VrCRP Artificial feeding assay Chen et al., 2002

Diatraea saccharalis Palicourea rigida (Rubiaceae) Parigidin-br1 Artificial feeding assay Pinto et al., 2012

Helicoverpa armigera Clitoria ternatea (Fabaceae) Cter M Artificial feeding assay Poth et al., 2011

Oldenlandia affinis (Rubiaceae) Kalata B1 Artificial feeding assay Barbeta et al., 2008

Sytophilus oryzae Pea (Fabaceae) PA1b Artificial feeding assay Louis et al., 2004

Parasitic plants

Orobranche cumana Sunflower (Asteraceae) HaDEF1 In vitro challenge de Zélicourt et al., 2007
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bacterial membrane interactions, AMP preference for certain 
membranes or lipid types is usually not dependent on charge 
di�erences but rather on the structural features and amino acid 
sequence of the peptide (Fjell et al., 2012). This type of interac-
tion results in the formation of transient pores that allow AMPs 
to easily translocate across the membrane and further inter-
act with intracellular components. Besides being a membrane 
component, sphingolipids also play an important role as sec-
ondary messenger molecules involved in the regulation of the 
cell cycle (Cheng et al., 2001; Lobo et al., 2007; Wilmes et al., 
2011). Indeed, a proposed mechanism of action for defensins 
suggests that, upon cellular uptake, these peptides can interact 
with sphingolipids to trigger downstream signaling cascades 
that ultimately lead to programmed cell death of fungi (van 
der Weerden et al., 2008; Wilmes et al., 2011) (Fig. 2B). Binding 
of plant AMPs to sphingolipids can also in�uence the in�ux 
and e�ux of ions in the pathogen cell. Fungal development is 
dependent on the maintenance of intracellular Ca2+ concen-
tration gradients, which are responsible for driving polarized 
(tip) growth (Jackson and Heath, 1993). Plant defensins such 
as the radish Rs-AFP2 and dahlia Dm-AMP1 bind to speci�c 
types of fungal membrane sphingolipids to trigger a drastic and 
rapid increase of Ca2+ in�ux into the fungus cell, thus leading 
to dissipation of the gradients and inhibition of pathogen cell 
growth (Thevissen et al., 1996, 2003, 2004; Muñoz et al., 2014; 
Bolouri Moghaddam et al., 2016). The link between alteration 

in Ca2+ �uxes and AMP antifungal activity is supported by the 
observation that a variant of Rs-AFP2 that displays enhanced 
antifungal activity (V39R) also stimulates a stronger Ca2+ 
uptake, whereas a variant that is virtually devoid of antifungal 
activity (Y38G) does not stimulate Ca2+ in�ux (De Samblanx 
et  al., 1997). Unlike insect and mammal defensins, Rs-AFP2 
and Dm-AMP1 do not form ion-permeable pores, and nor do 
they change the electrical properties of arti�cial lipid bilayers, 
indicating that plant AMP-triggered alteration in Ca2+ �uxes 
results from a distinctive but still not clearly understood mech-
anism (Thevissen et al., 2000, 2003, 2004).

Many of the studies described so far that have dealt with 
AMP action mechanisms have focused on the capacity of these 
peptides to associate with structural lipids of biological mem-
branes (Fig.  2A, B). However, as a strategy to diversify their 
weapons of defense, plants have also evolved AMPs that act 
by speci�cally disturbing the function of internal components 
of the cells of their attackers (Fig.  2C). This mechanism of 
action can be initiated by di�erent processes, including pep-
tide interactions with speci�c membrane receptors that trans-
duce the signal to internal cell mediators, AMP internalization 
pathways that also utilize membrane receptors, or commonly 
occurring endocytic uptakes that demand energy expenditure 
(Lichtenstein et al., 1988; Lobo et al., 2007; Nguyen et al., 2011; 
Marcos et al., 2012; Hayes et al., 2013, 2018; El-Mounadi et al., 
2016). For example, Koo et al. (2004) showed that Pn-AMP1, 

Fig. 2. Action mechanisms of plant antimicrobial peptides (AMPs). (A) Electrostatic differences between AMPs (positively charged) and the bacterial outer 
membrane (negatively charged) promote interaction. Upon association, AMPs can dislocate membrane lipids to modify the microbial membrane structure 
or form structures similar to pores in the membrane. Both mechanisms lead to leakage of cellular components and fatal disruption of the microbial 
membrane. (B) Interaction with specific membrane targets such as types of sphingolipids in fungus cells (indicated in purple in the inset) can lead to 
cellular uptake of AMPs, which further interact with internal cell components to activate signaling cascades that culminate in programmed cell death. (C) 
AMPs can also associate with membrane receptors or traverse biological membranes (internalization) to target the internal components of eukaryotic 
cells such as the vacuole, the mitochondrion, the nucleus, and components of the cytoskeleton.
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an antifungal AMP produced in the seeds of morning glory 
(Ipomoea nil), causes a rapid depolarization of the actin cytoskel-
eton that is correlated with arrest of fungal growth. The authors 
demonstrated that Pn-AMP1 associates with membrane recep-
tors such as cell wall integrity sensors present in the fungal 
plasma membrane, which in turn transduce the external pep-
tide signal into an internal signaling cascade that modi�es the 
status of the actin �laments. PsD1, a defensin constitutively 
produced in seeds and leaves of pea (Pisum sativum) is capable 
of crossing fungal membranes (via an unknown mechanism) to 
interact with nuclear proteins involved with the regulation of 
fungal cell division and control of the cell cycle, thus inhibit-
ing pathogen cell growth (Almeida et  al., 2000; Lobo et  al., 
2007). The precise mechanism utilized by plant AMPs to dis-
turb the function of internal cell components is still not clearly 
understood; however, the list of internal targets is constantly 
expanding. Examples of internal cell components whose activ-
ity appears to be modulated by plant AMPs are the machinery 
involved with the initiation and elongation steps of protein 
synthesis (Méndez et al., 1996), the nucleus itself (Zottich et al., 
2013) the mitochondria (Esmaeili et  al., 2016), the vacuole, 
and other as yet unidenti�ed targets located in the cytoplasm 
(Hayes et al., 2013; El-Mounadi et al., 2016).

Finally, in addition to directly targeting pest and pathogen 
cells, plants can also employ AMPs as passive weapons of defense. 
For example, one of the most fascinating and frequently stud-
ied properties of plant AMPs concerns their capacity to indi-
rectly modulate physiological properties of the gastrointestinal 
tract of insects and other herbivores. The rationale behind this 
strategy is to reduce the nutritional gain of herbivory in order 
to impair herbivore growth. Plant AMPs can inhibit the action 
of enzymes involved with the digestive process, such as trypsin, 
chemotrypsin and α-amylase (Melo et  al., 2002; Pelegrini 
et al., 2008a), disrupt the cells of the insect midgut epithelium 
(Barbeta et al., 2008), and even alter the electrophysiology of 
intestinal cells to reduce nutrient absorption (Chouabe et al., 
2011). Interestingly, AMP action in the gastrointestinal tract 
appears to be target speci�c: it has been demonstrated that 
VuD1, a defensin from cowpea (Vigna unguiculata), shows strong 
inhibition of the activity of α-amylases from insect pests but 
not from fungi and mammals (Pelegrini et al., 2008a). Other 
examples of passive action of plant AMPs are their capacity to 
elicit allergenic responses in mammals (Pastorello et al., 1999; 
Blanco, 2003; Petersen et al., 2015) and their ability to inhibit 
the action of secreted proteins involved with fungal patho-
genicity in plants (Slavokhotova et al., 2014).

Conclusions and perspectives

Despite the fact that plants are continuously exposed to a 
myriad of pests and pathogens, we still live in a world that 
is dominated by these green organisms. This observation 
implies that plants have evolved highly e�ective mechanisms 
of defense that are deployed to hamper the development of 
attackers that threaten their tissues. In recent years, consider-
able progress in deciphering the genetic and molecular basis of 
the plant immune system has allowed researchers to visualize a 
conceptual framework of how a stressful condition generated 

by a biological threat is perceived by the plant and ultimately 
translated into an optimal defense strategy. In this context, 
AMPs comprise one of the most prevalent barriers utilized by 
plants to fend o� attack. Their ubiquitous occurrence among 
plant species is explained by the observation that these small 
molecules provide rapid, direct, and durable resistance against a 
large spectrum of pests and pathogens. Indeed, plant AMPs are 
now becoming a hot topic of research due to their importance 
in ensuring that plants thrive in natural environments, and also 
for their enormous potentials in the agronomical and pharma-
ceutical �elds (Porto et al., 2018).

Their small size and the high number of disul�de bonds 
found in plant AMPs allow these peptides to fold into a com-
pact size, with remarkable physical stability. This rigid topo-
logical con�guration is maintained among plant AMP families 
by strong conservation of cysteine residues while still allowing 
high tolerance to variations in other regions of the molecule. 
As such, AMPs are apt to evolve dynamically, which often 
results in the presence of multiple AMP gene families with 
di�erent modes of action in a single plant species (Bloom et al., 
2006; Silverstein et al., 2007). This dynamically evolving phe-
nomenon has a profound impact on the plant immune system 
since it allows the emergence and maintenance of new AMPs 
that are constantly changing to adapt to biotic stressors. It also 
permits neo-functionalization of AMP genes, expanding the 
repertoire of plant signaling molecules involved with responses 
to di�erent environmental conditions (Bircheneder and 
Dresselhaus, 2016; Arnold et al., 2017). In this context, com-
puter-assisted design strategies are now being widely used to 
perform in silico evolution on AMP genes, aimed at the devel-
opment of new molecules with a speci�c desired activity (Fjell 
et al., 2012; Porto et al., 2012, 2017). For example, the guava 
peptide Pg-AMP1 was recently used as a template for the de 
novo design of Guavanin-2, a potent AMP that presents a more 
speci�c spectrum of activity and lower toxicity towards human 
cells when compared to its native counterpart (Porto et  al., 
2018). It is reasonable to speculate that arti�cial optimization 
of plant AMPs will soon represent a rapid and cost-e�cient 
strategy to develop new natural pesticides designed to combat 
pests and pathogens of agronomic relevance. Moreover, the �t-
ness costs associated with the induction of a plant immune 
response often result in a negative impact on plant growth and 
in a reduction in yield (Huot et al., 2014). This ‘growth versus 
defense’ paradigm is physiologically explained by trade-o�s in 
the allocation of limited resources to growth or defense pro-
cesses and the existence of a complex cascade of signaling net-
works that ultimately regulate plant development in response 
to environmental conditions (Campos et  al., 2016; Züst and 
Agrawal, 2017; Guo et al., 2018). As small, single gene-encoded 
protein elements, we hypothesize that AMPs are manufactured 
quickly and at relatively low metabolic cost when compared to 
other defensive traits that demand the activation of large and 
very speci�c metabolic/biosynthetic pathways, such as second-
ary metabolites and glandular trichomes (Gershenzon, 1994; 
Zaslo�, 2002; Tam et al., 2015; Huchelmann et al., 2017; Guo 
et al., 2018). In agreement with this ‘low cost of production’ 
theory, there are few reports that associate the overexpression 
of a plant AMP with obvious negative impacts on plant growth 
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processes (Epple et al., 1997; Montesinos, 2007; Mohan et al., 
2014; Ji et  al., 2015), which is an entirely di�erent scenario 
compared to the overproduction of ‘costly’ defense barriers, 
where growth is severely impacted (Strauss et al., 2002; Campos 
et  al., 2016; Züst and Agrawal, 2017). Thus, in our opinion, 
the heterologous expression of AMP genes may represent an 
attractive strategy to increase defense responses with relatively 
little impact on plant development. Furthermore, AMPs can be 
seen as one of the most elementary chemical barriers produced 
by plants.

The evident role of AMPs as chemical shields that defend 
plants against a wide range of pests and pathogens leads to 
obvious speculation regarding the possibility of using those 
molecules to treat human diseases. In fact, plant AMPs are 
beginning to be evaluated for their potential to act against 
a large number of viruses, micro-organisms, and parasites of 
medical relevance (Chiche et al., 2004; Hayes et al., 2013, 2018; 
Nascimento et al., 2015; da Cunha et al., 2017). Interestingly, 
such studies are also indicating that these ‘natural antibiotics’ 
may display other important pharmaceutical properties such 
as anti-in�ammatory, anti-cancer, and immunomodulatory 
activities (Harris et al., 2016; Guzmán-Rodríguez et al., 2015; 
Molesini et al., 2017; Leite et al., 2018). In this context, AMPs 
can be considered as promising alternatives for use as com-
plementary molecules in traditional therapies (da Silva and 
Machado, 2012; Leite et al., 2018). In addition, their ultra-sta-
bility and high tolerance to sequence substitution have moti-
vated the development of AMPs as bioengineering sca�olds 
in the pharmaceutical industry (Wang et al., 2009; Craik and 
Du, 2017). Unfortunately, despite their promising healthcare 
potential and ongoing clinical trials, no plant-derived AMP has 
yet reached the status of becoming a clinically approved drug 
(da Cunha et al., 2017; Porto et al., 2018).

Their vital role in the plant immune system means that AMPs 
are being subject to ever-increasing research. Their wide spec-
trum of activities, dynamic ability to evolve, and broad mecha-
nisms of action are characteristics that make AMPs excellent 
weapons for plant defense and also very important candidates 
for agricultural and pharmaceutical purposes, clearly indicating 
a promising future for research into these molecules.
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