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Apelin is an endogenous peptide identified as a ligand of the G protein-coupled receptor

APJ. Apelin belongs to the family of adipokines, which are bioactive mediators released

by adipose tissue. Extensive tissue distribution of apelin and its receptor suggests, that it

could be involved in many physiological processes including regulation of blood pressure,

body fluid homeostasis, endocrine stress response, cardiac contractility, angiogenesis,

and energy metabolism. Additionally, this peptide participates in pathological processes,

such as heart failure, obesity, diabetes, and cancer. In this article, we review current

knowledge about the role of apelin in organ and tissue pathologies. We also summarize

the mechanisms by which apelin and its receptor mediate the regulation of physiological

and pathological processes. Moreover, we put forward an indication of apelin as

a biomarker predicting cardiac diseases and various types of cancer. A better

understanding of the function of apelin and its receptor in pathologies might lead to the

development of new medical compounds.
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INTRODUCTION

Apelin, an endogenous peptide, was identified as a ligand of the orphan G protein-coupled receptor
APJ, so the name apelin comes from APJ Endogenous Ligand. Apelin was first isolated from
the bovine stomach (Tatemoto et al., 1998). The APJ human gene (APLNR) encodes a seven-
transmembrane protein closely related to the angiotensin receptor (O’Dowd et al., 1993). Both
proteins share an identity of 54% in the transmembrane regions. However, angiotensin II does not
bind to APJ (Lee et al., 2000). In addition to angiotensin II, apelin is also a substrate for catalytic
angiotensin-converting enzyme 2 (ACE2) activity in vitro (Sato et al., 2013). The apelin receptor
contains consensus sites for palmitoylation, glycosylation, and phosphorylation by cyclic adenosine
monophosphate (cAMP)-dependent protein kinase (O’Dowd et al., 1993; Tatemoto et al., 1998).
The apelin-encoding gene (APLN) is located on chromosome Xq25-26.1 (Lee et al., 2000) and
encodes a 77-amino acid prepropeptide (Figure 1A). Preproapelin is cleaved from its C-terminus
to produce a mature apelin peptide, apelin-36, or a family of shorter peptides (apelin-17,−12,
and−13), the latter of which also exists as a pyroglutamyl form, [Pyr1]apelin-13 (Habata et al.,
1999) (Figure 1B).

In 1999, Habata et al. demonstrated the secretion of large amounts of apelin peptides into bovine
colostrum and milk (Habata et al., 1999). Tissue expression analyses revealed, that the distribution
of preproapelin and APJ mRNA were similar. The apelin peptide was detected in the spinal cord
and several human brain regions (Matsumoto et al., 1996; Edinger et al., 1998; Lee et al., 2000). In
rats, preproapelin and APJ mRNA were detected in brain and peripheral tissues, including testis,
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FIGURE 1 | (A) Structure of apelin precursor – 77-amino acids preproapelin. (B) Amino acid sequences of (a) apelin-36, (b) apelin-17, (c) apelin-13, and (d)

[Pyr1]apelin-13. Angiotensin converting enzyme 2 (ACE-2) can hydrolase apelin-13 and apelin-36 removing C-terminal residue. Based on Habata et al. (1999).

intestine, kidney, and in the fetus (Lee et al., 2000; O’Carroll
et al., 2000). High level apelin mRNA levels were also identified
in the rat heart (Lee et al., 2000), lung, and mammary
glands (Kawamata et al., 2001), however only faint signals
were detected in spleen and liver (Lee et al., 2000). Tissue
expression of apelin-17 in humans was also determined
using immunohistochemistry; apelin-17 is highly expressed
in chondrocytes, endothelial cells, the heart, skin, brain,
spleen, thymus, and lungs. An intermediate expression level
of apelin was found in skeletal muscle. In the liver, pancreas,
and kidney, apelin-17 was detected in relatively low levels
(De Falco et al., 2002). Apelin was also highly expressed in
adipocytes. As a hormone released by adipose tissue, apelin
belongs to adipokines family. Adipokines display many
properties, such as pro-inflammatory classical cytokines
(tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6]),
chemokines (monocyte chemoattractant protein-1), proteins
involved in vascular homeostasis (plasminogen activator
inhibitor), regulation of blood pressure (angiotensinogen),
glucose homeostasis (adiponectin), lipid metabolism (retinol
binding protein), and angiogenesis [vascular endothelial growth
factor [VEGF](Trayhurn et al., 2006)].

Its extensive tissue distribution suggests, that the apelin/APJ
system, also known as an apelinergic system, might be involved
in many physiological processes, such as regulation of body
fluid homeostasis (Reaux et al., 2001), blood pressure (Tatemoto
et al., 2001), endocrine stress response (Taheri et al., 2002;
O’Carroll et al., 2003), cardiac contractility (Szokodi et al.,
2002), angiogenesis (Zhang et al., 2016), and energy metabolism
(Bertrand et al., 2015). Additionally, apelin participates in

pathological processes, including heart failure (Földes et al.,
2003), obesity (Boucher et al., 2005), diabetes (Li et al., 2006), and
cancer (Wang et al., 2008).

APELIN IN CARDIOVASCULAR DISEASES

Under normal conditions apelin and APJ are expressed in cardiac
myocytes. Apelin has a positive inotropic effect in vitro (Szokodi
et al., 2002) and is involved in lowering arterial blood pressure
(Tatemoto et al., 2001), inducing arterial vasodilation (Japp et al.,
2008), and improvement of cardiac output (Japp et al., 2010).
The first connection between apelin and pathology of the cardiac
system was made in 2003. Földes et al. demonstrated higher
expression levels of apelin mRNA in failing human hearts in
compared to normal tissue, and suggested, that apelin might be
involved in the pathophysiology of human heart failure (Földes
et al., 2003). Apelin increases cardiac output and lowers blood
pressure and peripheral vascular resistance in patients with heart
failure (Japp et al., 2010). Moreover, [Pyr1]apelin-13 injection
into a rat model of myocardial infarction resulted in decreased
infarct size, and increased heart rate and serum nitric oxide
level in consecutive days, indicating that apelin has a sustained
cardioprotective effect against myocardial infarction (Azizi et al.,
2013). Another study revealed the connection between dramatic
improvement of cardiac function and significant upregulation
of stromal cell-derived factor 1/C-X-C chemokine receptor
type 4 expression in postmyocardial infarction mice after
administration of apelin-13 (Li et al., 2012). This peptide can
also abolish reactive oxygen species (ROS) formation, reduce
oxidative stress and prevent cardiac hypertrophy (Foussal et al.,
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2010). Interestingly, the loss of apelin in apelin-knockout mice
increased myocardial infarction mortality, infarct size, and
inflammation, with a reduction of the prosurvival pathway
via phosphatidyl inositol 3-kinase/protein kinase B (PI3K/Akt)
(Wang et al., 2013).

Hypertension is a cardiovascular condition, characterized
by increased arterial blood pressure. Long-term high blood
pressure could be a risk factor for many cardiovascular events,
such as coronary artery disease, stroke, ischemic heart disease,
myocardial infarction, and peripheral vascular disease (Alam
et al., 2017). Apelin and APJ mRNA expression levels were
reduced in rats with hypertension (Akcilar et al., 2013), which
correlates with the significantly lower level of plasma apelin in
the group of newly diagnosed hypertensive patients (Sonmez
et al., 2010). APJ could be responsible for the action of apelin
on regulating blood pressure. The protein expression level of
this receptor was decreased in myocytes isolated from the
left ventricular tissue of hypertensive rats with heart failure,
compared to the control group. After the exogenous infusion
of [Pyr1]-apelin-13, APJ levels were significantly increased.
Reduced left ventricular systolic pressure was observed in
hypertensive rats after apelin administration (Pang et al.,
2014). Multiple findings suggest, that the hypotensive effect of
apelin and APJ receptor might be mediated through nitric-
oxide synthase (eNOS) (Ishida et al., 2004). Studies examining
olmesartan, an angiotensin II receptor antagonist, as a treatment
for hypertension in rats with heart failure, also found, that
apelin can be involved in regulation of the Akt/eNOS pathway.
(Fukushima et al., 2010). The APJ receptor can also act as a
pressure sensor to respond to cardiac hypertrophy. In H9c2
rat myocardial cells, static pressure (180 mmHg) increased the
expression of APJ protein, activated the PI3K/Akt pathway,
induced cell autophagy, and stimulated myocardial hypertrophy
(Xie et al., 2014).

Several studies have demonstrated that apelin can be treated
as a biomarker of cardiovascular diseases. In patients with
coronary artery disease, serum apelin-12 levels were reduced
(Kadoglou et al., 2010). Decreased myocardial (Chandrasekaran
et al., 2010) and serum (Ye et al., 2015) apelin-12 production
was also characteristic for patients with systolic left ventricular
dysfunction disease. The secretion pattern of apelin-12, measured
as a concentration of this peptide in the coronary sinus, aorta,
and renal vein, differed to that of brain natriuretic peptide, an
internal control exclusively produced in heart (Chandrasekaran
et al., 2010). These findings were also verified by Helske et al.,
who demonstrated altered transcardiac arteriovenous gradients
of circulating in serum apelin-12 in response to left ventricular
pressure overload (Helske et al., 2010). The level of apelin-
36 was measured in patients and rats with left ventricular
hypertrophy. In both groups, while the expression of myocardial
apelin decreased, apelin plasma levels increased. The correlation
between plasma apelin and left ventricular mass index in human
and rats demonstrated, that this peptide might be used as a
biomarker of left ventricular hypertrophy (Falcão-Pires et al.,
2010). Meta-analysis of data indicated, that serum apelin (all
forms) might be a prominent athero-protective marker against
the development of coronary artery diseases (Chen et al., 2017b).

The expression changes of apelin/APJ system in cardiovascular
diseases are shown in Table 1.

All of these results, suggest that apelin could be responsible
for increased cardiac output and cardioprotective effect against
myocardial infarction and oxidative stress. Furthermore, the
apelinergic system can play an important role in the regulation of
blood pressure, acting as a pressure sensor to respond to cardiac
hypertrophy. The hypotensive effect of apelin could be mediated
through the Akt/eNOS pathway. The role of the apelin/APJ
system in cardiac hypertrophy was well summarized by Lu et al.
(2017). Additionally, in patients with different cardiovascular
diseases, such as coronary artery disease, systolic left ventricular
dysfunction disease, and left ventricular hypertrophy, apelin
concentration is also altered, suggesting that apelin peptides
could be successfully used as a biomarker of cardiovascular
system pathologies.

APELIN IN HYPOXIA

Hypoxia is a condition of the body often caused by interrupted
blood flow, inflammation, sepsis or hypertension, leading to
the release of hypoxia-inducible factor (HIF-1). This short-
lived macromolecule is a transcription factor that modifies
and regulates cell metabolism to increase or decrease oxygen
concentration. Sustained hypoxia causes organ and tissue damage
(Pozo Devoto et al., 2013). This condition enhances the
expression of HIF-1, leading to upregulation of apelin/APJ
signaling and activation of PI3K/Akt and extracellular signal-
regulated kinase pathways (ERK) (Zhang et al., 2015a,b). The
expression changes of the apelin/APJ system in organs under
hypoxia are shown in Table 1.

The main reasons for hypoxia are ischemia and reperfusion
(I/R)—pathological conditions characterized by restriction of
blood delivery to organs and tissues. I/R contribute to a wide
range of pathologies, including myocardial infarction, ischemic
stroke, acute kidney injury, trauma, circulatory arrest, sickle
cell disease, and sleep apnea (Eltzschig and Eckle, 2011).
Renal I/R can occur as a consequence of systemic hypotension,
cardiac arrest, renovascular surgery, and aortic clamping.
Various pharmacological methods have been investigated for
the treatment of renal I/R injury (He et al., 2015). Sagiroglu
et al. examined the effect of apelin on renal functions following
renal I/R. In that study, apelin-13 administrated pre-operatively
to a I/R rat model resulted in protective, functional, and
histopathological effects of renal I/R injury (Sagiroglu et al.,
2012). The same conclusions have been drawn in another
study, indicating that apelin-13 applied after rat kidney I/R
injury increased antioxidant enzyme activity in a dose-dependent
manner, prevented lipid oxidation, and improved renal functions
(Bircan et al., 2016). Incubation of rat primary Müller cells
with apelin-13 caused increased cell viability, migration, and
expression of glial fibrillary acidic protein and VEGF. This, in
turn, led to the significant protection of Müller cells against
hypoxia conditions (Wang et al., 2012; Lu et al., 2013).

Apelin is also able to protect the heart against I/R injury
both in vivo and in vitro. When administrated immediately
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TABLE 1 | Expression of apelin/APJ in cardiovascular diseases, and organs under hypoxia.

Disease Patient/tissue/cell line mRNA Protein References

Failing heart Human idiopathic dilated cardiomyopathy

tissue

APLN ↑ – Földes et al., 2003

Hypertension Human plasma – Apelin-12 ↓ Sonmez et al., 2010

Rat plasma APLN ↓

APLNR ↓

– Akcilar et al., 2013

Rat left ventricular myocytes – APJ ↓ Pang et al., 2014

Coronary artery disease Human plasma – Apelin-12 ↓ Kadoglou et al., 2010

Left ventricular hypertrophy Human left ventricular myocytes – Apelin-12 ↓ Chandrasekaran et al., 2010

Human plasma – Apelin-12 ↓ Ye et al., 2015

Rat left ventricular myocytes – Apelin-36 ↓ Falcão-Pires et al., 2010

Rat plasma – Apelin-36 ↑

Retinal ischemia Rat retinal Müller cells APLN ↑

APLNR ↑

Apelin ↑

(unspecified)

APJ ↑

Wang et al., 2012

Heart ischemia Rat hearts – APJ ↑ Rastaldo et al., 2011

Brain ischemia Rat and mouse hippocampus – APJ ↓ Fan et al., 2017

Pulmonary hypertension Human plasma – Apelin-12 ↓ Chandra et al., 2011

Mouse lung APLN ↑

APLNR ↑

–

Adipocyte hypoxia Human adipocytes APLN ↑ – Kunduzova et al., 2008;

Geiger et al., 2011

Human adipocytes medium – Apelin-13 ↑

Apelin-36 ↑

Geiger et al., 2011

Ischemic retinopathy Mouse retinas APLN ↑

APLNR ↑

APJ ↑ Kasai et al., 2010

Portal hypertension Rat mesentery, intestine, portal vein, and

mesenteric artery

APLN ↑

APLNR ↑

– Tiani et al., 2009

↑, increase; ↓, decrease; –, not clear.

after ischemia to isolated perfused rat hearts, apelin-13 protected
the heart, limiting infarct size and improving postischemic
mechanical recovery (Rastaldo et al., 2011). On the other
hand, administration of apelin-12 to rats before ischemia
or at the beginning of reperfusion reduced I/R injury. This
cardioprotective effect compromises prevention and attenuation
of oxidative stress by increasing the activity of antioxidant
enzymes in postischemic hearts. This leads to inhibition of lipid
peroxidation and reduced ROS formation (Pisarenko et al., 2011,
2014; Pisarenko O. et al., 2015). A structural analog of apelin-
12-modified apelin-12 (MA)- injected into isolated perfused
rat hearts, also reduced cardiomyocyte damage and improved
cardiac dysfunction. This cardioprotective effect was mediated
by protein kinase C (PKC), PI3K, and MAPK/ERK kinase 1/2
signaling (Pisarenko O. I. et al., 2015). Several signal transduction
pathways -PI3K/Akt, ERK, mitogen-activated protein kinase
(MAPK), and eNOS—have been proposed as the mechanism

underlying the protective effect of the apelinergic system. Each
of these signaling pathways is involved in protection against I/R
injury, especially by the modulation of endoplasmic reticulum
stress-induced apoptotic activation during the first 24 h of
reperfusion (Tao et al., 2011).

The apelinergic system is involved in cerebral ischemia.
Apelin-13 reduced brain infarct size in a dose-dependent manner
in a transient model of focal stroke in rats. The central
applications of this peptide showed a protective effect against
cerebral damage and brain edema, thus preventing apoptosis
(Khaksari et al., 2012). Additionally, apelin-13 had an anxiolytic
effect on rats exposed to chronic normobaric hypoxia. These
rats exhibited anxiety-like behavior, which might be associated
with inhibition of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) activation in microglial of the
hippocampus (Fan et al., 2017). This peptide is also involved
in protecting the blood-brain barrier from ischemic injury.
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Administration of apelin-13 in a mouse model with middle
cerebral artery occlusion resulted in reduced infarct volume.
The authors indicated that this is connected with aquaporin-4
upregulation, which could be a result of the activation of the
ERK and PI3K/Akt pathways (Chu et al., 2017). In the same
experimental model, apelin-36 injection reduced infarct volume
and neuronal apoptosis (Gu et al., 2013). The same conclusions
were reached by Yang et al., demonstrating the neuroprotective
effect of apelin-13 against I/R through PI3K/Akt and ERK
pathways using a cerebral I/R mouse model (Yang Y. et al., 2014).
Apelin-13 can also inhibit apoptosis of neuronal cells in I/R
cerebral mice through inhibition of immunoreactivity of pro-
apoptotic factors and promotion of immunoreactivity of anti-
apoptotic factors (Yan et al., 2015). AMP-activated protein kinase
(AMPK) could be the mediator of the anti-apoptotic protection
of apelin, since apelin-13 upregulated its level after cerebral I/R
in mice (Yang et al., 2016b).

In pulmonary hypertension, the level of pulmonary tissue
and plasma apelin (all forms) was unchanged by hypoxia.
Moreover, in arteries of normoxic rats, apelin modulated
vasoconstrictor tone, which was not observed in hypoxic animals.
However, the level of apelin in the right ventricle was related
to right ventricular pressure, suggesting that apelin could be
used as a pulmonary hypertension marker (Andersen et al.,
2009). Exacerbation of pulmonary hypertension induced by
hypoxia was observed in mice, and this effect was mediated
by downregulation of eNOS. Moreover, the critical mediators
of apelin-APJ signaling in pulmonary artery endothelial cells
were AMPK and Kruppel-like factor 2. Reduced apelin-12 levels
were also observed in patients with pulmonary hypertension,
suggesting its importance in this disease (Chandra et al., 2011).
Interestingly, in vitro studies on pulmonary arterial smooth
muscle cells (PASMCs) have indicated that hypoxia increases
proliferation and migration of these cells. PASMCs proliferation
was related to activation of autophagy in response to hypoxia.
Apelin treatment under hypoxic conditions resulted in a decrease
in PASMCs proliferation and migration through inhibition of
autophagy, regulated by activation of the PI3K/Akt/mechanistic
target of the rapamycin (mTOR) pathway (Zhang et al., 2014).

In conditions combining obesity and cardiac I/R injury,
apelin-13 administration to mice decreased myocardial
expression of pro-apoptotic B-cell lymphoma 2 (Bcl-
2)-associated X protein and increased the expression of
anti-apoptotic Bcl-2, leading to reduced myocardial apoptosis.
Inhibition of apoptotic cell death was associated with a reduction
of hypoxia-induced ROS production and attenuation of oxidative
stress through the forkhead box protein O1 pathway (Boal et al.,
2016).

Another metabolic disease, diabetes mellitus, exerts metabolic
changes in erythrocytes, leading to oxidative stress. In diabetic
rats, erythrocytes deformability was altered in myocardial I/R
injury. However, apelin-13 administration before ischemia had
a protective effect against these perturbations (Kartal et al.,
2017). Hypoxia could also induce apelin secretion in human
adipocytes. The level of secreted apelin-13 and apelin-36 was
increased in adipocytes, and HIF-1 was the major factor involved
in this process (Geiger et al., 2011). Moreover, apelin has

an antioxidant effect in adipocytes. Apelin peptide treatment
decreased ROS production and increased activity of antioxidant
enzymes, such as Cu/Zn superoxide dismutase, catalase, and
glutathione peroxidase. Apelin could also attenuate the ROS-
stimulated release of pro-inflammatory adipocytokines and free
fatty acids (Than et al., 2014). Furthermore, in adipocytes after
hypoxic exposure, HIF-1 was responsible for upregulation of
apelin level in response to insulin (Glassford et al., 2007).
Adipocyte-released apelin upregulated by hypoxia could play
a critical role in the development of the functional vascular
network in adipose tissue (Kunduzova et al., 2008).

To summarize, apelin plays a protective role against ischemia
through the PI3K/Akt, ERK, MAPK, AMPK, and eNOS
pathways. Apelin is also responsible for decreased ROS formation
and increased activity of antioxidant enzymes in adipocytes.
Apelin secreted by adipocytes could play an important role in
vascular network development in adipose tissue.

APELIN IN ANGIOGENESIS

Angiogenesis is the physiological process of forming new blood
vessels from existing vessels. This process is crucial for supplying
tissues with oxygen and nutrients and for removing metabolites,
such as carbon dioxide. Prolonged angiogenesis often indicates a
pathological condition, such as arthritis, diabetic retinopathy or
cancer progression (Al-Abd et al., 2017).

In ischemic disorders, HIFs transcription factors are
upregulated, leading to the alternation of the expression of the
angiogenesis-related factors gene expression. The proliferation
of mesenchymal stem cells and upregulation of HIF-1 expression
could be mediated through the apelin-APJ/autophagy pathway
(Li et al., 2015). Administration of apelin also promoted
mesenchymal stem cells survival and vascularization under
hypoxic-ischemic conditions. This process might be connected
with upregulation of VEGF (Hou et al., 2017).

Apelin signaling is also essential for angiogenesis promotion
during portal hypertension (Tiani et al., 2009). Furthermore,
administration of apelin-13 to rats with ischemic stroke led
to increased forming of new blood vessels (Chen D. et al.,
2015). Hypoxia conditions might also induce the expression
of adipocyte-derived apelin, which could have important
consequences for the relationship between adipose tissue and
endothelial vascular cell function in the control of angiogenesis
(Kunduzova et al., 2008). One of the suggested mechanisms
underlying the role of apelin in angiogenesis is activation
of AMPK and PI3K/Akt signaling. Moreover, eNOS, an
important mediator in angiogenesis, is activated through direct
phosphorylation by AMPK and Akt (Yang X. et al., 2014; Zhang
et al., 2016).

The apelin/APJ system might be involved in pathological
angiogenesis (Wu et al., 2017). In a mouse model of oxygen-
induced retinopathy, the expression of apelin was dramatically
increased during hypoxia and was significantly higher than
the expression of VEGF. Moreover, APJ was highly expressed
in proliferative capillary endothelial cells. Additionally, the
suppression of apelin expression in apelin-knockout mice led to a
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limited proliferation of endothelial cells but induced retinal vessel
maturation by promoting pericyte recruitment (Kasai et al., 2010,
2013).

All of these results indicate that apelin might mediate
angiogenesis by upregulation of HIF-1, VEGF, and VEGFR
(vascular endothelial growth factor receptor 2), as well as by
activation of the AMPK/eNOS and PI3K/Akt/eNOS pathways.
During pathological retinal angiogenesis, the expression of apelin
and APJ is also increased.

APELIN IN OBESITY

Adipokines are biologically active molecules secreted by adipose
tissue, the complex organ, in which adipocytes are the main
cellular component (Tapan et al., 2010). In addition to adipocytes,
this dynamic tissue is also composed of stromal-vascular fraction,
compromising blood cells, pericytes, endothelial cells, and
adipose precursors. Adipose tissue does not only perform a fat
storage function; it is also synthesizing some biologically active
compounds, which regulate metabolic homeostasis (Coelho
et al., 2013). Apelin, as a member of the adipose tissue-derived
peptides, might contribute to obesity-related disorders. However,
its role remains unclear and experimental findings have been
inconsistent. In the studies examining obese young patients,
the apelin-12 plasma level was decreased, relative to healthy
patients, which could be associated with severity of insulin
resistance and adiposity (Tapan et al., 2010; Kotanidou et al.,
2015). However, another study found that its plasma level was
significantly increased in obese female children in comparison
to non-obese children (Ba et al., 2014). Another study reported
increased apelin-12 serum concentration in patients with obesity
and obesity-related insulin resistance, which could be caused
by impaired insulin sensitivity (Krist et al., 2013). These
opposite findings might be explained by differential expression
of apelin across tissues. In the obese and insulin-resistant high-
fat diet female mice, the plasma apelin-12 concentration was
not altered, but the level of apelin gene-expression was elevated
in white-adipose tissue and reduced in brown-adipose tissue,
liver, and kidneys, suggesting that the apelinergic system could
be implicated in several dysfunctions in these tissues under
obesity (Butruille et al., 2013). Additionally, in obese patients
after hypocaloric diet-induced weight loss, the plasma apelin
(all forms) level was significantly decreased. The diet-induced
changes in plasma apelin levels directly correlated with the diet-
induced decrease of metabolic variables, such as plasma insulin
and TNF-α levels. However, expression of apelin and APJ was
also decreased after low-calorie diet (Castan-Laurell et al., 2008).

Some data have indicated that there is a correlation between
plasma insulin level and apelin expression in adipocytes.
Administration of insulin into obese mice increased apelin
gene transcription, what could be associated with activation
of the PI3K/Akt, PKC, and MAPK pathways (Boucher et al.,
2005). Apelin is also involved in a decrease of lipolysis in
adipocytes. Administration of [Pyr1]-apelin-13 inhibited
isoproterenol-induced lipolysis in cultured adipocytes through
two possible mechanisms: attenuating PKA-mediated or

increasing AMPK-mediated Ser-563 hormone-sensitive lipase
phosphorylation (Yue et al., 2011). Another research revealed,
that [Pyr1]-apelin-13 inhibited adipogenesis of pre-adipocytes
by the AMPK and MAPK/ERK pathways. Moreover, exogenous
apelin decreased the number of differentiated adipocytes and
increased the size of lipid droplets inside the cells, suggesting
that apelin might suppress lypolysis (Than et al., 2012).

Interestingly, adipose tissue growth is correlated with
angiogenesis. The accumulation of adipocytes occurring under
obesity could be closely linked with the structure and function of
lymphatic vessels. Apelin signaling leads to enhanced lymphatic
and blood vessels integrity. Increased permeability of lymphatic
and blood vessels induced by dietary fatty acids, which leads to a
block of fat accumulation was inhibited by apelin (Sawane et al.,
2013).

These results hint that apelin might play an important role
in obesity. The plasma apelin level is changed in obese patients
compared to non-obese controls. Apelin inhibits lipolysis in
adipocytes and is involved in angiogenesis in adipose tissue.
However, the findings of studies investigating the role of apelin
in obesity are inconsistent, and there are still many gaps in this
topic. The expression changes of the apelin/APJ system under
obesity are shown in Table 2.

APELIN IN A TYPE 2 DIABETES

Apelin is expressed in human, mouse, rat, pig and cat pancreatic
islets and is regulated by glucocorticoids, but not by glucose
(Ringström et al., 2010). Apelin plays a beneficial role in energy
metabolism by increasing glucose uptake and insulin sensitivity
(Bertrand et al., 2015). However, many controversies surround
the relationship between apelin signaling, insulin sensitivity, and
glucose uptake, which are discussed in the review by Xu et al.
(2011). In diabetic patients apelin-12 concertation was increased
(Habchi et al., 2014), extending susceptibility to diabetes (Zheng
et al., 2016), thus, examining plasma apelin level could be used as
a method to predict the development of type 2 diabetes (Ma et al.,
2014; Hu et al., 2016). Furthermore, an augmented level of apelin
in rats suggests, that it has a strong anti-type 2 diabetic activity
and acts as an insulin-sensitizing agent (Akcilar et al., 2015).

Administration of apelin-13 to mice results in an eNOS-
dependent decrease in glycemia and stimulation of glucose
turnover. Moreover, AMPK signaling was a potential upstream
target of eNOS-mediated stimulation of glucose transport
(Dray et al., 2008). Additionally, [Pyr1]-apelin-13 increased
glucose uptake in adipocytes by inducing translocation of
glucose transporter type 4 (GLUT-4) in a PI3K/Akt-dependent
manner andmediated inflammatory response in insulin-resistant
adipocytes (Zhu et al., 2011). Apelin could also be involved in
regulation of blood glucose level by AMPK activation and cAMP
decrease (Alipour et al., 2017).

In diabetes-related diseases, such as diabetic retinopathy
or nephropathy, the apelin-13 level was significantly elevated
in comparison to non-diabetic organs. Furthermore, in the
kidneys diabetic rats, administration of apelin-13 restored
the downregulated expression of the antioxidant enzyme
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TABLE 2 | Expression of apelin/APJ in obesity, diabetes mellitus, and diabetes-related diseases.

Disease Patient/tissue/cell line mRNA Protein References

Obesity Human plasma – Apelin-12 ↓ Tapan et al., 2010; Krist et al., 2013; Kotanidou et al., 2015

– Apelin-12 ↑ Ba et al., 2014

Diabetes mellitus Human plasma – Apelin-12 ↑ Habchi et al., 2014; Ma et al., 2014

Rat heart – Apelin ↑

(unspecified)

Akcilar et al., 2015

Diabetic retinopathy Human vitreous body – Apelin-13 ↑ Tao et al., 2010

Diabetic nephropathy Mouse kidney cortex – Apelin-13 ↓ Day et al., 2013

Diabetic cardiomyopathy Mouse heart – Apelin ↑

(unspecified)

Zeng et al., 2014

↑, increase; ↓, decrease; –, not clear.

catalase, suggesting a renoprotective effect of apelin through
antioxidant pathways (Day et al., 2013). Apelin was also
responsible for podocyte apoptosis, which was negatively
correlated with podocyte autophagy in diabetic mice with
nephropathy. Moreover, the mTOR pathway has been proposed
as the mechanism responsible for inhibition of podocyte
autophagy by apelin. Additionally, apelin-13 might play a role
in retinal neovascularization under diabetic retinopathy (Tao
et al., 2010; Day et al., 2013; Liu et al., 2017). In mice
with diabetic cardiomyopathy, adenoviral administration of the
apelin gene led to increased expression of VEGF/VEGFR2 and
angiopoietin-1/tyrosine-protein kinase receptor. Overexpression
of apelin resulted in augmented myocardial angiogenesis,
attenuated diabetic cardiac hypertrophy, and improved cardiac
function (Zeng et al., 2014; Hou et al., 2015). There is
also a connection between type 2 diabetes and cancer.
A positive correlation was observed in vitro in breast,
colon, and pancreas cancers. Hyperinsulinemia is likely the
major factor, that plays a role in these associations. Insulin
resistance, which leads to hyperinsulinemia, might serve as
a potential target for cancer therapy (Cannata et al., 2010).
The expression changes of the apelin/APJ system under
diabetes mellitus and diabetes-related diseases are shown in
Table 2.

All these findings indicate that the stimulation of
glucose uptake by apelin is possible through translocation
of GLUT-4 in a PI3K/Akt-dependent manner. In this
process, the AMPK/eNOS pathways are also involved. In
diabetes-related diseases, such as retinopathy, nephropathy
or cardiomyopathy apelin has a protective effect against
oxidative stress and apoptosis through the mTOR
pathway.

APELIN IN CANCER

Role of Apelin in Different Types of Cancer
There are several well-known hallmarks of cancer, including
sustaining proliferative signaling, evading growth suppression,
activating invasion and metastasis, enabling replicative

immortality, inducing angiogenesis, and resisting cell death
(Hanahan and Weinberg, 2011).

Apelin might be involved in the regulation of tumor growth,
cancer cell migration, neoangiogenesis, apoptosis suppression,
and even metastasis induction. Various apelin peptides can
stimulate tumor growth and proliferation ofmany types of cancer
cells, including cholangiocarcinoma (CAA) (Hall et al., 2017),
non-small cell lung cancer (NSCLC) (Berta et al., 2010), gastric
cancer (Feng et al., 2016), prostate cancer (Tekin et al., 2014),
ovarian cancer (Hoffmann et al., 2017), and oral squamous cell
carcinoma (Heo et al., 2012). The expression changes of the
apelin/APJ system in cancer are shown in Table 3.

The apelin/APJ system is involved in the induction of cell
migration. A pyroglutamyl form of apelin [Pyr1]-apelin-13 could
stimulate the migration of human embryonic kidney cells with
APJ overexpression. This peptide activated phosphorylation of
Akt and focal adhesion kinase (FAK), which was mediated by
the PI3K signaling pathway (Hashimoto et al., 2005). Apelin also
increased the migratory abilities of human lung adenocarcinoma
(Lv et al., 2016), gastric cancer (Feng et al., 2016) and oral
squamous cell carcinoma (Heo et al., 2012). There are several
possible mechanisms leading to the regulation of cell migration,
one of which is the p-21 activated kinase (PAK1)/cofilin signaling
pathway. Cofilin is a member of an actin-binding protein
family involved in cell migration by the organization of actin
filaments. Cofilin can be activated by PAK1 kinase through
indirect interaction. Other mediators of this signaling pathway
remain unknown (Lv et al., 2016). It is also possible, that apelin
induces migration viaMAPK/ERK in oral cancer cells (Heo et al.,
2012), AMPK, PI3K/Akt, and peroxisome proliferator-activated
receptor (PPAR) pathways in ovarian cancer cells (Dupont et al.,
2012).

Migration of cancer cells is strictly associated with metastasis.
In mice, apelin-13 could stimulate lymph nodes metastasis
of implanted apelin-overexpressing melanoma cells (Berta
et al., 2014). It is also known that epithelial-mesenchymal
transition (EMT) can be involved in the initiating stage of
cancer cell metastasis. The role of the apelinergic system
in EMT remains controversial. Although apelin was able to
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TABLE 3 | Expression of apelin/APJ in different types of cancer.

Disease Patient/tissue/cell line mRNA Protein References

Lung cancer Non-small cell lung carcinoma APLN ↑ – Berta et al., 2010

Adenocarcinoma – APJ ↑ Yang L. et al., 2014

Cholangiocarcinoma Cholangiocarcinoma APLN ↑

APLNR ↑

– Hall et al., 2017

Cholangiocarcinoma cell lines – Apelin-36 ↑

APJ ↑

Liver cancer Hepatocellular carcinoma APLN ↑ – Muto et al., 2014

Gastric cancer Gastroesophageal Cell Carcinoma – Apelin ↑

(unspecified)

Diakowska et al., 2014; Feng et al., 2016

Plasma – Apelin ↑

(unspecified)

Diakowska et al., 2014

Gastric cancer – APJ ↑ Hao et al., 2017

Adenomas and adenocarcinomas – Preproapelin ↑

APJ ↑

Picault et al., 2014

Colon cancer cell lines – Preproapelin ↑

APJ ↑

Colon carcinoma APLNR ↑ – Chen et al., 2017a

Prostate cancer Prostate cancer APLN ↑ – Wan et al., 2015

Ovarian cancer Ovarian cancer APLN ↑

APLNR ↑

– Hoffmann et al., 2017

Breast cancer Plasma – Apelin-36 ↑ Salman et al., 2016

Renal cancer Clear renal cell carcinoma APLN ◦ – Zhang et al., 2017

Squamous cell carcinoma Oral squamous cell carcinoma – Apelin-36 ◦ Heo et al., 2012

Multiple myeloma Plasma – Apelin ↑

(unspecified)

Maden et al., 2017

Glioblastoma Glioblastoma APLN ↑ – Harford-Wright et al., 2017

Obesity-related colon cancer Human plasma – Apelin-12 ↑ Al-harithy and Al-otaibi, 2015

Obesity-related endometrial cancer Human plasma – Apelin-36 ↑ Altinkaya et al., 2015; Salman et al., 2016

↑, increase; ↓, decrease; ◦, positive result; –, not clear.

induce cell migration and metastasis in primary human renal
proximal tubular epithelial cells, apelin-13 also inhibited TGF-β
(transforming growth factor-β) -induced EMT. This inhibitory
effect contributed Smad-2/3 and PKC-ε (Wang et al., 2017).

Tumor hypoxia is one of the main pathological factors that
contributes to shift of the angiogenic balance to pro-angiogenic
conditions. The release of pro-angiogenic factors from tumor
and host cells, like macrophages, also causes perturbation
in the vascular network. These pro-angiogenic factors can
work as a chemotactic signal resulting in migration and
proliferation of endothelial cells within the tumor tissue,
and formation of the new vascular networks (Al-Abd et al.,
2017). This process could be associated with the activation
of several signaling pathways, including PI3K, eNOS, and
phosphorylation of FAK (Lamalice et al., 2007). The apelinergic
system might be involved in angiogenesis in tumor progression.

Implantation of apelin-overexpressing NSCLC cells into mice
resulted in accelerated tumor growth in vivo with increased
microvessel density (MVD) (Berta et al., 2010). In patients
with hepatocellular carcinoma (HCC), MVD was higher than
in non-tumor tissue. The transcript levels of apelin and pro-
angiogenic factors (angiopoietin 1 [ang-1]), angiopoietin 2
[ang-2]) were also elevated in the same model. In the HCC
tumor mouse model, the APJ antagonist, F13A, inhibits tumor
growth, suggesting, that the apelinergic system stimulates tumor
growth (Muto et al., 2014). Additionally, in hepatocellular
cell lines, upregulation of the APLN gene was identified as
promoting angiogenesis, invasion, and metastasis of cancer
cells (Lin and Chuang, 2013). Moreover, the Matrigel tube
formation was used to show that apelin-13 effectively stimulates
differentiation lymphatic endothelial cells (LEC) into vascular
structures in vitro. Furthermore, implantation of melanoma
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cells overexpressing apelin into mice resulted in an increase of
intratumor lymphangiogenesis and metastasis to lymph nodes
(Berta et al., 2014). In human CAA cell lines [Pyr1]-Apelin-
13 stimulated cell proliferation and increased expression of
angiogenesis factors, such as VEGF-A VEGF-C, ang-1, and
ang-2, whereas the APJ antagonist, ML221, has an opposite
effect, suggesting that [Pyr1]-apelin-13 could be a stimulator of
proliferation and angiogenesis of CAA cells (Hall et al., 2017).

The protective effect of apelin against apoptosis is also
described. In primary rat pericyte cells apelin-13 increased
the viability of the cells under hypoxic conditions. This
peptide significantly decreased the level of caspase-3 activity,
which is crucial apoptosis mediator (Chen L. et al., 2015).
In vascular smooth muscle cells apelin-13 protected cells
against serum deprivation-induced apoptosis by the PI3K/Akt
pathway (Cui et al., 2010). Apelin-derived peptides- [Pyr1]-
apelin-13, apelin-13, and apelin 36, protected colorectal cancer
cells from apoptosis induced by pro-apoptotic factors. Apelin
fragments also decreased caspase-3 activity and poly-ADP ribose
polymerase protein proteolysis, suggesting that apelin is involved
in resisting cell death during cancer progression (Picault et al.,
2014).

Many expression changes of the apelin/APJ system were
observed in various types of cancer (Yang et al., 2016a). InNSCLC
the level of apelinmRNA and apelin-36 peptide were significantly
higher in the patient’s tumor samples compared to normal
tissue. In the group of advanced NSCLC patients a significant
correlation between apelin-12 level and overall survival was
detected. However, there was no association with differential
treatment response rates, different chemotherapy regiments
or hematological side effects (Ermin et al., 2016). Another
study revealed, that the expression of APJ protein was higher
in lung adenocarcinoma tissue, than in submucous bronchial
tissue. The level of plasma apelin-13 was also significantly
higher in patients with this type of cancer. In vitro studies
have demonstrated, that apelin-13 promotes the proliferation of
human lung adenocarcinoma cells through an upregulation of
cyclin D1 level and thus accelerating the conversion of G0/G1
to S phase in the cell cycle. Furthermore, apelin-13 induced
ERK1/2 phosphorylation and autophagy inhibition, detected as
an increase in microtubule-associated protein 1 light chain 3
alpha and beclin 1 levels, which both led to a proliferation of
cancer cells (Yang L. et al., 2014). Interestingly, apelin-13 was
able to impact cell migration. Cell migration assays revealed,
that apelin-13 and APJ were responsible for increased migration
abilities of human lung adenocarcinoma cells via the PAK1-
cofilin signaling pathway (Lv et al., 2016).

In gastroesophageal cell carcinoma, the apelin serum and
tissue levels are significantly higher than in healthy samples
(Diakowska et al., 2014). In gastric cancer (GC) tissue, the apelin
level was closely associated with clinical features and prognosis
in GC patients. Patients with high tumor apelin expression had
a shorter overall survival period than those with low apelin
expression. An in vitro study found that GC cells treated
with apelin showed increased migration and invasion abilities.
Apelin stimulation also induced expression of APJ receptor and

matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-
9 (MMP-9), IL-1, and IL-6, which are associated with tumor
invasion and metastasis (Feng et al., 2016). Moreover, inhibition
of APLNR by siRNA reduced the proliferation rate, migration,
and invasion abilities of GC cells, suggesting a role for the
apelinergic system in the progression of gastric cancer (Feng
et al., 2016).

APJ protein tissue expression might be used as a biomarker to
predict therapy response and prognosis in GC patients receiving
chemoradiotherapy and treatment using endostar—a modified
recombinant human endostatin-since these patients with a poor
response had a dramatically increased APJ expression compared
to those with good treatment response (Hao et al., 2017). Apelin
could also be used as a predictive biomarker for other cancer
therapies. In colorectal cancer, a high concentration of apelin
predicted poor response to bevacizumab therapy (Zuurbier et al.,
2017). In human colon adenomas and adenocarcinomas, as well
as in colon cancer cell lines, preproapelin peptide andAPJ protein
were overexpressed. The exogenous apelin peptides, [Pyr1]-
apelin-13,−13, and−36 activate the APJ receptor, which inhibits
adenylyl cyclase activity in colon cancer cells. Furthermore,
apelin peptides had a protective effect against colon cancer cell
apoptosis induced by pro-apoptotic agents. Interestingly, apelin
peptides did not increase the proliferation of the colon cancer
cells, whereas it did stimulate the phosphorylation of Akt kinase
(Picault et al., 2014), whereas in human colon cancer cell line
LS180, administration of apelin-13 stimulated proliferation via
the JAG-1/Notch3 signaling pathway (Chen et al., 2017a).

Apelin has a mitogenic ability also in prostate cancer.
Treatment with apelin-13 resulted in increased proliferation
of prostate cancer cell lines (Tekin et al., 2014). Additionally,
the 3′UTR of the APLN mRNA was complementary to miR-
224, which might act as a tumor suppressor in human
prostate cancer, suggesting that apelin is a direct target of
miR-244. The knockdown of APLN in prostate cancer cells
resulted in the abolished effect of miR-224, including inhibition
of migration and invasion. Additionally, negative correlation
between miR-244 and APLN expression levels have been
reported. Downregulation of miR-244 and upregulation of APLN
correlated with aggressiveness of tumor progression in patients
with prostate cancer (Wan et al., 2015).

In patients with endometrial cancer the level
of serum apelin-36 was significantly elevated and
correlated with BMI (body mass index) and fasting
insulin levels. However, the level of apelin-36 was not
associated with tumor grade or size (Altinkaya et al.,
2015).

Adipokines might activate different signaling pathways,
including AMPK, PI3K/Akt, and PPARs, that might play crucial
roles in the development of ovarian cancer (Dupont et al., 2012).
Hoffmann et al. demonstrated, that apelin-13 could act as a
mitogenic factor through the PPAR pathway in ovarian cancer
cells. Furthermore, apelin-13 exhibited endocrine and autocrine
actions in epithelial ovarian cancer (Hoffmann et al., 2017). In
postmenopausal breast cancer patients, the serum apelin-36 level
was increased compared to the control group and was positively
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FIGURE 2 | An overview of the apelin-induced signaling pathways.

correlated with BMI (Salman et al., 2016). In multiple myeloma
patients, plasma apelin level was significantly increased, relative
to a healthy control group (Maden et al., 2017).

Apelin mRNA was detected in clear cell renal cell carcinoma
tissue, but there were no significant changes between cancer
and normal tissue (Zhang et al., 2017). The patients with
hyponatremia, a chronic kidney diseases, had increased serum
apelin level, which was associated with greater risk of cancer
progression and death. These data suggest, that apelin could be
useful for this type of cancer prognosis (Lacquaniti et al., 2015).

In oral squamous cell carcinoma tissue the expression of
apelin-36 was very weak. Moreover, apelin expression did
not correlate with overall survival of patients. Stimulation of
oral cancer cells with apelin-13 in vitro resulted in increased
phosphorylation of ERK kinase. Additionally, apelin stimulated
proliferation and migration of oral cancer cells (Heo et al., 2012).

A significant increase in apelin mRNA expression was also
observed in glioblastoma tissue samples. Furthermore, inhibition
of the apelin receptor resulted in a reduction in tumor size,
vascularization, proliferation, and an increase in apoptosis
(Harford-Wright et al., 2017).

In summary, apelin and its receptor are present in many
types of cancer. In most cases, the levels of apelin/APJ
mRNA or peptide/protein are elevated in comparison to
healthy control. Additionally, the apelinergic system might
contribute to cancer development. Many results suggest that the
apelin/APJ system is involved in regulation of the proliferation,
migration, and invasion abilities of cancer cells, leading to
metastasis. Moreover, apelin plays a role in pathological
angiogenesis and protects against apoptosis under tumor
progression.

APELIN IN OBESITY-RELATED CANCER

Obesity is a condition that might increase the risk of cancer
development. Storage of excess calories in the form of lipid
results in extensive endocrine signaling from adipose tissue
to the rest of the body. This connection is possible through
adipokines secretion into the bloodstream, which connects with
other metabolic organs. Therefore, it is likely that adipokines
have a role in cancer development (Zhang et al., 2017). Numerous
studies have demonstrated that increased BMI is associated
with several types of cancer, such as prostate cancer, breast
cancer, and esophageal adenocarcinoma (Paz-Filho et al., 2011).
Interestingly, obesity regulates the expression of the genes
connected with carcinogenesis. In the breast cancer cells of rats
with diet-induced obesity, higher fold changes were detected
in the expression of genes related to cellular proliferation,
such as aldehyde dehydrogenase 3 family member A1 and
MYC proto-oncogene. Also, the expression of the genes that
protect from oncogenesis was modulated. The expression level
of sirtuin-1, tensin homolog, and TGF-β were downregulated,
whereas glutathione S-transferase Mu 2 and tumor protein p53
gene expression were upregulated in diet-induced obesity rats
(Crujeiras et al., 2016). The level of the apelin peptide is elevated
in several cancer types connected with adiposity. In obese men
with colon cancer, the level of plasma apelin-12 is increased
compared to a non-obese control (Al-harithy and Al-otaibi,
2015). In obese women with endometrial and breast cancer,
the level of apelin-36 is also increased and positively correlated
with BMI, fasting insulin levels, metabolic changes in fat tissues,
hyper-inflammation, and neovascularization (Altinkaya et al.,
2015; Cabia et al., 2016; Salman et al., 2016).

Frontiers in Physiology | www.frontiersin.org 10 May 2018 | Volume 9 | Article 557

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wysocka et al. Apelin in Pathologies

CONCLUSIONS

Expression of apelin/APJ occurs widely in many tissue types,
indicating the involvement of the apelin/APJ system in
numerous physiological processes, such as angiogenesis,
energy metabolism, and the regulation of fluid homeostasis
and cardiovascular system. However, alternation of the
microenvironmental conditions leading to the pathological
process might produce a shift in the role of apelin. Therefore, the
apelinergic system can participate in some pathologies, including
heart failure, hypoxia-related diseases, obesity, diabetes,
and cancer. The importance and effect of the apelin/APJ
system are altered under pathological conditions. In failing
human heart, apelin has a cardioprotective effect against
myocardial infarction. Elevated apelin expression increases
cardiac output, lowers blood pressure, and attenuates oxidative
stress and hypertrophy. Moreover, this peptide can be treated
as a biomarker for cardiovascular diseases. During hypoxia,
apelin acts as a protector against apoptosis and increases the
activity of antioxidant enzymes reducing oxidative stress.
This peptide is also involved in hypoxia- and cancer-related
angiogenesis. Secreted by adipose tissue apelin might contribute
to obesity-related disorders and diabetes mellitus. Altered
serum apelin levels have been detected in multiple tissues under
obesity and diabetes and could be a therapeutic target in the
treatment of this pathologies. Furthermore, apelin serum level
is positively correlated with BMI and could increase the risk
of cancer development. The role of apelin in various processes
is probably mediated through several signaling pathways.
Processes leading to metastasis, migration and invasion are
mediated through the PPAR, PI3K/Akt/mTOR, MAPK, and
PAK1/cofilin pathways. The apelinergic system also has an
influence on processes connected with energy metabolism,
including glucose uptake, lipolysis and fatty acid oxidation, via
the AMPK/eNOS and PI3K/Akt pathways. The AMPK/eNOS,

PI3K/Akt, and MAPK pathways could mediate angiogenesis
and I/R protection. An overview of the apelin-induced signaling
pathways is shown in Figure 2. Regulation of progression of
tumor growth and metastasis is the most recently discovered
function of apelin. Many data indicate that in multiple cancer
types, apelin and its receptor might be used as a prognostic
biomarker. However, in many studies, the available results are
unclear. First, the expression changes of apelin/APJ mRNA
do not correlate with its serum concentrations. Moreover,
not all forms of apelin peptides are examined, or there is no
distinction between peptide types. Additionally, the antibodies
used in experiments are often non-specific and recognize
more than one form of apelin. Interestingly, apelin receptor
antagonists could be promising therapeutic compounds
for cancer treatment. Nevertheless, the most often used
antagonist—ML221—could also inhibit more receptor types
(e.g., kappa opioid or the benzodiazepinone receptors) (Maloney
et al., 2012). This result suggests that ML221 could inhibit
another receptor and act through different signaling pathways.
After appraising the available data, we propose that there
remains much to learn about the role of apelin in pathological
processes.
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